Thermal decomposition of divanadium pentoxide V₂O₅ in vacuum D.S. Su, M. Hävecker, A. Blume, R. Schlögl

Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany

Introduction

The reduction behaviours and phase transition of vanadium oxides at various temperatures have been well studied previously [1,2]. This is due to the fact that reduction and phase transition are phenomena accompanied in almost all the catalytic process using vanadium oxide based catalysts. A great deal of work has been carried out to study the surface reduction of V_2O_5 . For instance, a V_2O_5 - V_6O_{13} transformation is reported at the V_2O_5 (001) surface by heating V_2O_5 (500°C) in O_2 atmosphere (5 x 10⁻⁴ Torr, 1h) [1]. Cleaved V_2O_5 (001) surface can also be reduced to the V_6O_{13} (001) surface by a long term exposure to an electron beam in a LEED chamber [2]. In the present work, we investigate the thermal decomposition of V_2O_5 in a specimen chamber of a transmission electron microscope (TEM) that allowing the *in situ* electron diffraction, high-resolution imaging and electron energy-loss spectroscopic characterisation of the transformation. For comparison, we studied also the thermal decomposition of V_2O_5 in sealed glass tube and in a thermal decomposition spectrometer (TDS).

Experimental

A heating stage was used for the thermal decomposition of V_2O_5 in TEM. The high vacuum of the specimen chamber was kept beneath 10^{-7} Torr. The sample was heated to 200, 400, 500, and 600°C with a heating rate of 20°C/min and kept for one hour at each temperature, respectively. Fine V_2O_5 crystals were dispersed onto a copper mesh grid covered with a holey carbon film and allowed to dry. A Philips CM200 FEG electron microscope, operating at 200 kV and equipped with a GATAN imaging filter GIF100, was used. Thermal decompositions of the V_2O_5 in sealed glass tube were performed at 200, 400 and 550°C at 2 x 10^{-4} mbar for 12 h. Experiment in TDS was performed at 10^{-7} Torr with a heating rate of 20 K/min up to 600 °C.

Result

The thermal decomposition in sealed glass tube proceeds very slowly. Even heating at 550 °C for 12 h causes only slightly change of the sample callous. However, the decomposition in TEM goes very fast. Fig. 1 shows the vanadium L and oxygen O edges, extracted from EEL-spectra recorded from V_2O_5 unheated and heated at 200,

400, 500, 600°C. The initial spectrum is typical for V_2O_5 in orthorhombic structure, characterised by the V *L*-edges at 519 and 526.7 eV and O *K*-edge above 530 eV.

Heating the V_2O_5 sample two remarkable changes in the spectra can be noticed: the vanadium L edges shifted to lower energy and the integral intensity of oxygen K edge decrease indicating a preferable release of oxygen during the thermal decomposition. The peak energy of L_3 edge of vanadium shift to 518.3 eV at 400°C, which is very close to the peak position of VO₂ at 518.5 eV. The maximum of this peak shifts to 517.4 eV at 600°C, corresponding to the energy of the L_3 edge maximum of V₂O₃. Electron diffraction confirms that V₂O₅ undergoes transformation via VO₂ into V₂O₃. High-resolution images reveal the formation of single crystalline different V_2O_3 nano-particles with quite

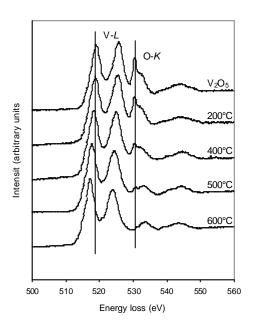


Fig.1 Vanadium L and oxygen K edges taking at various temperatures in a Philips CM 200 FEG electron microscope.

morphology. TDS results show the release of oxygen atoms from the heated samples.

Summary

We present in this preliminary report on the thermal decomposition of V_2O_5 in low and high vacuum. In low vacuum, the decomposition proceeds very slowly. In high vacuum V_2O_5 undergoes a phase transformation to V_2O_3 via VO_2 in just few hours. V_2O_3 nano-particles form which are single crystalline. TDS experiment confirms the loss of oxygen from the bulk of the sample.

Acknowledgement

The work is supported by the Deutsche Forschungsgemeinschaft SFB 546.

Reference

- 1. K. Devriendt, H. Poelman, L. Fiermans, Surf. Sci. 433-435 (1999) 734.
- 2. L. Fiermans, and J. Vennik, Surf. Sci. 9 (1968) 187.