

Appearance Potential Mass Spectrometry: A new technique for the detection and quantification of heterogeneous catalytically generated gas phase intermediates R. Horn, M. Thiede, G. Mestl - in cooperation with Degussa AG

MAX-PLANCK-GESELLSCHAFT

Department of Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6, DE - 14195 Berlin, Germany, http://www.fhi-berlin.mpg.de

Motivation

In many heterogeneously catalysed reactions, the question arises whether the overall reaction occurs exclusively on the catalyst surface or whether gas phase reactions are involved in the mechanism. To answer this question, one has to probe the gas phase above the catalyst in situ with a very sensitive technique because of the short lifetime of the reactive intermediates and their low concentrations. Spectroscopic methods, as for example Laser Induced Fluorescence Spectroscopy (LIFS), Matrix Isolation ESR (MIESR) and Cavity Ring Down Spectroscopy (CRDS) are applicable but are experimentally demanding and very expensive. Appearance Potential Mass Spectrometry is a comparatively cheap method developed in plasma-physics. The idea of AP-MS is to discriminate reactive intermediates from fragments of stable molecules at the same nominal mass by their ionisation or appearance potentials, respectively. The objective of this work is to verify whether AP-MS can be applied successfully to heterogeneous catalysis.

Test Reaction \Rightarrow **Catalytic Combustion of Methane (CCM)**

- catalyst \rightarrow polycristalline platinum
- radical gas phase reactions expected \leftrightarrow combustion reaction
- highly exothermic reaction $\rightarrow \Delta_{R}H^{-} = -890 \text{kJ} \cdot \text{mol}^{-1}$

Ideas and Expectations

Experimental Verification: \succ feed gas: 49.5% CH₄ / 13.5% O₂ / 37% He \triangleright spectra: 0.40 - 49.99amu, Δ m=0.01amu 50 ➤ temperature program: $350^{\circ}C \Rightarrow 550^{\circ}C \Rightarrow 350^{\circ}C$ sity in a.u. 50 \succ temperature resolution: $\approx 0.5^{\circ}$ C/min $\approx 1^{\circ}$ C/spectrum ➢ internal standard: He

electron energy in eV 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 —— He 30000

Observations:

Heating:

- \Leftrightarrow conversion starts at 368°C \Rightarrow instantaneous increase of recorded temperature
- \therefore ignition-like complete conversion of oxygen at 433°C \Rightarrow no change of recorded temperature

Cooling:

- \sim complete oxygen conversion even for temperatures below 433°C
- sudden breakdown of the reaction at $368^{\circ}C \Rightarrow$ instantaneous decrease of recorded temperature

Interpretation:

- Heating:
- exothermal surface reaction starts at $368^{\circ}C \Rightarrow$ generation of reactive intermediates (radicals)
- desorption of radicals \Rightarrow gas phase and surface reaction in parallel \Rightarrow no gas phase chain reaction below 433°C
- sufficient radical concentration at $433^{\circ}C \Rightarrow$ ignition of gas phase chain reaction \Rightarrow no heat transport to surface

Cooling:

- the ignited gas phase chain reaction remains operating as long as surface supplies radicals
- breakdown of surface reactions at $368^{\circ}C \Rightarrow$ gas phase chain reactions inhibited