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We investigate pattern formation in oscillatory reaction-diffusion systems where wave
sources and sinks are created by a local shift of the oscillation frequency. General
properties of resulting wave patterns in media with positive and negative dispersion are
discussed. It is shown that phase slips in the wave patterns develop for strong frequency
shifts, indicating the onset of desynchronization in the medium.

1. Introduction
Nonequilibrium chemical reactions can display a rich variety of complex ki-
netic regimes, including oscillations, wave propagation, and formation of regu-
lar or chaotic spatiotemporal patterns [1, 2]. The first wave pattern discovered
in the Belousov–Zhabotinsky reaction was the target pattern [3]. It consisted
of concentric waves that were periodically emitted from a small central region.
Since then, similar spatiotemporal structures have also been observed in other
chemical, physical, and biological systems [4–8].

Target patterns may already be found in uniform systems, as a result of
nonlinear kinetics and diffusion. Such self-organized stable target patterns have
been described in several models (e.g., [9–11]). There is also experimental evi-
dence that some target patterns in the Belousov–Zhabotinsky (BZ) reaction are
not related to any heterogeneity and may be autonomous [12]. Nonetheless,
the great majority of target patterns observed in chemical systems are asso-
ciated with the presence of a local heterogeneity (a dust particle, gas bubble,
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etc.) that modifies locally the properties of the medium and gives rise to a pace-
maker. Indeed, by careful filtering of the BZ solution, the number of evolving
target patterns can be reduced. The developing patterns have a range of op-
eration frequencies, indicating that the frequency is not uniquely determined
by the medium parameters. Furthermore, in the experiment described in [13]
the activity of a pacemaker, generating a target pattern in the BZ reaction, was
suppressed by application of another, high-frequency wave source. When this
other source was however removed, the initial pacemaker reappeared at the
same location with the same frequency.

The properties of heterogeneous pacemakers and their target wave patterns
have been analyzed in a number of theoretical studies [14–18]. Creation of
pacemakers through application of noise to a photosensitive BZ medium has
been recently reported [19]. Nonetheless, such spatiotemporal patterns have so
far received much less attention than, for example, rotating spiral waves which
represent another kind of pattern in oscillatory media. In this paper we present
a brief review of the theory of heterogeneous pacemakers and wave sinks, and
discuss their instabilities and complex dynamics that may be experimentally
observed. Particularily, experimental studies with the photosensitive BZ reac-
tion, where controlled heterogeneities may easily be created by application of
appropriate illumination patterns, would be of much interest here.

As a theoretical model to study these effects, we choose the complex
Ginzburg–Landau equation (CGLE) [20]. Though this equation is strictly ap-
plicable only close to a soft onset of oscillations where oscillations have small
amplitudes and are approximately harmonical, its predictions are known to be
qualitatively valid in a broader neighbourhood of the supercritical Hopf bifur-
cation. It can be shown that stable self-organized pacemakers are not possible
in the CGLE [18]. If such a wave source is initially formed by preparing special
initial conditions, phase diffusion leads to spreading of the central core region,
the increase of the wavelength, and the final disappearance of the target pattern,
which transforms into uniform oscillations.

Hence, to create a pacemaker in the CGLE, the medium should be nonuni-
form, possessing a small localized region with modified parameters. Then,
the local oscillation frequency inside this region is different from outside and
this region may form a pacemaker which generates a spatially extended wave
pattern. Such pacemakers and their wave patterns are in the focus of this
article. Additionally, localized wave patterns representing sinks will also be
considered.

We show that, as the difference between the local oscillation frequency in
the pacemaker region and the frequency of bulk oscillations is increased, the
oscillations inside of the pacemaker may desynchronize with those present out-
side of the core. The pacemaker is then too fast to entrain the rest of the system
by emission of waves and the resulting spatiotemporal wave pattern is gov-
erned by the repeated appearance of phase slips. This dynamical behavior is
closely related to the Eckhaus instability of traveling waves.
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This article is organized as follows. First, the complex Ginzburg–Landau
equation is introduced (Sect. 2) and the phase dynamics approximation for
pacemakers is discussed (Sect. 3). In the same section, basic properties of weak
pacemakers and sinks and their wave patterns in the one-dimensional CGLE
are summarized. In Sect. 4, we investigate the properties of strong pacemakers
and sinks whose operation is accompanied by repeated phase slips. The paper
ends with a discussion of the obtained results.

2. The complex Ginzburg–Landau equation

Reaction-diffusion systems can display different types of oscillatory dynamics.
However, in the vicinity of a supercritical Hopf bifurcation, where oscilla-
tions have small amplitude and are approximately harmonical, all such systems
are described by the same model – the complex Ginzburg–Landau equation
(CGLE). The predictions based on this universal amplitude equation often re-
main qualitatively correct even further away from the bifurcation point, where
the oscillation amplitudes are moderate and deviations from harmonicity are
significant. The derivation of a CGLE for a specific reaction-diffusion model
is explained in [18, 21]. The equation reads

∂t A = (1− iω)A − (1+ iα)|A|2 A + (1+ iβ)∇ 2 A , (1)

whereA is the complex oscillation amplitude,ω is the basic frequency of the
system near to the bifurcation point,α is the nonlinear frequency shift, and
β is the linear dispersion coefficient. The frequency of stable uniform oscil-
lations A(t) = exp(−iΩt) in this system isΩ = ω+α and their amplitude is
|A| = 1. Eq. (1) is written in the dimensionless form where time is measured
in units which are inversely proportional to the distance from the Hopf bifur-
cation point. Therefore, close to the Hopf bifurcation the conditionω � 1 is
always satisfied. The parametersα andβ are generally of order unity. Note that
by going to a co-rotating coordinate frame,ω can be scaled out of the CGLE.

The CGLE has plane wave solutionsA(x, t) = √
1− k2 exp(ikx − iωkt) [20].

The dependence of the wave frequencyωk on the wavenumberk constitutes the
dispersion relationωk. It is given by

ωk = Ω + (β −α)k2 . (2)

Whenβ −α > 0, the frequency increases with the wavenumber and the waves
havepositive dispersion. In the opposite case, the dispersion isnegative. The
phase velocity is defined asvp = ωk/k and given by

vp = Ω/k + (β −α)k . (3)
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It characterizes the speed at which the positions of wave maxima move. The
group velocity is defined asvg = ∂ωk/∂k, so that

vg = 2(β −α)k . (4)

It determines the velocity at which small perturbations (wave packages) propa-
gate through the medium.

Suppose that the oscillation frequencyω is changed by an amount∆ω

within a small region of radiusR, so that

ω(x) =
{

ω for |x| > R

ω+∆ω for |x| ≤ R .
(5)

Then, the region with the modified local oscillation frequency may become
either a source or a sink of traveling waves.

3. Pacemakers and sinks in the phase dynamics
approximation

Wave patterns can be described using the phase dynamics approximation if the
wavelength is large and – more generally, phase perturbations are smooth [18].
Introducing the phaseφ and the (real) amplitudeρ as A = ρ exp(−iφ) and
substituting this into the CGLE, we obtain the two equations

∂tρ = (1−ρ2)ρ +∇ 2ρ−ρ(∇φ)2 +βρ∇ 2φ+2β∇φ∇ρ, (6a)

∂tφ = ω(x)+αρ2 + (2/ρ)∇ρ∇φ+∇ 2φ− (β/ρ)∇ 2ρ+β(∇φ)2 . (6b)

For smooth phase perturbations with characteristic lengthsL � 1, the local
amplitudeρ of oscillations follows adiabatically the dynamics of the phase, so
thatρ2 ≈ 1− (∇φ)2 +β∇ 2φ. There, we have omitted terms of higher order than
L−2. Consequently, Eqs. (6) are reduced to a single dynamical equation for the
local oscillation phase,

∂tφ = ω(x)+α+ (β −α)(∇φ)2 + (1+αβ)∇ 2φ . (7)

In this paper we assume that the Benjamin–Feir–Newell condition 1+αβ > 0
is satisfied and uniform oscillations are modulationally stable.

After applying the nonlinear Hopf–Cole transformation

φ = 1+αβ

β −α
ln Q (8)

to the phase equation (7), the following linear equation for new variableQ is
yielded:

∂t Q = β −α

1+αβ
(ω(x)+α)Q + (1+αβ)∇ 2Q . (9)
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A general solution of this equation is (see also [18])

Q(x, t) =
∑

n

Cn exp(λnt)Qn(x) , (10)

whereλn andQn(x) are the eigenvalues and eigenfunctions of the linear differ-
ential operator

L̂ = (1+αβ)∇ 2 + β −α

1+αβ
(ω(x)+α) . (11)

Note that all eigenvalues of this operator are real. Generally, the operator will
have both a discrete and a continuous spectrum. For long times, the solution
with the largest eigenvalueλ0 will dominate the expansion. In this case we have
Q(x, t) � C0 exp(λ0t)Q0(x) and

φ(x, t) � 1+αβ

β −α
(λ0t+ ln Q0(x)) . (12)

If the largest eigenvalueλ0 belongs to the discrete spectrum of operatorL̂,
the corresponding eigenfunction is localized andQ0(x) ∝ exp(−κ0|x|) for
|x| → ∞, whereκ0 = √

λ0/(1+αβ). Hence, far from the center we have

φ(x, t) � 1+αβ

β −α
(λ0t −κ0|x|) . (13)

This means that far from the central region, where the local oscillation fre-
quency is modified, propagation of approximately plane waves takes place.
Note thatκ0 is related to the wavenumberk0 of these waves throughk0 =
κ0(1+αβ)/(β −α).

In contrast to this, if the operator̂L has no discrete spectrum, its largest
eigenvalue belongs to the continuum spectrum and the respective eigenfunction
has asymptoticsQ0(x) → const at|x| → ∞. Therefore,

φ(x, t) � 1+αβ

β −α
(λ0t +const) (14)

far from the central region and uniform oscillations are taking place there.
Whether the largest eigenvalue of the operatorL̂ belongs to the discrete or

continuous spectrum, is determined by the dispersion coefficientβ −α and the
frequency shift∆ω. For (β −α)∆ω > 0 the largest eigenvalue belongs to the
discrete spectrum, for(β −α)∆ω < 0 to the continuous spectrum. Below we
apply these results (see also [22]) to discuss properties of pacemakers (sources)
and sinks in media with different dispersion and show examples of resulting
wave patterns.
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A. Positive dispersion (β > α)
When the local oscillation frequency isincreased (∆ω > 0) inside a core

region of radiusR, this region becomes a source of waves and a classical target
pattern of outwards propagating waves is formed. In one-dimensional media,
the wavenumberk0 of generated waves is determined by the equation

R = 1+αβ

(β −α)
√

k2
max− k2

0

tan−1

(
k0√

k2
max− k2

0

)
, (15)

where kmax = κmax(1+αβ)/(β −α) = √
∆ω/(β −α) is the maximum wave-

number reached for very large cores. This equation is found by matching
the solution valid far from the core [Eq. (13)] with the solution inside the
core whereQ0(x) ∝ cos(

√
κ2

max−κ2
0|x|). For a fixed frequency shift∆ω,

the wavenumber increases monotonously with the radiusR. The pacemaker
frequency is

Ω0 = Ω + (β −α)k2
0 . (16)

As a result of wave propagation, the oscillation frequency becomes the same
throughout the system. An example of this target wave pattern is shown in
Fig. 1a. Waves leave the core region and propagate outwards, showing that the

Fig. 1. Space-time diagrams of wave patterns. (a) Wave source in a medium with posi-
tive dispersion (target pattern);∆ω = 0.2, α = 0.5, β = 1.0; (b) wave sink in a medium
with positive dispersion;∆ω = −0.2, α = 0.5, β = 1.0; (c) wave sink in a medium with
negative dispersion;∆ω = 0.2, α = −0.5, β = −1.0; (d) wave source in a medium with
negative dispersion (inward propagating target pattern);∆ω = −0.2, α = −0.5, β = −1.0.
Other parameters areΩ = 0.5 and R = 4; the displayed time interval isT = 200 and the
system size isL = 80. Space is displayed along the vertical axis, time runs along the
horizontal axis, and ReA is displayed in grey scale. In all simulations no-flux boundary
conditions are used.
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phase velocity is directed outwards. Since the waves are able to entrain the
whole system, the core region represents indeed a wave source and the group
velocity of the waves is hence directed outwards.

When the local oscillation frequency isdecreased (∆ω < 0) inside the core
region, a localized wave sink pattern is produced. Waves initiate near the core
boundary and propagate inwards (see Fig. 1b). Now, both the group and the
phase velocities are directed towards the center. As a result, the frequency of
the core oscillations is increased to the value of uniform oscillationsΩ, giving
rise to a pattern where a constant phase shift between the wave sink and rest of
the medium is present. Also in this case, the oscillation frequency is constant
throughout the system.

B. Negative dispersion (β < α)
When the local oscillation frequency isincreased (∆ω > 0) inside a core

of radius R, such a heterogeneity leads to a localized wave pattern with fre-
quencyΩ. An example of this pattern is shown in Fig. 1c. Waves are initiated in
the core and propagate outwards, but then die at the core boundary. Since dis-
persion is negative, the group velocity has here the opposite sign with respect to
the phase velocity. Hence, the group velocity is directed inwards for this wave
pattern and it actually represents a sink of waves.

If the local oscillation frequency isdecreased (∆ω < 0) inside the core re-
gion, an extended wave pattern is formed. Outside of the core of radiusR, the
medium is filled with propagating waves. The wavenumberk0 of these waves is
again determined by Eq. (15) where, however,(β −α) is replaced by(α−β).
The frequencyΩ0 of generated waves is given by Eq. (16). Note that it is
lower than the frequencyΩ of uniform oscillations. The waves in this pattern
propagate inwards (Fig. 1d) since the direction of the phase velocity is reversed
with respect to the group velocity which is directed outwards. Despite the fact
that waves are moving inwards, this pattern represents a wave source and thus
a pacemaker.

Though theoretical studies of wave patterns in oscillatory media with nega-
tive dispersion have been performed (e.g., [23]), this kinetic regime remains
poorly explored and no experimental data on the properties of pacemakers in
such systems seem to be available.

Note that to simplify the visualization in the above examples, we have cho-
sen a relatively low frequencyΩ = 0.5 of uniform oscillations. Similar patterns
are observed for high oscillation frequencies.

Fig. 2 displays spatial distributions of the local wavenumber, defined as
k = −∇φ, for the four different kinds of wave patterns shown in Fig. 1. For
the sources (cf . Fig. 1a,d) the wavenumber becomes constant outside the core
(but then goes to zero at the no-flux boundary). The different signs ofk re-
flect the different directions of the group velocities. In contrast to this, the
local wavenumber rapidly falls down to zero in the case of sinks (cf . Fig. 1b,c),
showing that no plane waves are present.
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Fig. 2. Spatial distributions of the local wavenumberk at fixed time moments for the pat-
terns displayed in Fig. 1(a,b,c,d). The local frequency shift∆ω is displayed as a dotted
line.

The phase dynamics approximation is valid only when phase gradients
(i.e., local wavenumbers) remain sufficiently small. Therefore, the above theor-
etical results based on the phase dynamics approximation hold only for weak
pacemakers and sinks, which are found when the frequency difference∆ω in
the core region is not too large. The properties of strong pacemakers and sinks
with large frequency difference∆ω are considered in the next section.

4. Phase slips

As the frequency difference∆ω inside the core region becomes stronger, the
wavenumber of generated waves increases and, eventually, some pattern in-
stabilities develop. These instabilities are accompanied by the appearance of
phase slips and the formation of amplitude defects, and thus they cannot be
described in the framework of the phase dynamics approximation given by
Eq. (7). Phase slips accompany desynchronization phenomena and are closely
related to the Eckhaus instability of plane waves [24].

Plane waves in the CGLE become unstable with respect to the Eckhaus in-
stability if their wavenumber exceeds the threshold given byk2

EI = (1+αβ)/

(3+αβ +2α2). Two different types of spatiotemporal behavior are possible.
The Eckhaus instability can be supercritical and modulated amplitude waves
are stable solutions [25]. Alternatively, this instability may be subcritical and
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the perturbation does not saturate. Then, the wave is compressed until locally
the amplitude drops down to zero at some time moments corresponding to
phase singularities. Such events are associated with a phase slip of 2π, the dis-
appearance of one wave and a subsequent readjustment of the wavenumber on
both sides of the defect [24]. Also, in two space dimensions, spiral breakup
into turbulence is then possible, a situation intensively discussed at the mo-
ment [26–28]. In this context, the distinction between convective and absolute
Eckhaus instability is important [29]. If aninfinitesimal perturbation of an un-
stable traveling wave state is advected away with the wave and asymptotically
decays at any fixed position, the system is in the regime of convective Eckhaus
instability. If this perturbation grows even at fixed positions, then the instability
is called absolute. No matter what flavor of the Eckhaus instability is realized,
the pacemaker represents afinite perturbation for the emitted wave. This per-
turbation grows down the flow and its effects are expected at a finite distance
from the origin of the perturbation.

In the numerical simulations for the oscillatory medium with positive dis-
persion (Fig. 3), the initial condition represented a target pattern emitting stable
waves near the Eckhaus instability. Then, the frequency difference∆ω in the
core region (which is displayed in the bottom part of Fig. 3) was increased.
After the time the perturbation needed to grow and modify the traveling wave,
the amplitude drops down to zero (seen as the first black dot in Fig. 3b) and the
phase slips. Then, a sequence of four phase slips occurs, with their respective
locations moving at an approximately constant velocity towards the core. This
motion is terminated at a certain distance from the core boundary. Eventually,
a steady wave pattern with periodically generated phase slips is established.
Note that the wavenumber in the far region becomes reduced and lies below the
Eckhaus threshold (cf . [24]). Thus, the waves emitted by a pacemaker undergo
phase slips and a wave pattern with a short wavelength near the core and a long
wavelength in the far region is established. Since the change of the frequency
shift inside of the core and hence the size of the perturbation of the traveling
wave state is of a finite size, the instability might still be convective or even ab-
solute in line with the papers mentioned above. A detailed analysis would be
necessary to clarify this question.

Fig. 3. Onset of the Eckhaus instability and formation of phase slips in a target pat-
tern. Space-time diagrams of (a) ReA and (b)|A| are shown in grey scale;∆ω = 0.207,
Ω = 0.55, α = 0.55, β = 1.0, R = 14.8, T = 500, L = 160 (only half of the system is dis-
played, with the core in the lower part of the figure).
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Fig. 4. Space-time diagrams of diffferent wave patterns exhibiting phase slips: (a,b)Ω =
0.5, ∆ω = 0.6, α = 0.5; (c,d)Ω = 0.8, ∆ω = 0.7, α = 0.8; (e,f) Ω = 0.5, ∆ω = 0.8, α =
0.5. Other parameters areβ = 1.0, R = 2.0, T = 250, L = 80. The left row displays ReA,
the right row shows|A| in grey scale.

When the frequency∆ω in the core region is further increased, the loca-
tion where phase slips take place moves closer to the core boundary and more
complex wave patterns become possible (Fig. 4). Phase slips may arrange in
groups which are then repeated (Fig. 4b). For a larger∆ω (Fig. 4c,d), the phase
slips on the two sides of the core do not occur simultaneously, giving rise to an
asymmetric breakdown of waves. At a still larger value of the frequency differ-
ence∆ω (Fig. 4e,f), phase slips again occur symmetrically but very close to the
core boundary. Note that because the local wavenumber is strongly changing
near the boundary, the formation of phase slips in this case cannot be simply
interpreted as a result of an Eckhaus instability for plane waves but rather as
a desynchronization phenomenon. Generally, for increasing∆ω the location
where phase slips occur moves closer to the core until the core boundary is
reached. Further increase of the frequency shift leads to an increase of the fre-
quency of the phase slips. The frequency of the waves in the far region depends
strongly on the parameterα and its mismatch with∆ω, as illustrated in Fig. 5.

The simulations displayed in Figs. 4 and 5 are examples where phase slips
occur for a wave source. When the local oscillation frequency is decreased
inside the core in a medium with positive dispersion, a wave sink is instead
formed (see Fig. 1b). If the local decrease∆ω of the oscillation frequency is
strong, phase slips can develop in the wave sink pattern. This is shown in Fig. 6.
We see that the effective oscillation frequency of the pattern is now different
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Fig. 5. Evolution of target patterns with phase slips under decrease of the parameterα:
(a) α = 0.75; (b) α = 0.5; (c) α = 0.25; (d) α = 0.0. Other parameters are∆ω = 0.7,
ω = 0, β = 1.0, R = 2.0, T = 200, L = 80.

Fig. 6. Phase slips in a wave sink in a medium with positive dispersion;∆ω = 0.3, Ω =
0.5, α = 0.5, β = 1.0, R = 5.2, T = 250, L = 80.

Fig. 7. Wave patterns with phase slips in media with negative dispersion: (a,b)∆ω =
0.2072, R = 14.8, L = 160; (c,d)∆ω = 0.65, R = 2.0, L = 80; (e,f) ∆ω = 0.3, R = 4,
L = 80. Other parameters are:Ω = 0.45, α = −0.55, β = −1.0, T = 250.
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from the frequency of uniform oscillation outside of the core. Some oscillations
in the outside region are unable to induce waves propagating inside the core.
Here, the phase slips are bound to the border of the core.

In media with negative dispersion, phase slips are also possible (Fig. 7). In
Fig. 7a,b we show a target pattern with inward propagating, Eckhaus-unstable
waves (∆ω < 0). Phase slips occur here at a finite distance from the core
boundary, before the waves have actually reached it. Fig. 7c,d displays another
example of an inward propagating target pattern where the decrease∆ω of the
local frequency inside the core is stronger and the phase slips already appear
near the core boundary. Finally, Fig. 7e,f shows phase slips in the wave pattern
corresponding to a wave sink with∆ω > 0.

5. Discussion
Our study provides evidence that complex wave patterns with a rich variety of
spatiotemporal behaviours can be produced in oscillatory media by introduc-
ing a heterogeneity,i.e., a core region where the local oscillation frequency
is modified. Depending on the parameters of the medium, which determine
the dispersion of waves, target patterns with outward and inward propagating
waves can be observed. Moreover, localized sink patterns are also possible.

When the difference of the oscillation frequency in the core region is in-
creased, wave regimes with periodic formation of phase slips are observed. In
these regimes, the effective oscillation frequency inside the core becomes dif-
ferent from the frequency of oscillations in the far region. The phase slips occur
because the medium is no longer able to compensate the frequency shift by
the propagation of waves. Hence, desynchronization takes place and oscilla-
tions in the core region become decoupled from the rest of the medium. In
a different setting, this effect has previously been discussed by Sakaguchi [30]
who has used mode truncation to analyze the onset of desynchronization in
the CGLE.

Though our analysis has been performed for a model system described by
the CGLE, its results would probably remain qualitatively correct for other os-
cillatory media with anharmonical oscillations. In experiments with the photo-
sensitive Belousov–Zhabotinsky reaction, the oscillation frequency can easily
be controlled by changing the local light intensity. In this way, heterogeneities
with different shapes, sizes and strengths can be created (see [17]). Varying
these parameters and reaction conditions, it should be possible to create differ-
ent pacemakers and observe the onset of desynchronization in the system.
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