
Quantum dissipative dynamics with a

Surrogate Hamiltonian.

The method and applications

D i s s e r t a t i o n

zur Erlangung des akademischen Grades

d o c t o r r e r u m n a t u r a l i u m
(dr. rer. nat.)

im Fach Physik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät I

Humboldt-Universität zu Berlin

von

Dipl.-Phys. Christiane Koch

geboren am 8.1.1973 in Halle/Saale

Präsident der Humboldt-Universität zu Berlin:

Prof. Dr. J. Mlynek

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I:

Prof. Dr. M. Linscheid

Gutachter: 1. Priv.-Doz. Dr. Volkhard May
2. Prof. Dr. Hans-Joachim Freund
3. Prof. Ronnie Kosloff, Ph.D.

eingereicht am: 3. Juli 2002

Tag der mündlichen Prüfung: 18. Oktober 2002
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Chapter 1

Introduction

Modern physics and chemistry cannot be thought of without quantum me-

chanics [1]. Recent experimental developments such as femtosecond spec-

troscopy allow for the direct observation of quantum dynamical phenomena,

i.e. quantum coherences. The experiments are often performed in condensed

phase, for example on atoms or small molecules which are solvated or ad-

sorbed on a surface. The solvent or surface constitutes an environment for

the system to be studied. The interaction of system and environment causes

energy and phase exchange which leads to a perturbation or even destruc-

tion of the quantum coherences. This limits the applicability of quantum

phenomena in prospective technologies. It has therefore been a major con-

cern in research toward quantum computing.

The interaction with light is not only a source of information about the

quantum dynamics of the atoms or molecules studied, it can also initiate

charge and energy transfer processes, i.e. chemical reactions. A very simple

example of a chemical reaction is the breaking of a bond between a mole-

cule and a surface leading to the detachment and hence desorption of the

molecule. Desorption furthermore constitutes an elementary step of cataly-

sis. Compared to other condensed phase problems, a molecule adsorbed on a

surface represents a very well characterized system due to the exceptionally

developed techniques of surface science. The comprehensive information from

experiment about the properties of the system as well as the environment is

an invaluable prerequisite in the development of a theoretical model.

The interaction of a quantum system with its environment is the focus of
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6 Introduction

this thesis. It is treated with the recently developed Surrogate Hamiltonian

method [2]. In a field as complex as quantum dissipation, approximations

are unavoidable. It is the advantage of the Surrogate Hamiltonian over other

available theoretical approaches that the approximation made is controllable

and that correlations between system and environment can – at least in

principle – be fully accounted for. To apply the Surrogate Hamiltonian to

ultrafast charge transfer reactions, a generalization of the method was nec-

essary.

This thesis is organized as follows: A brief overview over the field of

quantum dissipation is given in the next chapter. The main problems are

explained, and possible theoretical approaches are outlined. The Surrogate

Hamiltonian as one potential method to treat quantum dissipative systems is

introduced in Chapter 3 and the possible dissipative processes are discussed.

A few basic examples are chosen to demonstrate, how the method works

and, specifically, how reliable calculations of observables can be obtained.

The different dissipative processes are combined in Chapter 4 and applied

to a standard model of a charge transfer reaction in condensed phase, two

nonadiabatically coupled harmonic oscillators interacting with a bath. While

this model is adequate to capture all qualitative features of the reaction, it

is sufficiently simple to verify the consistency of the description.

The theoretical description of laser induced desorption serves as next step

in exploring the potential of the Surrogate Hamiltonian method. It is the sub-

ject of the second part of this thesis. The Surrogate Hamiltonian is employed

to treat the electronic relaxation of the excited intermediate. This is a crucial

step in the sequence of events leading to the cleavage of the molecule-surface

bond which has so far been treated only semi-phenomenologically.

An introduction to the phenomenon of laser induced desorption is given

in Chapter 5. The experimental and previous theoretical findings for the

system NO/NiO(100) are briefly reviewed. The requirements which need

to be met by a theoretical description, in particular with regard to recent

experimental developments, are discussed. The separation into the primary

system and the environment which causes the relaxation is given in Chap-

ter 6, and possible excitation mechanisms induced by the laser pulse are

discussed. Furthermore, results of two semi-phenomenological approaches
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are presented. A Surrogate Hamiltonian treatment of the photodesorption

dynamics is given in Chapter 7. In particular, a microscopic model for the

interaction between system and environment is developed. The convergence

of observables is discussed in detail, and the dependence on experimentally

adjustable parameters is studied. Chapter 8 concludes.

A computer program for the numerical solution of the time-dependent

Schrödinger equation has been developed on the basis of existing wave packet

programs [3,4]. The necessary theoretical and numerical prerequisites as well

as developments, and the parameters of the calculations are summarized

in the Appendix. Throughout this thesis, atomic units with ~ = 1 have

been employed. The simulations presented in this thesis were performed

on the SGI workstation clusters of the Fritz-Haber-Institut der Max-Planck-

Gesellschaft Berlin and of the Fritz Haber Research Center at the Hebrew

University Jerusalem.





Chapter 2

The problem of quantum

dissipation

2.1 Statement of the problem

When a quantum system interacts with its environment losing energy and

phase, the term quantum dissipation is used. The latter process termed

dephasing is a phenomenon specific for quantum mechanics while energy

relaxation can also be observed for a classical system. Both processes lead

to the creation of quantum correlations or entanglement between system and

environment [5, 6]. It is entanglement which causes quantum dissipation to

be an extremely difficult problem for which so far no standard method exists.

However, entanglement is also the reason which makes quantum dissipation

such an interesting field promising the exploitation of quantum coherences in

applications such as quantum information processing [7,8]. Since dissipative

processes may destroy quantum coherences, they are furthermore at the core

of the question of the border between the quantum and the classical world [9].

The statement of the problem of quantum dissipation assumes that the

total system of interest can be separated into one or a few active degrees of

freedom which shall be called the (primary) system and which are described

by the Hamiltonian ĤS, and many degrees of freedom called environment or

bath modeled by ĤB. The total problem is then described by a Hamiltonian,

Ĥtot = ĤS + ĤB + ĤSB , (2.1)

9



10 The problem of quantum dissipation

where ĤSB describes the interaction between system and bath degrees of

freedom. Examples can be found in nuclear magnetic resonance [10] and

quantum optics [11, 12] where a spin or atom, respectively, is coupled to

the electromagnetic field. Condensed matter phenomena constitute another

class of applications of quantum dissipation. They range from surface pho-

tochemistry [13] to atoms or molecules caged in a cluster [14, 15] or photo-

synthesis [16, 17]. In these condensed matter phenomena, an electronic or

vibrational excitation of the system couples to electronic or vibrational de-

grees of freedom of the environment. The excitation is often initiated by

an external field, with for example ultraviolet laser pulses causing electronic

excitation, i.e. charge transfer and infrared laser pulses causing vibrational

excitation.

The separation into primary system and secondary environment is moti-

vated by the fact that the environment itself is not interesting, and only its

influence onto the system is important. The environment or bath is therefore

treated implicitly and described by abstract modes. There are two general

classes of commonly used bath descriptions: The bath modes can be mod-

eled by harmonic oscillators [18] or by two level systems (TLS) [19]. The

idea of a harmonic bath originates from a normal mode analysis combined

with a weak system-bath coupling which guarantees that the harmonic ap-

proximation is valid [18]. A spin bath can be thought of as originating from

a prediagonalization of the bath to its energy levels. It then represents the

energy spectrum by a set of two level systems.

The harmonic bath has been the starting point of many system-bath

studies which are based on either path integrals or semiclassical approxi-

mations [20, 21, 22]. The influence of the harmonic bath on the system is

completely specified by the spectral density function J(ω) [23]. The spec-

tral density is the Fourier transform of the bath correlation function, and

it is determined by the density of bath states weighted by the system-bath

coupling. The harmonic oscillator is not a generic quantum system [24] (cf.

Appendix C.1), and the harmonic bath is hence not a generic quantum bath.

This is of particular importance for the modeling of pure dephasing [25].

However, the similarity between classical and quantum harmonic baths al-

lows one to obtain the spectral density from classical molecular dynamics
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(MD) simulations of the bath [26]. The treatment of rather complex, e.g.

biological systems [27], thus becomes feasible, which is one reason for the

popularity of the harmonic bath. Furthermore, the harmonic bath potentials

in a path integral approach lead to Gaussian integrals which can be inte-

grated out. This results in an analytical influence functional which describes

the bath’s influence on the system [18,28,29].

The spin bath is harder to construct, but for weak coupling and suf-

ficiently low temperature it coincides with the harmonic bath [19]. For

higher temperature the parameters of the spin bath can be obtained by

a scaling term which is applied to the spectral density of the harmonic

bath [19,30,31,32,33]:

Josc(ω) = tanh

(
1

2
~ωβ

)
Jspin(ω) (2.2)

with inverse temperature β = 1/kBT . The scaling relies on the equivalence

of harmonic and spin baths in a second order cumulant expansion in the

system-bath coupling [19, 30, 32]. This procedure is employed whenever one

compares the spin to a harmonic bath (cf. Chapters 3 and 4). From the

point of view of prediagonalization of the bath, the spin bath can also be

considered in its own right. The coupling constants should then be derived

from a microscopic model of the environment (cf. Chapter 7).

The decomposition into system and bath is non-trivial [34, 25], i.e. it

needs to be chosen such that the bath is stable, that the interaction is non-

singular, and that the Hamiltonian Ĥtot of the total system is well-defined

and possesses a ground state. From such an analysis, it follows particularly

that the commonly used model of a linearly coupled harmonic bath is singular

in the infrared or low energy region. While the singularity might not affect

energy relaxation, it becomes important in treating pure dephasing [25]. The

treatment of pure dephasing does not pose a problem for the spin bath [19].

2.2 Methods to treat quantum dissipation

Historically, there have been two different approaches to the problem of open

quantum systems, perturbation theory and the dynamical semigroup for-

malism. Perturbation theory [22, 23] starts from Eq. (2.1) and assumes the
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coupling between system and bath, ĤSB, to be weak. Equations of motion

for the reduced density operator, i.e. the density operator of the system,

ρ̂S = trB{|Ψtot〉〈Ψtot|} , (2.3)

can then be derived which depend upon system operators only. |Ψtot〉 is the

wave function of the total system, and trB denotes the trace over the bath

degrees of freedom. The derivation in a most general sense is done by the

projection operator technique [35,23].

In the interaction picture, the equation of motion of the reduced density

operator is given in terms of the total density operator ρ̂I ,

∂

∂t
ρ̂I

S(t) = − i
~
[Ĥ

I

SB(t), ρ̂I(t)]− . (2.4)

An operator P projecting onto the Hilbert space of the primary system and

its orthogonal complement are defined, PÔ = ÔB trB{Ô} and Q = 11 − P.

Ô denotes an arbitrary operator acting on the total space, trB{Ô} denotes

the part of Ô acting on the Hilbert space of the primary system and ÔB is

a bath operator. By applying these operators, the equation of motion of the

total density operator can be split into system and bath parts,

∂

∂t
ρ̂I

S(t) = trB

{
P
∂

∂t
ρ̂I(t)

}
= − i

~
trB
{

[Ĥ
I

SB(t), ρ̂eq
B ρ̂I

S(t) + Qρ̂I(t)]−

}
, (2.5)

and

Q
∂

∂t
ρ̂I(t) = − i

~
Q[Ĥ

I

SB, ρ̂
eq
B ρ̂I

S + Qρ̂I ]− , (2.6)

where for simplicity the bath has been assumed to stay in equilibrium.

Eq. (2.6) can be solved formally and inserted into Eq. (2.5). When ap-

proximated to first order in the system-bath coupling, this formal solution is

given by

Qρ̂I(t) ≈ Qρ̂I(0)− i

~
Q
∫ t

0

dτQ[Ĥ
I

SB, ρ̂
eq
B ρ̂I

S]− . (2.7)

A second order approximation for the density operator of the system is then

arrived at,

∂

∂t
ρ̂I

S(t) = − i
~

trB
{

ρ̂eq
B [Ĥ

I

SB(t), ρ̂I
S(t)]−

}
− 1

~2

∫ t

0

dτ trB
{

[Ĥ
I

SB(t),Q[Ĥ
I

SB(τ), ρ̂eq
B ρ̂I

S]−]−

}
,

(2.8)
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where possible initial correlations, Qρ̂I(0), have been neglected. The first

term on the right-hand side of Eq. (2.8) is of first order in the system-bath

coupling. It corresponds to a mean field approximation of the bath and leads

to a shift in energy only. To model relaxation, the second order term in

Eq. (2.8) is necessary. If the interaction Hamiltonian can be written as a

sum of products of system operators Âj and bath operators B̂j,

ĤSB =
∑

j

ÂjB̂j , (2.9)

and bath correlation functions are introduced,

Cjk(t) = 〈∆B̂j(t)∆B̂k(0)〉B , ∆B̂j(t) = B̂j(t)− 〈B̂j〉B , (2.10)

Eq. (2.8) can be rewritten,

∂

∂t
ρ̂I

S(t) =− i

~
∑

j

〈B̂j〉B[Â
I

j , ρ̂
I
S(t)]−

− 1

~2

∑
jk

∫ t

0

dτ{Cjk(t− τ)[Â
I

j(t), Â
I

k(τ)ρ̂
I
S(τ)]−

+ C∗
jk(t− τ)[Â

I

j(t), ρ̂
I
S(τ)Â

I

k(τ)]−} .

(2.11)

Eq. (2.11) is called the Quantum Master Equation. From the definition of the

bath correlation functions, it is obvious that dissipation is caused by quan-

tum fluctuations, ∆B̂j(t), of the bath. For a bath of harmonic oscillators,

analytical expressions for the correlation functions can be derived.

If the Quantum Master Equation is transformed from the interaction

into the Schrödinger picture, the system density operator appears with a

retarded time argument in the right-hand side, ρ̂S(t − τ), i.e. Eq. (2.11) is

non-Markovian. These memory effects are the price to pay for the reduction

of the equation of motion of the total system to a reduced equation of motion

of the primary system only. They describe the correlations between system

and bath. In the derivation of Eq. (2.11) weak coupling between system and

bath has been assumed. The projection operator technique offers a rigorous

way to obtain higher-order equations, and in principle an exact expansion is

possible.

An alternative to the projection operator technique is given by a cumulant

expansion in the system-bath coupling [36]. However, the two approaches are
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equivalent only when considered up to infinite order [37]. Equations obtained

from higher-order perturbation theory become even more involved, and al-

ready solution of Eq. (2.11) in the Markov approximation, i.e. neglecting

memory effects, poses a computational challenge [38].

If the Markov approximation is made, and the eigenstates of the system

are chosen as the basis, the second term in the right-hand side of Eq. (2.11)

can be written in terms of a tetradic matrix Rab,cd called the Redfield ten-

sor [22,23]. It allows for a classification of dissipative processes: The matrix

elements Raa,cc describe energy relaxation, while Rab,ab describe dephasing.

All other elements describe mixing of coherences (off-diagonal density matrix

elements) and transformation of coherences into populations (diagonal den-

sity matrix elements) and vice versa. It turns out, however, that the reduced

density operator does not obey complete positivity, e.g. [39]. This obscures

the interpretation of diagonal matrix elements of ρ̂S as probabilities.

The condition of complete positivity together with the Markov assump-

tion is the starting point of the second approach [40, 41]. The time depen-

dence of the reduced density operator in this approach is given by

ρ̂S(t) = Λ(t)ρ̂S(0) = e(L0+LD)tρ̂s(0) , (2.12)

where Λ(t) = eLt is the propagation (super)operator and L(◦) = − i
~ [Ĥ, ◦]−

the Liouville (super)operator which can be separated into a system, i.e.

Hamiltonian part L0 and a dissipative part LD. The term superoperator

has been introduced to differentiate operators acting on operators from op-

erators acting on wave functions [36]. The propagation superoperator must

preserve the positivity of ρ̂S for all times t > 0, and the Markov property

can be written as Λ(t)Λ(s) = Λ(t+ s) for all times t, s > 0. Mathematically,

the latter is the definition of the semigroup property after which the method

was named. It was shown in [40, 41] that these conditions are fulfilled if the

Liouville (super)operator is of the form,

Lρ̂S = − i
~
[ĤS, ρ̂S]− +

1

2

∑
jk

Ajk

(
[F̂jρ̂S, F̂

+

k ]− + [F̂k, ρ̂SF̂
+

j ]−

)
, (2.13)

which can be diagonalized to the so called Lindblad form,

Lρ̂S = − i
~
[ĤS, ρ̂S]− +

∑
j

Γj

(
V̂jρ̂SV̂

+

j −
1

2
[V̂

+

j V̂j, ρ̂S]+

)
, (2.14)
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where the V̂k are system operators modeling dissipation and Γj are coupling

constants. The operators V̂k have to be chosen semi-phenomenologically.

Three specific cases exist [42]: Unitary operators describe Poissonian pro-

cesses, while Hermitian operators describe Gaussian random processes. Res-

onant energy transfer is described if the V̂k are creation or annihilation op-

erators of the system.

Both perturbation theory and the semigroup formalism lead to an equa-

tion of motion for the density operator of the system which needs to be

solved. A description based on the system wave function with a more favor-

able scaling in the numerical solution is also possible. The influence of the

bath on the system is then treated as a stochastic force and the method is

hence termed stochastic wave packet or Monte Carlo wave function (MCWF)

method [43, 44, 45, 46]. The MCWF method was shown to be equivalent to

the semigroup formalism [43, 44, 45]. This equivalence will be utilized in

Chapter 6.

While the Markov approximation is intrinsic for the semigroup approach,

the Quantum Master Equation in general is non-Markovian. Since, however,

the solution of integro-differential equations is far from being straightforward,

the Quantum Master Equation is most often used in its Markovian form. The

Markov approximation assumes that bath correlations decay on a timescale

much shorter than all other timescales involved. This is not necessarily true

in, for example, the case of moderate or strong coupling between system and

bath. The next section therefore briefly reviews available non-Markovian

approaches and relates them to the Surrogate Hamiltonian method which

will be described in detail in Chapter 3.

2.3 Non-Markovian approaches

An obvious way to go beyond the Quantum Master Equation in the Marko-

vian limit is opened up by higher-order perturbation theory. It is, however,

of practical use only, if an explicit averaging over the bath can be performed

such that a closed set of equations for the reduced density operator is ob-

tained. This has recently been accomplished to fourth-order [37, 47]. Two

simple model systems in the high temperature Markovian bath limit have
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been analyzed [37]. Fourth-order corrections in the low temperature regime

and for more realistic systems still have to be investigated.

Within second order perturbation theory different approaches exist to

treat the memory kernel in the Quantum Master Equation. One possibil-

ity consists in transforming the integro-differential equation of motion of the

reduced density operator into an algebraic equation which can be solved

with considerably less numerical effort. This transformation can be achieved

by expanding the reduced density operator in a suitable polynomial basis,

e.g. Laguerre polynomials [48]. The method is limited, however, to weak

field excitation. In this case, the excitation can be modeled by a source

term in the equation of motion replacing off-diagonal density matrix ele-

ments [48]. If the interaction with strong external fields shall be considered,

the non-Markovian equation of motion for the system density matrix can

be transformed into a set of coupled Markovian equations for the reduced

density matrix and auxiliary density matrices which incorporate the memory

effects [49]. This transformation rests on a special parameterization of the

spectral density. The number of needed auxiliary density matrices depends

on coupling strength and temperature. Low temperature requires a large

number of auxiliary density matrices. The method is thus best suited for

high temperature calculations. No further assumptions other than the weak

coupling approximation need to be made [49]. However, solving the equation

of motion for the density matrix alone requires considerable numerical effort,

and the effort is further increased by solving the equations of motion for the

auxiliary density matrices.

In the derivation of the Quantum Master Equation, there is some arbi-

trariness in the choice of the projection operator P [50]. The choice of P in

particular may determine the choice of initial conditions [50,51]. Recently, a

non-Hermitian projection operator has been proposed to include the treat-

ment of memory in the bath [52]. The non-Hermicity leads to bath modes

with a finite lifetime. The trace over the bath is approximated by a statistical

average. The proposal lacks, however, a procedure to get the parameters of

this statistical average from first principles.

A perspective onto quantum dissipative dynamics completely different

from the approach of perturbation theory is given by the path integral for-
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mulation of quantum mechanics [18, 28, 29]. The wave function or density

matrix at time t is then given by the quantum mechanical propagator which

is the sum over paths starting at a specified initial point at time t = 0. For a

linearly coupled bath of harmonic oscillators, the integration over bath vari-

ables can be done analytically leading to an influence functional [18]. The

reduction from the total system to the reduced description, which in pertur-

bation theory led to the memory kernel in the Quantum Master Equation,

for path integrals leads to an influence functional containing correlations

in time between different paths [27]. Non-Markovian effects can therefore

in principle be accounted for. This might, however, be limited by numer-

ical feasibility. The bath correlation time enters as convergence parame-

ter which allows for controlling the validity of the Markov approximation.

Time-local integration for non-Markovian dynamics can be achieved by in-

troducing a stochastic potential and integrating along a complex instead of

a real contour [53]. However, this method has so far only been applied to

model systems. The application of (real time) path integrals has long been

limited by a numerical problem called the ”sign problem”, which is caused

by the rapid phase oscillations of the integrand. For the harmonic bath,

improved propagators can be constructed using physically motivated refer-

ence systems [27]. The numerical evaluation of a multi-dimensional integral

nevertheless is computationally challenging, limiting the applications of path

integrals to relatively simple model systems. Furthermore, the treatment of

time-dependent Hamiltonians is not possible. Path integrals are therefore

best suited for the high temperature limit when the main contribution to

the propagator comes from the classical path and the quantum corrections

around the classical path are small [54]. The fact that path integral results

are numerically exact and that all approximations are made when specifying

the Hamiltonian makes path integral calculations a popular benchmark for

newly developed methods [49,31,47].

The Surrogate Hamiltonian method [2] is complementary to these ap-

proaches which start from a reduced description of the system and improve

on it by the various means. This is particularly interesting in light of the

rigorous proof that a reduced dynamics in general does not exist for quan-

tum systems [55]. For the Surrogate Hamiltonian the starting point is a
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description of the total system and bath. This description is transformed

and approximated in a controlled way yielding a model whose treatment is

numerically feasible but whose validity is limited in time (cf. Chapter 3).

No weak coupling assumption needs to be made, and the treatment of time-

dependent fields can be included naturally into the description. Different

from the above listed methods the strength of the Surrogate Hamiltonian

lies in the low temperature regime. The Surrogate Hamiltonian method is

outlined in Chapter 3, and its advantages and disadvantages are discussed.

The mentioned approaches are a few examples of existing methods for

going beyond the Markov approximation and possibly the weak coupling

limit. Each method is well-suited for particular limiting cases. It is therefore

crucial to consider the physical processes to be studied to decide which of

the currently available methods is best-suited for the problem at hand.



Chapter 3

The method of the Surrogate

Hamiltonian

3.1 The idea of the Surrogate Hamiltonian

When the total system is separated into primary system and bath parts, its

Hamiltonian can be written as

Ĥ = ĤS + ĤSF (t) + ĤSB + ĤBF (t) + ĤB , (3.1)

where ĤS is the Hamiltonian of the system and ĤB the Hamiltonian of

the bath. The coupling between system and bath degrees of freedom is

described by the interaction term ĤSB. A time-dependent external field

can be applied to the total system, its interaction is described by the terms

ĤSF (t) and ĤBF (t). ĤBF (t) is often neglected, here it is mentioned to allow

for a complete discussion of excitation mechanisms.

In quantum mechanics the effort to solve a problem scales exponentially

with the number of degrees of freedom. Except for a few special, analytically

solvable cases, Eq. (3.1) therefore states an extremely complicated problem

for which approximations are unavoidable. The suggestive separation of the

total problem into (primary) system and (secondary) bath itself is still exact.

It points, however, to the fact that the bath degrees of freedom themselves

are not interesting, and only their influence on the system is important. The

first step of approximation, therefore, consists in an implicit description of

the bath by abstract, representative modes.

19
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The core idea of the Surrogate Hamiltonian [2] is the truncation of the

infinite number of bath modes in a well-defined way. This is possible if the

transformation from true to representative modes,

ĤB ∼
∞∑

k=1

ˆ̃n
true

k −→
N∑

k=1

n̂rep
k , (3.2)

is chosen such that the modes which interact strongest with the system are

always included in the description. This leads to a new, ”Surrogate” Hamilto-

nian for the total system which generates the time evolution of a ”surrogate”

wave function. Observables are associated with operators of the primary sys-

tem. They can be determined from the (reduced) system density operator:

ρ̂S(Q,Q′) = trB{|Ψ(Q)〉〈Ψ∗(Q′)|} (3.3)

where trB{ } denotes a partial trace over the bath degrees of freedom. The

system density operator is thus constructed from the total system-bath wave

function while only this wave function is propagated. The explicit construc-

tion of the reduced density operator is only necessary if the operator corre-

sponding to the desired observable is not diagonal in coordinate space. This

a posteriori construction of the density operator is different from most other

approaches to dissipative quantum dynamics [10,21,23] where the trace over

the bath is performed before time propagation. Correlations between sys-

tem and bath may then be neglected [55] and special effort is required to

include them using, for example, auxiliary density matrices [49]. As a con-

sequence of describing a total, if surrogate system, all correlations between

system and bath for which the Hamiltonian allows are included in the Surro-

gate Hamiltonian method. Furthermore, since the Schrödinger equation for

a wave function is solved, the treatment of a time-dependent external field

poses no additional problems.

In the limit of an infinite number of bath modes, the Surrogate Hamil-

tonian is completely equivalent to the original, ”true” Hamiltonian. Since,

at least in principle, the number of modes N can be increased, it is possible

to check convergence. The number of bath modes used in the calculations

is comparatively small. Weiss claims that about twenty modes are usually a

satisfactory approximation of infinity [21]. This statement should certainly
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be qualified by the timescale of the system, the bath and the external field

involved and by the interaction strength between system and bath. The

truncation leading to the Surrogate Hamiltonian, Eq. (3.2), relies on a time-

energy uncertainty argument (cf. Fig. 3.1): In a finite time, t � ∞, the

system can only resolve a finite number, N �∞, of bath states and not the

full density of states of the bath. The sampling density in energy of the finite

set of bath states is determined by the inverse of the time interval. This ar-

gument leads to two observations – the Surrogate Hamiltonian is well-suited

for the description of ultrashort events, and the number of needed modes

increases with the interaction strength between system and bath. Strong

and intermediate coupling strengths might therefore pose a computational

challenge. From the above derivation, it is clear, however, that no weak cou-

pling assumption was needed. In addition, and this is the major difference

to standard approaches, and therefore the major advantage, the Surrogate

Hamiltonian method yields a controllable approximation.

Figure 3.1: In a finite time the
system can only resolve a finite
number of energy levels of the
bath.

The two level system (TLS) bath is de-

scribed by the Hamiltonian

ĤB = 11S ⊗
∑

i

εiσ̂
+
i σ̂i (3.4)

with n̂i = σ̂+
i σ̂i the occupation number

operator and εi the energy of the ith bath

mode. 11S denotes the identity in the

Hilbert space HS of the system, i.e. ĤB

acts on the total Hilbert space HS ⊗HB.

For N bath modes the Hilbert space HB of the bath has dimension 2N .

This results from a single TLS or spin-1
2

being defined on a two-dimensional

Hilbert space and the possibility to combine each of the two basis states for

all N modes. The dimension of the total Hilbert space HS ⊗ HB is then

given by the product of the dimensions of HS and 2N . If, for example, the

state of the system is described by a wave function represented on a grid

(cf. Appendix A.1) and the dimension of the grid is Ng, the state of the

total system is described by 2N Ng-dimensional wave functions. Obviously,

this dimension quickly gets very large when the number of bath modes N

is increased. However, considering all 2N possibilities of combining the bath
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modes corresponds to considering all possible system-bath correlations which

might not be necessary. The number of simultaneously allowed excitations

can then be restricted. In an extreme case, only single excitations are consid-

ered. This reduces the dimension of the total Hilbert space from 2N to N+1.

The approximation made can again be checked by increasing the number of

simultaneously allowed excitations, i.e. it is controllable.

The basis of the TLS Hilbert space was chosen to be the spin-down and

spin-up states. Spin-up corresponds to the TLS being excited while for spin-

down the TLS is deexcited. This representation proved to be particularly

useful, since the index labeling the 2N components of the wave function con-

tains the information of the TLS being excited or deexcited, respectively.

The details of this representation and the restriction of simultaneously al-

lowed excitations are given in Appendix E.

As explained in Section 2.1, there are two possibilities to look at the TLS

bath. So far it has been introduced in its own right, assuming the eigenvalues

εi and eigenstates ni have been obtained in a prediagonalization of the bath.

This perspective will be used in Chapter 7. However, a TLS can also be

thought of as a low temperature approximation to a harmonic oscillator.

At low temperature, only the ground and first excited state of a harmonic

oscillator should be significantly populated. The TLS bath can therefore be

viewed as a low temperature approximation to a harmonic oscillator bath,

and the parameters of the two can be connected. In particular, the role of

the spectral density for the TLS bath should become clear. This approach

has been pursued when the Surrogate Hamiltonian was first introduced [2]

and it shall briefly be reviewed here.

The starting point is the Heisenberg equations of motion for the primary

system. For simplicity, the primary system is taken to be one-dimensional

with Hamiltonian

ĤS = T̂ + V (R̂) =
P̂

2

2m
+ V (R̂) . (3.5)

A generalization to more nuclear degrees of freedom is straightforward, and

the treatment of more than electronic ground state dynamics will be discussed

in the following section. The interaction between system and bath can gen-

erally be written as a sum of products of system and bath operators [23,56],
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ĤSB = f(R̂)
∑

i

K̂i (3.6)

with Hermitian operators K̂i acting on the bath Hilbert space. The K̂i can

be written in terms of creation and annihilation operators, for simplicity

real coupling matrix elements and a linear combination of creation and an-

nihilation operators are assumed. Higher order terms will be discussed in

Section 3.2. The interaction Hamiltonian is then given by

ĤSB = f(R̂)
∑

i

Vi

(
Â

+

i + Âi

)
, (3.7)

where Â
+

i and Âi are creation and annihilation operators, respectively, of

an abstract bath mode i. The interaction is characterized by the coupling

function f(R̂) and coupling constants Vi. The Heisenberg equations of motion

for the system are then given by

d

dt
R̂ =

P̂

m
,

d

dt
P̂ = − d

dR̂
V (R̂)− d

dR̂
f(R̂)

∑
i

Vi

(
Â

+

i + Âi

)
.

(3.8)

For infinitely many modes, the sum in Eq. (3.8) can be replaced by an inte-

gral,
∑

i −→
∫

dερ(ε),∑
i

Vi

(
Â

+

i + Âi

)
=

∫
dερ(ε)

√
J(ε)

(
â+(ε) + â(ε)

)
, (3.9)

where the density of states ρ(ε) and the spectral density J(ε) of the bath

have been introduced. The creation operators are related by

â+(ε) =
1√
J(ε)

∑
i

ViÂ
+

i δ(ε− εi) , (3.10)

and an analogous equation holds for the annihilators. The new operators

â+(ε), â(ε) can be viewed as creator and annihilator, respectively, of an

interaction mode. They enter the new, Surrogate Hamiltonian describing the

total system+bath,

ĤSurr = T̂ + V (R̂) +

∫
dερ(ε) ε â+(ε)â(ε)

+ f(R̂)

∫
dερ(ε)

√
J(ε)

(
â+(ε) + â(ε)

)
.

(3.11)
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If the spectral density is of finite support [ε0, εc], the integrals in Eq. (3.11)

can be sampled by a finite number of energies, N �∞. In the limit N →∞
the full system-bath dynamics is then recovered. The finite sampling εi,

i = 0, . . . , N − 1 specifies the energies at which creation and annihilation

operators are defined,

â+
i = â+(εi) , âi = â(εi) (3.12)

and

viâ
+
i ρ(εi) =

√
J(εi)â

+(εi) , and c.c. (3.13)

The interaction of mode i with the system is then given by

vi =
√
J(εi)/ρ(εi) . (3.14)

A similar procedure to obtain the coupling constants is followed in [57]. The

discretized Surrogate Hamiltonian then reads [2]

ĤSurr = T̂ + V (R̂) +
N−1∑
i=0

εiâ
+
i âi + f(R̂)

N−1∑
i=0

vi

(
â+

i + âi

)
. (3.15)

The spectral density J(ε) enters the above expressions, Eq. (3.9) and

Eq. (3.10) as a normalization factor. Unfortunately, as no unique definition

of the spectral density exists, some care must be devoted to ensure the same

definition is used when comparing different methods. For the harmonic oscil-

lator bath, the spectral density is introduced as Fourier transform of the bath

correlation function [58, 23]. Depending on the definition of the integrals, it

may or may not contain a factor π/2 and the density of states. The definition

of spectral density is chosen to include the density of states [58,57],

J(ε) =
∑

i

|Vi|2ρ(ε)δ(ε− εi) . (3.16)

The meaning of spectral density then becomes obvious: It is the system-bath

coupling weighted by the density of states, i.e. it specifies the effective inter-

action. The influence of the bath on the system is thus fully characterized by

J(ε). However, the transformation of the sum into an integral, Eq.(3.9), is

subtle since depending on the system-bath interaction it might involve sin-

gularities [25]. The popularity of the spectral density is probably explained
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by its straightforward application in the harmonic oscillator bath model (cf.

Section 2.2). From the point of view of the Surrogate Hamiltonian with finite

sampling, it seems rather like a detour. It is then more straightforward to

approach the problem by directly specifying the system-bath interaction.

Eq. (3.15) and Eq. (3.14) or Eq. (3.15) together with a microscopic model

for the interaction are the starting point of the simulations. Since TLS are

used as bath modes, the abstract operators â+
i , âi are replaced by TLS or

spin operators σ̂+
i , σ̂i. The time-dependent Schrödinger equation with ĤSurr

is solved for a wave function, or rather a spinor of 2N wave functions on a

grid (cf. Appendix A.1). So far, temperature has been neglected. If a finite

temperature shall be considered, a Boltzmann average,

ρ̂(0) =
∑

j

e−βEj

Z
|Ψj〉〈Ψj| (3.17)

with β = 1/kbT and Z =
∑

j e
−βEj , needs to be performed when constructing

the density operator, Eq. (3.3), of the system,

ρ̂s(t) = trB
{
Û(t)ρ̂(0)Û

+
(t)
}
. (3.18)

Ej is the energy of the jth eigenfunction |Ψj〉, and Û(t) = exp(−iĤt) denotes

the time evolution operator. The initial condition for the density operator

ρ̂(0) is obtained by calculating the lowest energy eigenfunctions of the com-

bined system-bath Hamiltonian.

So far the general idea of the Surrogate Hamiltonian has been discussed.

The next section will show how different dissipative processes are modeled

within the Surrogate Hamiltonian framework.

3.2 The interaction between system and bath

In condensed phase problems nuclear and electronic degrees of freedom are

usually separated. In addition to energy relaxation known from classical

mechanics, a quantum system can also display phase relaxation. Energy re-

laxation is traditionally characterized by a time T1 while dephasing is char-

acterized by T2 [10]. There are then four different dissipative processes which

have to be modeled: nuclear relaxation (nr), electronic relaxation or quench-
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ing (er), nuclear dephasing (nd), and electronic dephasing (ed),

ĤSB = Ĥ
nr

SB + Ĥ
er

SB + Ĥ
nd

SB + Ĥ
ed

SB . (3.19)

The system Hamiltonian ĤS shall be described by two electronic states and

one nuclear degree of freedom. The generalization to more electronic levels

and more nuclear degrees of freedom is straightforward.

Energy relaxation is an exchange of energy between the system and bath

which will eventually lead to thermal equilibrium. The process can be imag-

ined as taking energy out of the primary system and simultaneously creating

an excitation in a bath mode (σ̂+
i ). The inverse process of destroying an

excitation in a bath mode (σ̂i) and transferring this energy to the system

is also possible. The operator describing the exchange of energy of the bath

modes with the nuclear degree of freedom is a generalization to two electronic

surfaces of the interaction term of Eq. (3.7),

Ĥ
nr

SB =

(
fg(Q̂) 0

0 fe(Q̂)

)
⊗
∑

i

dnr
i (σ̂+

i + σ̂i) , (3.20)

where fe/g(Q̂) are functions of the system displacement operator. This means

that the system-bath coupling can be different for the ground or excited state

potential. As described in the previous section, the constants dnr
i can be

related to the bath spectral density,

dnr
i =

√
J(εi)/ρ(εi) . (3.21)

For electronic quenching, the electronic degree of freedom couples to the bath

creation and annihilation operators: Electronic excitation of the system is

created or destroyed by creating or annihilating excitation in a bath mode,

Ĥ
er

SB =
1

2

(
0 1

1 0

)
⊗
∑

i

der
i (σ̂+

i + σ̂i) . (3.22)

A similar relation as Eq. (3.21) holds for the der
i , but the spectral density

will be different. Alternatively, also the der
i can be derived from a micro-

scopic model of the interaction without reference to the spectral density (cf.

Chapter 7).

Dephasing is a process caused by an almost elastic interaction between the

system and the bath which alters the accumulated phase of the system but
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does not change the energy of the bath. A qualitative picture is therefore

based on an almost elastic exchange of energy between two bath modes.

This is described by creating an excitation in one mode at the expense of

an excitation in another mode, and vice versa. The modes must be almost

degenerate. This process modulates the excitation of the primary system.

For nuclear dephasing, the bath modulates the vibrational Hamiltonian:

Ĥ
nd

SB =

(
Ĥg 0

0 Ĥe

)
⊗
∑
ij

cnd
ij (σ̂+

i σ̂j + σ̂+
j σ̂i) . (3.23)

The coefficients cij are biased to represent almost elastic encounters,

cij =
1

N(N − 1)
c̄ e

−
(εi−εj)2

2σ2
ε , (3.24)

where c̄ is a global dephasing parameter, and σε determines the inelastic bias.

σ̂+
i σ̂j + σ̂+

j σ̂i describes a two (quasi-)particle interaction, it must therefore

be scaled by N(N − 1) with N the number of modes to ensure a convergent

procedure if N is increased. For electronic dephasing, the bath modulates

the electronic excitation:

Ĥ
ed

SB = ∆V (Q̂)
1

2

(
−1 0

0 1

)
⊗
∑
ij

cedij (σ̂+
i σ̂j + σ̂+

j σ̂i) . (3.25)

∆V (Q̂) is the difference potential describing the dependence of the modula-

tion on the nuclear displacement. The constants cedij are chosen analogously

to Eq. (3.24).

Since the number of bath excitations is not changed by σ̂+
i σ̂j + σ̂+

j σ̂i

it is clear that the bath has to be initially excited for dephasing to take

place. Therefore, when the temperature is decreased, dephasing processes

are frozen.

So far the dephasing model has been introduced guided by a phenomeno-

logical description of the elastic interaction causing dephasing. However, for

the case of a TLS coupled to a TLS bath, a microscopic model for dephasing

has been derived [19] which is connected to the qualitative picture presented

above. This derivation which was done in the context of magnetism and

superconductivity led to a general effective Hamiltonian called the central

spin model. The central spin model is the equivalent to the spin boson
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model [20, 21] for which the bath consists of harmonic oscillators. It shows

dephasing also at T = 0. The interaction term between the central spin and

the bath spins describing dephasing is given by

Ĥ
ed ∼ σ̂x cos[Φ +

∑
i

~Vi~̂σi] , (3.26)

where Φ is the renormalized phase of the system given by σ̂z and the sum over

bath phases, ~Vi is the coupling constant and ~̂σi are the Pauli operators of the

ith bath mode. If the cosine is expanded to second order in the system-bath

coupling, a Hamiltonian of the form of Eq. (3.25) is obtained. The dephasing

model of Eq. (3.25) can therefore be viewed as a second order approximation

of the more general description of dephasing in the central spin model. The

zero temperature decoherence must hence be a higher order effect.

3.3 Energy relaxation

The standard benchmark model for dissipative dynamics is the harmonic

oscillator linearly coupled to a bath. For weak coupling, an analytical solution

exists [58]. The vibrational relaxation of this system,

Ĥharm =
P̂

2

2m
+

1

2
mω2Q̂

2
+
∑

i

εiσ̂
+
i σ̂i + Q̂

∑
i

dnr
i

(
σ̂+

i + σ̂i

)
, (3.27)

has previously been tested for the Surrogate Hamiltonian method [2]. To

this end, an Ohmic form with exponential cutoff has been assumed for the

spectral density,

J(ε) = ηε e−ε/εc , (3.28)

from which the coefficients dnr
i are determined using Eq. (3.21). εc is the

cutoff frequency, and η the coupling strength. The initial state was taken to

be |Ψ(t = 0)〉 = Q̂|Ψg〉 corresponding to an infrared excitation of the ground

state. The results of this standard problem will be discussed in some detail

to show how the Surrogate Hamiltonian works.

Fig. 3.2 shows the energy relaxation for a harmonic oscillator with unit

mass and frequency (m = 1, ω = 1). The dotted lines in Fig. 3.2 corre-

spond to the initial state being correlated, i.e. |Ψg〉 for the system coupled
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Figure 3.2: Energy relaxation of the harmonic oscillator: The decay is ex-
ponential with rate 2πηω as predicted by the analytical solution for weak
coupling (η = 0.01). A correlated initial state (dashed lines) must be used
to capture the short time dynamics. If an uncorrelated initial state (solid
lines) is used, an initial slippage [50] in energy can be observed (inset in the
left panel) and the standard deviations in coordinate and momentum show
fast oscillations (right top and bottom panel). The time unit is equal to one
period of the oscillator, N is the number of bath modes.

to the bath has been obtained using imaginary time propagation (cf. Ap-

pendix A.4). The dynamics of the initially correlated state are compared

to that of an initially uncorrelated state, which is the ground state of the

system and the system-bath coupling is switched on at time t = 0 (solid lines

in Fig. 3.2). The uncorrelated state has the ”wrong” width, the standard de-

viations of coordinate and momentum show therefore fast oscillations which

are absent in the correlated case (cf. Fig. 3.2, right top and bottom panel).

The short time dynamics deviate for the correlated and uncorrelated initial

states (inset in Fig. 3.2), since the correlations need to be built up in the

uncorrelated case [50]. The overall decay is exponential, and the decay rate

agrees with the analytical result for weak coupling [58]. As the number of
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modes is increased, the time interval for which converged results are obtained

is prolonged.

The convergence with respect to the number of bath modes does not have

to be linear (cf. Fig. 3.2). It rather depends on the sampling of bath energies.

As explained in Section 3.1, the finite size of the system will eventually lead to

recurrences. A measure of recurrences is the population P0 of the state with

no bath mode excited. In the bit representation of the TLS bath, it is given

by the probability density of the zero spinor component (cf. Appendix E).

An increase of this population corresponds to an overall flow of population

and energy from the bath into the system. The time at which an increase of

P0 is observed is an upper limit for the convergence time. The left-hand side

of Fig. 3.3 shows the population P0 vs. time, while the population of all other

bath modes Pi, i = 1, . . . , N , is shown on the right for a simulation with N =

5 and N = 7 modes (top and bottom, respectively). For N = 5, recurrences

occur after four periods of the oscillator, while for N = 7, an increase of

P0 can already be observed at time t ≈ 2.5. This can be understood by

examining the sampling energies and population of the bath modes, and it

points to a peculiarity of the harmonic oscillator. For the results presented in

Figs. 3.2-3.4, the energy interval in which the bath energies εi were sampled,

was kept fixed, and the εi were chose equidistantly. In the case of N = 5,

one bath energy happened to be equal to the system frequency ω. It is

the mode with this energy which receives almost all the population of the

bath (dotted line in the top right panel of Fig. 3.3). For N = 7 none of

the bath energies coincide with ω, the two modes with energies closest to

ω receive the most population. This observation leads to two conclusions:

For the harmonic oscillator a resonance phenomenon is observed. This might

intrinsically limit the convergence time interval unless more than one mode

is chosen to be on resonance with the system. The resonance is disturbed for

anharmonic systems (see below). Second, the optimal choice of bath modes,

at least for simulations with a small number of modes, is system-dependent.

While choosing several bath modes with εi = ω contradicts the interpretation

of the bath modes as normal modes of the environment, physically more

meaningful discretizations are possible. An alternative sampling scheme is,

for example, given by assuming a density of states as in the Debye theory of
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Figure 3.3: Population P0 corresponding to none of the bath modes excited
(left) and population of single bath modes with the number of modes N = 5
(top right) and N = 7 (bottom right panel). For N = 5, almost all the
population which is transferred to the bath ends up in a single bath mode,
the energy of which is on resonance with the system frequency. For N = 7,
no mode is resonant, and the two modes with energies closest to the system
frequency are populated most strongly. (η = 0.01).

solids [57]. This leads to an exponentially decreasing distance between bath

energies.

As explained in Section 3.1, the computational effort scales with 2N ,

where N is the number of bath modes, in both cpu time and storage. This

scaling can be made more favorable if the number of simultaneously allowed

excitations can be restricted (cf. Appendix E). This is possible particu-

larly in the case of weak coupling. Fig. 3.4 shows how many bath modes are

simultaneously populated for weak and strong coupling and compares simula-

tions in which all simultaneous excitations have been considered (solid lines)

to simulations with a restricted number of simultaneous excitations (dotted

and dashed lines). For weak coupling three simultaneously allowed excita-

tions are completely sufficient to reproduce the results with all simultaneous
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Figure 3.4: Population Psim of 1, 2, and 3 simultaneous bath excitations for
weak and strong coupling (η = 0.01 and η = 0.1, respectively) and N = 11
modes. The solid lines correspond to considering all simultaneous excitations,
while simultaneously allowed excitations have been restricted to 3 for dotted
and 5 for dashed lines.

excitations allowed, the curves are hardly distinguishable even for Psim=3.

More simultaneously allowed excitations need to be considered, however, in

the case of strong coupling since more correlations are being built up in the

bath. The population of simultaneous excitations gives an estimate of the

timescale of the bath. If most of the bath population is in Psim=1 and the

Psim>1 are negligibly small, the time-energy uncertainty relation gives an up-

per limit for the bath timescale of ≈ 1/εi. However, if the population of more

than one simultaneously allowed excitation becomes significant, differences

of bath energies which can be much smaller than the energies itself enter the

time-energy uncertainty relation thus prolonging the timescale of the bath.

This argument is not valid in the case of a resonance phenomenon. But since

one bath mode is singled out in that case, resonance leads to a breakdown of

the system-bath description suggesting the inclusion of the resonant degree

of freedom into the system or a sampling of many bath energies close to the

resonance.
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The importance of including initial correlations was shown in Fig. 3.2.

For this purpose the ground state of the total system and bath needs to

be calculated. This itself might require considerable numerical effort. How-

ever, since the obtained ground state energy converges with the number of

bath modes N (cf. Fig. 3.5, left), it also gives an estimate of the number of
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Figure 3.5: Ground state energy and spectral range of the total system and
bath. Different sampling strategies are employed (equidistant sampling x,
exponential sampling o).

modes which are necessary to recover equilibrium. In the example of Fig. 3.2

this means, how many modes are needed to reach the ground state energy

of about 0.5 a.u. It furthermore shows the convergence behavior of differ-

ent sampling strategies. Equidistant sampling is compared with the above

mentioned exponential sampling [57] in Fig. 3.5. Both sampling strategies

converge rather slowly to a common ground state energy. This illustrates

the fact that the Surrogate Hamiltonian while it nicely captures the dynam-

ics at short times is not well-suited to study equilibrium properties which

require long propagation times. The right-hand side of Fig. 3.5 shows the

increase of the spectral range with the number of modes. The determination

of the spectral range is necessary when using the Chebychev propagator (cf.

Appendices A.2 and A.5). Since the increase of the spectral range turned

out to be linear, ∆E can be estimated by a linear fit avoiding the numerical
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Figure 3.6: The 11 first eigenenergies of the total system and bath (equally
spaced sampling, weak coupling).

computation when increasing N .

So far, the properties of the relaxing harmonic oscillator have been stud-

ied for zero temperature. For higher temperatures, a Boltzmann average

according to Eq. (3.17) is necessary. However, since the Hilbert space of

the total system and bath, HS ⊗ HB, contains many more states than the

Hilbert space of the system alone, HS, computing the eigenstates required in

Eq. (3.17) might become computationally demanding. This is illustrated in

Fig. 3.6. In addition to the increase in the number of eigenstates with increas-

ing number of bath modes N , the bath may lead to degeneracies (colored

lines in Fig. 3.6). Resolving degenerate eigenvalues requires long propagation

times in imaginary time propagation which is used to obtain the eigenstates

(cf. Appendix A.4). While the problem of degeneracies may be partially

resolved by incorporating an energy filter into imaginary time propagation

(cf. Appendix C.2), the exponentially increasing number of eigenstates can-

not be avoided. The Surrogate Hamiltonian is therefore well-suited only for
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low temperature problems with the meaning of low being determined by the

relevant system energies.

The grid representation of the primary system allows for the treatment of

a general anharmonic potential. The vibrational relaxation study is therefore

extended to the case of an anharmonic oscillator in a bath,

Ĥanh = Ĥharm + Vanh(Q̂) . (3.29)

The anharmonic part of the potential is given by third and fourth order terms

in Q̂:

Vanh(Q̂) = γ3Q̂
3
+ γ4Q̂

4
, (3.30)

where γ3 was used as free parameter and γ4 was chosen to balance the third

order term, γ4 = −γ3/Qb with Qb = 1.8 a.u. (cf. Fig. 3.7). To obtain the

initial state, the correlated ground state of system and bath was displaced

by Q0 = 0.3 a.u., this is indicated by the arrows in Fig. 3.7. The qualitative

shapes of the energy relaxation curves for different anharmonicities shown

in Fig. 3.7 are quite similar. Examining the potentials in the left part of

Fig. 3.7, it becomes clear that with increasing anharmonicity the average

initial energy decreases. With 11 bath modes, the method converges to a

timescale of ∼ 1000 fs. The artificial recurrence of energy for the harmonic

case after ∼ 1000 fs should be noticed (Fig. 3.7). For anharmonic cases, the

recurrence is less significant due to a spread of the system energy to more

bath modes. The above mentioned resonance phenomenon is thus avoided

for an anharmonic system.

The system energy is not an observable accessible in an experiment. An

experimentally accessible observable is, however, given by the absorption of

a pulse. This can be calculated using the window operator (cf. Appendix B).

The absorption of a probe pulse (bottom right of Fig. 3.7, cf. Appendix B)

shows larger differences due to the anharmonicity of the potential. The choice

of positioning the window function (as indicated in Fig. 3.7) enhances the

second harmonic component. This results from the double passage of the

wave packet for each vibrational period. The decay of spectral modulations

is faster when the anharmonicity increases, in particular the double peak

reflecting the second harmonic component is lost much faster. These ob-

servations are similar to those seen in a vibrational relaxation model based
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Figure 3.7: Potentials for the anharmonic oscillator with increasing third
order term γ3 given in the legend. The arrows indicate the position of the
initial state. The window operator which was used to calculate the absorp-
tion is also plotted. The average energy as a function of time for increasing
anharmonicity (top) and the ground state absorption for increasing anhar-
monicity (bottom) are shown on the right. N is the number of bath modes,
the system-bath coupling is η = 2 and the cutoff frequency of the spectral
density is equal to the system frequency, ε = ω.

on solving the semi-group Liouville von Neumann equation [59]. The phe-

nomenon is the result of the initially compact wave function falling out of

phase when the energy level spacing is not constant. For an isolated quantum

system with discrete eigenstates, coherent revivals of the wave packet can be

observed. Dissipative forces originating from the bath, however, exclude such

wave packet revivals [60].

3.4 Dephasing

When modeling dissipative processes, often both relaxation and dephasing

are important and need to be considered. From the remarks of the previous

section it is clear that two different types of baths are then required in a

Surrogate Hamiltonian description with a limited number of bath modes.
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For relaxation the bath should have a broad spectrum of modes which can

absorb energy from the system, particularly if the system is anharmonic,

while for dephasing the bath energy levels have to be quasi-degenerate. Since

furthermore the mechanisms of relaxation and dephasing are quite different,

pure dephasing will be considered in the following. As explained above, pure

dephasing requires an initial population of bath modes. The initial state

was therefore assumed to have all modes equally populated. While this is

a somewhat artificial choice and a Boltzmann weighted population of bath

modes bears more physical significance, it ensured fast convergence and the

observation of phenomena related to the dephasing model only.

The harmonic oscillator was also used to test nuclear dephasing,

Ĥharm =
P̂

2

2m
+

1

2
mω2Q̂

2
+
∑

i

εiσ̂
+
i σ̂i+(

P̂
2

2m
+

1

2
mω2Q̂

2

)
⊗
∑
ij

cnd
ij

(
σ̂+

i σ̂j + σ̂+
j σ̂i

)
.

(3.31)

Its ground state was displaced by 0.4 a.u. and evolved in time. Pure vi-

brational dephasing leads to a spreading of the wave packet in phase space,

shown in Fig. 3.8. The sign of each individual term cnd
ij in Eq. (3.23) or

Eq. (3.31), respectively, determines if its contribution advances or delays the

phase (cf. Fig. 3.9). Negative cnd
ij advances the phase, while positive cnd

ij

delays it. A random choice of the sign of cnd
ij will cause a phase diffusion in

both directions without affecting the average phase propagation determined

by ĤS.

Higher harmonic motion was generated by placing two, three and four

Gaussian wave packets symmetrically on a specified ellipse in phase space,

the ellipse was determined by the displacement of 0.4 a.u. of the first har-

monic. The Wigner function of two Gaussian wave packets is shown in Ap-

pendix C.1. It displays non-classical correlations. The transient absorption

at the turning point of this initial state was recorded and fitted with the use

of the Filter Diagonalization method (cf. Appendix C.2). The frequencies

with the highest amplitudes were the second, third and fourth harmonics.

Analysis of the decay rates corresponding to these frequencies shows a 1:2

ratio between the first and second, 1:3 between the first and third and 1:4

between the first and fourth harmonic (cf. Table 3.4). These ratios deviate
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Figure 3.8: The Wigner function of an initially displaced Gaussian state in
a harmonic potential. The state is plotted after 0, 2 and 4 periods for the
nuclear dephasing parameter c̄ = 0.2 (top) and for c̄ = 0.5 (bottom). Nuclear
dephasing leads to a spreading of the wave packet which occurs faster for
stronger dephasing.

Figure 3.9: The sign of dephasing constants determines the direction of the
spread (left: positive cnd

ij , middle: random choice of the sign, right: negative
cnd
ij ).
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harmonic frequency decay rate error

1 0.5614E-03 0.110E-05 0.57E-08

2 0.1123E-02 0.199E-05 0.66E-07

3 0.1701E-02 0.288E-05 0.84E-07

4 0.2246E-02 0.434E-05 0.86E-08

harmonic frequency decay rate error

1 0.5002E-03 0.180E-05 0.75E-08

2 0.1000E-02 0.364E-05 0.30E-07

3 0.1500E-02 0.565E-05 0.12E-05

4 0.2243E-02 0.625E-05 0.66E-06

Table 3.1: Frequencies and decay rates of dephasing for higher harmonics
obtained by filter diagonalization of transient absorption (N = 11 top, N =
10 bottom).

from the 1:4, 1:9 and 1:16 ratios expected in a Gaussian dephasing model,

and indicate that the dephasing mechanism is Poisson-like [61,62]. Dephasing

can be imagined as elastic scattering of for example solvent molecules with a

solute with binary collisions causing the phase changes. If the collisions are

frequent but induce only small phase changes, the probability distribution

of the single phase changes is given by a Gaussian, if the collisions are rare

events but lead to larger phase changes, the distribution is Poissonian. The

Poisson model of dephasing reduces to a Gaussian one in the limit of frequent

and small phase changes, it can therefore considered to be more general [61].

A simple model to study pure electronic dephasing is a TLS which is

resonantly excited by a pulse with field E(t) and which is coupled to a bath,

Ĥ =

(
−1

2
ω0 E(t)

E(t) 1
2
ω0

)
⊗ 11B +

1

2

(
−1 0

0 1

)
⊗
∑
ij

cedij (σ̂+
i σ̂j + σ̂+

j σ̂i) . (3.32)

The initial state was chosen such that the system is in its ground state and

the bath states are equally populated. If the pulse is a π-pulse [63], it will lead

to complete population transfer as long as there is no coupling to the bath.

The effect of pure electronic dephasing is shown in Figs. 3.10 to 3.12. For zero

dephasing, the π-pulse indeed leads to a complete population inversion (black
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Figure 3.10: Electronic dephasing: Decrease of population excited by a π-
pulse for increasing dephasing strength ced, N is the number of bath modes.
The pulse envelope (not to scale) is shown in the background.

curve in Fig. 3.10). Once dephasing is included, the amount of population

transfer decreases, eventually reaching 50% conversion which corresponds to

a random electronic phase. For stronger dephasing, more modes are required

to obtain converged results.

For the radiation, a time-dependent semiclassical approximation is used.

The power absorbed or emitted from the radiation field is then given by the

expectation value [64]:

P =

〈
∂ĤSF

∂t

〉
= trS

{
ρ̂S

∂

∂t
ĤSF

}
. (3.33)

To obtain the total energy absorbed by the pulse, Eq. (3.33) is integrated

for the total pulse duration. When the radiation field is represented by a

rotating field, E(t) = ε̄eiωLt, one obtains [64]

∆E =

∫
Pdt = −~ωL∆Ng . (3.34)

Eq. (3.34) allows for associating the change in population from the ground

to the excited electronic state, ∆Ng, to the energy ∆E absorbed from the
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Figure 3.11: Absorption spectrum: Dephasing leads to a shift and a broad-
ening of the absorption peak. The shift contains two contributions: a static

one corresponding to the value 〈Ĥed

SB〉(t = 0) and a dynamic one which is
plotted on the right.

field. By varying the carrier frequency ωL of the pulse and calculating ∆E, a

spectrum of absorbed energy vs. frequency can be obtained. The minimum

width of the spectrum is determined by the Fourier transform of the pulse

(black curve in the left panel of Fig.3.11). Once dephasing is introduced, the

frequency of the absorption peak is shifted corresponding to the initial value

of the system-bath interaction energy 〈Ĥed

SB〉. An additional dynamical shift

is also observed which is linear in ced for small values (cf. Fig. 3.11, right).

The dephasing furthermore leads to a broadening of the absorption peak (cf.

Fig. 3.11, left). The width of the peak (FWHM) can be determined and

plotted vs. the dephasing parameter ced (Fig. 3.12). A quadratic scaling of

the width with ced is observed.

The dephasing rate is furthermore found to be proportional to the square

of the band width of bath energies which is related to the band width of

the cij (cf. Fig. 3.13). To this end, the ground and excited states of the

TLS have been equally populated and the expectation values of σ̂x and σ̂y

which measure the electronic coherence have been recorded. For an isolated
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system, these expectation values oscillate but the sum of their squares is

constantly equal to 0.5. If dephasing is included, a decrease of |Sx|2 + |Sy|2

is observed. The amount of this monotonic decrease at some final time has

been chosen as a measure for the dephasing rate. It is plotted for different

dephasing constants in Fig. 3.13. The quadratic scaling of dephasing with

the band width, as well as with the dephasing constant ced, indicates that the

Surrogate Hamiltonian dephasing process is second order in the system-bath

coupling. This is consistent with the dephasing terms being a second order

expansion of the more general cosine-term mentioned in Section 3.2.

The above examples demonstrate the ability of the Surrogate Hamiltonian

method to model the four isolated dissipative phenomenon and to establish

the requirements for convergence.





Chapter 4

A first application: Charge

transfer in a mixed valence

system in solution

In the previous chapter the Surrogate Hamiltonian method has been intro-

duced and generalized to treat problems including two (or more) electronic

states. The single dissipation processes have been discussed. In this chapter,

these dissipation processes will be combined to comprehensively describe a

charge transfer event in condensed phase.

The simplest model for the primary system in that case consists of two

harmonic potentials which are coupled nonadiabatically. The parameters of

the model are chosen to mimic the mixed valence system (NH3)5RuNCRu(CN)−5

[65] which has recently been investigated in a femtosecond pump-probe ex-

periment [66,67]. The observed electron transfer time, vibrational relaxation

rate and dephasing time of vibrational coherences showed a strong solvent

dependence.

That the environment plays an important role in determining the fate

of the charge transfer reaction has been realized early on [68, 69]. The shift

in charge distribution during the reaction forces a complete rearrangement

of the solvation shell. Additionally, the decoherence caused by the solvent

eventually forces the system to localize onto a particular charged state. This

localization marks the qualitative change from a dynamical to a kinetic pic-

ture. For weak to moderate system-bath coupling, an increase in the dissi-

45
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pative forces will cause an increase in the rate of charge transfer. A further

increase in the system-bath coupling will cause a turnover and the rate will

decrease [65]. This general quantum phenomenon has been termed the quan-

tum anti-Zeno effect [70].

New insight into the charge transfer process has come from ultrafast

pump-probe experiments [71, 66]. This technique constitutes a dynamical

probe which allows for the unraveling of the sequence of events that lead

eventually to the charge transfer product. A direct signature of the ultra-

fast dynamics are transient modulations of optical observables reflecting the

promotion of ground and excited state vibrational modes. A comprehensive

quantum dynamical model which can describe consistently the experimental

observations has therefore to take into account the influence of the envi-

ronment as well as the time-dependence of the laser pulse. The use of the

Surrogate Hamiltonian method is justified by the ultrafast nature of the ob-

servations which restrict the timescale.

4.1 Modeling a pump-probe charge transfer

event

Before specifying the model to describe the charge transfer event, the steps

that make up a charge transfer cycle (cf. Fig. 4.1) and related theoretical

considerations shall briefly be reviewed:

1. The initial state of the process is a strongly solvated chromophore which

results in a system and bath which are highly correlated. The phenomenon

is related to nuclear relaxation. This issue is addressed by constructing a

correlated initial state as described in Section 3.3. The initial correlation

has been a major concern for quantum treatments of system-bath dynam-

ics, e.g. [50]. The common approach is to approximate the initial state

as a tensor product between the system and the bath state. A correction

to the problem within the context of perturbation theory using auxiliary

density matrices (cf. Section 2.3) has recently been suggested [51]. The

issue of initial correlations has been tested within the current context (cf.

Section 4.2.1) showing only a small effect on the dynamics. This is in line
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Figure 4.1: The charge transfer cycle: An initial correlated state (1) is par-
tially promoted to the excited electronic state by the pump pulse (2), leaving
a ”hole” in the ground state density. The excited state population moves to
the crossing point (3) where it can cross back to the ground state potential
via a nonadiabatic transition (4). Once on the electronic ground state surface
the hot vibration cools back to the bottom of the well (5). The dynamics is
followed in time by a short and weak probe pulse (6).

with the argument that the influence of the laser field establishes new,

non-equilibrium initial conditions [48].

2. The excitation by the pump pulse is the second step in the sequence of

events. In most cases the pump intensity is sufficient to promote a sig-

nificant fraction of population to the excited state (cf. Section 4.2.2).

The void or ”hole” left on the ground electronic state creates a nonsta-

tionary density which then oscillates periodically with the ground state

vibrational frequencies [72, 59]. This phenomenon is known experimen-

tally as Resonance impulsive stimulated Raman scattering (RISRS). The

creation of this ”hole” can be explained by coordinate dependent Rabi

cycling. A consistent description of the excitation process therefore has

to include the interaction with the radiation field explicitly. Moreover, the

strong interaction with the field has been shown to modify the system-
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bath coupling [73, 74, 49]. Since the time scale of electronic dephasing for

charge transfer events in solution is of the same order as the pulse dura-

tion, the description should also take into account electronic dephasing.

Furthermore, an interference between the radiation induced excitation and

back transfer caused by the diabatic coupling is observed. If the diabatic

coupling potential is not localized on the crossing point this effect turns

out to be significant (cf. Section 4.2.2). The explicit time dependence in

the Surrogate Hamiltonian theory is designed to include all these effects

within the model. The state of the system has to reflect the full nonadia-

batic picture. Therefore the dynamics on the two potential energy surfaces

has to be considered simultaneously. This is in contrast to the common

perturbation theory picture which places the ground state wave packet on

the excited electronic surface [65].

3. Once the excitation has promoted population to the electronically excited

state, the wave function starts to evolve under the influence of the excited

state potential, eventually reaching the crossing point. This evolution is

also strongly influenced by the bath. Strong vibrational relaxation on the

excited state can stop the motion before it reaches the crossing point (cf.

Section 4.3). The nonstationary ”hole” left on the electronic ground state

will also start to evolve. This causes periodic modulations with frequencies

characteristic of Raman transitions [59]. The decay of these modulations

is influenced by vibrational dephasing and relaxation.

4. The density on the electronically excited state approaches the crossing

point. By nonadiabatic charge transfer it can cross back to the electronic

ground state. This step is crucially influenced by the environment. The

dynamics has to reflect the turnover from an enhancement of the charge

transfer rate caused by an increase in dissipation to a suppression of the

rate. The difficulty in analyzing this step is that it is influenced by all the

dissipative processes.

5. The charge transfer converts electronic excitation energy into nuclear po-

tential energy (cf. Fig. 4.1). Following the charge transfer event, the

vibrational modes of the electronic ground state are therefore highly ex-

cited. If the timescale of the charge transfer event is fast relative to a

vibrational period, the new wave packet will have coherent properties.
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The final stage in closing the cycle of events is the recovery of the initial

equilibrium state. This is the result of vibrational relaxation of the excess

energy to the bath (cf. Section 4.2.3).

6. The probe pulse can be applied at any stage in the cycle of events. Typ-

ically, the probe pulse is short and weak. In this case a perturbative

picture is justified which allows for the use of the window operator (cf.

Appendix B). For weak fields, this operator describes the total energy

balance absorbed or emitted from the pulse. Its application as opposed

to direct solution of the Schrödinger equation for all time delays between

the pump and probe pulses can save significant computational effort. The

probe pulse can promote both an excitation, i.e. absorption of energy, or

deexcitation resulting in stimulated emission.

The total Hamiltonian is written as

Ĥ = ĤS + ĤSF (t) + ĤSB + ĤB , (4.1)

where ĤS is the Hamiltonian of the primary system and ĤB is the Hamil-

tonian of the bath. The interaction of the system with the laser pulse is

described by ĤSF (t), and the interaction of system and bath is captured

by ĤSB. The Hamiltonian of the primary system is constructed with two

electronic states and with one nuclear degree of freedom in a diabatic repre-

sentation,

ĤS =

(
Ĥg Vd(Q̂)

Vd(Q̂) Ĥe

)
⊗ 11B (4.2)

with Ĥg/e = T̂+Vg/e(Q̂). T̂ = P̂
2
/2M is the kinetic energy operator, Vg and

Ve are the potential energy operators on the electronic ground and excited

state, and Vd is the diabatic coupling (cf. also Section 6.2.1). The electronic

potential energy levels are chosen to be displaced harmonic oscillators:

Vg(Q̂) =
1

2
Mω2

gQ̂
2
, (4.3)

Ve(Q̂) =
1

2
Mω2

e(Q̂−Q0)
2 + ∆ , (4.4)

where ωg/e are the vibrational frequencies of the ground and excited surfaces,

Q0 is the shift in equilibrium position and ∆ is the energy shift between the

minima. The system parameters were chosen as ωg = 5.0 · 10−4, ωe = 0.7ωg,
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Q0 = 0.2 and ∆ = 0.004 (all in atomic units). The diabatic coupling function

is described as

Vd(Q̂) = Jd e
− (Q̂−Qcr)2

2σ2
d , (4.5)

where Qcr is the position of the maximum coupling point, σd is the variance

of the coupling function and Jd its amplitude. By varying the parameters of

the diabatic coupling its influence can change from a localized effect at Qcr

to a constant function independent of Qcr.

The interaction of the system with the electric field of the laser pulse in

the electric dipole approximation is given by

ĤSF =

(
0 −E(t)µ̂tr

−E∗(t)µ̂tr 0

)
⊗ 11B . (4.6)

µ̂tr = µ̂tr(Q̂) is the transition dipole operator which can be a function of the

nuclear configuration, and E(t) is the time-dependent electric field. Employ-

ing the long wavelength or optical approximation, the spatial dependence of

E(t) is neglected. The pump pulse envelope was modeled as a Gaussian,

E(t) = E0 e
−(t−tmax)2

2σ2
L e−iωLt . (4.7)

The intensity E0 was adjusted such that about 10% of the ground state

population was transferred to the excited state which is typical in experi-

ments [62]. The carrier frequency ωL was chosen to match the difference

between the ground and excited state potentials at the minimum of the

ground state. The width (FWHM) of the pulse which is connected to σL

was chosen as 20 fs. This corresponds to approximately 1/10 of the ground

state vibrational period and to 1/15 of the excited state vibrational period,

and typical for charge transfer experiments [66]. tmax was fixed by starting

the propagation at t0 = tmax − 3σL. The probe pulse profile was identical to

the pump pulse profile but with 10% of the pump intensity.

The bath Hamiltonian is given by Eq. (3.4). The interaction Hamiltonian,

Eq. (3.19), has been described in detail in Section 3.2. Eq. (3.20) together

with Eq. (3.21) as well as Eqs. (3.23) and (3.25) together with Eq. (3.24) will

be employed. In particular, an Ohmic spectral density J(ω) with exponential

cutoff is assumed. It is characterized by the coupling strength η and the cutoff

frequency ωc.
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Once the system-bath Hamiltonian is defined, the correlated ground state

can be determined by propagation in imaginary time (cf. Appendix A.4).

For temperatures which are low relative to the electronic energy difference,

kBT � ∆, the initial state can be determined using only the Hamiltonian of

the electronic ground state, Ĥg. The energy stored in the system-bath cou-

pling, 〈ĤSB〉, was computed. Its value depends on the coupling parameter,

in our simulations we could get converged results for relatively large coupling

with 〈ĤSB〉 reaching 30% of the total energy.

4.2 Spectra

4.2.1 Correlation functions and CW absorption

The continuous wave (CW) absorption spectrum reflects part of the pho-

toreaction dynamics. It can be calculated by employing the theory of linear

response. The weak field spectral response of matter is then associated to the

Fourier transforms of time correlation functions. The correlation functions

are calculated using the system and bath Hamiltonian without the exter-

nal field. For example, the CW absorption spectrum is calculated using the

following autocorrelation function [59],

C(t) = 〈Ψi|M̂(t)|Ψi〉 , (4.8)

where |Ψi〉 is the initial state. The time-dependent propagator M̂ is defined

as

M̂(t) = µ̂tr

{
e−i(ĤS+ĤSB+ĤB)t

}
µ̂tr . (4.9)

For finite temperature, a Boltzmann weighted sum over all populated station-

ary states needs to be considered in Eq. (4.8). The absorption cross section

σA(ωL) is related to the Fourier transform of the autocorrelation function of

the initial state [36],

σA(ωL) ∝ ωLIm

(∫ ∞

0

ei(ωL+εi)tC(t)dt

)
, (4.10)

where εi is the energy of the initial state |Ψi〉.
At time t = 0 the vibrational ground state of the electronic ground state

potential is promoted to the electronically excited state, and the diabatic
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coupling as well as the coupling to the bath are switched on. The frequency

of the ground state potential was chosen as ωg = 10−3au, i.e. about 220cm−1,

and the frequency of the excited state potential as ωe = 0.7ωg.

Fig. 4.2 shows the autocorrelation function calculated by Eq. (4.8), while

the absorption cross section, obtained from Eq. (4.10), is plotted in Fig. 4.3.

Constant diabatic coupling and localized diabatic coupling are compared (top

and bottom, respectively). Since the Surrogate Hamiltonian is converged for

a finite time only, the autocorrelation function cannot be Fourier transformed

directly. Instead, the frequencies and decay rates contained in the signal were

extracted by Filter Diagonalization (cf. Appendix C.2). The CW absorption

spectrum was then reconstructed as a sum of Lorentzians. The data window

in time is confined by the convergence time of the Surrogate Hamiltonian.

This is indicated by comparing the results for N = 9 to the results for N = 11

modes. The actual data window had to be chosen carefully since it is used

for extrapolation to longer times (cf. Appendix C.2). In Fig. 4.2, the data

between 50 fs and 530 fs was used in Filter Diagonalization.

In addition to the spectrum, the eigenfrequencies of the system Hamil-

tonian ĤS, including the diabatic coupling, are indicated as thin lines in

Fig. 4.3. The nonstationary initial state can be expanded into eigenstates

of the system as can be seen in Fig. 4.3. In the case of constant diabatic

coupling all eigenstates within a certain energy range are excited while for

localized diabatic coupling only a few eigenstates contribute. In the case of

localized coupling (cf. Fig. 4.3 bottom), the eigenstates corresponding to the

three peaks with highest intensity carry 80% of their weight on the excited

state while the eigenstates in between carry less intensity on the electroni-

cally excited state. For constant diabatic coupling, more peaks are excited

(cf. Fig. 4.3, top). In this case it is the eigenstates with peaks close to the

classical turning point which contribute most. The influence of the bath is

twofold: It leads to a finite width of the peaks which increases with increasing

system-bath coupling η. Furthermore, the bath shifts the spectrum first to-

wards lower frequencies but then, due to mixing, the frequencies can increase

(cf. Sec. 4.2.3).
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Figure 4.2: The absolute value of the autocorrelation function is plotted for
constant diabatic coupling, Jd = ωg, (top) and localized diabatic coupling,
Jd = 5ωg, σd = 0.1, (bottom). The system-bath coupling η is increased.
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Figure 4.3: The absorption cross section, corresponding to the autocorrela-
tion function of Fig. 4.2 vs. frequency. The eigenfrequencies of the system
Hamiltonian are indicated by thin grey lines.
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4.2.2 Excitation by the pump pulse

The correlated initial state of system and bath is the starting point for

launching the pump-probe simulation. This state is propagated with the

time-dependent Hamiltonian, Eq. (4.1), leading to population transfer to the

excited state. The phase space density of the excited state wave function at

different times during the pump pulse is shown Fig. 4.4. Due to the slope

of the excited state potential the population transfer is not symmetric (cf.

Fig. 4.4, left and middle). Toward the end of the duration of the pump

pulse, the wave packet starts to move away from the Franck-Condon point

and develops a coordinate-momentum correlation.

t=tmax−1.5σL t=tmax t=tmax+1.5σL

Figure 4.4: Normalized Wigner function for the excited state wave function
during the pump pulse at t = tmax − 1.5σL, t = tmax and t = tmax + 1.5σL

(from left to right) with ωe = 0.7ωg, η = 1.0, Jd = 5ωg, σd = 0.1, Nmodes = 11

In almost all previous studies of the charge transfer problem, the initial

state was chosen to be an uncorrelated Gaussian wave packet. It was posi-

tioned at the Franck-Condon point in the electronically excited state, and

a coordinate-independent, i.e. global, diabatic coupling was switched on at

time t = 0. When the excitation process induced by the pump pulse is

considered explicitly, such a choice of diabatic coupling leads to unphysical

spurious results. This is shown in the upper panel of Fig. 4.5. Due to the

global diabatic coupling, the electronically excited state is already populated

before the excitation. Therefore the pump pulse results in both stimulated

absorption and emission. This choice of diabatic coupling furthermore in-

duces immediately population transfer between the electronic states. This

can be seen in the oscillations in Fig. 4.5 (upper panel). Such an unphysical

phenomenon can be avoided by using a localized diabatic coupling operator
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Figure 4.5: The population on the excited state for global and for local
diabatic coupling (Jd = 1.0ωg, σd = 0.1), with and without vibrational re-
laxation (η). The initial state, which is the ground state of the total system
and bath, is partially excited to the electronically excited state due to the
pump pulse (not to scale).

(cf. Fig. 4.5, lower panel). This is well justified since diabatic coupling func-

tions obtained from ab initio calculations turn out to be localized [75, 76].

For this case, the electronically excited state is not populated initially. The

transfer of population starts only after the pump pulse has been applied, and

the wave packet has traveled to the crossing region of the potentials.

For localized diabatic coupling and strong vibrational relaxation, a new

phenomenon can be observed: trapping on the excited state. This results

from the wave packet relaxing so fast that it can not reach the crossing

region of the potentials anymore (cf. the dotted curve in the lower panel of

Fig. 4.5). This observation is part of the turnover phenomenon and will be

discussed in Section 4.3.
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4.2.3 Transient absorption and emission

Transient absorption and emission result from the application of the probe

pulse. Since the probe pulse is assumed to be weak, the window operator

(cf. Appendix B) has been employed.

126 fs 198 fs 217 fs

344 fs 416 fs 488 fs

Figure 4.6: The Wigner function of the ground state wave function at sub-
sequent times (126 fs, 198 fs, 271 fs, 344 fs, 416 fs, 488 fs from top left to
bottom right). The system-bath coupling is η = 1ωg and the local diabatic
coupling is Jd = 5ωg, with width σd = 0.1.

The absorption of the probe pulse reflects the ground state dynamics.

Fig. 4.6 displays the Wigner function of the ground state wave packet after

the excitation and Fig. 4.7 shows several dynamical expectation values. The

time steps at which the Wigner function is plotted are indicated by arrows in

the middle panel of Fig. 4.7. Since the pump pulse excites about 10% of the

ground state population to the electronically excited state, the ground state

wave packet is only weakly perturbed by the excitation process. However,

after the excited state wave packet has reached the crossing point, population

is nonadiabatically transferred back to the ground state. Due to the locality

of the diabatic coupling, this population transfer occurs in spurts. The spurts

are caused by a splitting of the Wigner function on the excited state surface

when it hits the crossing point.

In Fig. 4.7, the loss of ground state population due to the pump pulse
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Figure 4.7: The expectation values of Ĥg and ĤS (upper panel), the ground

state population (middle panel), and the expectation value of Q̂ and ∆Q̂ =√
〈Q̂2〉 − 〈Q̂〉2 on the ground state (lower panel) versus time. The envelope

of the pump pulse and the times at which the Wigner function is plotted in
Fig. 4.6 are indicated.

and then the recovery of the population due to nonadiabatic transfer (middle

panel) are observed. The population newly created in the electronic ground

state is vibrationally excited (top panel). The appearance of this popula-

tion in the observation window of the probe is delayed by the timescale of

vibrational relaxation (cf. Fig. 4.8 left, bottom panel). This phenomenon

has been termed the ”recovery of the bleach” or recovery of the ground state

equilibrium. Finally, the transient absorption and emission signals and their

spectra are plotted in Figs. 4.8 and 4.9. Higher harmonics corresponding to

the non-Gaussian features in the Wigner function (Fig. 4.6) can be observed

(see insets in Fig. 4.9). These features cannot be seen in the coordinate ex-

pectation value, 〈Q̂〉, or the coordinate standard deviation, 〈∆Q̂〉 (Fig. 4.7,

bottom panel). Fig. 4.8 shows furthermore the influence of electronic de-

phasing on the transient emission and absorption signals. Nuclear dephasing

with reasonable parameters did not influence the dynamics.
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Figure 4.8: Stimulated transient emission (upper panel) and transient ab-
sorption (lower panel) for nuclear relaxation and for nuclear relaxation plus
electronic dephasing. The relaxation parameter is η = 1 with cutoff frequency
εc = 2εg. The dephasing parameter is c̄ = 0.005 for medium dephasing and
c̄ = 0.01 for strong dephasing. The pump and probe frequencies are chosen
to correspond to the bottom of the ground state electronic potential.

The shape of the transient emission and absorption is caused by both elec-

tronic oscillations and nuclear vibrations. Therefore the observed frequencies

do not correspond to the vibrational frequencies of the diabatic potentials

or to the eigenvalues of the system Hamiltonian HS (in contrast to the ab-

sorption cross section, cf. Sec. 4.2.1). The observed frequencies are rather

a result of a subtle interplay between system and bath. To illustrate this,

the system-bath coupling parameter was varied and the frequencies of the

ground state absorption, obtained by Filter Diagonalization, are plotted vs.

the system-bath coupling in Fig. 4.10. A pattern of avoided crossings as a

function of the system-bath coupling parameter η is clearly visible.

The amplitude of the electronic oscillations is decreased by electronic de-

phasing. This leads to a decrease in amplitude of the oscillations in the tran-

sient emission/absorption (cf. Fig. 4.8). Filter Diagonalization was applied

to obtain spectra, and a data window between 250 fs and 1410 fs was chosen.
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Figure 4.9: Stimulated transient emission (top) and absorption (bottom)
spectra (right) corresponding to Fig. 4.8.

Dephasing causes a widening of the peaks in the spectra (cf. Fig. 4.9).

The ”recovery of the bleach” or the recovery of the ground state absorp-

tion is observed in the bottom panel of Fig. 4.8. This recovery is due to

the filling of the observation window which is caused by the nonadiabatic

transfer from the excited state and by cooling of the vibrational excitation

on the ground electronic potential (cf. Fig. 4.1).

The probe pulse can be positioned in resonance to the inner and outer

turning points of the ground state potential. One would expect a half a period

time delay between the peaks in the two signals [66]. We found that the

electronic oscillations due to the nonadiabatic population transfer completely

destroy this half a period time delay pattern.

The timescale for the recovery which corresponds to the decay rate of

zero frequency is ∼ 1.5 ps. To estimate the influence of dephasing, the

highest peak intensities were compared. For data windows between 770 fs and

1430 fs, a linear dependence of the intensity versus the dephasing parameter

was obtained and the slope varied between −0.9 · 10−4 and −1.5 · 10−4.

The effect of the initial correlations on the dynamics, for CW absorp-
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Figure 4.10: The frequencies in the transient ground state absorption ob-
tained by Filter Diagonalization vs. the system-bath coupling parameter.
No electronic dephasing is included. The remaining parameters are the same
as in the previous figure.

tion as well as for the transient absorption and emission, was found to be

small even for the strong coupling case. To this end, the autocorrelation

function and the transient emission were compared for a correlated and an

uncorrelated initial state. In the uncorrelated case, the initial state is the

ground state of Ĥg, while in the correlated case it is the ground state of

Ĥg + Ĥ
nr

SB + ĤB. The comparison was made with a set of different coupling

functions fg/e(Q̂) in Eq.(3.20). The observed effect was small for linear as

well as nonlinear coupling although the system-bath coupling term caused a

significant shift of the modulation frequency in both cases. This is in line

with the argument that the influence of the laser field establishes new, non-

equilibrium initial conditions [48]. In the cases studied here, the influence

of the field on the initial conditions is obviously much stronger than the

influence of the bath.
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Figure 4.11: Turnover: The population of the excited state (upper panel)
and the ground state transient absorption (lower panel) for different η with
the parameters of the diabatic coupling Jd = 0.2ωg and σd = 0.1.

4.3 The interplay of diabatic coupling and

coupling to the bath – the turnover

Nonadiabatic charge transfer is a complex event which is sensitive to all dy-

namical parameters. Previously, based on a semigroup model of dissipation,

a turnover of the charge transfer rate as a function of almost any external

variable has been observed [65]. Turnover describes the fact that the charge

transfer rate first increased and then decreased as a function of the nuclear

relaxation and the nuclear dephasing rate, the electronic dephasing rate, as

well as the diabatic coupling parameter J .

Fig. 4.11 demonstrates the turnover phenomenon as a function of the

nuclear relaxation rate. The excited state population is first created by the

pump pulse and then lost through the diabatic coupling to the ground state.

The rate of loss increases with η but eventually the turnover takes place and

the population becomes trapped in the lowest part of the potential well of the

excited state. From this position the nonadiabatic transfer can only occur
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Figure 4.12: Turnover: Resonance phenomenon due to variation of Jd. The
diabatic potentials with the energy levels of HS are shown on the left, also
plotted is the band width ∆E due to the pulse. For Jd = 5 and Jd = 10,
there are quasi-degeneracies within the energy window given by ∆E, this
leads to an enhanced population transfer (right, upper panel) which can be
detected in the ground state absorption (right, lower panel).

by tunneling, which is slow relative to the other processes.

The transient absorption of the probe pulse from the ground state reflects

the increase in population which is known experimentally as the ”recovery of

the bleach” [66]. The slow recovery of the bleach for high η implies that the

turnover phenomenon can be observed by ultrafast pump-probe spectroscopy.

A more complex turnover phenomenon is observed with respect to the

diabatic coupling constant Jd. In addition to a general turnover trend, os-

cillations in the rate as a function of Jd are observed (cf. Fig. 4.12). These

oscillations can be attributed to accidental degeneracies between the elec-

tronic ground and excited state (cf. Fig. 4.12 left). These degeneracies are

not observed in the global diabatic coupling case.

4.4 Discussion

The present study is the first construction of a comprehensive model for the

ultrafast pump-probe spectroscopy of the charge transfer cycle. The use of

the Surrogate Hamiltonian has the advantage of a consistent treatment of

initial correlations, non-Markovian dynamics and explicit description of the
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interaction with the pulse.

This exploration has identified severe flaws in previous descriptions [65,

77, 78]. The main shortcoming consists in in the vertical Franck-Condon

transition of the ground state as the initial state for the nonadiabatic process.

This choice ignores the initial system-bath correlation and in particular the

dynamical aspects of the interaction with the pump pulse.

It was found that the initial system-bath correlation has only a small

influence on the short-time observables investigated here. However, an ef-

fect of initial correlations on non-exponential long-time dynamics has been

reported within a path integral approach on a single electronic state [79].

The interaction between system and bath strongly influences the dynamics.

In combination with the nonadiabatic character of the excited vibrational

eigenstates, it induces mixing of the states which results in a complicated

pattern of frequency shifts. The phase shift between different locations of

the probe pulse transition does not correspond to simple ground state co-

herent motion. Moreover the population transfer to the excited surface due

to the pump pulse is strongly influenced by the diabatic coupling term as

well as by the electronic dephasing term. The analysis shows that only the

localized version of the diabatic coupling term has physical meaning.

The present study does confirm the general turnover phenomenon in the

charge transfer reaction [65] which was first identified in a qualitative semi-

group study. The present modeling of the pump-probe experiment shows that

the transient absorption can be used to indicate the turnover phenomenon.

The turnover phenomenon also imposes restrictions on the maximum rate

which can be observed in the recovery of the bleach. With the current set

of parameters this timescale is approximately 1.5 ps which is a factor of two

slower than the experimental findings.

The present model could reproduce all steps of the charge-transfer cycle.

It is nevertheless still over-simplified. The main discrepancy is the result of

the single nuclear degree of freedom. It is well documented that nonadia-

batic transfer events are extremely sensitive to the nuclear topology [80]. An

additional nuclear degree of freedom allows the existence of conical intersec-

tions which open a new fast route or funnel from the excited to the ground

state [77]. This could be the reason for the discrepancy between the current



64 Charge transfer in a mixed valence system in solution

one-dimensional calculations and the experimental findings. In principle the

description of the primary system could be extended to include additional

degrees of freedom. This addition however, would increase considerably the

required computational resources. Adding a single high frequency vibrational

mode becomes, however, feasible by just including the two lowest levels as

an additional spin. An additional electronic degree of freedom would be

described in a similar fashion.

Another serious simplification is given by the assumption of harmonic

potentials. In the second part of this thesis, the Surrogate Hamiltonian is

therefore be applied in combination with ab initio potential energy surfaces

to laser induced desorption of small molecules from surfaces. While this is

also a condensed phase process, the system is very well characterized both

experimentally and theoretically. This allows for the development of a micro-

scopic picture of the interaction between system and environment. The main

dissipation process in this case is given by electronic quenching. Electronic

quenching has not been considered so far, since for a chromophore in a bath

it is not efficient. The reason is that there are no dipoles in the solvent which

are in resonance with the electronic transition dipole. This is, of course, sol-

vent dependent. A polar solvent, for example, might require the treatment

of electronic relaxation. It furthermore becomes important for a molecule on

a surface. Due to accepting bath modes in the appropriate frequency range

electronic quenching will turn out to be substantial. This will be the subject

of the second part of this thesis.



Chapter 5

Laser induced desorption

Laser induced desorption describes the

detachment of molecules adsorbed on a

surface after laser irradiation. It is a spe-

cial case of Desorption Induced by Elec-

tronic Transitions (DIET). If the molecu-

les are chemisorbed, it involves the cleav-

age of a chemical bond. The systems

which have most intensively been studied

are those of small molecules, such as

Figure 5.1: Laser irradiation of a
surface with molecules adsorbed
on it (here NO/NiO(100)) leads
to desorption of the molecules.

O2, CO, or NO, adsorbed on single crystal metal or metal oxide surfaces,

such as platinum, copper, nickel oxide, or chromium oxide surfaces [81, 82].

A desorption experiment requires the preparation and characterization of

the surface under UHV conditions, the adsorption of molecules on the sur-

face and the detection of desorbing molecules. Observables in a desorption

experiment are hence the desorption cross section and the kinetic energy

of the desorbate. If the detection proceeds state-resolved, also vibrational

and rotational energies or the alignment of the desorbing molecules can be

determined [83].

Desorption can be induced by two different processes – besides elec-

tronic transitions also heating of the system leads to desorption, consequently

termed thermal. The observed kinetic energy distributions, for example, dif-

fer greatly pointing to the two distinct mechanisms which cause desorption.

Thermal desorption results in the distribution of energy onto all degrees of

65
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freedom while for laser induced desorption the excitation of specific quantum

states can be observed resulting in a non-thermal distribution of energy.

An attempted theoretical description of laser induced desorption must

therefore be quantum mechanical. One-dimensional models will at best be

able to describe experimentally observed desorption yields and kinetic energy

distributions. Vibrational and rotational energies can only be captured in a

higher-dimensional model including the internal degrees of freedom of the

molecules.

5.1 Theoretical models for laser induced des-

orption from surfaces

Two popular schemes have been used to explain the mechanism underlying

laser induced desorption, e.g. [13,82], both involve a short-lived electronically

excited state. The Menzel-Gomer-Redhead (MGR) model [84, 85] assumes

the electronically excited state to be repulsive, while in a variation of the

MGR model going back to Antoniewicz [86] the excited state is bound (cf.

Fig. 5.1). In both models, the excitation by the laser pulse is modeled as

E
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Z
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Figure 5.2: Menzel-
Gomer-Redhead and
Antoniewicz mecha-
nisms to explain laser
induced desorption.

a Franck-Condon transition from the electronic ground to an excited state.

Electronic quenching brings the wave packet back to the ground or another

lower lying state. It is thought of as a second vertical transition. Desorption

occurs in the MGR model when the transition from the electronically excited

state back to the ground state happens after the wave packet describing
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the center of mass motion of the molecule has passed a critical distance

Z0 and gained sufficient kinetic energy to escape the potential well. In the

Antoniewicz model, which corresponds to an ionic excited state, the wave

packet is accelerated toward the surface. The electronic deexcitation leaves

the wave packet in the repulsive part of the ground state potential where it

may also gain kinetic energy for desorption.

The MGR model was originally developed for classical trajectories de-

scribing the center of mass motion of the molecule. A widely used improve-

ment was introduced by Gadzuk [87, 88]: The classical point particle is re-

placed by a quantum mechanical wave packet. An ensemble of such wave

packets is considered with each wave packet ”living” on the excited state

for a certain residence time. Expectation values are computed as stochastic

averages of the ensemble where the resonance time, i.e. the lifetime of the

excited state, enters as a weight.

If the theoretical description shall be more than qualitative, a more rig-

orous approach is needed regarding the involved potential energy surfaces

and the excitation and deexcitation mechanisms. The calculation of reliable

potential energy surfaces in general, and for excited states in particular, is

still an open problem. However, for the systems NO/NiO(100) [89, 3] and

CO/Cr2O3(0001) [90, 91] excited state potentials were obtained. The topol-

ogy of the representative excited state potential for NO/NiO(100) which was

used in the calculations will be discussed in Section 6.1.

Irradiation by nanosecond pulses can well be described by a Franck-

Condon transition. The theoretical description of femtosecond experiments,

however, requires an improved model since excitation, excited state dynam-

ics and relaxation all happen on the same timescale. For metals, the two-

temperature model [13] has been introduced to describe femtosecond excita-

tion of the surface. The excitation mechanism is assumed to be substrate-

mediated, i.e. the pulse generates a cloud of hot electrons which can attach

to or scatter from the adsorbate. The hot electrons are characterized by a

temperature Te, and they equilibrate due to interaction with phonons charac-

terized by temperature Tp. The time-dependence of these two temperatures

can be described by coupled diffusion equations. While the electronic peak

temperature is reached on the timescale of the pulse, the equilibration pro-
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ceeds on the timescale of picoseconds. The two-temperature model is a zeroth

order description of the substrate response and neglects the non-thermal na-

ture of excited electrons. On oxides, the substrate is also involved in the

excitation process. This can be seen in the linear dependence of the desorp-

tion cross section on the laser energy once the laser energy is larger than the

band gap, e.g. [92]. The excitation mechanism can, however, be thought of as

semi-direct (cf. the discussion in Section 6.1), then the full time-dependence

of the pulse enters the theoretical model.

The electronic excitation of the adsorbate is dissipated into the surface

due to interaction with surface electrons and holes or phonons. The life-

time of the electronic excitation is extremely short [93]. For metals it is

estimated to be τ . 1 fs while for oxides it is assumed to be somewhat

larger, τ ≈ 20 . . . 30 fs. If the interaction with charge carriers in the surface

is seen as the primary cause of relaxation, this difference corresponds to the

different density of states in metals and insulators. In both cases the short

lifetime leads to the conclusion that the interaction with the surface must

be strong [13]. If a fully quantum mechanical description of the problem is

desired, an open quantum system approach should be used with the surface

electron-hole pairs and phonons modeled as environment. Remembering the

possible theoretical methods described in Chapter 2, this poses a theoreti-

cal dilemma: Strong interaction with the environment excludes perturbation

theory. The impossible separation of excitation and relaxation timescales

makes non-Markovian effects likely to be important. An anharmonic envi-

ronment (the electron-hole pairs in the surface), comparatively low tempera-

ture and an explicit time-dependence of the Hamiltonian are not in favor of

a path-integral approach.

The number of existing theoretical studies on femtosecond laser induced

desorption is therefore rather small. The above mentioned two-temperature

model was used in a semigroup treatment for NO/Pt(111) [94, 95]. The

lifetime of the excited state was assumed to be 2 fs while the pulse had

a full-width half-maximum (FWHM) of 50 fs. The excitation timescale,

however, was prolonged due to the indirect treatment of the pulse in the

two-temperature model. This justified, at least partially, the Markov as-

sumption inherent in the semigroup approach. Another indirect treatment
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of the excitation has been applied to CO/Cu(111) [96,97]. The pulse induces

a dipole moment in the surface to which the adsorbate responds. The surface

is treated as stochastic environment leading to an optical potential in the sys-

tem Hamiltonian. Memory effects were argued to be negligible due to inter-

nal energy transfer in the surface, a consideration of timescales or interaction

strengths was, however, not given. Direct optical excitation without further

justification has been assumed for NH3/Cu(111) [98] although the excitation

is known to be substrate-mediated [99]. The deexcitation was also modeled

by an optical potential, i.e. assuming a δ-correlated environment. However,

the field is known to affect the dissipation. In a perturbational treatment

of the system-bath coupling (cf. Chapter 2), for example, the field enters

the memory kernel describing the influence of the bath [74]. Since excitation

and deexcitation are both caused by electrons in the copper surface, and the

timescales of excitation and relaxation are comparable (the pulse FWHM

was varied between 5 fs and 90 fs and excited state lifetimes between 2.5 fs

and 25 fs), correlation between excitation and dissipation is to be expected.

The treatment of [98] does therefore not seem to be methodologically sound.

The next section briefly reviews previous experimental and theoretical

findings for the laser induced desorption of NO from NiO(100) before sum-

marizing the questions to and possible answers from a theoretical description.

5.2 Laser induced desorption for NO/NiO(100)

Using thermal desorption spectroscopy NO was found to be weakly chem-

isorbed on NiO(100) with an adsorption energy of about 0.5 eV [100, 101].

The adsorption geometry was determined by NEXAFS (Near Edge X-Ray

Absorption Fine Structure) and HREELS (High Resolution Electron Energy

Loss Spectroscopy) as NO on top of a regular nickel site with a tilt angle

between NO axis and surface normal of 45o [100]. Photoelectron diffraction

revealed a somewhat larger tilt angle of 60o [102].

Laser induced desorption experiments with nanosecond pulses [103, 92]

yielded the following observations: The desorption cross section shows a lin-

ear dependence on laser energy above the band gap of nickel oxide [92]. This

indicates a correlation of desorption with charge transfer excitations in nickel
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oxide. The velocity distributions of desorbing molecules show a pronounced

bimodality within a range from 0 m/s to 2000 m/s. An example is shown

in Fig. 5.2. The two peaks have been related to two desorption channels

0

R
E

M
P

I-
si

g
n

al
[a

.u
.]

300025002000150010005000
velocity [m/s]

ν" = 1,  j = 15.5

Figure 5.3: Exper-

imentally obtained

state-resolved velocity

distribution.

which are both non-thermal owing to the high vibrational and rotational

temperatures of the desorbate [103]. State-resolved detection of the mole-

cules furthermore revealed a correlation between rotation and translation

for the fast desorption channel, while no correlation between vibration and

translation was found.

A theoretical description of the laser induced desorption experiments with

nanosecond pulses has recently been given within a two-dimensional stochas-

tic wave packet treatment [105, 89, 106]. The lifetime of the excited state as

an empirical parameter was adjusted such that the desorption yield was com-

patible with experimental results. Velocity distributions in the correct range

of velocities and the bimodality of the distributions could be reproduced by

the model. The bimodality was explained in terms of the topology of the

excited state potential which lead to a bifurcation as well as the vibrational

excitation of the wave packet. The excited state dynamics could furthermore

explain the coupling of translational and rotational degrees of freedom.

Subpicosecond experiments [107, 108] with the pulse duration estimated

as 550 fs revealed no substantial differences as compared to to the results

of the experiments employing nanosecond pulses. In particular, the yield

was found to exhibit a linear dependence on laser fluence. The linearity

indicated a DIET as opposed to a DIMET (Desorption Induced by Multi-

ple Electronic Transitions) mechanism. Since ultrashort pulses are usually

intense, a crossover from a linear to a power-law dependence of the yield

on fluence pointing to a crossover from DIET to DIMET mechanisms could
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be expected. Such a crossover has been observed for another system, al-

though with a metal substrate and shorter and more intense pulses [109].

The pulses applied to NO/NiO(100) were rather long and of only moderate

intensity which renders the observed linearity reasonable. Furthermore no

pronounced differences were observed in the state-resolved velocity distribu-

tions. However, a vibrational period in desorption coordinate in the excited

state potential region which is probed by the pulse assuming resonant exci-

tation is about 220 fs. The estimated excited state lifetime of about 25 fs

is even a magnitude shorter. A pulse of 550 fs width can, therefore, not be

expected to probe the nuclear dynamics of the excited state. Preliminary

results have been reported using a pulse of 100 fs FWHM [110] which sug-

gested a coupling of the internal NO vibration and translation. For specific

rovibrational states, velocity distributions with an inversed population of the

desorption channels were observed. This was, however, not investigated for

all rovibrational states [110]. A laser desorption experiment applying two

pulses is in progress [104]. The objective is to use the second pulse to probe

the excited state dynamics. Such an experiment could directly yield the ex-

cited state lifetime, the implicit assumption being that the lifetime is long

enough for the pulses and the pulse delay to compete with it. With the laser

technology available today this can at best be expected for excited states on

oxides, while the lifetime of excited states on metals is still beyond reach.

The demands on a theoretical description of laser induced desorption of

NO from NiO(100) from first principles, i.e. with as few free parameters as

possible, can be summarized as follows. The complicated electronic struc-

ture of an adsorbate on a transition metal oxide requires a reliable excited

state potential energy surface. This has been accomplished on an ab initio

level [89]. The non-thermal desorption mechanism demands a quantum dy-

namical treatment, and the coupling between different degrees of freedom

can only be captured in a multidimensional approach. This has been real-

ized with, however, a simplified treatment of the relaxation of the excited

state [105, 90]. The introduction of femtosecond laser technology requires a

theoretical treatment of excitation and deexcitation mechanisms on the same

level of rigor. In particular, a microscopic description of the dissipation has

not been attempted so far. The simultaneous fulfillment of all requirements
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is one of today’s great challenges of theory. The next two chapters are there-

fore dedicated to the theoretical modeling of the excitation by the laser pulse

and the deexcitation due to interaction of the adsorbate with the substrate.

Since the focus is on developing a microscopic understanding of the interac-

tion between substrate, adsorbate and laser pulse, a one-dimensional model

will be employed. Observables of interest are therefore desorption yield and

desorption velocities. Once a fully quantum mechanical description of the

desorption event including electronic states, excitation and relaxation mech-

anisms has been obtained, a generalization to more degrees of freedom is

possible. This would allow for calculating furthermore rotational and vibra-

tional distributions. Such a generalization is beyond the scope of this thesis

which serves as one more step toward a complete quantum description of

laser induced desorption.



Chapter 6

NO/NiO(100): Prelude

6.1 The primary system: NO on a NiO-cluster

The Hamiltonian describing a NO molecule adsorbed on a NiO(100) surface

is given by

Ĥ = ĤS + ĤSF (t) + ĤSB + ĤBF (t) + ĤB . (6.1)

The system Hamiltonian ĤS describes the adsorbate on a finite part of the

NiO-surface, while the remaining part of the surface is modeled as environ-

ment or bath (ĤB). The effect of this environment on the (primary) system

is captured in the interaction term ĤSB. Both system and environment can

interact with the time-dependent external field of a laser pulse, ĤSF (t) and

ĤBF (t), respectively.

The Hamiltonian of the primary system, ĤS, describes two electronic

states and one nuclear degree of freedom, Ẑ, which is the distance of the

molecule from the surface,

ĤS =

(
T̂ + Vg(Ẑ) 0

0 T̂ + Ve(Ẑ)

)
. (6.2)

The reduction to one nuclear degree of freedom denotes a great simplifica-

tion and can only serve as a first step in investigating the interaction between

system and bath. Higher dimensional studies for the desorption from oxide

surfaces have been performed [105,90,111] treating the finite excited state life-

time, however, semi-phenomenologically and neglecting the time-dependence

of the pulse. Eq. (6.2) assumes the Born-Oppenheimer approximation [112]

73
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separating electronic and nuclear motion. The Born-Oppenheimer approxi-

mation involves two steps. First, the kinetic energy of nuclei is neglected, and

the nuclear coordinates are treated as parameters. The electronic Schrödinger

equation is obtained. The eigenvalues of the electronic Schrödinger equation

depend parametrically on the nuclear coordinates as parameters. In a sec-

ond step the dynamics of nuclei generated by Eq. (6.1) with the electronic

eigenvalues as potential energy surfaces is solved.

The electronic Schrödinger equation for NO/NiO(100) has been solved

and potential energy surfaces constructed by Klüner and co-workers [89, 3].

In Eq. (6.2), T̂ is the (nuclear) kinetic energy operator which is applied in

momentum space (cf. Appendix A.1). Vg is the ground state empirical poten-

tial and Ve the excited state ab initio potential [89]. The potentials have been

constructed in two degrees of freedom - distance Z and the angle θ between

the NO molecular axis and the surface normal. Since only one dimension

will be considered, the angle is kept fixed at the equilibrium value θ = 45o.

The ground state potential shows a Morse-like dependence on the distance

Z with the minimum at about Z = 5.5 a.u. and an adsorption energy of

about 0.5 eV. The excited state potential has been calculated in a valence

configuration interaction (CI) approach for a NO/NiO8−
5 cluster embedded in

a point charge field (PCF) [89,3]. The excited state is a charge-transfer state

which is characterized by a deep potential well due to Coulomb interaction

between NO− and the positively charged cluster and by a potential minimum

at a distance about 1.5 a.u. smaller than the electronic ground state mini-

mum. The wave packet will therefore be accelerated toward the surface upon

excitation and desorption will occur according to the Antoniewicz mechanism

(cf. Section 5.1).

Configuration interaction has so far been the only method to obtain ex-

cited states for adsorbates on transition metal oxides [89,90]. However, within

such an approach of a finite cluster in a point charge field only relative ener-

gies and the topology of the potential energy surface can be expected to be

reliable. Vertical excitation energies can only be estimated due to orbital

relaxation within the cluster and due to extra cluster polarization [113].

Orbital relaxation is a result of employing orbitals in the CI calculations

which were obtained by CASSCF calculations for NO−/NiO(100) instead of
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NO−/NiO(100)+. Extra cluster polarization is caused by the non-polarizable

point charge field modeling a polarizable surface. Since many excited states

are located in the energy range probed by the laser pulse, the field is likely to

cause a resonant transition. The topology of these states is very similar [3].

It is therefore possible to choose one representative state. The vertical energy

of this representative excited state can be assumed to coincide with the laser

energy in the following.

The Hamiltonian Eq. (6.1) includes both direct (ĤSF (t)) and substrate-

mediated (ĤBF (t)) excitation of the primary system. However, in the follow-

ing only direct optical excitation will be considered. For metal surfaces direct

optical excitation can be excluded due to the strong quenching of electrons

in the conduction band. This situation is different for oxide surfaces which

have a considerable band gap. Measurements with different polarizations of

the laser pulse found a dependence of the desorption yield on the polarization

while the desorption velocities were not influenced [108]. If the excitation is

mediated by the substrate [13], electron-hole pairs in the surface are created.

These electron-hole pairs have a very short lifetime due to electron-electron

scattering which creates secondary electrons. The secondary electrons dissi-

pate their energy via electron-phonon scattering. These multiple scattering

events rule out a symmetry-dependence of the excitation. In contrast, a di-

rect excitation is determined by the transition dipole matrix elements and

hence by the symmetry of the states involved. The polarization dependence

of the desorption yield for NO/NiO(100) favoring s-polarized light [108] is

compatible with calculated oscillator strengths [89, 3]. It therefore supports

an electronic excitation mechanism which is determined by optical selection

rules, i.e. a direct optical excitation within the adsorbate-substrate complex.

If a direct optical excitation of the adsorbate-substrate complex is as-

sumed, the primary system interacts with the electric field E(t) of the laser

pulse which causes an electronic transition,

ĤSF (t) =

(
0 E(t)µ̂tr(Ẑ)

E∗(t)µ̂tr(Ẑ) 0

)
. (6.3)

µ̂tr(Ẑ) is the transition dipole operator depending on the nuclear coordinate.

The field E(t) is treated semi-classically, and its spatial dependence is ne-

glected, i.e. the optical approximation is made. The shape of the field is
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assumed to be Gaussian,

E(t) = E0 e
− (t−tmax)2

2σ2
P eiωLt . (6.4)

As explained above, the excitation is taken to be resonant. The laser fre-

quency ωL therefore coincides with the difference of V̂g and V̂e at the mini-

mum of the ground state potential. The standard deviation σP is related to

the full width half maximum (FWHM) τP of the pulse by τP = 2σP

√
2 ln 2.

The parameters characterizing the pulse are its frequency ωL, the intensity

E0 or the pulse fluence which is related to E0, and the FWHM τP . The

transition dipole µ̂tr(Ẑ) is related to the oscillator strength f ,

f =
2

3
Efi|µfi|2 (6.5)

(in atomic units), which is known from ab initio calculations [89, 3]. The

oscillator strength f is approximately given by f = exp(−Ẑ) and Efi =

4eV = 0.15au, therefore

µtr(Ẑ) =

√
3

2

exp(−Ẑ)

0.15
. (6.6)

The lifetime of the excited state has been estimated as about 15 to 25 fs,

i.e. the charge transfer state is extremely short-lived [89], but the lifetime

is still considerably larger than those estimated for desorption from metal

surfaces [13]. The relaxation mechanism must therefore be very efficient.

Optical deexcitation and interaction with phonons require lifetimes at least

on the picosecond to nanosecond timescale and can therefore be excluded as

possible relaxation channels. The interaction with phonons is furthermore

not likely to play a role since the temperature dependence of desorption ob-

servables could be explained purely by initial population of ground state vi-

brational states [114]. The remaining possible relaxation channel is electronic

quenching caused by the interaction with electron-hole pairs, i.e. O2p→Ni3d

charge transfer states in the surface. It is a nonadiabatic process which will

be modeled in three different ways: First, off-diagonal matrix elements are

guessed and one representative O2p→Ni3d charge transfer state is coupled

to the system yielding a three-state model (cf. Section 6.2). Second, a phe-

nomenological lifetime of the excited state is introduced in Section 6.3 which
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adds a non-Hermitian term to the system Hamiltonian, Eq. (6.2). This cor-

responds to the system-bath approach for open quantum systems. However,

the operators causing the quenching have to be guessed. Finally, in Chap-

ter 7 the O2p→Ni3d charge transfer states are treated as bath in a Surrogate

Hamiltonian framework and a microscopic model for the interaction between

system and bath is developed.

6.2 A model with diabatic coupling

6.2.1 The idea of quasi-diabatization

The quenching of electronic excitation pumped into the system by a laser

pulse marks the breakdown of the Born-Oppenheimer approximation: A con-

tinuum of electronic states in the surface is nonadiabatically coupled to the

excited state. This coupling causes a finite lifetime of excitation. In a first

attempt to model this breakdown of the Born-Oppenheimer approximation,

one representative state of this continuum shall be diabatically coupled to

the excited state.

The approach is based on the idea of quasidiabatization [76] which shall

be outlined briefly. The total wave function can be written as product of

electronic and nuclear wave functions,

Ψ(r, R) =
∑
n,l

cn,lΨn,l(r, R) =
∑

n

ϕn(r, R)χn(R) , (6.7)

where r represents all electronic and R all nuclear coordinates, and l labels

electronic, and n labels nuclear eigenstates. The nuclear wave functions are

vectors containing the expansion coefficients, χn(R) =
∑

l cn,lχ̃n,l(R). This

ansatz can be inserted into the Schrödinger equation,(
1

2M

d2

dR2
+

1

2m

d2

dr2
+ U(r, R)− E

)
Ψ(r, R) = 0 . (6.8)

If the electronic coordinates are integrated over, a Schrödinger equation for

the nuclei is obtained containing matrix elements which are non-diagonal in

electronic coordinates. These non-diagonal or nonadiabatic coupling matrix

elements result from the kinetic energy operator of the nuclei and can be

written in terms of derivatives d/dR. They describe the dynamic interaction
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between electrons and nuclei which is neglected in the Born-Oppenheimer

approximation. If the matrix elements of nonadiabatic coupling are written

as

A =
∑
n,m

Anm =
∑
n,m

〈
ϕn(r, R)

∣∣∣∣ d

dR

∣∣∣∣ϕn(r, R)

〉
, (6.9)

one can look for a unitary transformation which minimizes A. This transfor-

mation yields a (quasi)diabatic basis. For diatomic molecules it is possible

to find a basis in which A is zero, this (electronic) basis is hence called dia-

batic. For larger molecules, A can only be minimized, and the obtained basis

is called quasi-diabatic [115]. As a result of the transformation, potential

energy terms which are off-diagonal in the electronic basis replace the kinetic

coupling terms Anm. Quasi-diabatization therefore represents – at least in

principle – a possibility to go beyond the Born-Oppenheimer approximation

on an ab initio level and facilitates a fully quantum-mechanical description.

6.2.2 A three-state model with diabatic coupling

The calculation of the transformation and hence (quasi)diabatic basis is feasi-

ble, however, only for comparatively simple systems such as HeH+ [3,75]. The

approach breaks down for systems requiring a multi-configurational treat-

ment [116]. For the NO/NiO(100)-system, the diabatic coupling therefore

has to be constructed empirically. The functional form of the coupling was

assumed to be Lorentzian,

λ = λ(Z) =
λ0

γ2 + (Z − Z0)2
(6.10)

with nuclear coordinate Z describing the distance of the NO center of mass

from the surface. The coupling function is characterized by three parameters

– coupling strength λ0, location Z0 and width γ. The diabatic coupling λ̂

enters the Hamiltonian,

Ĥ =

 T̂ + V̂g E(t)µ̂tr 0

E∗(t)µ̂tr T̂ + V̂e λ̂

0 λ̂ T̂ + V̂d

 , (6.11)

where T̂ and V̂ are kinetic and potential energy operators, respectively, µ̂tr

is the transition dipole operator, and E(t) the electric field of the laser pulse.
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Figure 6.1: Diabatic coupling scheme (right) : A laser pulse promotes part
of the ground state wave packet onto the electronically excited state where
the wave packet is subject to acceleration toward the surface. When the
wave packet reaches the region with non-zero diabatic coupling, population
is transferred onto the ground state-like diabatically coupled state where
desorption can take place. The left hand side shows the population of the
excited state (solid curve), the population of the diabatically coupled state
(dotted) and the population in the asymptotic region of the diabatically cou-
pled state, i.e. the desorbed population (dashed). The plateaus correspond
to oscillations in coordinate space, i.e. to the wave packet being close to the
outer classical turning point far from the center Z0 of diabatic coupling. It is
a non-realistic feature of the method that basically all population which has
been transferred onto the diabatically coupled state reaches the asymptotic
region. The shape of the laser pulse is indicated in grey.

The diabatically coupled state is assumed to be like the ground state. Its

energy is determined by the location of the diabatic coupling. An illustration

of the scheme is given in Fig. 6.1 (right). The left-hand side of Fig. 6.1

shows the population of the electronically excited state which decays due to

population transfer to the diabatically coupled state once the wave packet

has reached the region where the diabatic coupling is non-zero.

The observables in laser desorption experiments of NO/NiO(100) have

been the desorption cross section which is related to the desorption probabil-

ity and the state resolved velocity of the desorbing molecules [103,110,107].

If the population of the diabatically coupled state approaches a constant,

the desorption probability can be defined in the present scheme. It is given
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by the ratio of the population in the asymptotic region vs. the total pop-

ulation which has been excited from the ground state, 1 − 〈Ψg|Ψg〉. In a

one-dimensional model, only velocity distributions integrated over all rovi-

brational states can be observed. The integrated velocity distribution corre-

sponds to the probability density of the wave packet in the asymptotic region

in momentum representation (cf. Appendix A.6). The dependence of these

observables on the strength, width and location of diabatic coupling has been

investigated.

Fig. 6.2 shows the mean velocity as a function of the location Z0 of di-
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Figure 6.2: The velocity of desorbing molecules depends on the location Z0

of the diabatic coupling. It is roughly independent of the two other diabatic
coupling parameters λ0 and γ (left). Experimentally observed velocities lie
in the range between 0 m/s and 2000 m/s. To obtain velocities in this range,
the location of diabatic coupling needs to be smaller than the left classical
turning point at Z = 4.79 au (right).

abatic coupling (left) and velocity distributions (right). Both the mean ve-

locity and the qualitative shape of the velocity distributions are independent

of width and strength of diabatic coupling, while the peak intensity depends

on γ and λ0. The velocity increases if the location is shifted toward smaller

distances from the surface. A shift toward smaller distances Z0 moves the

diabatic coupling up the repulsive part of the diabatically coupled potential
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(cf. Fig. 6.1). The part of the wave packet which is transferred onto the

diabatic state is then subject to stronger acceleration.

The location Z0 of diabatic coupling determines not only the desorption

velocity, but also the desorption probability (cf. Table 6.1). The excitation

location Z0 yield mean velocity

4.79 a.u. 8 - 18 % 70 - 160 m/s

4.76 a.u. 84 % 260 m/s

4.74 a.u. > 99 % 475 - 485 m/s

Table 6.1: Desorption yield and mean desorption velocity depend very sensi-
tively on the location of diabatic coupling Z0. It is not possible to find a Z0

s.t. both yield and velocity agree with experimentally found values [103,110].
A range indicates values found for different width γ and strength λ0 of the
coupling.

by the laser pulse determines the classical turning points of wave packet

motion on the electronically excited state (cf. Fig. 6.1). If the location of

diabatic coupling is shifted to distances only slightly smaller than the left

classical turning point (Zt = 4.79 a.u.), the desorption probability jumps

quickly to almost 100 % (cf. Table 6.1). This high desorption probability is

a result of the strong acceleration for small values of Z0: All parts of the wave

packet which are transferred onto the diabatically coupled state gain enough

kinetic energy to reach the asymptotic region. If the obtained desorption

probabilities are reasonable, i.e. Pdes � 1, the obtained desorption velocities

< 200 m/s are much smaller than the experimentally observed velocities

which show one peak between 300 m/s and 500 m/s and a second peak

between 1200 m/s and 1500 m/s [103,110].

Finally, Fig. 6.3 shows the dependence of excited state population decay

on width γ and strength λ0 of the diabatic coupling. Exponential decay and

trapping on the excited state can be observed. Trapping occurs most pro-

nounced for narrow and weak coupling (solid curve in the upper left panel).

If the diabatic coupling is narrow the lower-energetic parts of the wave packet

cannot reach the region with non-zero diabatic coupling and remain on the

excited state. The decay of excited state population is never purely expo-

nential as small oscillations can be observed. These oscillations correspond
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Figure 6.3: The decay of excited state population depends on the parameters
of diabatic coupling (top left - narrow Lorentzian, top right - wide Lorentzian,
bottom left - weak coupling, bottom right - strong coupling, Z0 = 4.69 au
in all cases). Exponential decay and trapping of excited state population
(top left, solid curve) can be observed. There is no simple dependence of the
decay rate on the width and strength of diabatic coupling.

to oscillations of the wave packet in coordinate space, i.e. the plateaus occur

when the wave packet is close to the right classical turning point far from the

location of diabatic coupling. If the excited state population decay is fitted

to an exponential, lifetimes of about 150 fs and longer have been obtained.

These lifetimes are unrealistically long. No simple functional dependence of

excited state lifetime on width and strength of diabatic coupling can be ob-

served, since the lifetime oscillates in both γ and λ0 . To clarify this behavior

on the shape of diabatic coupling, a free wave packet with initial non-zero

momentum has been propagated on two grids which were coupled by λ(Z).

In this simple test, the wave packet passes the region with diabatic coupling

only once. The amount of transferred population can be considered as the

transition probability. This transition probability oscillates both in γ and
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λ0. Such oscillatory behavior has also been reported for a Gaussian shape of

the diabatic coupling function [117,118].

In [117] velocity distributions have been analyzed in terms of wave packet

motion on the excited state. The ground state wave packet was promoted

onto the excited state neglecting the explicit time-dependence due to the

laser pulse, i.e. assuming a δ-like pulse. Velocity distributions showing a

complicated interference pattern were obtained with interference resulting

from different pathways of partial wave packets. It was argued that the ob-

tained velocity distributions need to be convoluted with a Gaussian taking

into account the finite velocity resolution in experiment. The width of the

convolution function then determines how many peaks are observed in the

velocity distribution. The introduction of such a convolution function in a

simple one-dimensional model is reasonable to account for the complicated

processes in experiment which have been left out. One might notice, how-

ever, that a finite resolution is more naturally included into the description

by taking into account the finite width of the laser pulse. The finite width of

the pulse causes a finite width in energy, i.e. a finite number of states with

energy close to the resonance are excited (a similar argument is sketched for

the window operator, cf. Appendix B). Fig. 6.4 shows velocity distributions

for increasing pulse duration. A very short pulse of 20 fs FWHM results in

nine visible peaks in the velocity distribution (black curve in Fig. 6.4), while

a continuous wave (CW) excitation leads to a single peak (blue curve). A

pulse of 100 fs FWHM, as recently used in experiment [110], brings about a

bimodal velocity distribution (red curve). This is a fingerprint of the time-

energy-uncertainty relation: the shorter the time in which the pulse interacts

with the system, the more nuclear eigenstates of the electronically excited

state are excited and build up the wave packet. The explanation in terms of

excited state eigenstates is illustrated in Fig. 6.5 which compares the veloc-

ity distribution for a δ-like excitation of the ground state wave packet (black

solid curve) with velocity distributions of simulations with the eight lowest

eigenstates of the electronically excited state as initial state and diabatic

coupling switched on at time t = 0 (red dotted curves). Fig. 6.5 shows that

the peak positions of the velocity distribution can be explained by propa-

gating excited state eigenstates, and the largest contributions arise from the
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the desorbed part of the wave packet depends on pulse duration: The shorter
the pulse, the more modes are observed. The distributions have been scaled
for comparison.
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Figure 6.5: The peaks in the velocity distribution of the desorbed part of the
wave packet (here for instantaneous, i.e. δ-pulse excitation, black) correspond
to the nuclear eigenstates of the electronically excited state propagated in the
diabatic model (red). The parameters of the coupling were chosen as in the
upper panel of the previous figure, and the peaks lie in the range between
280 m/s and 1400 m/s.
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eigenstates with n = 6 and n = 7.

To summarize the results of this section, it is not possible to find pa-

rameters of diabatic coupling leading to desorption probabilities and des-

orption velocities which both agree with experimentally found values. Since

a Lorentzian (or Gaussian) shape of diabatic coupling is only an empirical

guess and the systematic way to improve on this guess, i.e. an ab initio calcu-

lation of diabatic coupling elements, is numerically not feasible at the time,

this problem has not been investigated further. In addition to the problem

of parameterization of diabatic coupling, two more general problems are in-

herent in the approach. First, the (primary) system is modeled as isolated

and hence described by a Hermitian Hamiltonian. This leads to population

and energy transfer back and forth between the electronically excited and

the diabatically coupled states. Second, the angular dependence of diabatic

coupling elements has not been investigated, and there are no physical argu-

ments to motivate an empirical guess of the angular dependence. It is thus

not possible to go to a higher dimensional model and to check for artifacts

of the one-dimensional description.

In conclusion, one additional electronic state diabatically coupled to the

system does not yield a reasonable model to describe electronic quenching and

desorption. It is therefore necessary to apply a system-bath approach. This

shall be done in two different ways. The following section presents a reduced

description of the total system with implicit treatment of the bath by intro-

ducing a non-Hermitian Hamiltonian while in Chapter 7 many states are ex-

plicitly coupled to the electronic ground and excited states of the NO/NiO8−
5

cluster.

6.3 A stochastic wave packet approach

6.3.1 The Monte Carlo wave function method

The Monte Carlo wave function (MCWF) method can be viewed as a tool

to solve the equation of motion for an open quantum system,

∂

∂t
ρ̂S = i[ρ̂S, ĤS]− + L̂(ρ̂S) , (6.12)
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in the Markov approximation [119]. The state of the system is given by its

density operator, ρ̂S, its dynamics are governed by the Hamiltonian, ĤS,

and the interaction with the environment is described by the dissipative

superoperator L̂(ρ̂S). If the Markov approximation is made, L̂ is of Lindblad

form [23],

L̂(•) = −1

2

∑
k

[
Ĉ

+

k Ĉk, •
]

+
+
∑

k

Ĉk • Ĉ
+

k . (6.13)

The Ĉk are operators which act in the Hilbert space of the system and

describe the different dissipative effects. They need to be chosen semi-

phenomenologically [120]. The label k runs over all possible decay channels.

Instead of solving Eq. (6.12) for the density operator directly, an approx-

imate solution can be obtained by calculating the non-Hermitian dynamics

for a wave function and averaging over many such quantum trajectories. The

Monte Carlo procedure consists of two steps [119]:

1. The non-Hermitian Hamiltonian ,

Ĥ = ĤS −
i

2

∑
k

Ĉ
+

k Ĉk , (6.14)

generates the dynamics of the wave function

|Ψj(t+ ∆t)〉 = e−iĤ∆t|Ψj(t)〉 ≈
(
11− iĤ∆t

)
|Ψj(t)〉 (6.15)

with the time step assumed to be small, ∆t � 1. The approximation in

Eq. (6.15) can be applied to higher order in ∆t by employing, for example,

a Runge-Kutta scheme [119]. The loss of norm due to the non-Hermicity of

Ĥ is given to first order in ∆t by

δp = 1− 〈Ψj(t+ ∆t)|Ψj(t+ ∆t)〉

= 1− 〈Ψj(t)|
(
1 + iĤ∆t

)(
1− iĤ∆t

)
|Ψj(t)〉

= i∆t〈Ψj(t)|Ĥ− Ĥ
+|Ψj(t)〉

=
∑

k

∆t〈Ψj(t)|Ĉ+

k Ĉk|Ψj(t)〉 =
∑

k

δpk .

(6.16)

2. A random number, ε ∈ [0, 1], is drawn and compared to the loss of

norm, δp. If δp is smaller than ε, which is mostly the case since δp� 1 and

ε is uniformly distributed over [0, 1], no quantum jump occurs and the wave
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function is simply renormalized. If the random number is larger than δp, a

quantum jump occurs and the wave function is taken to be

|Ψj(t+ ∆t)〉 =
∑

k

δpk

δp

1√
〈ĈkΨj(t)|ĈkΨj(t)〉

Ĉk|Ψj(t)〉 . (6.17)

These two steps need to be repeated for many realizations of the wave

function, |Ψj(t)〉, j = 1, . . . , N . The density operator of the system can then

be constructed [46],

ρ̂S(t) = lim
N→∞

1

N

N∑
j=1

|Ψj(t)〉〈Ψj(t)| , (6.18)

and observables can be obtained,

〈A〉(t) =
1

N

N∑
j=1

〈Ψj(t)|Â|Ψj(t)〉 . (6.19)

An extensive discussion has been concerned with the physical interpreta-

tion of the quantum jump [9, 46], in particular with the question whether it

can be related to the measurement of a quantum state [43,119,12,121,44,122].

In this thesis, however, it has merely been used as a practical means to cal-

culate the dissipative dynamics of Eq. (6.12).

As a tool to study photodesorption from surfaces, the Monte Carlo wave

function method in this form has first been used by Saalfrank [123] and

compared to the wave packet jumping method introduced by Gadzuk [87,88].

The two methods were shown to be equivalent both numerically [123] and

analytically [124]. The operator describing electronic quenching is Ĉk =√
Γge|g〉〈e| which leads to the effective Hamiltonian

Ĥ = ĤS −
i

2
Γge|e〉〈e| (6.20)

with |g/e〉 labeling the electronic ground and excited state, respectively. If

the decay rate Γge does not depend on the nuclear coordinate, the loss of

norm is known analytically,

δp = Γge∆t+O(∆t2) or δp = 1− e−Γge∆t . (6.21)

Since only one deexcitation channel and no excitation channels are modeled

(DIET regime), the population of the electronically excited state should de-

cay with rate Γge. This is true, however, only if the complete wave packet is
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assumed to be initially in the electronically excited state, i.e. the laser exci-

tation results in a complete population inversion. If the wave packet is only

partially excited, the lifetime of the excited state and hence observables such

as the desorption yield depend on both decay rate Γge and the initial popu-

lation of the excited state. This unphysical feature can be removed by renor-

malizing the range, from which the random number ε is drawn, by the excited

state population. Equivalently, the loss of norm δp which now depends on

the excited state population (from Eq. (6.16) δp = ∆tΓge||〈e|Ψj(t)〉||2 and

||〈e|Ψj(t)〉||2 6= 1) can be renormalized while keeping the range [0, 1] of ε

and hence Eq. (6.21). Note that this problem does not arise when using

Gadzuk’s wave packet jumping algorithm due to different stochastic sam-

pling [125]. The jump criterion is then given by the time spent on the excited

state (residence time) independent of population [87,88].

The Monte Carlo wave function method can be extended to treat the

interaction of the primary system with a laser pulse explicitly. This prob-

lem has been investigated for the system NO/Pt(111) [94]. In that study,

however, the Liouville–von Neumann equation has been solved directly by

a Newton polynomial expansion of the time evolution operator, and the ex-

citation was mediated by the substrate. The extension of the method to

treat time-dependent fields needs to be handled with care: Since the Markov

approximation is assumed to be valid, the timescale of the relaxation and

of the external field should not be of the same order of magnitude [10]. It

is not possible to test the validity of the Markov approximation within the

Monte Carlo wave function framework since it is an inherent assumption.

However, for the specific system NO/NiO(100) a justification can be given

by comparison to the Surrogate Hamiltonian method (cf. Section 7.4).

The system Hamiltonian in Eq. (6.12) and hence the effective non-Hermi-

tian Hamiltonian, Eq. (6.14) and Eq.( 6.20) respectively, become time-de-

pendent, if the interaction of the system with a laser pulse shall be included

explicitly,

Ĥ(t) = ĤS(t)− i

2
Γge|e〉〈e| . (6.22)

Since the propagation starts with all the population in the electronic ground

state, and the only dissipation operator is Ĉk =
√

Γge|g〉〈e| as before, the

problem of the lifetime depending on the amount of excited state population
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and hence on the intensity of the laser again arises. This can be avoided

by renormalizing the range of the random number ε or the loss of norm δp

which is then again given by Eq. (6.21).

6.3.2 Results for NO/NiO(100)

For completeness, results for an instantaneous excitation of the wave packet

are presented. This corresponds to irradiation of the surface with a nanosec-

ond pulse [126]: In a perturbation treatment of the pulse, the excited state

wave packet is given by [62]

|Ψe(tp + cτp)〉 = i

∫ cτp

−cτp

dτ e−iĤe(cτp−τ)µ̂trE(τ) e−iĤg(cτp+τ)|Ψg(tp − cτp)〉 ,

(6.23)

with E(τ) the electric field and τp the width of the pulse. tp denotes the time

of maximum field strength, and c is a constant specifying the integration

range. According to Eq. (6.23), the action of the pulse can be viewed as

an energy filter. On the timescale of nuclear motion, a nanosecond pulse

is almost infinitely long. Its action is hence a δ-function energy filter, and

instantaneous excitation corresponds to the assignment of a single energy to

the wave packet created in the excited state.

The initial state is given by

Ψj
g(Z; t = 0) = 0 , Ψj

e(Z; t = 0) = Φ0(Z) ∀ j = 1, . . . , N , (6.24)

where Φ0(Z) is the vibrational ground state of the electronic ground state. If

a finite temperature, T > 0, shall be considered, a Boltzmann average over

the vibrational eigenstates {Φn(Z)} needs to be performed. The influence

of temperature has been investigated for the system NO/Cr2O3 [114] and is

not of concern here.

The initial state Eq. (6.24) is propagated on the electronically excited

state potential until the condition ε < δp is fulfilled. Since only one deexci-

tation channel is modeled, the wave packet as a whole is taken to the ground

state. The equilibrium distance of the excited state potential is smaller than

that of the ground state potential. The wave packet is therefore accelerated

toward smaller distances and, after the jump has occurred, finds itself in

the repulsive part of the ground state potential (cf. Antoniewicz scenario,
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Section 5.1). Parts of the wave packet will thus gain enough kinetic en-

ergy to leave the ground state potential well and desorb (Fig. 6.6). How

much momentum is gained and how much of the wave packet can reach

the asymptotic region depends on the time spent in the excited state (resi-

dence time, Fig. 6.6) and on average on the lifetime 1/Γge (resonance time,

Fig. 6.7). The wave packet is propagated on the electronic ground state until

the trapped and the desorbing parts are well separated and the observables

in the asymptotic region are converged. The grid change method described

in Appendix A.6 is employed.
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Figure 6.6: Different jump times lead to different velocity distributions, but
the stochastic average results in a broad peak. The expectation value of co-
ordinate of the excited state wave packet is plotted on the left, with the jump
times and the average lifetime indicated by arrows. The velocity distribu-
tions for single sample trajectories (scaled for comparison) and the averaged
velocity distribution are shown on the right.

This procedure is repeated for many realizations of Ψj(Z; t). Fig. 6.8

shows the convergence of the method with an increasing number of such quan-

tum trajectories. The excited state population decays exponentially with

lifetime τ = 1/Γge as expected from the phenomenological model, Eq. (6.20).

About N = 1000 trajectories are necessary to converge the population in
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Figure 6.7: The influence of the lifetime τ = 1/Γge on the desorption proba-
bility (right) and the velocity distribution (left). Longer lifetimes bring about
a larger gain in momentum and hence a larger desorption probability.
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Figure 6.8: Convergence of the MCWF method for the excited state popula-
tion (left) and the desorption probability (right), N is the number of quantum
trajectories (τ = 1/Γge = 25 fs).
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the asymptotic region which can be interpreted as the desorption probability

in the case of instantaneous excitation [127]. This is a much higher num-

ber than needed with Gadzuk’s wave packet jumping method [87, 88] which

in the case of the NO/NiO(100) system requires about N = 200 trajecto-

ries to obtain converged observables [3, 105]. The reason for this inefficiency

has been explained by Saalfrank [123] and Guo [125]: Since the population

decays exponentially, the MCWF method favors jumps at short residence

times. The trajectories which are important for desorption, however, are the

ones with a long residence time in the excited state, i.e. the ones which the

MCWF method is biased against. This also explains why the excited state

population converges much faster with the number of trajectories than the

desorption probability (Fig. 6.8). Gadzuk’s method can be understood as an

improved sampling scheme where all residence times are equally probable and

associated with a statistical weight. A drawback of Gadzuk’s method is that

it cannot be applied if the Hamiltonian becomes explicitly time-dependent

since it requires a well-defined excitation time from which to count the resi-

dence times.

If the excitation by the laser pulse is treated explicitly, the initial state is

taken to be

Ψj
g(Z; t = 0) = Φ0(Z) , Ψj

e(Z; t = 0) = 0 ∀ j = 1, . . . , N , (6.25)

i.e. all the population is in the electronic ground state, and temperature

effects requiring higher vibrational states Φn(Z) are neglected. The laser

pulse excites part of the wave packet into the electronically excited state.

Therefore the wave packet needs to be propagated on both electronic ground

and excited state simultaneously. If the condition ε < δp is fulfilled, the

population from the electronically excited state is transferred to the elec-

tronic ground state. The field of the pulse is considered non-zero for times

tmax − 3τp ≤ t ≤ tmax + 3τp. If the jump occurs before tmax + 3τp the wave

packet may be excited again. For lifetimes of the electronic state smaller

than pulse duration, several jumps will occur for one quantum trajectory,

and quantum interference patterns may be expected. However, no such in-

terference patterns are visible in the averaged velocity distributions of des-

orbed molecules, independent of pulse duration (cf. Fig. 6.9, bottom panel).

Fig. 6.9, top shows the population of the excited state (left) and the des-
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Figure 6.9: Dependence on the pulse FWHM of excited state population (top
left), desorption probability (top right) and velocity distribution of desorbed
molecules (bottom). The excited state lifetime is assumed to be 1/Γge =
25 fs, i.e. the FWHM is varied between one and ten times the lifetime.
No interference patterns are visible in the averaged velocity distributions
(bottom), despite possible multiple quantum jumps.

orption probability (right) as a function of time. The desorption probability

is obtained by weighting the population in the asymptotic region (cf. Ap-

pendix A.6) by the excitation probability. For pulse durations comparable

to the excited state lifetime, the desorption probability does not depend on

pulse duration (black, red and green curves in Fig. 6.9, top right). If the

pulse duration is an order of magnitude larger than the excited state lifetime

(blue curve), the desorption probability is increased. For such a long pulse,

the wave packet is excited many times and hence the overall time spent in

the excited state becomes longer. Thus, the gain in kinetic energy and hence

the desorption probability are increased.

When the wave packet can be excited by the pulse several times, it will

stay on the excited state for different residence times. When transferred to

the electronic ground state it will gain different momenta. In coordinate

space different distances Z are reached before jumping to the ground state,
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as compared in Fig. 6.6. These different pathways should lead to an inter-

ference pattern also known as Stückelberg oscillations. Interference for one

quantum trajectory within a stochastic average is slightly different from the

interference discussed in the previous section, where one wave packet was

propagated coherently and interference resulted from different partial wave

packets. Fig. 6.10 (a) shows that interferences in fact occur for single quan-

tum trajectories. However, no interferences show up in the averaged velocity

distribution, i.e. in the observable. This can be understood by a closer in-

spection of jump times and hence time intervals spent in the excited state,

see Fig. 6.10 (d). Three requirements must be met for an interference pattern

to occur:

(1) The interval between jumps must be sufficiently large. Otherwise, the

wave packet will not gain enough momentum to desorb and it will stay

trapped on the surface. All single trajectories plotted in Fig. 6.10 meet

this requirement.

(2) The length of intervals between jumps must be comparable. This re-

quirement is only met by the trajectories plotted in green and red. For

the blue and black trajectories only one interval contributes to desorp-

tion.

(3) At least two intervals need to start at times after which the pulse is still

”on”, otherwise no population will be reexcited. In Fig. 6.10, this is only

fulfilled for the red trajectory.

(2) and (3) are necessary to have at least two intervals contribute to desorp-

tion. The fulfillment of all requirements is a comparatively rare event and

the stochastic average does therefore not show Stückelberg oscillations.

One might expect that it is more likely for interferences to occur if the

pulse duration is increased. However, for a fixed excited state lifetime of

about 25 fs many more jumps occur, which leaves the probability of having

two or more ”in the right size, at the right time” more or less constant.

Obviously, the dynamics are governed by an interplay of the timescales of

pulse, nuclear motion on the excited state (guaranteeing the momentum gain)

and electronic quenching. The picture might therefore change if together with

pulse duration the excited state lifetime is increased. However, the choice

of a lifetime of about 25 fs is motivated by the physical properties of the
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Figure 6.10: (a) Single quantum trajectories show interference patterns in
the final velocity distribution, the trajectory index is listed in the legend.
(b) After performing the stochastic average over all quantum trajectories, no
interferences are visible since only a few single trajectories show interferences.
(c) The excited state population is plotted vs. time, the pulse shape is
indicated. (d) The jump times for trajectories plotted in (a) are given with
colors corresponding to (a), the arrows show the time intervals between jumps
relevant for desorption. Only specific combinations of jump times lead to
interferences (see text), the probability of these combinations is too small to
make a contribution in the stochastic average.
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system [89], an increase of the lifetime was therefore not considered.

In summary, the desorption yield depends on pulse duration only if the

FWHM of the pulse is significantly larger than the excited state lifetime. The

mean velocity of the desorbing molecules is slightly increased with increasing

pulse duration due to a longer time spent in the excited state. The quali-

tative shape of velocity distributions remains unchanged for different pulse

durations, despite single trajectories exhibiting Stückelberg oscillations. A

one-dimensional Monte Carlo wave function approach is therefore not capable

of capturing the experimentally observed bimodality of final state velocity

distributions independent on whether the excitation by the laser pulse is

treated implicitly or explicitly. Bimodality of final state velocity distribu-

tions has been observed in a two-dimensional stochastic treatment of the

NO/NiO(100) system [105,3]. However, the authors of [105,3] explained the

bimodality in terms of the topology the excited state potential surface, and

not in terms of different pathways. The next chapter will investigate the

NO/NiO(100) system within a Surrogate Hamiltonian approach. A further

discussion and a comparison of the methods will be given in Section 7.4.



Chapter 7

NO/NiO(100): A Surrogate

Hamiltonian treatment

7.1 A microscopic model for bath and inter-

action

The NO/NiO(100)-system is partitioned into

a primary system which is given by the NO-mole-

cule adsorbed onto a finite NiO8−
5 -cluster and an

environment which describes the influence of the

infinite surface on the primary system (cf. Sec-

tion 6.1). The NiO(100) surface is a complex

entity characterized by its electronic structure,

phonon spectrum, defects etc. For the ultrafast

dynamics of laser induced desorption, O2p→Ni3d

charge transfer states, i.e. electron-hole pairs play

a crucial role. Hence, these are included in the

Ni

Ni
NiNi

Ni

O

O

NO

O
O

O

Figure 7.1: Sketch of
the partitioning of sys-
tem and bath

description while everything else such as phonons or other electronic excita-

tions are neglected (see also the discussion in Section 6.1).

The electron-hole pairs are described as a TLS bath,

ĤB = ε
∑

i

σ̂+
i σ̂i +

η

log(N)

∑
ij(NN)

(
σ̂+

i σ̂j + σ̂+
j σ̂i

)
, (7.1)

where (NN) stands for nearest neighbor, and σ̂+
i , σ̂i are the creation and

97
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annihilation operators for the ith TLS, respectively, as introduced in Chap-

ter 3. Eq. (7.1) implies that one electron-hole pair located at site i is modeled

by the ith TLS. The sites are Ni-O pairs in the lattice between which charge

transfer can occur. The first term in Eq. (7.1) describes the excitation of

localized TLS at the sites i. This is motivated by the Ni3d states being in

general localized [128]. Delocalization is brought about by the O2p states

and introduced into the model by the second term in Eq. (7.1). This term

describes the transport of excitation from one electron-hole pair to its near-

est neighbors. The bath is characterized by two parameters, ε and η. All

electron-hole pairs are assumed to have identical excitation energy ε. In a

molecular orbital (MO) picture this is the transition energy from the high-

est occupied molecular orbital (HOMO) to the lowest unoccupied molecular

orbital (LUMO). η is the interaction strength between nearest neighbor TLS

and leads to a finite width of excitation energy, i.e. an energy band of the

bath: If the bath Hamiltonian, Eq. (7.1), is diagonalized, and N is the num-

ber of modes, N energies around ε corresponding to single excitations, N

energies around 2ε corresponding to double excitations, etc. are obtained.

The spread of these eigenvalues around ε is determined by η. The scaling

1/ log(N) of the second term in Eq. (7.1) needs to be introduced to make

the procedure convergent, i.e. to have the spread of energies around ε inde-

pendent of the number of bath modes N . The 1/ log(N) factor results from

the topology of the problem, i.e. from the mapping of two dimensions of the

bath onto one (cf. Appendix F), the interaction itself does not scale with

N since the bath modes are localized [19]. To summarize, the parameter ε

can be viewed as the center of the bath energy band while η determines its

width.

Eq. (7.1) represents an abstraction from the complicated electronic struc-

ture of actual O2p→Ni3d charge transfer states in the surface. Therefore,

it should be possible to estimate reasonable values of ε and η from either

electron spectroscopy or electronic structure theory. It is known from ex-

periment [129, 130] as well as configuration interaction (CI) [131, 113] and

GW calculations [132] that the band gap of NiO is about 4 eV with some

surface states corresponding to d→d excitations of nickel at lower energies.

The width of the energy band of single electronic excitations is about 10
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eV [131]. However, laser energies between 3.2 and 6.4 eV [104, 110] do not

probe the whole energy band. If ε and η are chosen in direct correspondence

to the EELS (Electron Energy Loss Spectroscopy) data and CI calculations,

all modes with energies higher than the laser energy are not needed, i.e. they

are wasted. The parameters ε and η are therefore not only related to physical

properties of the system, but also to convergence properties of the method,

and a smart choice will put as many modes as possible into the physically

relevant range, i.e. the energy range set by the laser energy. A thorough

discussion of the role of ε and η will be given in Section 7.2.3.

The interaction of the electron-hole pairs with the NO− like intermedi-

ate leads to quenching of electronic excitation of the primary system. The

electron-hole pairs can be viewed as dipoles, and the laser excitation creates

a non-zero transition dipole in the system (cf. Fig. 7.1). The interaction is

therefore modeled as dipole-dipole interaction known from classical electro-

dynamics. This assumes that the electric field can be described classically

and that the system dipole is in the far field of the bath dipoles. However,

compared to the simplification of the O2p→Ni3d charge transfer states to

TLS, these additional approximations are expected to be negligible. The V̂i

in the interaction Hamiltonian,

ĤSB =

(
0 1

1 0

)
⊗
∑

i

V̂i(σ̂
+
i + σ̂i) , (7.2)

are then given by the scalar product of the system’s transition dipole, ~̂µS,

and the electric field of the bath dipoles, ~Ei:

V̂i = ~̂µS · ~Ei =
~̂µS · ~̂µi

|̂~ri|3
− 3

(~̂µS ·~̂ri)(~̂µi ·~̂ri)

|̂~ri|5
. (7.3)

|̂~ri| is the distance of the ith bath dipole from the system dipole, an illus-

tration is given in Fig. 7.2. Note that the V̂i are operators in the Hilbert

space of the system. Taking into account the expectation value of the tran-

sition dipole instead of the operator ~̂µS in Eq. (7.3) corresponds to a time-

dependent self-consistent field (TD-SCF) approach [29, 96] and introduces

the fast time dependence of the transition dipole into the Hamiltonian. Since

evaluation of the operator expressions poses no difficulty when using the grid

representation (cf. Appendix A.1), Eq. (7.3) was implemented as is, using
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the operators and not expectation values. The bath dipoles are assumed to

be located at the center of charge in between a nickel and an oxygen atom

and the system dipole to be located in between the nickel atom and the NO

molecule. Evaluating the scalar products then leads to

Vi(Ẑ) = ± qa0µtr(Ẑ)((
1
2
(Ẑ + a0) +ma0

)2

+ n2a2
0

)3/2

∓3
qa0µtr(Ẑ)Ẑ

2((
1
2
(Ẑ + a0) +ma0

)2

+ n2a2
0

)5/2
, (7.4)

where a0 is the distance between the Ni and O atoms, i.e. half the lattice

constant, and n,m ∈ N, with n labeling the sites within the surface and m

labeling the layers (see Section 7.2.4 and Appendix F). If a one-dimensional

primary system is considered, i.e. the tilt angle of NO versus the surface nor-

mal is neglected, only bath dipoles parallel to the surface normal contribute

to the interaction. The only unknown parameter in Eq. (7.4) and therefore

in the interaction Hamiltonian ĤSB is the dipole charge q characterizing the

completeness of charge transfer between a nickel and an oxygen atom. The

role of q will be discussed in Section 7.3.1.
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Figure 7.2: Sketch of the geometry
of system and bath in a 1D model

The initial state is taken to be the

vibrational ground state of the elec-

tronic ground state potential, analo-

gously to the Monte Carlo wave func-

tion study, cf. Eq. (6.25). This cor-

responds to a factorizing initial state

at zero temperature in density matrix

formalism, i.e. no initial correlations

between system and bath are consid-

ered. Due to the large band gap of

about 4 eV in NiO, no electron-hole

pairs are thermally excited at time t =

0, hence it is justified to neglect initial

correlations between system and bath.

A direct optical excitation of the NO/NiO8−
5 cluster is assumed, a detailed
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discussion of the excitation mechanism was given in Section 6.1. An indirect

excitation mechanism can in principle also be treated within the framework of

the Surrogate Hamiltonian. This would be modeled by a term ĤBF (t) which

had been introduced for completeness in Eq. (3.1) and Eq. (6.1), respectively,

and which describes the excitation of TLS by the laser pulse,

ĤBF (t) = E(t)
∑

i

µi(σ̂
+
i + σ̂i) . (7.5)

Indirect excitation of the adsorbate has so far been treated semi-phenome-

nologically by the two-temperature model neglecting for example the non-

thermal nature of excited electrons [94, 95]. Another approach took into

account the nonlinear optical response of the substrate treating, however, the

interaction between substrate and adsorbate in a TD-SCF framework [96,97].

In contrast to these approaches a Surrogate Hamiltonian treatment allows for

a microscopic description of the interaction between laser pulse and surface

electrons. It is, however, not clear whether a comparatively small number of

bath modes would be sufficient to model excitation and deexcitation of the

system due to the bath, i.e. whether such an approach would be numerically

feasible. The problem of obtaining convergence might become less severe

with a parallelization of the computer program. This would allow for a

comparison between direct and indirect excitation mechanisms in the case

for NO/NiO(100) and for a comparison between a microscopic description

and the two-temperature model for hot electrons in metals.

If a direct excitation mechanism is assumed, the laser pulse transfers pop-

ulation from the electronic ground to the electronically excited state around

the Franck-Condon point. As described in Chapter 6 the wave packet starts

to travel toward smaller distances Z. However, no discrete jumps occur, but

population is continuously transferred to the electronic ground state due to

the interaction with the bath. In other words, if the energy of a bath mode

matches the potential difference ∆V (Z), it can accept this energy and in-

duce an electronic transition in the system. In principle, while both electronic

quenching and electronic excitation of the system are possible, the latter is

much less probable. This becomes obvious when using the rotating wave

approximation (RWA) and moving to the rotating frame (cf. Appendix D,

in particular Eq. (D.9)). Then the bath creation operators couple only to
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the electronic annihilator of the system, and the bath annihilators couple

only to the electronic creation operator of the system. Electronic excita-

tion of the system can therefore only occur after electronic quenching with

the associated creation of bath excitations. The validity of the RWA has

been thoroughly checked. The population which has been transferred to the

electronic ground state will either be trapped in the potential well though

vibrationally excited, or it has gained enough kinetic energy to leave the po-

tential well of the ground state and it will thus desorb. Due to the neglection

of vibrational relaxation, the ground state dynamics are analogous to the

ground state dynamics described in Section 6.3.2.

Since the Surrogate Hamiltonian is an approximation to the ”true” Hamil-

tonian for system and bath with infinitely many modes, the convergence of

observables with respect to the number of bath modes needs to be checked.

This is described in Section 7.2, in particular the role of the bath parameters

for convergence is discussed. The system dynamics and hence observables

depend furthermore on parameters with a direct equivalent in experiment

such as fluence and duration of the laser pulse. Corresponding results will be

presented in Section 7.3. Section 7.4 concludes this chapter with a compar-

ison of the Surrogate Hamiltonian treatment of NO/NiO(100) to the Monte

Carlo wave function approach of the previous chapter.

7.2 How to obtain convergence

7.2.1 Switching off the bath

The convergence of the Surrogate Hamiltonian with respect to the propaga-

tion time is limited due to recurrences in the bath: Since the bath Hamilto-

nian is finite, energy transferred from the system to the bath will eventually

be reflected and transferred back to the system. At this point which shall be

called tS, the simulation should be stopped and the number of bath modes

needs to be increased. In the bit representation (Appendix E), tS can be

determined by monitoring the population of the zeroth mode. The zeroth

mode corresponds to all electron-hole pairs or TLS being deexcited. There-

fore, if the transfer of energy from the primary system to the TLS shall be

modeled, the population of the zeroth mode should always decrease.



7.2 How to obtain convergence 103

Within the convergence time of the Surrogate Hamiltonian it is not possi-

ble to obtain converged expectation values in the asymptotic region (Vg(Z) ≈
0) which can be compared to observables of laser induced desorption experi-

ments. However, the Surrogate Hamiltonian is needed only to describe elec-

tronic quenching, i.e. to describe the population transfer from the excited

state to the electronic ground state due to the interaction with the bath. It is

not necessary to describe the nuclear motion on the electronic ground state

leading to a separation of the wave packet into a trapped and a desorbing

part: If the decay of the electronic excitation is fast, the quenching happens

on a much shorter timescale (fs) than the nuclear motion in the ground state

(ps), and the two phenomena can be separated.

After the interaction has been switched off at time tS either due to com-

plete deexcitation or due to recurrences, one option consists in propagating

the 2N ground state wave packets until the observables in the asymptotic re-

gion are converged. However, a more efficient strategy can be used if the wave

packet is still comparatively localized. One can construct the ground state

density matrix ρ̂S of the system by tracing over the bath (cf. Section 3.1).

Since no further dissipative processes are included in the description, the

time evolution of this reduced density matrix is unitary. Therefore, if ρ̂S is

diagonalized,

ρS(Z,Z ′; t) = Û
+
P̂ Û =

∑
k

pk|ψk(Z; t)〉〈ψk(Z
′; t)| , (7.6)

no further mixing of the wave functions |ψk(Z)〉 will occur during time propa-

gation. The wave packet created by electronic quenching and nuclear dynam-

ics is a mixed state, therefore more than one eigenvalue pk will be non-zero.

However, if indeed the wave packet is still localized the number of pk which

contribute significantly in the sum in Eq. (7.6) is small (usually between 15

and 20 in the examples presented below). It is then advantageous to prop-

agate the |ψk(Z)〉 instead of the spinor components (cf. Appendix E) and

construct expectation values as

A(t) =
∑

k

pk〈ψk(t)|Â|ψk(t)〉 . (7.7)

Since the computer program implementing the Surrogate Hamiltonian is

based on wave packet propagation, all that needs to be added is the di-
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agonalization of the density matrix. The computational savings depend on

the number of modes N , and they can reach several orders of magnitude for

large N .

7.2.2 Increasing the number of modes and restricting

simultaneously allowed excitations

The time interval for which propagation with the Surrogate Hamiltonian

gives converged results depends on the number of bath modes N (cf. Chap-

ter 3). This interval can be prolonged by increasing the number of bath

modes. On the other hand, the convergence of observables with respect to

N can be checked. Fig. 7.3 shows the population (left) , coordinate (top

right) and momentum (bottom right) expectation values on the electroni-

cally excited state for N = 35, 45, 55. Exponential decay of population can

be observed after excitation by the laser pulse (left), while the wave packet

is accelerated toward the surface (top right), i.e. the dynamics is similar to

those presented in Chapter 6. The observables can be considered converged

up to about 27 fs for N = 35, 40 fs for N = 45, and 60 fs for N = 55. The

convergence time tc is a bit smaller than the total length tS of the curves in

Fig. 7.3 since the interaction with the bath is switched off when recurrences

reach the zeroth spinor component. By this time the energy reflected at the

boundary of the finite system has already passed through the bath modes.

Since the convergence time is comparatively short, pulses shorter than those

in experiment (τFWHM ≈ 100 fs [104,110]) have been used in the simulations

studying the convergence properties of the method. The longest pulses for

which convergence could be obtained were between 25 fs and 50 fs long. The

exponential decay of excited state population within the convergence interval

can be fitted to obtain decay rates or lifetimes. Decay rates vs. the number

of bath modes are plotted in Fig. 7.4, top panel, while the quality of expo-

nential fit characterized by the correlation coefficient is shown in the bottom

panel. Two different values of dipole strength q characterizing the strength of

interaction between system and bath (cf. Section 7.3.1) have been used. The

decay rates (lifetimes) saturate at about 0.04 fs−1 (25 fs) for q = 0.10 and

0.075 fs−1 (13 fs) for q = 0.14. The correlation coefficient fluctuates between

0.9980 and 0.9995 showing a good agreement between data and exponential
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Figure 7.3: The excited state population vs. time is shown on the left,
on a linear (top) and logarithmic scale (bottom). The expectation value of
distance (top) and momentum (bottom) of the wave packet on the excited
state vs. time are shown on the right. Increasing the number of modes
N prolongs the convergence time. The number of simultaneously allowed
excitations can be restricted to 1 since the solid and dotted curves (black
and blue) are identical. The parameters are ε = 4.0 eV, η = 2.0 eV, q = 0.1,
ωL = 3.7 eV.

fit.

7.2.3 Role of bath parameters

The TLS bath describes electron-hole pairs in the surface which cause the

quenching of electronic excitation (cf. Section 7.1). It is characterized by the

two parameters ε and η in Eq. (7.1), the TLS energy and the nearest neighbor

interaction strength. These parameters are related to the center and width of

the energy ”band” of the bath. Fig. 7.5 shows the range of bath eigenenergies

for different values of these parameters on the right. Only single excitations

are considered, i.e. the number of simultaneously allowed excitations of the

bath is restricted to one. The left of Fig. 7.5 displays the excited state

potential and the difference potential, ∆V (Z) = Ve(Z)−Vg(Z). The Franck-

Condon point indicated in the Figure determines the classical turning points
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Figure 7.4: The excited state decay rate obtained from exponential fit (top)
and the correlation coefficient of exponential fit (bottom) are plotted vs. the
number of bath modes N. The decay rate reaches saturation when increasing
N, while the correlation fluctuates in a range close to one.

for the wave packet motion on the excited state (blue arrow). The values of

the difference potential ∆V in between the classical turning points specify the

range of bath energies relevant for quenching (fat red arrow), i.e. bath modes

with energies within this range can accept energy from or give energy to the

system causing a transition between electronic ground and excited state. The

bath parameters are therefore chosen to obtain the best possible convergence

of observables with respect to the number of modes, i.e. many electron-hole

pair with energies much higher than the laser energy exist [130,131] but they

are not needed.

Fig. 7.6 shows the influence of the TLS energy ε on the excited state

dynamics. If ε is considerably larger than the laser energy, the range of

bath eigenenergies does not match the values of the difference potential be-

tween the classical turning points, the TLS cannot accept energy from the

system, and hence no decay of excited state population is observed (red

curve in Fig. 7.6). For ε considerably smaller than the laser energy, there

are no matching bath modes close to the Franck-Condon point. However,
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Figure 7.5: The range of bath eigenenergies needs to match the difference
potential ∆V for quenching to be efficient (left). It is determined by the bath
parameters ε and η (right). The difference potential is fixed by assuming
resonant excitation at the Franck-Condon point with a laser energy of 3.7
eV.

as the wave packet travels toward smaller distances, the value of the differ-

ence potential is decreased (cf. Fig. 7.5), bath energies in the right range

are found, and decay of excited state population may be observed with some

delay (black curve in Fig. 7.6). For intermediate values of ε, the excited state

population decays exponentially. To illustrate this, the excited state popula-

tion is plotted twice – on a linear scale (top panel) and on a logarithmic scale

(bottom panel). Exponential decay corresponds to a constant relaxation rate

and allows for a comparison of the Surrogate Hamiltonian method with the

Monte Carlo wave function approach of Chapter 6. The specific value of

ε determines convergence as can be seen from comparison of the solid and

dotted lines (101 and 91 bath modes, respectively) and from Table 7.1. An

optimal choice places ε close to the laser energy. This is reasonable also from

a physical point of view. Since the laser pulse induces an electronic transition

in the nickel oxide surface, its energy needs to be equal to or larger than the
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Figure 7.6: Dependence of excited state population vs. time on the TLS
energy ε: If ε and therefore the center of the bath energy band is close
to the system resonance fixed by the laser energy ωL (the blue, green and
yellow curves) the decay of excited state population is exponential, and the
choice of ε determines convergence. If the bath energies are larger than the
system resonance (red curve), the system cannot give energy to the bath and
no decay is observed. For bath energies smaller than the system resonance
(black curve), the wave packet needs to travel to a region where the bath
energies match the potential difference before decay can occur (see text for
further explanation). N indicates the number of bath modes.

ε decay rate [1/fs] decay rate [1/fs] correlation of fit correlation of fit
(N = 101) (N = 91) (N = 101) (N = 91)

3.5 0.050 0.046 0.988 0.991
3.7 0.096 0.095 0.997 0.998
4.0 0.011 0.010 0.977 0.967

Table 7.1: The quality of exponential fit for the decaying part of the ex-
cited state population with TLS energy ε varied is given by the correlation
coefficient. The best fit is obtained for ε = ωL = 3.7 eV. In this case, the
quenching is also most efficient (largest decay rate).
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band gap to which ε is related.

The dependence of excited state population on the nearest neighbor inter-

action strength η of the TLS is shown in Fig. 7.7. Since the dipole-dipole in-
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Figure 7.7: Dependence of excited state population vs. time on nearest neigh-
bor interaction strength η: For small η (black and yellow curves) there is no
transport of relaxed population out of the interaction region, the convergence
time is very short and cannot be improved by increasing the number of modes
N . Increasing η (blue curve) leads to transport, however on a timescale larger
than the interaction with the system. For η ≥ 0.7 eV, the transport is effi-
cient, and exponential decay of excited state population is observed (curves
on the right). Large η causes less quenching of excitation during the interac-
tion of the system with the pulse, and hence a larger maximum population
of the excited state.

teraction exhibits a 1/Z3 dependence, the system interacts only with electron-

hole pairs which are very close to the NO molecule, and the nearest neighbor

interaction between electron-hole pairs is needed to transport the excitation

away from this interaction region. If η is very small (black and yellow curves

in Fig. 7.7), the excitation cannot be given to TLS outside the interaction

region, and the convergence time is determined by saturation of the few TLS

close to the primary system. Increasing the number of modes thus cannot
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prolong the convergence time: The dotted and solid curves differ only in the

fifth digit, and decay rates from an exponential fit differ in the sixth digit

for N = 101 and N = 91. When η is increased, transport sets in leading to

a longer convergence time, slower decay, and dependence on the number of

modes (the decay rates differ now in the second or third digit for N = 101

and N = 91). Furthermore, the quenching of excitation during interaction

of the system with the pulse is less efficient, hence the maximum population

of the excited state is increased for larger η (cf. Fig. 7.7, right). The excited

state population decays exponentially – independent of the value of η with

the exception of η = 0.5 eV. The decay rates obtained from an exponential fit

of the excited state population vs. time (Fig. 7.7) are plotted vs. the number

of modes in the upper panel of Fig. 7.8, while the lower panel shows the good-

ness of the exponential fit characterized by the correlation coefficient. The

decay rate is decreased for increasing nearest neighbor interaction. This can

be understood from both an energy and a coordinate representation point of

view. In energy representation, η increases the spread of bath energies which

will eventually become larger than the range required for quenching and de-

termined by the difference potential V (Z) (cf. Fig. 7.5). Thus bath energies

will be moved outside of this range and the corresponding bath modes are

wasted. The quenching is then less efficient, and the decay becomes slower.

In coordinate representation, η determines how quickly relaxed population

is transported away from the primary system, but also from TLS close to

the primary system. The interaction energy, i.e. the expectation value of

the interaction Hamiltonian, Eq. (7.2), depends on the population of the

primary system and of the bath modes close to it. If population is removed

from these bath modes, the interaction energy is decreased and the decay be-

comes slower. In other words, the more electron-hole pairs are excited close

to the NO molecule, the faster is the decay. The same argument explains the

increase of the maximum excited state population, i.e. decrease of quench-

ing during the interaction with the laser pulse. Since the timescale of this

interaction is shorter than that of relaxation (the laser FWHM was chosen

as 5 fs), the effect becomes visible only for large η (cf. Fig. 7.7, right). The

correlation coefficients of the exponential fit lie within the interval [0.99,1.0]

with the exception of η = 0.5 eV (Fig. 7.8, bottom). If the data for η = 0.5 eV
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from an exponential fit of the data shown in Fig. 7.7 are plotted vs. nearest
neighbor interaction strength η (upper panel). It decreases for larger values
of η. The goodness of exponential fit is more or less independent of η (lower
panel). Two values for the decay rate and the correlation coefficient are
plotted for η = 0.5 eV, once the data of the whole range shown in Fig. 7.7
and once only values of excited state population up to 25 fs were used in
fitting.

is fitted only up to 25 fs, its correlation coefficient also lies within [0.99,1.0].

A similar behavior is found for η = 0.6 eV, while the data for η = 0.4 eV

is similar to the one with η = 0.3 eV. Thus, variation of η does not change

the decay of excited state population qualitatively. This is different from the

role of the TLS energy ε (cf. Fig. 7.6). However, since ε shifts the position

of bath eigenenergies while η changes only their width (cf. Fig. 7.5), this is

not surprising.

The considerations have so far been only numerical and suggest an op-

timal choice of about 0.7 eV to 1.0 eV for η. However, an upper limit to

the nearest neighbor interaction strength is also set by the physics of the

NO/NiO(100) system: The lowest states are surface states in the optical
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Figure 7.9: The spectral range depends on the bath parameters ε and η
and the number of bath modes N . Due to linear dependence it can be
extrapolated for increasing N .

band gap at about 2.7 eV [129]. However, these are not charge transfer

states, but Ni d→d excitations. The charge transfer states lie energetically

above the band gap. Therefore no bath modes with energies much below 3.5

eV shall be considered. Of course, if the TLS energy ε is shifted, η needs to

be adjusted to result in a reasonable smallest bath eigenenergy. Accordingly,

the optimal choice of bath parameters leading to best possible convergence

of expectation values w.r.t. the number of bath modes is a combination of

TLS energy ε and nearest neighbor interaction strength η. In the following,

ε = 3.7 eV and η = 0.7 eV were used.

The bath parameters influence also the spectral range ∆E of the total

system and bath (cf. Fig. 7.9) which is calculated according to Appendix A.5.

The spectral range, i.e. the difference between minimal and maximal energy

of the problem in the chosen representation, is not an observable, but a

quantity crucial for numerical stability of the propagation (Appendix A.2).
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When using the RWA, the spectral range depends not only on the parameters

of the model, but also on the number of bath modes (Appendix D). A

linear dependence of the spectral range on the number of bath modes can be

observed in Fig. 7.9. Therefore, ∆E can be extrapolated and does not need

to be calculated every time the number of modes is increased or the bath

parameters are changed.

7.2.4 Convergence of asymptotic observables

So far it has been shown that converged observables related to the excited

state dynamics can be obtained, and it has been investigated how the con-

vergence of these observables with respect to the number of bath modes is

influenced by the bath parameters. While the excited state dynamics are

crucial for the outcome of a laser desorption experiment, they are not di-

rectly accessible in a single pulse experiment. What is measured in such an

experiment [107,110] are the desorption yield and the state resolved velocity

of desorbing molecules. In the language of the theoretical model, these are

observables related to operators in the asymptotic region (cf. Appendix A.6).

In particular, the desorption probability is obtained by weighting the norm

in the asymptotic region of the ground state potential by the excitation prob-

ability.

Due to the Antoniewicz-like mechanism of desorption, the asymptotic ob-

servables are detemined by partial wave packets which stay on the excited

state for a comparatively long time. In this case, the partial wave packets

end up high on the repulsive part of the ground state potential after the

electronic quenching. They can then gain enough kinetic energy to leave the

potential well and reach the asymptotic region. The convergence of the Sur-

rogate Hamiltonian with respect to the number of modes is limited in time.

It is therefore comparatively easy to obtain converged excited state dynam-

ics, while it turned out to be more difficult to obtain converged asymptotic

observables. A similar problem has been encountered within the MCWF

approach (cf. Section 6.3.2). The technical reasons are, however, quite dif-

ferent for the two approaches: It is the finite size of the bath for the Surrogate

Hamiltonian and the stochastic sampling for the MCWF method.

Two strategies can be employed to reach convergence of the asymptotic
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observables. Either the number of bath modes, N , or the number of layers

in the surface, NL (cf. Appendix F), can be increased. A combination of

the two strategies, although possible in principle, is limited by the computer

resources. An increase in the number of bath modes, N , enlarges the size

of the bath horizontally, and more layers in the surface allow for vertical

transport, i.e. transport into the surface. While both processes are equally

likely for nickel oxide, they are not treated on the same footing in the model.

This is discussed in more detail in Appendix F.

The goal to be reached is the prolongation of the convergence time of

the Surrogate Hamiltonian. Considering several surface layers indeed leads

to a longer convergence time (cf. Fig. 7.10). The treatment of more than

one layer of dipoles introduces a new parameter into the model, the coupling

between layers, ηL. Its influence on the excited state dynamics is shown in

Fig. 7.11. A small value of the interlayer coupling (the blue as compared to

the black curves in Fig. 7.11) does not change the lifetime of the excited state.

Increasing the value of ηL leads to slower decay of the electronic excitation

(red and green curves in Fig. 7.11). This can be understood by an argument



7.2 How to obtain convergence 115

0.00

0.05

0.10

N = 91

η
L
 = 0

η
L
 = 0.05 eV

η
L
 = 0.20 eV

η
L
 = 0.30 eV

N = 111

0 10 20 30 40 50 60 70
time [fs]

0.001

0.01

0.1

E
xc

ite
d 

st
at

e 
po

pu
la

tio
n

0 10 20 30 40 50 60 70 80

τ = 8.5 fs
τ = 14.9 fs
τ = 19.4 fs

Figure 7.11: Increasing the interlayer coupling leads to a slower decay due
to faster transport of relaxed population away from the interaction region
(parameters as in Fig. 7.10, but NL = 5).

similar to the one explaining the dependence of the lifetime on the nearest

neighbor interaction η. The strength of the system-bath interaction depends

on the excited state population of the system and on the population of bath

modes close to the system. An increase of ηL results in quicker transport of

excitation from bath modes close to the system to bath modes further away.

Thus the system-bath interaction becomes weaker and the lifetime longer.

As a consequence of the slower decay, increasing the interlayer coupling ηL

also leads to a larger desorption probability (cf. Fig. 7.12). While the nearest

neighbor interaction η, i.e. the intralayer coupling, has been directly related

to the electronic structure of the system, such a connection has so far not

been given for the interlayer coupling, ηL. However, since in the NiO surface

the transport of excitation is equally likely horizontally as well as vertically,

it is reasonable to assume that ηL should be of the same order of magnitude

as η. On the other hand, ηL is related to the convergence properties of the

model. This means that there exists an optimal value for which the largest
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convergence time for a given number of modes and a given number of layers is

obtained. If ηL is small, an increase in the number of layers, i.e. an increase

of the vertical bath size, will not result in a larger convergence time. In this

case, the excitation hits the horizontal boundary of the bath before reaching

the vertical limit. For large values of ηL the opposite is true: The vertical is

reached before the horizontal boundary. The best convergence is achieved,

when both boundaries are arrived at at the same time. The optimal choice

of ηL therefore depends on the number of bath modes and the number of

layers.

For the parameters investigated, up to 21 layers with N ≤ 51 and up

to 13 layers with N ≤ 101 bath modes in each layer were considered. The

maximum convergence time was about 90 fs. This was enough to obtain

converged desorption probabilities and velocities (cf. Fig. 7.12). Desorption

probabilities between 1% and 20% were obtained. This is compatible with
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estimates from experiment [92,87,127]. Furthermore, the velocities are found

to be in the experimentally observed range between 0 and 2000 m/s [103,83].

The population of the excited state was decreased from its maximum

value of about 0.11 to about 0.005 (at best 0.0034 shown in Fig. 7.10). This

means that about 0.5% of the density were neglected when the bath was

switched off. While this number is small in absolute value, it might be a

considerable portion of the desorbing part. The desorption probability is

obtained by weighting the norm in the asymptotic region by the excitation

probability. One may assume that all or a substantial part of the neglected

density desorbes since the coordinate expectation value approaches the value

of the classical turning point. In case of a sudden electronic transition a lot

of kinetic energy would be gained by the wave packet. Weighting the value

of 0.5% with the excitation probability results in a possible increase of the

desorption probability by 5%. While this is on the same order of magnitude

as the desorption probability itself, it is still well within the uncertainty of

the experimental estimation.

The second strategy, which was already discussed in Section 7.2.2, consists

in increasing the number of bath modes, N , within one layer. A peculiarity is

then observed: Above a certain number, N∗, of bath modes a further increase

does not result in a prolongation of the convergence time. This phenomenon

led to a closer examination of the bath. The exact value of N∗ depends on

the parameters, in particular on the dipole strength, q, which determines the

system-bath interaction strength and hence the convergence.

Since every bath mode is connected with a NiO lattice position, an aver-

age distance of the excitation in the bath can be calculated. If this distance in

the bath is plotted vs. time, an increase is observed until the finite boundary

is reached. The reflection at the boundary leads to a subsequent decrease,

i.e. the recurrences can also be detected in this expectation value. Therefore,

an alternative criterion to switch off the bath can be defined using a decrease

in the distance of the bath instead of an increase of the zeroth spinor com-

ponent (cf. Section 7.2.1). For a small number of modes, the convergence

times obtained from the two criteria are more or less equivalent, i.e. the fi-

nite boundary is usually reached at bit before population flows back into the

system. For numbers larger than N∗, however, the finite boundary does not
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seem to be reached when population backflow is observed. A possible inter-

pretation of this phenomenon consists in a polarization of the bath dipoles

which interacts with the system leading to the backflow of population. Both

criteria rely on expectation values, i.e. averages. They can therefore both

only give an estimate of the time at which recurrences occur. In addition to

the bath distance, also its variance has been examined as switch-off criterion,

but no differences could be observed.

A comparison of the two criteria is shown in Fig. 7.13. Due to the struc-

ture of the interaction operator in the RWA (cf. Appendix D, in particular

Eq. (D.9)), the population backflow can be observed directly by an increase

in the excited state population (cf. the upper left panel of Fig. 7.13). In

spite of the backflow of population into the system, Fig. 7.13 shows that the

switch-off criterion employing the distance of the bath is reasonable: The

curves of excited state population overlap for an increasing number of bath

modes for a time considerably longer than the convergence time given by

the population backflow criterion (indicated by the black arrow in Fig. 7.13).

The two switch-off criteria lead to different desorption probabilities (cf. the

lower left panel of Fig. 7.13) owing to the different times the wave packet

spent on the excited state. The different times spent on the excited state

furthermore result in different velocity distributions (cf. the right panel of

Fig. 7.13). In the case of the bath distance switch-off criterion (red curves in

Fig. 7.13), the propagation on the excited state continued sufficiently long to

pass the classical turning point. Therefore an interference can be observed

in the velocity distribution.

The interference results from different pathways of partial wave packets

which have reached the asymptotic region. Interferences in the velocity distri-

bution were also observed for single trajectories in the MCWF approach (cf.

Section 6.3.2). The causes of the different pathways are, however, different.

In the MCWF approach, they result from the wave packet being excited by

the pulse several times. In the case presented in Figs. 7.13 and 7.14, the pulse

is too short for such multiple excitations (τFWHM = 5 fs). The interference is

rather caused by partial wave packets which undergo electronic quenching at

different times. Such a coherent phenomenon cannot be observed with the

stochastic wave function method.
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This point is clarified by Fig. 7.14 which shows the excited state pop-

ulation vs. time and velocity distributions for a different number of bath

modes N . For all three cases in Fig. 7.14, the switch-off criterion employing

the bath distance has been used. For N = 161 bath modes (black curves in

Fig. 7.14), the propagation with both electronic states had to be switched off

before the classical turning point was reached. The corresponding velocity

distribution therefore shows only a single peak. For N = 181 and N = 201

modes, the excited state propagation continued beyond the passage of the

classical turning point. Consequently, the velocity distributions exhibit an

interference pattern. In particular, it can be concluded from Fig. 7.14 that

the interferences in the velocity distributions appear independent from the

population backflow since the latter is observed for all three cases presented

in Fig. 7.14. Furthermore, interferences can also be observed with the popu-

lation backflow criterion – given that the propagation proceeded long enough

on the electronically electronic state to pass the classical turning point. This

was the case, for example, if an unphysically small TLS energy ε was cho-

sen (cf. the black curves in Fig. 7.6). This leads to the conclusion that

the interference pattern is not caused by recurrences in the bath, but it can

unequivocally be related to the excited state dynamics.

To summarize this section, in the first attempt to theoretically study

laser induced desorption with the Surrogate Hamiltonian method, converged

excited state dynamics could be obtained. The convergence of asymptotic

observables proved to be more difficult. The convergence behavior with re-

spect to the parameters of the method was characterized. As a fully quantum

mechanical, and therefore coherent method, the Surrogate Hamiltonian sug-

gests that experimentally observed bimodality of velocity distributions can

be caused by quantum interferences known as Stückelberg oscillations. While

this is discussed in more detail in Section 7.4, the next section is dedicated

to studying the influence of parameters of the model which can directly be

controlled in the experiment.
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7.3 Dependence on the experimentally adjust-

able parameters of the model

There is only parameter which enters the interaction Hamiltonian, Eq. (7.2),

and the interaction constants, Eq. (7.3) – the dipole charge q. It characterizes

the completeness of charge transfer between a nickel and an oxygen atom,

0 ≤ q ≤ 1, and it determines the system-bath interaction strength. The

dynamics can therefore be expected to depend crucially on q. While q is

related to the electronic structure of the substrate, it has been included in

this section because its value is determined by a peculiarity of the nickel oxide.

The other two parameters related to the electronic structure of the substrate,

the TLS energy ε and the nearest neighbor interaction η, correspond to

features which can generally be observed for insulators – the band gap and

the finite width of the energy band(s). The dynamics can furthermore be

influenced by the parameters of the pulse – its length, its intensity or fluence,

and its carrier frequency.

7.3.1 Dipole strength

Increasing the dipole charge q leads to a stronger interaction between system

and bath and therefore to a smaller lifetime on the excited state. This can be

seen in Fig. 7.15. But the excited state dynamics is influenced in a twofold

way: Besides the exponential decay which can be observed after the pulse

has been applied, the maximum population of the excited state is decreased.

The two phenomena are, of course, related. The latter, however, gives q the

meaning of a parameter characterizing a metal to insulator transition, albeit

in a very simplified way. For large q, no significant population of the excited

state is observed at all. This corresponds to the case of metals where a direct

optical excitation is immediately quenched due to the strong interaction with

the substrate.

The exponentially decaying part of the excited state population vs. time

can be fitted to obtain decay rates or lifetimes. The fit is indicated for three

examples in the lower left panel of Fig. 7.15 (solid lines). The obtained

decay rates vs. q are plotted in the right panel of Fig. 7.15. For q ≥ 0.1, a

linear dependence is observed. This corresponds to the coupling constants,
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Eq. (7.3), being linear in q.

The lifetime of the electronic state was estimated as about 25 fs [105, 3].

With the Surrogate Hamiltonian, such a lifetime is obtained for a compar-

atively small value of q ≈ 0.1. A value of this order of magnitude seems

justified, however, by the following consideration: The O2p states are quite

delocalized. One nickel atom therefore receives the electron from all its five

or six neighboring oxygen atoms. But only the one or two charge transfer

states with dipole moment parallel to the surface normal contribute to the

dipole-dipole interaction. This gives a rough estimate of 0.15 . q . 0.2. A

similar number has been obtained in a population analysis of the O2p→Ni3d

charge transfer states [133].

The lifetime on the electronically excited state and therefore q determine

the desorption probability. While this is not confirmed by Fig. 7.16 (lower

left panel) due to the convergence problem explained in the previous section,

it can be observed in Fig. 7.17. The two Figures have been obtained with

the population backflow vs. the bath distance criterion for switching off the

bath. The desorption probability for q = 0.1 (green line in Fig. 7.16) is too

small because a comparatively large amount of population is neglected when
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switching off the bath. For q = 0.14 (black line in Fig. 7.16), the observed

desorption probability of about 4% is in the correct order of magnitude. In

this case, the amount of neglected population was much smaller than for

q = 0.1. While the bath distance criterion leads to a higher desorption

probability for smaller q as expected, it leads to a trapping of population on

the excited state which does not seem to be physical. One could argue that

the excited state population does not have to decay in an overdamped way,

i.e. purely exponentially. This would lead to additional, decaying oscillations

in the excited state population due to multiple electronic transitions. It is,

however, beyond the current feasibility of the method to obtain convergence

times long enough to test this hypothesis.

The desorption velocities (right panel of Figs. 7.16 and 7.17) depend only

slightly on q. This is, however, subject to the convergence behavior. The

shape of the velocity distributions might be changed considerably by the

density which has been neglected when switching off the bath. While it

seems reasonable to assume, that all or most of the neglected population

reaches the asymptotic region and desorbs, it is impossible to estimate with

which velocities the desorption occurs. It should nevertheless once more be

pointed out that in all cases the velocity distributions show intensity in the

experimentally observed velocity range, and the desorption probability is of

the expected order of magnitude for q = 0.14, i.e. for a value of q close to

the estimate from electronic structure calculations.

7.3.2 Laser pulse

A characteristic result of femtosecond photodesorption experiments has been

the observation of a nonlinear dependence of the desorption yield or proba-

bility on the laser fluence indicating a DIMET mechanism and a fluence de-

pendent transition from DIET to DIMET regimes (cf. Chapter 5). Fig. 7.18

therefore shows the dependence of the excitation quenching and the excited

state decay on the laser fluence. The Laser fluence is given by the pulse field

integrated over time, i.e.
∫∞
−∞E(t) dt. It is therefore determined by the pulse

intensity and duration. While the integral is sometimes called pulse energy,

the term energy is avoided since it could be confused with the energy related

to the carrier frequency, ~ωL.
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The blue arrow in Fig. 7.18 indicates the pulse fluence which has been

used in the remaining calculations. This value is still way above the fluence of

experimentally employed pulses (about 200 µJ in [104]). The comparatively

large value can be justified, however, to compensate for the simplification of

just a single excited state which is accounted for in the theoretical model.

This excited state is a representative of many, closely lying states which

are on or close to resonance with the laser pulse in the experiment. The

population transfer will therefore be higher than predicted by the model.

This argument is supported by the independence of experimental results

from the laser energy, ~ωL which indicates a manifold of excited states with

a very similar topology of their potential energy surfaces [107]. A similar

conclusion was furthermore reached by the CI calculations [89,3].

The excited state decay rate does not depend on the laser intensity (cf.
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P
max(bath)
exc /P

max(no bath)
exc τFWHM = 5 fs τFWHM = 10 fs τFWHM = 25 fs

N = 59 0.8407 0.7053 0.4823

N = 61 0.8403 0.7045 0.4822

N = 63 0.8399 0.7038 0.4818

Table 7.2: The quenching of excitation is increased for longer pulses.

Fig. 7.18). This is reasonable since the decay is caused by the substrate. For

weak to moderate pulses, the excitation quenching (left panel of Fig. 7.18)

shows a linear dependence on the fluence. For strong pulses, Rabi cycling

between the two electronic states becomes significant leading to a nonlinear

dependence. These intensities are very high, and Rabi cycling is probably

insignificant. It was furthermore shown in a simulation without bath, that

Rabi cycling has no influence on the desorption. In that case the population

transfer is solely caused by the coupling to the laser pulse. The time spent

on the excited state, however, turned out to be insufficient for desorption

- independent of pulse intensity and length. Since Rabi cycling is the only

mechanism in the present model, which can lead to a nonlinear dependence

of the desorption probability on the fluence, it is not surprising, that DIMET

cannot be observed. DIMET can inevitably only be modeled by taking into

account substrate-mediated excitation described by ĤBF (t).

The dependence of observables on the pulse duration is shown in Figs. 7.19

and 7.20. The lifetime of the excitation is also independent of pulse duration.

This is expected and can be explained by the same argument as above: The

decay is caused by the substrate, and its rate should not be altered by the

pulse. The independence of the decay rate from the pulse parameters points

to a consistent treatment of the excitation process in the model.

The excitation quenching, however, is influenced by the pulse FWHM –

a longer pulse leads to an increased quenching (cf. Table 7.2 and Fig. 7.19).

The system interacts simultaneously with the field and the bath. Therefore,

in case of a larger FWHM and hence a longer interaction with the field, more

population can be quenched.

The time in which the system simultaneously interacts with the field and

the bath should furthermore influence the asymptotic observables. This is

shown in Fig. 7.20. The results are, however, only preliminary due to the
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convergence problem discussed earlier. When the pulse duration becomes

comparable with the vibrational period of the wave packet on the excited

state potential, an interplay between pulse and nuclear dynamics can be ob-

served. A longer pulse duration excites partial wave packets at times further

away from each other. This leads to more different pathways which show

up in the velocity distributions (Fig. 7.20, right). While this is consistent

within the model, some caution is advisable when drawing conclusions with

respect to the experiment. In the present treatment, electronic dephasing

has been completely neglected. Electronic dephasing will certainly wash out

some of the observed quantum coherences. This effect should become more

pronounced as the pulse duration is increased.

In the present model the laser energy or carrier frequency, ωL, is always

assumed to be on resonance with the electronic transition. It therefore de-

termines the optimal choice of the bath parameters ε and η, i.e. parameters

primarily related to the convergence properties of the method. A shift in ωL

will require a readjustment of ε and η. New physical phenomena can, how-

ever, not be expected. A dependence on ωL was therefore not studied. This

situation would change, if both direct and indirect excitation mechanisms

were to be considered. Then, ωL on one hand and ε and η on the other were

truely independent parameters, and an interplay between pulse and bath can

be expected.

7.4 Comparison with other approaches and

with experiment

In this chapter, the theoretical description of laser induced desorption with

the Surrogate Hamiltonian method has been outlined and first results have

been obtained. Alternative approaches were presented in Chapter 6. The

Surrogate Hamiltonian treatment represents the first attempt to microscopi-

cally model the relaxation which subsequently leads to desorption. The only

parameter entering the system-bath interaction was the dipole charge q which

could be estimated by considering the geometry and electronic structure of

the substrate. Desorption probabilities of the right order of magnitude and

velocities in the experimentally observed range were obtained. This can be
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seen as the key result of this chapter.

In contrast to the microscopic picture, which has been developed within

the Surrogate Hamiltonian method, the model with diabatic coupling (cf.

Section 6.2) and the stochastic wave packet approach (cf. Section 6.3) are

semi-phenomenological: While in the first, the diabatic coupling had to be

chosen empirically, the excited state lifetime needed to be adjusted in the

second.

Comparing the Surrogate Hamiltonian to the MCWF approach justifies

the use of a time-dependent Hamiltonian for the latter: It was shown in

Fig. 7.3, that the number of simultaneously allowed excitations in the Surro-

gate Hamiltonian could be restricted to one. This means that there is only

one timescale of the bath which needs to be addressed. This timescale which

characterizes the decay of correlations in the bath can be estimated as the in-

verse of the excitation energy of the bath modes by a time-energy uncertainty

argument. For excitation energies around 4 eV, a time of about 7 a.u. or

0.2 fs is obtained. When more than one simultaneous excitation needs to be

considered, differences of the bath energies become important. These differ-

ences are considerably smaller than the bath energies themselves and hence

lead to longer times involved. A time of about 0.2 fs is much shorter than

the timescale of the pulses used in Chapter 6. By this argument, although

qualitative, memory effects can assumed to insignificant.

From the point of view of the obtained velocity distributions, the two

approaches of Chapter 6 mark two extreme cases with the Surrogate Hamil-

tonian in between: The diabatic coupling model lead to velocity distributions

with a very complicated interference pattern. For the stochastic wave packet

method, only a single, broad peak in the velocity distribution was obtained.

Within the Surrogate Hamiltonian, the interference is shown to result from

the excited state dynamics. In particular, it has been connected to the pas-

sage of the classical turning point of excited state motion. The interference

therefore becomes dependent on the system-bath interaction strength: If the

interaction is strong and the quenching is fast, the classical turning point

cannot be reached. The quantum coherences from the diabatic coupling

model are thus attenuated by the relaxation which is more rigorously mod-

eled within the Surrogate Hamiltonian method. The differences between the
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Surrogate Hamiltonian and the MCWF approach can be explained by the dif-

ferent treatment of the system-bath interaction. A constant, i.e. coordinate-

independent decay rate was assumed in the MWCF treatment. Within the

Surrogate Hamiltonian, the decay is caused by dipole-dipole interaction be-

tween system and bath which shows a pronounced coordinate dependence.

The results obtained with the Surrogate Hamiltonian method, in particu-

lar the shape of the velocity distributions of desorbing molecules, have to be

seen as preliminary and subject to improved convergence. They suggest, how-

ever, that the experimentally observed bimodality can be explained by quan-

tum interferences due to different pathways. A similar interpretation had

been given in [117], albeit with a simplified treatment of the relaxation. An

alternative reason was suggested within a two-dimensional stochastic wave

packet treatment [105,3]. There the experimentally observed bimodality was

connected to a bifurcation of the wave packet on the excited state caused

by the topology of the excited state potential energy surface. These two hy-

potheses could be tested by an experiment as well as theoretical studies which

change the vibrational frequencies of the potential while leaving the chem-

istry invariant. This could be accomplished, for example, by using different

isotopes of the NO.

While the two approaches presented in Chapter 6 fail to simultaneously

reproduce the two experimental observables, which can be captured within

a one-dimensional treatment, the desorption yield and the desorption ve-

locities, the Surrogate Hamiltonian method yielded observables in the right

ranges. The exact shape of the velocity distributions could, however, not be

reproduced. One reason for this is certainly the one-dimensionality of the

problem: The results of a two-dimensional stochastic wave packet treatment

showed a better compatibility with the experimental results, i.e. bimodal

velocity distributions. A combination of two-dimensional ab initio poten-

tial energy surfaces with the microscopic treatment of the dissipation in the

Surrogate Hamiltonian therefore paves the way toward a complete quantum

mechanical description of the experiment. As explained in Section 5.2, the

consistent description of excitation and relaxation mechanisms is furthermore

required by current experimental developments introducing ultrashort pulses

and pump-probe techniques into the experiments of laser induced desorption
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from oxides [104]. The development of the Surrogate Hamiltonian method

should therefore be continued.

Possible directions for future developments of the Surrogate Hamiltonian

as applied to photodesorption include in particular the following:

• The bath description with respect to increasing the number of surface

layers and the number of bath modes within one layer should be unified.

This possibly helps to overcome the current convergence problem.

• An optimization and parallelization of the existing program would allow

for the treatment of more than one nuclear degree of freedom. In a two-

dimensional model, convergence of the observables with respect to the

number of bath modes and surface layers can furthermore expected to be

reached easier since the wave packet is subject to stronger gradients, i.e.

the excited state dynamics are faster.

• Vibrational relaxation for the ground state dynamics should be included.

This could be accomplished by employing a second bath modeling the

surface phonons. While vibrational relaxation due to the difference in

timescales can assumed to be insignificant for the excited state dynamics,

the wave packet leaves the ground state potential well on the timescale of

picoseconds. Vibrational relaxation can therefore start to play a role.

• The dynamical simulations of the Surrogate Hamiltonian should be sup-

plemented by a detailed ab initio calculation of the dipole charge of nickel

oxide. While an estimate based on CI calculations has been given in [133],

a more accurate investigation would further reduce the uncertainty of this

parameter in the Surrogate Hamiltonian approach.

• It should be investigated in more detail whether a substrate-mediated

excitation is feasible within the Surrogate Hamiltonian. This would allow

for a direct comparison of the currently applied semi-direct and a purely

substrate-mediated excitation mechanism. It would furthermore permit a

theoretical investigation of the DIET to DIMET transition.

In addition to these remarks, it should be noted that the description of a

two-pulse experiment as currently performed [104] is comparatively straight-

forward within the Surrogate Hamiltonian. It requires, however, the charac-

terization of a third electronic state describing the NO molecule, an unbound

electron and the positively charged surface.
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The mechanism regulating the intensity of peaks in the velocity distribu-

tions could not be determined: It remains a challenge for future theoretical

as well as experimental work.



Chapter 8

Summary

The theoretical study of condensed phase quantum systems interacting with

their environment has been the subject of this thesis. This class of prob-

lems constitutes a great challenge to theory – the non-separability of the

timescales of all processes involved requires the development of new method-

ological tools. One example of new approaches addressing quantum dissi-

pative dynamics is represented by the Surrogate Hamiltonian method. Its

further development and application to phenomena under current intensive

experimental investigation have been presented.

The single dissipative processes were classified and discussed in the first

part of this thesis. In particular, a model of dephasing was introduced into

the Surrogate Hamiltonian method. This is of importance in future work

related to coherent control and quantum computing. In regard to these

subjects, it is a great advantage of the Surrogate Hamiltonian over other

available methods that it relies on a spin, i.e. a fully quantum mechanical

description of the bath.

The next step consisted in the application of the Surrogate Hamiltonian

method to a standard model of charge transfer in condensed phase: two

nonadiabatically coupled harmonic oscillators immersed in a bath. While

this model is still an oversimplification of, for example, a molecule in solu-

tion, it served as testing ground for the theoretical description of a prototyp-

ical ultrafast pump-probe experiment. The Surrogate Hamiltonian approach

succeeded to reproduce all qualitative features of such an experiment and

allowed to identify shortcomings of previous treatments. It was found, in

133
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particular, that the dynamics generated by the interaction with the laser

pulse and the nonadiabatic transfer cannot be separated.

Ultrafast experiments attempt to monitor reaction dynamics on a fem-

tosecond timescale. This can be captured particularly well by the Surrogate

Hamiltonian as a method based on a time-dependent picture. The combi-

nation of the numerical solution of the time-dependent Schrödinger equation

with the phase space visualization given by the Wigner function allowed for

a step by step following of the sequence of events in a charge transfer cy-

cle in a very intuitive way. The utility of the Surrogate Hamiltonian was

furthermore significantly enhanced by the incorporation of the Filter Diago-

nalization method. This allowed the obtainment of frequency domain results

from the dynamics which can be converged within the Surrogate Hamiltonian

approach only for comparatively short times. The application of the Surro-

gate Hamiltonian to this rather simple model of charge transfer revealed its

potential when combined with an ab initio treatment of the electronic degrees

of freedom.

Such a consistent treatment where all aspects of a given problem are de-

scribed with the same level of rigor has been pursued in the second part of

this thesis. The example studied has been laser induced desorption of small

molecules from oxide surfaces. While potential energy surfaces from first

principles were obtained in previous work, the description of the photodes-

orption dynamics, in particular of the excitation and relaxation processes,

has so far in general been semi-phenomenological. In the standard method

of wave packet jumping according to Gadzuk, for example, the desorption

probability is used to adjust the lifetime of the electronic excitation.

In contrast to this, a microscopic model of the interaction between the

excited adsorbate-substrate complex and substrate electron-hole pairs which

causes the finite lifetime was developed. The picture is based on a simplified

description of the electron-hole pairs as a bath of dipoles, and a dipole-dipole

interaction between system and bath. All parameters were connected to re-

sults from electronic structure calculations. This direct derivation of the

coupling constants from first principles is different from employing the spec-

tral density and possibly classical molecular dynamics which is the standard

procedure for harmonic baths.
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The obtained desorption probabilities and desorption velocities were si-

multaneously found to be in the right range as compared to the experimental

results. The Surrogate Hamiltonian approach therefore allowed for a com-

plete description of the photodesorption dynamics on an ab initio basis for

the first time. This opens up the way for the theoretical treatment of ultrafast

two pulse studies as currently investigated experimentally.

Since the focus of this thesis has been the development of the Surrogate

Hamiltonian method, the description has been restricted to one nuclear de-

gree of freedom. In a next step, a second degree of freedom, the tilt angle

of the molecule with respect to the surface normal, should be included into

the description. The coupling between the angle and the distance is, as

shown in previous work, one possible cause of the experimentally observed

bimodality of the velocity distributions. It can therefore be expected, that a

two-dimensional Surrogate Hamiltonian treatment will yield results compa-

rable to experiment regarding the shape as well as the the range of observed

velocities. Due to the completely mechanistic picture, it might moreover elu-

cidate the origin of the two desorption channels and point to possible control

mechanisms.

Theoretical physics relies on the separability and abstractability of the

phenomenon of interest from the rest of the world. This might be one reason

why dissipative processes, which connect the carefully separated ”system”,

particularly if it is quantum, with its surroundings, has long been overlooked.

Dissipation is, however, such a fundamental phenomenon that it eventually

demanded entrance into the world of theoretical quantum physics. It suc-

ceeded thanks to experimenters who developed techniques monitoring quan-

tum dynamics in real-time, and it is now up to theoreticians to find adequate

tools to keep up with the experimental developments. The Surrogate Hamil-

tonian method has been shown in this thesis to be one possible candidate to

help model phenomena from quantum control to surface science.





Appendix A

The representation and

propagation of a wave function

The time-dependent Schrödinger equation,

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 , (A.1)

shall be solved. To this end, a representation of the state |Ψ〉 and of the

operator Ĥ needs to be chosen and the action of Ĥ onto |Ψ〉 needs to be

defined. One possibility to solve Eq. (A.1) consists in finding a numerical

approximation to the formal solution

|Ψ(t)〉 = e−iĤt|Ψ(0)〉 . (A.2)

The two approximations which were employed in this thesis are the Cheby-

chev and the split-operator methods [134,135,136].

A.1 The grid representation

Representing the state |Ψ(t)〉 in the Schrödinger picture as a wave function

〈q|Ψ(t)〉 = Ψ(q, t) on a grid in coordinate space is an extremely flexible

choice. It allows for the treatment of a broad class of problems independent

of the shape of the potential energy surfaces.

A wave function Ψ(q) can be approximated by a finite set of analytical
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functions (see for example [135,137])

Ψ(q) ≈
Nf∑
n=1

angn(q) . (A.3)

The expansion coefficients are determined by matching the approximation to

the true wave function at Ng grid points qj,

Ψ(qj) ≡
Ng∑
n=1

angn(qj) . (A.4)

If the gn(q) are orthogonal functions and Nf = Ng, the expansion coefficients

are given by

an =

Nf∑
n=1

Ψ∗(qj)gn(qj) . (A.5)

A special case of the orthogonal representation is the Fourier method [135].

The functions gn(q) are then chosen as plain waves,

gn(q) = e2πinq/L , n = −
(
Nf

2
− 1

)
, . . . , 0, . . . ,

Nf

2
, (A.6)

with equally spaced sampling points qj = (j − 1)∆q on a grid of length L.

The approximation of the wave function becomes

Ψ(q) ≈
Nf /2∑

n=−(Nf /2−1)

an e2πinq/L , (A.7)

and the Fourier expansion coefficients,

an =
1

Nf

Nf∑
n=1

Ψ(qj) e−2πinqj/L , (A.8)

represent the amplitude of the wave function in Fourier, or momentum, space.

The grid distance in momentum space is given by ∆p = 2π/L, the grid

distance in coordinate space is related to the largest representable momentum

by ∆q = π/pmax.

The power of the Fourier method results from the fact that the operators

entering the Hamiltonian can each be applied locally in coordinate or mo-

mentum space, and the transformation connecting these two representations
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is the fast Fourier transform with its favorable scaling of Nf log(Nf ). All

operator functions depending on q̂ like the potential energy operator corre-

spond to diagonal matrices in coordinate space, and the wave function Ψ(qj)

can simply be multiplied by them. The kinetic energy operator as well as

other operator functions depending on p̂ can be applied by multiplication in

momentum space,

T (pj)Ψ(pj) =
p2

j

2m
Ψ(pj) (A.9)

where m is mass and pj are the momentum space grid points.

A.2 The Chebychev propagator

The Chebychev method [138] employs the idea of a polynomial expansion of

the time evolution operator,

Û(t) = e−iĤt ≈
N∑

n=0

anPn(−iĤt) (A.10)

with complex Chebychev polynomials Pn(X̂) = Φn(X̂) as basis set. The

complex Chebychev polynomials are defined in the range [−i, i]. Therefore

the Hamiltonian has to be renormalized by its spectral range ∆E = Emax −
Emin, and for efficiency it should be shifted such that the spectral range is

[−1, 1]:

Ĥnorm = 2
Ĥ− 11(1

2
∆E + Vmin)

∆E
. (A.11)

Inserting Eq. (A.11) into Eq. (A.10) leads to

Ψ(t) = Û(t)Ψ(0) ≈ e−i( 1
2
∆E+Vmin)t

N∑
n=0

an(α)Φn(−iĤnorm)Ψ(0) (A.12)

with the argument α = ∆Et/2. The expansion coefficients are related to the

Bessel functions of the first kind Jn:

an(α) =

∫ i

−i

dx
eiαxΦn(x)√

1− x2
= 2Jn(α) , (A.13)

and the Chebychev polynomials are calculated using the recursion relation

Φn+1(x) = 2xΦn(x)− Φn−1(x) ,

Φ0(x) ≡ 1 , Φ1(x) = x .
(A.14)
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The error of the Chebychev method is uniformly distributed over the

whole range of eigenvalues of Ĥ and can be reduced to machine precision

due to a property of the Bessel functions Jn(α): When the order n becomes

larger than the argument α, Jn decreases exponentially fast. The number of

terms required in the expansion is therefore determined by the spectral range

of the Hamiltonian and by the desired time step. It should be noted that

the time step does not affect the accuracy of the method. The Chebychev

method is therefore suited for large time steps, and a practical lower limit

imposed by numerical efficiency is about 40 terms in the expansion [135].

The Chebychev propagator has been used throughout this thesis with the

exception of the Monte Carlo wave function approach (cf. Section 6.3) for

which it is not efficient.

A.3 The split propagator

For a small time step, the exponential in the formal solution Eq. (A.2) can

be approximated to third order by [139]

e−iĤ∆t = e−
i
2
T̂∆t e−iŴ∆t e−

i
2
T̂∆t +O(∆t3) . (A.15)

T̂ is the kinetic energy operator which shall be applied in momentum space

and Ŵ the operator applied in coordinate space,

Ŵ =

(
Vg(Q̂) µ̂E(t)

µ̂E∗(t) Ve(Q̂)

)

with Vg, Ve the potential energy operators for the electronic ground and

excited state, µ̂ the transition dipole operator, and E(t) = E0S(t) exp(iωLt)

the electric field of the laser pulse with shape S(t). Since Ŵ is not diagonal

in the electronic degree of freedom, a unitary transformation [136]

U =
1√
2

(
1 − S(∆t)

|S(∆t)| e
iωL∆t

S∗(∆t)
|S(∆t)| e

iωL∆t 1

)
(A.16)

diagonalizing Ŵ is inserted into Eq. (A.15):

e−iĤ∆t ≈ e−
i
2
T̂∆tÛ

−1
Û e−iŴ∆tÛ

−1
Û e−

i
2
T̂∆t .
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Resolving the algebra leads to

e−iĤ∆t ≈ e−
i
2
T̂∆t 1

2
Ŵ

′
e−

i
2
T̂∆t , (A.17)

where

Ŵ
′
=

(
(Ûg + Ûe) cos(A) + (Ûg − Ûe) −i(Ûg + Ûe) sin(A) S

|S| e
iωL∆t

−i(Ûg + Ûe) sin(A)S∗

|S| e
−iωL∆t (Ûg + Ûe) cos(A)− (Ûg − Ûe)

)

with Ûg/e = e−iV̂g/e∆t and A = µ̂E0|S(∆t)|∆t.
If no interaction with a pulse is considered, it is more efficient to split the

exponential such that only one application of exp(T̂) is involved since it re-

quires a FFT into momentum space and an inverse FFT back into coordinate

space.

The split propagator is very efficient, but it requires a small time step

∆t and it might perturb the phase of the wave function. [140] It is therefore

best suited for the Monte Carlo wave function method (cf. Chapter 6.3).

A.4 Eigenfunctions through imaginary time

propagation

The Fourier method can also be used to compute eigenvalues and eigenfunc-

tions of a given Hamiltonian [134,141]. To this end the imaginary time τ = it

is introduced into the formal solution of the time-dependent Schrödinger

equation,

|Ψ(τ)〉 = e−Ĥτ |Ψ(0)〉 . (A.18)

An arbitrary initial guess wave function can be expanded into eigenstates of

the Hamiltonian, |Ψ(0)〉 =
∑

n cn|ϕn〉. For τ → ∞, only the ground state

component of the initial guess will survive. The imaginary time propagation,

Eq. (A.18), is obviously not unitary, the wave function therefore needs to be

renormalized during propagation.

The choice of the initial guess determines the convergence of the method.

The energy expectation value, 〈Ψ(τ)|Ĥ|Ψ(τ)〉, or the standard deviation of

energy, 〈Ψ(τ)|Ĥ2|Ψ(τ)〉 − 〈Ψ(τ)|Ĥ|Ψ(τ)〉2, which is a measure of the purity

of the eigenstate, is monitored to determine convergence. Higher eigenstates
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than the ground state can be calculated by projecting out lower lying eigen-

states, i.e. to obtain the nth eigenstate a new Hamiltonian,

Ĥn = Ĥ−
n−1∑
i=0

|ϕi〉〈ϕi| (A.19)

can be defined and used in Eq. (A.18). Since all lower lying eigenstates |ϕi〉
need to be stored to compute |ϕn〉, this is feasible only for a few eigenstates.

Furthermore, long propagation times τ are necessary to differentiate between

nearly degenerate states due to a time-energy uncertainty relation.

However, imaginary time propagation with the Hamiltonian, Eq. (A.19),

represents a special choice of the more general Filter Diagonalization ap-

proach (cf. Appendix C.2). The basic idea of Filter Diagonalization to ex-

tract eigenvalues and eigenstates of a given operator consists of a combined

use of applying a filter and algebraic diagonalization [142]. The correlations

present in the initial guess are eliminated through a short-time filter be-

tween distant eigenstates and by diagonalization between closely lying eigen-

states [142, 143]. Imaginary time propagation can be viewed as a long term

filter, with no diagonalization part. It is therefore less efficient than full filter

diagonalization, but it requires only minor changes of existing programs.

A.5 Spectral range

The spectral range of a Hamiltonian Ĥ,

∆E = Emax − Emin , (A.20)

or more precisely the time-energy phase space volume ∆E∆t with propa-

gation time step ∆t is a measure of the numerical effort required to solve

the problem described by Ĥ [135]. If the Chebychev propagator (cf. Ap-

pendix A.2) is used for propagating the wave function, the spectral range of

the Hamiltonian is explicitly needed to compute the number of terms in the

expansion Eq. (A.12). In grid representation the maximum momentum pmax

is determined by the grid spacing in coordinate ∆q (cf. Appendix A.1). For

one electronic state the spectral range is then simply given by

∆E =
p2

max

2m
+ Vmax − Vmin =

π2

2m∆q
+ Vmax − Vmin (A.21)
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with mass m and Vmax and Vmin the maximum and minimum of potential

energy. If the Hamiltonian contains more than one electronic state and off-

diagonal matrix elements in the electronic basis, the spectral range needs to

be calculated numerically. However, an explicit diagonalization of the Hamil-

tonian yielding all eigenvalues of Ĥ can be avoided, since only the smallest

and largest eigenvalue are needed. An idea similar to the one of imaginary

time propagation presented in the previous section can be employed [144]:

if the Hamiltonian acts on an initial guess wave function many times, only

components of the ground state or of the highest eigenstate survive in the

wave function. The wave function needs to be renormalized after each it-

eration to avoid numerical overflow. If one of the desired eigenstates with

eigenvalue λ1 has been obtained, a shifted Hamiltonian Ĥ
′
= Ĥ− λ1 can be

defined. Repeating the iteration procedure with Ĥ
′
yields the second bound

λ2 and the spectral range is given by

∆E = |λ2 − λ1| . (A.22)

This method to compute the spectral range has been applied for all system-

bath calculations (cf. Chapters 3, 4 and 7) and for the calculations with

diabatic coupling (cf. Section 6.2).

A.6 Grid change

The simulations of laser induced desorption presented in Chapters 6 and 7

require comparatively long propagation times since upon deexcitation to the

electronic ground state the wave packet splits into a part trapped in the po-

tential well and a desorbing part. While the excitation-deexcitation cycle

happens on the timescale of femtoseconds, the separation into trapped and

desorbing part takes place in picoseconds. The desorbing partial wave packet

has gained momentum in the deexcitation process which lets it travel toward

larger distances, i.e. toward the finite boundary of the coordinate grid. If

parts of the wave packet hit the (upper) boundary they are transferred to the

lower boundary due to periodic boundary conditions. This leads to numerical

artifacts. Observables of interest for desorption experiments are expectation

values of operators in the asymptotic region of the ground state potential,
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V A
g (Z) ≈ 0. It is therefore not possible to employ absorbing boundary con-

ditions [145] since then the information of interest is lost.

The simulations demand a coordinate grid extending from small to large

distances, and possibly occurring high momenta require a small grid spacing

(cf. Appendix A.1). To avoid grids with a huge number of grid points the grid

change method by Heather and Metiu [146] has been employed. The wave

function is then simultaneously propagated on two grids with a comparatively

small number of grid points,

Ψ(Z, t) = ΨI(Z, t) + ΨA(Z, t) . (A.23)

Grid I represents the interaction region for which VI(Z) 6= 0 and grid A

represents the asymptotic region. This separation of the wave function is

possible due to the linearity of the Schrödinger equation. Parts of the wave

function which reach the region in which the two grids overlap are transferred

to the asymptotic grid

ΨA(Z, t) = ΨA(Z, t−∆t) + ftrans(Z)ΨI(Z, t) ,

ΨI(Z, t) = (1− ftrans(Z))ΨI(Z, t)
(A.24)

with transfer function

ftrans(Z) = 1− 1

1 + exp(a(Z − Z0))
. (A.25)

The choice of the transfer function is rather arbitrary provided that it mo-

notonously rises from zero to one. It determines, however, the error which

is introduced by the grid change: a steep transfer function will result in

numerical artifacts. A more detailed account has been given in [4, 3].

The grid change method has several advantages. It reduces the numerical

effort of propagation since the wave function on the asymptotic grid can be

propagated analytically by multiplication of a phase factor, exp(−i P 2

2m
∆t), in

momentum space. The number of grid points and the grid spacing do not

have to be identical for the two grids. Since the momenta which occur in

the asymptotic region are considerably smaller than those in the interaction

region, pmax can be considerably smaller and ∆Z larger. Furthermore, a

representation of the wave function in coordinate space is not necessary since

only expectation values which are calculated in momentum space shall be
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obtained [4]. The number of grid points of the asymptotic grid is therefore

only determined by the maximum representable momentum.

However, the grid change method also brings about some disadvantages.

In its original version [146] it has been used only for analysis once the prop-

agation was finished. Since for laser induced desorption simulations it is

used for avoiding large grids and hence needs to be applied after every time

step [3, 4] it leads to artificial interferences as long as parts of the wave

packet stay in the region where both grids overlap. These artifacts emerge

as oscillations in the total norm. They can be minimized by an appropriate

choice of width and location of the transfer function (parameters a and Z0

in Eq. (A.25)). The grid change furthermore distorts the phase of the wave

packet ruling out a phase space analysis (cf. Appendix C.1) of the wave

function. Since only momentum space and no coordinate space observables

are of interest in the asymptotic region, this is a minor annoyance.

Alternatives to the grid change method are represented by grid map-

ping [147] and flux analysis [127]. Grid mapping [147] avoids the distortion

of the phase of the wave function. It introduces additional Fourier transforms

to map between a grid with constant spacing and one with variable spacing.

The variable grid spacing is determined by the largest possible total energy.

However, grid mapping was revealed to be inefficient for laser induced des-

orption experiments due to large momenta in the interaction region [4]. It

has therefore not been employed.

The grid change method was used for simulations presented in Chapters 6

and 7.





Appendix B

Perturbational treatment of

weak fields: The window

operator

The total energy which is ab-

sorbed of a pulse is related to

the change in electronic ground

state population [59],

∆E = −~ωL∆Ng , (B.1)

where ωL is the frequency of the

pulse. ∆Ng can be determined

by solving the time-dependent

Schrödinger equation. For the

description of a pump-probe

∆ω

∆Q

Figure B.1: The window operator

experiment this can be rather time-consuming since a separate simulation

needs to be run for every time delay between pump and probe pulse. If the

probe field is weak, however, perturbation theory can be employed. The total

absorption is then represented by a window operator Ŵ [148,62],

∆E ≈ −~ωLtrS{ρ̂S(tp) · Ŵ} , (B.2)

the explicit expression of which will be given below. ρ̂ denotes the system

density operator, and tp will turn out to be the time of maximum intensity
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of the pulse. The physical concept of the window operator is to collapse

the observation process which is completed in a time proportional to the

pulse width τp to a single instant in time tp. The finite width in time which

corresponds to a finite width in frequency ∆ω (the band width of the pulse)

is then transformed into a finite width in coordinate ∆Q via the resonance

condition given by the electronic potentials (cf. Fig. B.1). This collapse of

the measurement process assumes that the nuclear motion is frozen during

the observation, i.e. that the excitation is impulsive, and that the window

operator Ŵ is independent of the state of the system, ρ̂S(tp) which is true

when the intensity of the pulse goes to zero [62].

The expression for the window operator can be derived by perturbation

theory. The initial state is taken to be the ground state wave packet at a time

cτp before the probing time tp at which the field is still approximately zero,

and c is a constant. The change in norm on the ground state can be measured

on the excited state at a final time tp + cτp due to norm conservation,

∆Ng = −∆Ne = −〈ψe(tp + cτp)|ψe(tp + cτp)〉 . (B.3)

The excited state wave packet at the final time is given by

|ψe(tp + cτp)〉 = i

∫ cτp

−cτp

dτ e−iĤe(cτp−τ)µ̂trE
∗(t) e−iĤg(τ+cτp)|ψg(tp − cτp)〉 ,

(B.4)

where E(t) is the field of the laser pulse, µ̂tr is the transition dipole operator,

and Ĥg and Ĥe are the nuclear Hamiltonians on the electronic ground and

excited state, respectively. Assuming that the wave packet does not move

during the observation, i.e. [Ĥg, Ĥe]− ≈ 0 for the integrand, Eq. (B.4) can

be simplified to

|ψe(tp + cτp)〉 = e−iĤe(cτp)

{
i

∫ tp+cτp

tp−cτp

dτ e−i2∆̂(Q̂)τ µ̂trE0S
∗(τ)

}
·

e−iĤg(cτp)|ψg(tp − cτp)〉 ,

(B.5)

where the difference potential ∆(Q̂) = 1
2
(Ve(Q̂)−Vg(Q̂)−wL) and the shape

of the pulse E(t) = E0S(t) eiωLt have been introduced. Multiplying Eq. (B.5)

by e+iĤecτp from the left, the ground and excited state wave functions can be
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synchronized to a single time tp,

|ψe(tp)〉 =

{
i

∫ tp+cτp

tp−cτp

dτ e−i2∆̂(Q̂)τ µ̂trE0S
∗(τ)

}
|ψg(tp)〉 . (B.6)

The window operator is therefore constructed from the expression in the

brackets in Eq. (B.6). If the pulse shape is Gaussian, S(t) = exp(− (t−tp)2

2τ2
p

),

the integral can be solved leading to

Ŵ(Q̂, Q̂
′
) = π(τpE0)

2 e−2∆̂
2
(Q̂)τ2

p · µ̂2
tr(Q̂) δ(Q̂− Q̂

′
) · |α〉〈α| , (B.7)

where |α〉 labels the electronic state. The width of the window operator – or

the precision of the coordinate measurement – is determined by the difference

potential ∆̂(Q̂). For chirped pulses the window operator is modified [62], and

a similar expression can be obtained for a sinc-shaped pulse [59].

With the use of the window operator, a single simulation suffices to cal-

culate the pump-probe signal for all time delays between the pulses. The

window operator has been applied in the calculation of transient absorption

(|α〉 = |g〉) and emission (|α〉 = |e〉) signals in Chapters 3 and 4.
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Tools for data analysis

C.1 The Wigner function

The wave function describing the state of a quantum system is characterized

by its absolute value and by its phase. While the density, i.e. the wave

function squared and not the wave function itself is measured, both value

and phase determine the measurement. Since in coordinate representation

the phase of the wave function is related to momentum, a phase space picture

is a useful tool to visualize a quantum state and gain some intuition for it.

Historically phase space distributions have been introduced in the context of

correspondence between quantum and classical mechanics. [24]

The Wigner function [24, 149] was the first quantum mechanical phase

space distribution to be considered, it is given by

W (P,Q) =
1

2π

∫ ∞

−∞
dy ρ̂(Q− y/2, Q+ y/2) eiPy (C.1)

for a density operator ρ̂. A number of phase space distribution functions can

be defined. The Wigner function is determined uniquely by the following

requirements: it shall have real values, it shall give when integrated with

respect to P or Q the correct probability densities and expectation values,

it shall be Galilei invariant and invariant with respect to space and time

reflections, and it shall obey the classical equation of motion if V ≡ 0. The

Wigner function can be derived from a classical phase space function applying

Weyl, i.e. symmetric ordering of operators [149].

Unlike a classical probability density, the Wigner function can have neg-
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ative values. This is a result of Heisenberg’s uncertainty principle between

coordinate Q and momentum P . [24] The existence of these negative values

indicates regions in phase space which are dominated by pure quantum phe-

nomena, i.e. by correlations between the conjugated variables coordinate and

momentum. If a coarse graining procedure is applied to the Wigner function,

that is W (P,Q) is convoluted with a Gaussian h(Q,P ) in phase space,

h(Q,P ) =
1

π~

∫
dq dpW (q, p) e

− (q−Q)2

2∆Q2 − (p−P )2

2∆P2 (C.2)

with width ∆Q = ∆P =
√

~/2, the Wigner function is smeared out over a

phase space volume ∆Q∆P = ~/2 [150]. The resulting Husimi distribution

function is non-negative for all P and Q. It does not, however, give correct

expectation values when integrated over P or Q, respectively [149].

The equation of motion for W (Q,P ) was shown to be the classical equa-

tion of motion plus quantum corrections which are of the order of ~2 and of

the third derivative of the potential with respect to Q [24]. Therefore identi-

cal classical and quantum equations of motion are obtained for the harmonic

oscillator indicating that the harmonic oscillator is not a generic quantum

system.

In grid representation the density operator ρ̂(Q,Q′) corresponds to a

matrix whose values ρij are given at grid points Qi, Qj. The integral in

Eq. (C.1) is then performed counter-diagonally. A schematic illustration is

given in Fig. C.1. Grid points at can either be picked s.t. the red lines of the

Wigner function matrix cross the diagonal in Qi as in Fig. C.1 or s.t. they

cross in Qi + 1
2
∆Q. The counter-diagonal is written into a vector v at each

point Qi +
1
2
∆Q. Elements in the region where the two squares in Fig. C.1 do

not overlap are filled with zeros. The density matrix must therefore die off

sufficiently fast toward the grid boundaries, otherwise numerical artifacts are

introduced. The vector v furthermore needs to be shuffled, v(1, . . . , N
2
, N

2
+

1, . . . , N) ←→ v(N
2

+ 1, . . . , N, 1, . . . , N
2
), to avoid artificial interferences in

the Fourier transform. The scheme depicted in Fig. C.1 makes only use

of half of the density matrix elements, i.e. phase space resolution is lost.

This can be avoided leading, however, to a doubled dimension of the matrix

corresponding to the Wigner function. The desired graphical resolution in

displaying the Wigner function and the numerical effort to compute it should
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ρ(Q,Q’)

W(P,Q) y

Figure C.1: The calculation of the Wigner function (red) for a density matrix

ρ(Q,Q′) (black). The arrow indicates the direction of integration.

therefore be considered when making a choice about the dimension of the

Wigner function matrix.

As an example, Fig. C.2 shows the density matrix and Wigner function

of the first excited state of the harmonic oscillator while a Schrödinger cat

state is displayed in Fig. C.3. The color corresponds to the sign with

red indicating positive and blue negative values. The height of the peaks

shows the absolute value. The Wigner function of the harmonic oscillator

ground state is simply a two-dimensional Gaussian. Excited states, however,

exhibit negative values of the Wigner function. Fig. C.3 illustrates that a

quantum mechanical superposition must be distinguished from an incoherent

ensemble. Even if the two Gaussian wave packets do not overlap, interference

is observed. The coherence of the state is represented by off-diagonal density

matrix elements (cf. Fig. C.3, left) and negative values of the Wigner function

(blue features in Fig. C.3, right).

The Wigner function can also be defined in time and energy domains [151,

152] to visualize, for example, the phase relation of a chirped pulse.

The Wigner function of the reduced density operator, Eq. (3.3), either on

the ground or excited electronic surface, has been employed in Chapters 3

and 4.
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Q’

Q

P

Q

Figure C.2: Density matrix (left) and Wigner function (right) of the first

excited state of the harmonic oscillator.

Q’

Q Q

P

Figure C.3: Density matrix (left) and Wigner function (right) of a superpo-

sition of two Gaussian wave packets, a so called Schrödinger cat state.
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C.2 Filter Diagonalization

The convergence of the Surrogate Hamiltonian method is significantly faster

for short propagation times. In order to obtain long time observables or

frequency domain results which depend on them, the short-time observables

have to be extrapolated. The Filter Diagonalization technique [142,153,154,

155] fits the short-time time-series to a model which then can be used for

extrapolation.

The method is based on the assumption that the time signal can be

represented by a sum of complex exponentials:

S(t) =
K∑

j=1

dj exp(−iωjt) , (C.3)

where Ωj = Re(ωj) is the desired frequency, τj = 1/Im(ωj) is the decay rate

and dj is the complex amplitude. The number of real fitting parameters is

4K. The parameters specifying the accuracy of the Filter Diagonalization

method are the smallest allowed eigenvalue of the overlap matrix smin and a

convergence criterion ε for the obtained frequencies [154]. They were chosen

as smin = 10−8 and ε = 10−6 . . . 10−3.

The data window needs to be chosen such that the signal within the

window corresponds to a sum of complex, i.e. decaying exponentials. The

data shows decay only as long as the results are converged with respect to the

number of bath modes in the Surrogate Hamiltonian method. The decay is

perturbed by recurrences. The choice of the data window is therefore related

to the convergence of the Surrogate Hamiltonian method. The recurrences

were found to cause a splitting of the frequency with the highest weight.

Filter Diagonalization can hence be used as an additional tool to test the

convergence.

Filter Diagonalization was performed using a Fortran program written

by V.A. Mandelshtam. It has been employed in Chapters 3 and 4.





Appendix D

The Rotating wave

approximation for a system

coupled to a bath

If the interaction of a system with a time-dependent field is modeled, the

timescale of the field determines the time-step which can be used in the

simulations. It is therefore advantageous to ’drop’ the rapidly oscillating

part of the field by rotating the frame of reference such that the rapidly

oscillating part does not enter the equations explicitly anymore.

The Hamiltonian for a system interacting with a bath whose two elec-

tronic states are coupled by a pulse is

Ĥ =

(
Ĥg E(t)µ̂

E∗(t)µ̂ Ĥe

)
⊗ 11B + 11S ⊗

∑
j

εj â
+
j âj +(

g(Q̂) f(Q̂)

f ∗(Q̂) g(Q̂)

)
⊗
∑

j

(
V ∗

j â+
j + Vj âj

)
. (D.1)

The pulse is given by

E(t) = E0S(t) exp(iωLt) , (D.2)

where the time-dependence has been separated into a shape function S(t) and

a part oscillating with the carrier frequency ωL. The system-bath coupling

in Eq. (D.1) is of the most general form.
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As in the case of a bare primary system coupled to a bath [59] a rotation

operator,

R̂(θ) = exp(iθŜz)⊗ 11B , (D.3)

with θ = ωLt and

Ŝz =
1

2

(
−1 0

0 1

)
, Ŝ+ =

(
0 0

1 0

)
, Ŝ− =

(
0 1

0 0

)
can be defined. The following commutation relations will be needed:[

Ŝ±, R̂(θ)
]
−

= (1− exp(±iθ)) Ŝ±R̂(θ) . (D.4)

Now the rotated wave function is given by |Ψ̃〉 = R̂|Ψ〉, and the equation of

motion is:

i
∂

∂t
|Ψ̃〉 = i

∂R̂

∂t
|Ψ〉+ R̂i

∂|Ψ〉
∂t

= −ωLŜzR̂|Ψ〉+ R̂Ĥ|Ψ〉

= −ωLŜzR̂|Ψ〉+ ĤR̂|Ψ〉 −
[
Ĥ, R̂

]
−
|Ψ〉 . (D.5)

Since[
Ĥ, R̂

]
−

=
(
E∗(t)µ̂ + f ∗(Q̂)

) [
Ŝ+, R̂

]
−

+
(
E(t)µ̂ + f(Q̂)

) [
Ŝ−, R̂

]
−

=
(
E∗(t)µ̂ + f ∗(Q̂)

)
(1− exp(iωLt)) Ŝ+R̂

+
(
E(t)µ̂ + f(Q̂)

)
(1− exp(−iωLt)) Ŝ−R̂

holds, the rotated equation of motion is obtained as

i
∂

∂t
|Ψ̃〉 =

{(
Ĥg + 1

2
ωL E0S(t)µ̂

E0S
∗(t)µ̂ Ĥe − 1

2
ωL

)
⊗ 11B + 11S ⊗

∑
j

εj â
+
j âj

+

(
g(Q̂) f(Q̂) e−iωLt

f(Q̂)∗ eiωLt g(Q̂)

)
⊗
∑

j

(V ∗
j â+

j + Vj âj)

}
R̂|Ψ〉 , (D.6)

where the braces contain ĤRWA, the Hamiltonian in the rotating frame. It is

clear from Eq. (D.6) that the fast time-dependence can only be eliminated

by the transformation, Eq. (D.3), if the system-bath interaction is diagonal

in the electronic degree of freedom of the system, i.e. it involves only nuclear

relaxation or dephasing.
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If the interaction with the bath describes electronic quenching or dephas-

ing, an additional or counter rotation needs to be applied, this time in the

bath Hilbert space. This is obvious from a physical point of view: Changing

into the rotating frame for the system collapses the vertical energy differ-

ence of the potential energy surfaces which are coupled by the pulse at the

Franck-Condon point. Before the rotation, the bath energies matched the

difference of the potentials. Therefore, if the energy scale of the primary

system is changed, the same must be done to the bath.

The counter rotation in the bath Hilbert space is given by the operator

Û(θ) = 11S ⊗ exp

(
iθ
∑

j

Ŝzj

)
(D.7)

with Ŝzj the Ŝz operator of the jth bath mode (for details see Appendix E.2).

Analogous commutation relations to Eq. (D.4) hold, and again the commu-

tator

[
ĤRWA, Û(θ)

]
−

=

(
g(Q̂) f(Q̂) e−iωLt

f ∗(Q̂) eiωLt g(Q̂)

)
⊗([

Ŝ+, Û(θ)
]
−

+
[
Ŝ−, Û(θ)

]
−

)
=
(
1− eiωLt

)( g(Q̂) f(Q̂) e−iωLt

f ∗(Q̂) eiωLt g(Q̂)

)
⊗ Ŝ+Û

+
(
1− e−iωLt

)( g(Q̂) f(Q̂) e−iωLt

f ∗(Q̂) eiωLt g(Q̂)

)
⊗ Ŝ−Û (D.8)

is needed. In Eq. (D.8), only one of the exp(±iωLt)-terms in the coupling

matrix will cancel out, while in the other one the frequency is doubled. Us-

ing the rotating wave approximation amounts to neglecting these frequency
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doubled terms [63]. The resulting Hamiltonian then is

ĤRWA =

(
Ĥg + 1

2
ωL E0S(t)µ̂

E0S
∗(t)µ̂ Ĥe − 1

2
ωL

)
⊗ 11B

+11S ⊗
∑

j

(
εj â

+
j âj − ωLŜ

j

z

)
+

(
g(Q̂) eiωLt) f(Q̂)

0 g(Q̂) eiωLt)

)
⊗
∑

j

V ∗
j â+

j

+

(
g(Q̂) e−iωLt) 0

f ∗(Q̂) g(Q̂) e−iωLt)

)
⊗
∑

j

Vj âj. (D.9)

Therefore, if the system-bath-coupling is either diagonal or off-diagonal in

the system Hilbert space, it is possible to eliminate the fast time dependence

of the laser pulse for the total Hamiltonian.

There are two points to note when Eq. (D.9) is used, i.e. when applying

the rotating wave approximation in case of the bath coupling to the electronic

degree of freedom of the system. Since Ŝ+ couples only to the annihilation

operators âj, no bath mode will be excited on the electronically excited state.

The price to pay for eliminating the fast time dependence is a considerable

increase of the spectral range due to
∑

i Ŝiz.
∑

i Ŝiz is given by the number

of bits set in a spinor component minus N/2 (see Appendix E.2), i.e. the 0th

component is always shifted down by N/2.



Appendix E

The bit representation of the

two level system bath

E.1 The wave function

The state of the system combined with the bath is described by a 2N -

dimensional spinor with N being the number of modes. The dimension 2N

results from the number of possibilities to combine 2 states (spin-up/spin-

down, bath mode excited/not excited, bit set/not set) N times, for an illus-

tration see Fig. E.1.

For N = 1 and N = 2, respectively, this wave function spinor becomes

ΨN=1(Q̂) =

(
ψ0(Q̂, α)

ψ1(Q̂, α)

)
, ΨN=2(Q̂) =


ψ0(Q̂, α)

ψ1(Q̂, α)

ψ2(Q̂, α)

ψ3(Q̂, α)

 , (E.1)

where Q̂ represents the nuclear degrees of freedom of the wave function and

α the electronic degrees of freedom. The spinor is bit ordered, i.e. the

kth bit set in the spinor index corresponds to the ith TLS mode excited

if the counting of bits starts at k = 0, see Fig. E.1. This means that the

zeroth component corresponds to no bath mode being excited, the first and

second component to the excitation of the first and second bath mode, and

the third component corresponds to the first and second bath mode being

excited simultaneously, and so forth.
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76543210

000 001 010 011 100 101 110 111bit representation:

spinor components:

3 TLS

2 TLS

1 TLS

Figure E.1: There are four possibilities to combine two TLS and eight pos-
sibilities to combine three TLS, the combinations are indicated by lines con-
necting the arrows (TLS). The index of the spinor components has as many
bits set in its binary representation as TLS are excited, bits are counted from
right to left. If only two simultaneous excitations are allowed the component
crossed out by the dashed line can be dropped, if only one simultaneous
excitation is allowed, all crossed out components can be dropped.

The number of simultaneous excitations can be restricted. The occurrence

of the kth excitation in N bits is a combination,(
N

k

)
=

N !

k!(N − k)!
.

The dimension of the spinor D is then given by the sum of binomial coeffi-

cients

D =
Nexc∑
k=0

(
Nexc

k

)
(E.2)

with Nexc the number of simultaneously allowed excitations. Assume a bath

with 4 modes and at most 2 simultaneous excitations. Then D is:

D =

(
4

0

)
+

(
4

1

)
+

(
4

2

)
= 1 + 4 + 6 = 11 ,

which means there is one spinor component corresponding to none of the bath

modes excited, four components have one bit set and there are 6 possibilities
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to excite 2 bits out of 4. Making use of the Binomial Theorem

(a+ b)N =
N∑

k=0

(
N

k

)
aN−kbk

with a = b = 1, it again is found that D = 2N if all N excitations are allowed

simultaneously. The restriction of simultaneously allowed excitations leads

to significant numerical savings, both in computation time and storage, and

its validity can simply be checked by increasing Nexc.

E.2 The operators

The bath operators entering the Hamiltonian are sums over the operators

acting on a single mode. In bit representation the operator of mode k acts

on bit k (assuming k = 0, . . . , N − 1), i.e. on the spinor components which

have the kth bit set in their indices. One should clearly distinguish between

bath modes and spinor components. For example, the k = 0 mode which

may or may not be excited should not be confused with the zeroth spinor

component corresponding to all modes deexcited.

As a simple example, consider the operator Ŝz = 1
2

( −1 0
0 +1

)
and a bath

consisting of N = 3 modes. Then the total Ŝ
(N=3)

z is a diagonal 8×8-matrix.

The Ŝ
(k=2)

z acts on the total 8-dimensional space with the first four diagonal

elements −1 since the k = 2 bit is 0, i.e. the third mode is not excited, and

the second four diagonal elements +1 since the k = 2 bit is 1, i.e. the third

mode is excited (cf. Fig. E.1). The Ŝ
(k=1)

z -operator acting on the second

mode acts on the two 4-dimensional subspaces with the first two diagonal

elements −1 and the second two +1. Finally the Ŝ
(k=0)

z -operator acts on the

four 2-dimensional subspaces. Since the total Ŝ
(N=3)

z -operator is the sum over
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the Ŝ
k

z operators, its bit representation is given by

S(N=3)
z =

1

2



−3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −1 0 . . . . . . . . . . . . . . . . . . . . . .

. . . 0 −1 0 . . . . . . . . . . . . . . . . .

. . . . . . . . 0 +1 0 . . . . . . . . . . . .

. . . . . . . . . . . . 0 −1 0 . . . . . . .

. . . . . . . . . . . . . . . . . 0 +1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . 0 +1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 +3


. (E.3)

However, this matrix neither needs to be stored nor explicitly computed.

Instead, the fact that computers are built on bit operations and modern

programming languages offer built-in functions for testing for and operating

on bits can be used. Then, the Ŝz-operator is given by

Ŝ
N

z = −1

2
N + popcnt(i) , (E.4)

where i runs over the index of the spinor and popcnt is the Fortran90 built-

in function counting the number of bits set in its integer argument.

The occupation number n̂k needed in the bath Hamiltonian, Eq. (3.4),

can be computed in a similar fashion. The matrix representation for two

modes is given by

1∑
k=0

εkn̂k =


0 0 0 0

0 ε0 0 0

0 0 ε1 0

0 0 0 ε0 + ε1

 . (E.5)

To apply n̂k the Fortran90 function btest(i, k) can be used which tests

whether the ith bit in the integer k is set, if the result is true the ith spinor

component is multiplied with εk.

If more complicated operators acting on the bath shall be obtained, it

is useful to write down rigorously how to build bath operators acting in D-

dimensional space from spin operators acting in two-dimensional space. All

bath operators can be expressed as a combination of creation and annihilation

operators. The creation operator for mode k can be written as

σ̂+
k

N
=

N−k∏
j=1

112 ⊗ σ̂+ ⊗
k−1∏
j=1

112 (E.6)
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with

σ̂+ =

(
0 0

1 0

)
, (E.7)

and the kth annihilator is given by the conjugated expression built on σ̂.

With the help of Eq. (E.7) the bath operators needed in the interaction

Hamiltonian, Eq. (3.19), can now be constructed.

The matrix representation of
∑

k dk(σ̂
+
k +σ̂k) describing energy relaxation

(cf. Sections 3.2 and 3.3) has already been given [2], it is noted here for

completeness:

∑
k

dk(σ̂
+
k + σ̂k) =



0 d0 d1 0 d2 0 0 0

d0 0 0 d1 0 d2 0 0

d1 0 0 d0 0 0 d2 0

0 d1 d0 0 0 0 0 d2

d2 0 0 0 0 d0 d1 0

0 d2 0 0 d0 0 0 d1

0 0 d2 0 d1 0 0 d0

0 0 0 d2 0 d1 d0 0


. (E.8)

The upper triangle in Eq. (E.8) corresponds to annihilation, and the lower tri-

angle to creation of bath modes. The action of the bath operators
∑

k dk(σ̂
+
k +

σ̂k) is given by an exclusive or, making use of the Fortran90 function ieor.

The exclusive or of two bits is true only if one of the bit is 1 while the other

is 0. If i = ieor(2k, j) then dkψj(Q) needs to be added to the ith component

of the new spinor. To illustrate the exclusive or, for example for N = 3 the

fourth spinor component is obtained from

Ψ̃4 = d2Ψ0︸ ︷︷ ︸ + d0Ψ5 + d1Ψ6︸ ︷︷ ︸
creation annihilation

with

d2 → 22 : 100 d0 → 20 : 001 d1 → 21 : 010

Ψ0 → 0 : 000 Ψ5 → 5 : 101 Ψ6 → 6 : 110

Ψ̃4 → 4 : 100 100 100

(it should be remembered that bits are counted from right to left starting

from 0). In the above example, all combinations of 2k and j leading to i = 4
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are listed. For all other combinations the exclusive or leads to false, i.e.

d2 → 22 : 100 d0 → 20 : 001

Ψ1 → 1 : 001 Ψ6 → 6 : 110

Ψ̃4 → 4 6= 5 : 101 Ψ̃4 → 4 6= 7 : 111 .

When using the RWA for a system with electronic relaxation, it is important

to keep track of which components are created and which are destroyed (cf.

Appendix D). This can easily be done by comparing the number of set bits

in the index of the new and the old spinor component.

The dephasing operator Ô =
∑

kl ckl(σ̂
+
k σ̂l + σ̂+

l σ̂k) (cf. Sections 3.2 and

3.4) reads for N = 3 modes

2∑
k,l=0

Okl =



0 0 0 0 0 0 0 0

0 0 c01 0 c02 0 0 0

0 c10 0 0 c12 0 0 0

0 0 0 0 0 c12 c02 0

0 c20 c21 0 0 0 0 0

0 0 0 c21 0 0 c01 0

0 0 0 c20 0 c10 0 0

0 0 0 0 0 0 0 0


. (E.9)

The application of Eq. (E.9), Ψi =
∑

kl OklΨj, requires several bit tests:

First, the number of excitations in the spinor indices i and j must be equal.

This corresponds to the requirement that dephasing doesn’t alter the energy

of the bath, i.e. conserves the number of bath excitations. Second, the indices

of Okl in Eq. (E.9) numbering the bath modes bit-added, k+ l, must be equal

to the exclusive or of i and j. This is a generalization of the single application

of the exclusive or described in the previous paragraph for the case when only

one bath operator acts on the spinor, and not two consecutively.

Whenever the Surrogate Hamiltonian method was applied, it has been

used in the bit representation (cf. Chapters 3, 4 and 7).



Appendix F

Mapping a 2D bath onto 1D

The electron-hole pairs which make up the bath are assumed to be local-

ized on single Ni-O pairs. Then the bath is two-dimensional considering

the uppermost layer of the NiO surface or three-dimensional in case several

layers are considered. However, only the distance of each electron-hole pair

from the NO molecule and the direction of its dipole moment are impor-

tant. In a 1D treatment of the primary system only electron-hole pairs with

dipole moments parallel or antiparallel to the surface normal contribute to the

dipole-dipole interaction. Therefore the bath is effectively one-dimensional.

The fact that NiO has cubic lattice structure can be used to develop an

algorithm to map a 2D or 3D bath onto one dimension (the distance) and

a sign (the direction of the dipole). In 2D, each Ni-O pair is located at a

point of a quadratic lattice. The lattice points correspond to numbers n,

0 ≤ n ≤ NB ∈ N, for which n = i2 + j2 holds with i, j = 0, . . . ∈ N. This

means that all square numbers and sums of two square numbers need to be

found to determine the lattice points. A theorem from number theory can

be employed: Every integer can be factorized into prime numbers p = 2,

p = 4m+ 1 and p = 4m+ 3. If and only if all prime factors p = 4m+ 3 of n

occur an even number of times in the factorization, n is a sum of two square

numbers. The distance of this lattice point to the origin (which is the site

below the NO molecule) is then given by

distance of TLS =
√
na0 (F.1)

with a0 half the lattice constant. The sign of the dipole moment is given by
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i+ j even −→ + ,

i+ j odd −→ − . (F.2)

If n can be factorized into different pairs (i, j), the number of possible fac-

torizations corresponds to the number of times this distance occurs,

occurrence = Number of different (i, j) · 4 , (F.3)

where the factor 4 accounts for four-fold symmetry. Since points which are

connected by a 90o rotation are identified, the surface slab is mapped onto a

sphere. The usual assumption of periodic boundary conditions corresponds

to a mapping onto a torus and does not make use of four-fold symmetry.

Prime factorization is a major topic of interest in computer science, par-

ticularly in cryptography and quantum computing, and a number of elaborate

methods have been developed to cope with it. However, since the n are rela-

tively small, no sophisticated tool like Shor’s Algorithm [7] is needed to find

their factorization, but all integers can simply be scanned and trial division

applied.

This mapping of two dimensions onto one introduces a factor of 1/ log(N)

into the nearest neighbor interaction term of the bath (Section 7.1). It results

from the ratio of points inside the lattice which have four nearest neighbors to

points on the edges and diagonals of the lattice which in the one-dimensional

model may have less than four nearest neighbors. If the matrix elements

representing the second term in Eq. (7.1) are called cij, then points inside the

lattice are counted twice in the above outlined algorithm when calculating

the matrix, while points on the edges and diagonals are counted once. If

the number of non-zero matrix elements is divided by the sum of all matrix

elements, the factor 1/ log(N) is obtained.

The outlined algorithm allows to map a 2D bath, namely the dipoles in

the uppermost layer of Ni-O pairs, onto one dimension. If additional Ni-O

layers shall be treated to account for transport into the surface, the simplest

approach describes every layer as a separate bath (cf. Fig. F.1). This means

that all correlations between layers are neglected.

For the NO/NiO(100) system this should not pose a serious restriction.

From physical considerations, there is already one restriction on the corre-



169
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Ni Ni NiO O

NO

Figure F.1: Considering two layers of Ni-O pairs as two different baths:
the system (black) interacts with each layer, the bath dipoles interact with
each other within one layer (red and blue), the two layers are coupled by
an interaction of dipoles on top of each other (purple). For the system-bath
interaction (black) and the interaction between different layers (purple) only
some representative arrows are drawn.

lations between layers: The light red and the dark blue dipole in Fig. F.1

get excited by an electron transfer from the same oxygen atom, therefore it

is very unfavorable that they are excited simultaneously. Analogously, it is

unlikely that a nickel atom gets an electron from both the oxygen above and

below. Therefore this excitation can be excluded. So what really is neglected

are the correlations between the dark blue and all dark red dipoles and the

correlations between the light red and all light blue dipoles. Keeping in mind

that so far only two to three simultaneous excitations within one layer needed

to be allowed, this approximation should not be severe. It should be kept

in mind, that the approximation relies on the electronic structure of NiO, in

particular on the localized d-orbitals. Thus this algorithm is not general, and

the validity of the approximation might break down for e.g. other oxides.

However, then the whole ansatz of Eq. (7.1) might become questionable, for

example more than nearest neighbor interaction should be included for a

more delocalized electronic structure.

As an advantage of this approach there is no limit to N = 63 modes (on

a 64bit machine), this limit holds only within one layer. Furthermore it is

not necessary to have the same number of dipoles in the surface, the number

of dipoles can be selected such that the maximum distance from the system

dipole is the same in each layer. This corresponds to a half sphere below
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the NO instead of a cuboid and is motivated by the interaction between

the system and the bath which only depends on distance. It was observed,

however, that bath modes in deeper layers are almost exclusively populated

due to the interaction between bath modes. It is therefore more favorable in

terms of the convergence properties of expectation values with respect to the

number of layers to assume the same number of dipoles in each layer.



Appendix G

Numerics

G.1 The structure of the program

For the calculations presented in this thesis the development of a fairly

complex program to solve the time-dependent Schrödinger equation was

necessary. It is based on the wave packet programs developed earlier [3,

4] in Fortran77. Since the methodological development required frequent

changes, the program was rewritten Fortran90. The adaption of object-

oriented concepts allowed for more flexibility of the program, while the nu-

merical efficiency of Fortran was retained.

The program consists of a number of modules, each devoted to a partic-

ular aspect. Within the modules, specific data structures were declared. For

example, the module psi.f90 contains all operations on the wave function

while the module grid.f90 takes care of everything related to the defini-

tion of the grid (encapsulation). The modules are hierarchically ordered with

higher-level modules calling lower-level ones, such as psi.f90 or grid.f90,

without knowing what exactly happens in the lower levels of the hierar-

chy. The output.f90 module, for example, simply calls the subroutine

expectationvalue which is defined in psi.f90. Since expectation values

can be calculated on one or more electronic states, in coordinate or mo-

mentum representation, the subroutines actually performing the calculations

are overloaded. They can then be called by the common subroutine call

expectationvalue in output.f90, and the module psi.f90 decides accord-

ing to the arguments of the subroutine call which specific subroutine should
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be invoked.

As an advantage of such structured programming, changes in lower-level

modules do not affect higher-level modules or the main program. For exam-

ple, the definition of the bath, in particular the calculation of the interaction

constants, differs considerably for a bath with an Ohmic spectral density

(cf. Chapters 3 and 4) and a bath with microscopically derived interaction

constants (cf. Chapter 7). These changes in bath.f90, however, did not

affect higher-level modules such as the propagation module prop.f90. The

programming and debugging effort can therefore be minimized by employing

programming concepts borrowed from object-oriented programming.

G.2 Parameters of the calculations

Unless stated otherwise, all parameters are in atomic units.

Table G.1: Parameters of the calculations for a relaxing harmonic oscillator

presented in Figs. 3.2 to 3.6

mass frequency ∆t grid points Qmin Qmax ∆Q kmax

1.0 1.0 0.05 64 -8.0 8.0 0.25 12.4

Spectral density J(ω) = ηω (Figs. 3.2 to 3.4)

sampling ωmax (η = 0.01) ωmax (η = 0.1)

equidistant 6ω 1.5ω

Spectral density J(ω) = ηω e−ω/ωc (Figs. 3.5 and 3.6)

sampling ωc ωmax ωmin

equidistant 1.5ω 3ω

exponential 1.5ω 3ω 0.05ω . . . 0.1ω
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Table G.2: Parameters of the calculations for a relaxing anharmonic oscillator

presented in Fig. 3.7

mass frequency ∆t grid points Qmin Qmax ∆Q kmax

2.0 · 105 5.0 · 10−4 100 64 -1.0 1.0 3.18 · 10−2 99.0

Spectral density J(ω) = ηω e−ω/ωc (Figs. 3.5 and 3.6)

sampling η ωc ωmax ωmin

exponential 2.0 ω 3ω 0.4ω . . . 0.5ω

Probe pulse

E0 τFWHM ωL

2.5 · 10−5 0.096T (20 fs) 0.005

Table G.3: Parameters of the calculations for nuclear dephasing of a displaced

harmonic oscillator presented in Figs. 3.8 and 3.9 and Table 3.4

mass frequency ∆t grid points Qmin Qmax ∆Q kmax

2.0 · 105 5.0 · 10−4 100 64 -0.75 0.75 2.38 · 10−2 132

Spectral density J(ω) = ηω e−ω/ωc

sampling ωc ωmax ωmin

equidistant ω 1.01ω 0.9ω . . . 0.99ω
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Table G.4: Parameters of the calculations for electronic dephasing of a TLS

presented in Figs. 3.10 to 3.13

TLS energy = 0.004, Spectral density J(ω) = ηω e−ω/ωc (Fig. 3.10 to 3.12)

sampling ωc ωmax ωmin

equidistant ω 1.05ω 0.4ω . . . 0.95ω

Probe pulse (Fig. 3.10)

E0 τFWHM ωL

1.2 · 10−3 20 fs 0.004

Probe pulse (Figs. 3.11 and 3.12)

E0 τFWHM ωL

4.9 · 10−5 5 fs 0.004

TLS energy = 0.006, Spectral density J(ω) = ηω e−ω/ωc (Fig. 3.13)

sampling ωc ωmax ωmin

equidistant ω 1.01ω 0.4ω . . . 0.99ω

Table G.5: Parameters of the calculations for the CW absorption spectrum

presented in Figs. 4.2 and 4.3

mass ωg ωe Q0 Vd ∆V

2.0 · 105 10.0 · 10−4 0.7ωg 0.2 5ωg 0.004

∆t grid points Qmin Qmax ∆Q kmax

100 64 -1.0 1.0 3.18 · 10−2 99.0

Spectral density J(ω) = ηω e−ω/ωc

sampling ωc ωmax ωmin

exponential 2ωg 5ωg 0.4ωg . . . 0.5ωg
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Table G.6: Parameters of the calculations of the charge transfer dynamics

presented in Figs. 4.5 and 4.12

mass ωg ωe Q0 Vd σd ∆V

2.0 · 105 5.0 · 10−4 0.7ωg 0.2 ωg 0.1 0.004

∆t1 ∆t2 grid points Qmin Qmax ∆Q kmax

5 100 64 -1.0 1.0 3.18 · 10−2 99.0

Spectral density J(ω) = ηω e−ω/ωc

sampling ωc ωmax ωmin

exponential ωg 1.5ωg 0.7ωg . . . 0.71ωg

Pulses

E0 (pump) E0 (probe) τFWHM ωL

2.5 · 10−4 2.5 · 10−5 20 fs 0.004

Table G.7: Parameters of the calculations of the charge transfer dynamics

presented in Figs. 4.4, 4.6 to 4.10 and 4.11

mass ωg ωe Q0 σd ∆V

2.0 · 105 5.0 · 10−4 0.7ωg 0.2 0.1 0.004

Vd = 5ωg (except for Fig. 4.11 where Vd = 0.2ωg)

Time steps and grid parameters as in Table G.6

Spectral density J(ω) = ηω e−ω/ωc

sampling ωc ωmax ωmin

exponential 2ωg 5ωg 0.4ωg . . . 0.5ωg

Pulse parameters as in Table G.6
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Table G.8: Parameters of the calculations of diabatic coupling model for

NO/NiO(100) presented in Figs. 6.1 to 6.5

mass ∆t grid points Qmin Qmax ∆Q kmax a Z0

54686.649 100 512 3.0 15.0 0.0235 134 15 13.5

Parameters for fs pulses

fluence radius E0 τFWHM energy

11 µJ 2.5 mm 8.93 · 10−5 100 fs 4.7 eV

Parameters for CW pulses

fluence radius E0 energy

5 mJ 2.5 mm 1.9 · 10−6 4.7 eV

Table G.9: Parameters of the MCWF calculations for NO/NiO(100) pre-

sented in Figs. 6.6 to 6.10

mass ∆t2 grid points Qmin Qmax ∆Q kmax a Z0

54686.649 10 512 3.0 20.0 0.0333 94.4 4 17

Parameters for fs pulses

∆t1 E0 τFWHM energy

5 1.9 · 10−3 25 fs 3.7 eV

5 1.2 · 10−3 50 fs 3.7 eV

10 8.2 · 10−4 100 fs 3.7 eV

10 6.6 · 10−4 250 fs 3.7 eV
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Table G.10: Parameters for the calculations for NO/NiO(100) with the Sur-

rogate Hamiltonian method presented in Chapter 7

mass ∆t2 grid points Qmin Qmax ∆Q kmax a Z0

54686.649 20 512 3.0 20.0 0.0333 94.4 6 17

Parameters for fs pulses

∆t1 fluence radius E0 τFWHM energy

1 5 mJ 2.5 mm 8.5 · 10−3 5 fs 3.7 eV

5 1 mJ 2.5 mm 1.7 · 10−3 25 fs 3.7 eV

10 0.5 mJ 2.5 mm 8.5 · 10−4 50 fs 3.7 eV

Tolerance (relative) for recursions:

ε = 10−5 (system population), ε = 10−1 (bath distance)

Tolerance in density matrix construction: ε = 2 · 10−14

Bath parameters (unless specified otherwise in the Figure captions)

ε = 3.7 eV, η = 0.7 eV, q = 0.1
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Zusammenfassung

Ziel dieser Arbeit war die theoretische Behandlung des Relaxationspro-

zesses in der laserinduzierten Desorption kleiner Moleküle von Metalloxid-

oberflächen. Dies stellt ein Beispiel für ein dissipatives Quantensystem,

d.h. ein Quantensystem, das Energie und Phase mit seiner Umgebung aus-

tauschen kann, dar. Die Einwirkung des Laserpulses erzeugt ein kurzlebiges

Intermediat, das infolge der elektronischen Relaxation genügend kinetische

Energie gewinnen kann, um von der Oberfläche zu desorbieren. Die kurze

Lebensdauer des intermediären Zustandes läßt auf eine starke Wechselwir-

kung zwischen angeregtem Adsorbat-Substrat-Komplex und der restlichen

Oberfläche schließen. Die Verwendung ultrakurzer Pulse im Experiment ver-

hindert eine Zeitskalenseparation von Anregung und Relaxation und macht

nicht-Markov-Effekte wahrscheinlich. Bisherige theoretische Ansätze sollten

deshalb mit der Methode des Surrogate Hamiltonian verbunden werden, um

An- und Abregungsprozesse mikroskopisch zu modellieren.

Kapitel 2 gibt einen kurzen Überblick über Dissipation in Quantensyste-

men und über Schwierigkeiten in ihrer theoretischen Behandlung. Insbeson-

dere werden zwei Standardmethoden, die Quanten-Master-Gleichung und der

Formalismus der dynamischen Halbgruppe, und einige neuere methodische

Ansätze vorgestellt.

Die Methode des Surrogate Hamiltonian als ein nicht-Markovscher An-

satz zur Beschreibung dissipativer Quantensysteme wird in Kapitel 3 ein-

geführt. Der Surrogate Hamiltonian wird um die Berücksichtigung elektron-

ischer Freiheitsgrade und um die Beschreibung von Dephasierung erweitert.

Die Behandlung von Energie- als auch Phasenrelaxation wird an einfachen

Beispielen demonstriert.

Eine erste Anwendung der Methode des Surrogate Hamiltonian auf ein

Ladungstransferproblem ist in Kapitel 4 dargestellt. Dabei wird ein Pump-

Probe-Experiment mit Femtosekundenlaserpulsen modelliert. Zwei nicht-

adiabatisch gekoppelte elektronische Zustände mit harmonischen Potentialen,

die Wechselwirkung mit dem elektrischen Feld des Lasers und Schwingungs-

sowie Phasenrelaxation werden berücksichtigt. Es konnte gezeigt werden,



daß die Anwendung des Surrogate Hamiltonian eine vollständige Beschrei-

bung des Ladungstransferereignisses liefert.

Theoretische Modelle zur Beschreibung der laserinduzierten Desorption

werden in Kapitel 5 vorgestellt. Desweiteren sind bisherige experimentel-

le und theoretische Ergebnisse für die laserinduzierte Desorption von NO

von der NiO(100)-Oberfläche zusammengefaßt. Die Anforderungen an eine

theoretische Modellierung von Anregungs- und Relaxationsprozeß werden

ausführlich diskutiert.

Kapitel 6 ist zwei semi-phänomenologischen Ansätzen zur Beschreibung

des Relaxationsprozesses gewidmet. Zuvor werden mögliche Anregungsme-

chanismen diskutiert. Die Relaxation wird dann durch nichtadiabatische

Kopplung des elektronisch angeregten an einen dritten Zustand sowie mittels

der Monte-Carlo-Wellenfunktions-Methode modelliert.

Die Anwendung des Surrogate Hamiltonian auf die laserinduzierte Desorp-

tion ist in Kapitel 7 dargestellt. Dafür wird ein mikroskopisches Modell

für die Wechselwirkung zwischen angeregtem Adsorbat-Substrat-Komplex

und Elektron-Loch-Paaren in der Oberfläche entwickelt. Alle Parameter des

Modells können aus Rechnungen zur elektronischen Struktur von NiO ab-

geschätzt werden. Die Konvergenzeigenschaften der Methode sowie die Ab-

hängigkeit der Observablen von experimentell justierbaren Parametern wer-

den ausführlich diskutiert. Insbesondere werden Desorptionswahrscheinlich-

keiten und Desorptionsgeschwindigkeiten in derselben Größenordnung wie

im Experiment erhalten. Damit gelingt erstmalig eine vollständig mikrosko-

pische Beschreibung der laserinduzierten Desorption von NO/NiO(100).

Die Arbeit wird in Kapitel 8 zusammengefaßt. Die mathematischen und

numerischen Grundlagen sowie die Parameter der Simulationen sind im An-

hang im Detail aufgeführt.
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