

Self-assembled $Fe_3O_4(111)$ nanostructures in ultrathin FeO(111) films on Ru(0001)

G. Ketteler, W. Ranke*

Department of Inorganic Chemistry, Fritz-Haber-Institute of the MPG, Faradayweg 4-6, 14195 Berlin, Germany

* Corresponding author: e-mail ranke@fhi-berlin.mpg.de, phone +49 30 8413 4523, fax +49 30 8413 4401

Submitted 15 March 2001; accepted 17 July 2001

Abstract

Ultrathin films of FeO(111) can be grown on Ru(0001) by repeated cycles of evaporation of Fe and subsequent oxidation at temperatures around 870K. At equilibrium conditions, 1-2 ML FeO(111) wet the substrate before further growth proceeds by the formation of Fe₃O₄(111) islands (Stranski-Krastanov growth mode). However, if larger amounts of Fe are deposited in one turn on the substrate and oxidized afterwards, metastable FeO(111) films with a thickness up to 4 ML can be obtained. They have strongly expanded lattice constants and form specific coincidence structures with the Ru(0001) substrate. In films with a thickness of ~4ML, self-assembled, periodically arranged Fe₃O₄(111) nanodomains with diameters of ~2-3nm form in the FeO(111) film. Further oxidation causes these domains to grow and finally coalesce into a closed Fe₃O₄(111) film. Self-organization and phase transition are discussed using thermodynamic and electrostatic arguments.