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Preface

Looking at the human history, one may realize that our progress ever was determined by success
and failures in finding solutions to all those riddles put by the nature, and sometimes emerging
as a result of the social evolution.

In the cradle of the civilization along the

(b)

(a)

Figure 1: Pyramids, big ones and little ones:

(a) (color) Pyramids of al-Jizah (Giza), Egypt,

built during the 4th dynasty (c. 2575–c. 2465

BC); (b) STM image of Ge pyramidal islands,

grown on the Si(001) surface—an experiment car-

ried out on the brink of the new millennium (im-

age courtesy of Dr. O. Leifeld, Paul-Scherrer-

Institute, Villigen, Switzerland).

banks of the Nile River, about 3 000 years BC,
our predecessors buried the pharaohs in monu-
mental tombs having the shape of one of the sim-
plest polyhedrons—the pyramid, Figure 1 (a).
Intriguingly, there is a question still not answered
satisfactory about who and how built the gi-
ant pyramids, the largest one among them—
the Great (or Khufu’s) Pyramid—being origi-
nally 147 m high with a base covering area of
53 000 m2 !

Nowadays, fifty centuries since those times,
man has reached unfathomable perfection in ex-
ploring the secrets of matter. Yet, about only
a decade ago, one of the branches of the physi-
cal science, the so-called mesoscopics, offered a
puzzle, perhaps as astonishing as the secrets of
the Egyptian pyramids—a puzzle which, how-
ever, emerged from a world where the character-
istic length scale is just as tiny as the white bar
in Figure 1 (b): 10−6–10−9 m, i.e. 1 µm–1 nm.

In the pursuit of further miniaturization of
the fundamental semiconductor devices [1], such
as transistors or diodes, the nanometer technol-
ogy made it possible that the spatial motion of
the quantum objects, like the electrons in crys-
tals, was confined to lower dimensions. Thus,
terms as two-dimensional electron gas (2DEG)
or one-dimensional (1D) quantum wires were
brought to live in materials science, device and
fundamental physics. We can even count elec-
trons, letting them through the so called quan-
tum point contacts (QPCs), and use them to con-
trol single-electron devices.

A new epoch in this ongoing miniaturization appeared, however, when the charge carriers
were confined to zero-dimensions (0D), i.e. in quantum “boxes”. Of course, the characteristic
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size l of the latter in the three spatial dimensions needs to be of the order of the de Broglie’s
wavelength of the particle(s) confined, l ∼ λ = 2π~/p, where p is the particle quasi-momentum,
~ being the Planck’s constant. Such “boxes” are so small, that another term has been widely
adopted as well: quantum dots, or briefly QDs. One of the technological tools which allowed
this stupendous trick is known as molecular beam epitaxy1 (MBE). Now, the striking fact we
are about to discuss hereafter, was that in the heteroepitaxial growth of the so-called lattice-
mismatched semiconductor systems upon certain conditions such QDs can self-organize in regular
arrays on the substrate surface. In fact, these tiny objects are three-dimensional (3D) and can
have different shapes: pyramids, “hut” clusters, dome clusters etc. A sample image of Ge little
pyramids, acquired by means of in situ scanning tunneling microscopy (STM) [2, 3], is shown
in Figure 1 (b).

Thus, on the brink of the new millennium,
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Figure 2: Number of articles published in the

period 1985–2000, containing the terms ’quantum

dot(s)’ & ’InAs’ or ’GaAs’ in the title, abstract or

the list of key words according to the Science Citation

Index Expanded database 〈wos.isiglobalnet.com〉.

another kind of pyramids is provoking our
knowledge. How these pyramidal islands ar-
range in regular arrays? Why do they have
very similar size and shape within a given ar-
ray. . . ? The answer to these and other re-
lated questions would decide to the utmost
our success in developing the new generation
semiconductor device technologies. Being of
exclusive importance, this topic has triggered
an immense experimental effort, motivating
in parallel numerous theoretical studies. As
a result, an avalanche of publications have
appeared over the past years. One can get
some insight into the time evolution of the sci-
entific activity in this field just by browsing
any of the related citation databases available
on Internet. It would be perhaps fair to say
that the trend observed in Figure 2 bares the
imprint of a “scientific rush”. Many research
groups around the world have contributed to
this process, advancing substantially our un-
derstanding of the basic physical phenomena
in the QDs self-organization. It is therefore

necessary for us to precise, even on a mundane level, the place of the present work in this
enormous scientific production.

This thesis gives an account of the recent progress made at the Theory Department of the
Fritz-Haber-Institut der Max-Planck-Gesellschaft (Berlin, Germany) towards understanding on the
atomic level one of the fundamental processes in QDs formation and crystal growth in general
termed surface diffusion.

From theoretical point of view the diffusion problem has been extensively studied in virtually
every field of the physical science, from colloid physics to stellar dynamics [4]. In the context of
heteroepitaxial growth of semiconductor compounds, whose bulk lattice parameters substantially
differ, a new physical situation emerges, which could be briefly phrased as ‘diffusion on strained
semiconductor surfaces’. Then the question naturally poses itself as to how the new physical
conditions affect the adatom migration on such surfaces? In the following we shall further precise
this question and will attempt to give an answer as complete as possible.

1Literally translated: “ordered on” (from the Greek words επι - “on”, and ταξις - “order”).
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Offering an essentially theoretical work, the reader will find certainly those standard chapters
where the basic method used is briefly described. We feel it appealing, however, a few words
about the latter to be said in the preface. In this thesis the diffusion problem is addressed
within a parameter-free approach based upon the Density-Functional Theory (DFT). In this
respect we have greatly benefited from the tradition established at the Theory Department of
the Fritz-Haber-Institute in exploiting DFT in surface science.

DFT and based on it computational meth-

Figure 3: Typical title on the Science Daily Web

page reflecting the joint effort between experimental

and theoretical groups.

ods2 have become an indispensable tool in the
theoretical treatment of crystal growth. Its
ability to provide hints to the experimental-
ists turns out to be of extreme importance.
As an excellent example we would mention
the collaboration between the Theory Depart-
ment of the Fritz-Haber-Institute and both
experimental and theoretical groups in the
field of semiconductor science and technology
which led to resolving the atomic structure
of the technologically important GaAs(001)-
(2× 4) surface, Figure 3.

This thesis appears after two excellent
theses dedicated to diffusion on GaAs surfaces
and the shape and stability of QDs, respec-
tively: A. Kley’s “Theoretische Untersuchun-
gen zur Adatomdiffusion auf niederindizierten
Oberflächen von GaAs” [5] and N. Moll’s
“Theorie der Form und Stabilität von Quan-
tenpunkten auf III-V-Halbleitern”[6]. It is the
author’s hope that the present study will not
be an exception to the tradition and would be
just as informative to the people working in
this field. Yet, only the reader decides. . .

Berlin, December 1999–September 2001

2The foundations of the density-functional theory and the computational methods in quantum chemistry were
put forward in the pioneering works of Walter Kohn and John Pople, respectively, for which they were awarded
with the 1998 Nobel Prize in chemistry 〈http://www.nobel.se/chemistry/laureates/1998/index.html〉.
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Chapter 1

Introduction

1.1 The challenge of “self-fabrication”

Undoubtedly, semiconductor optoelectronic devices and the technological tools for their fabrica-
tion form the tandem that is the heart of today’s communications industry [7]. A classic example
are the omnipresent quantum-well laser diodes. The appearance of these devices marked a new
stage in energy-level engineering and has reflected the new optical properties pertinent to a
two-dimensional (2D) system, having a step-like density of states (DOS). It was realized, how-
ever, that two-dimensionality, being initially an advantage, poses natural restrictions towards
improvement of quantum-well lasers. As a result, nanostructures of lower dimensionality, i.e.
0D quantum dots (QDs) and 1D quantum wires, which may serve as an active region (layer) in
semiconductor lasers, have recently been attracting unprecedented interest. It is theoretically
predicted [8] that the dramatic change of DOS in these systems compared to a bulk 3D ma-
terial1 will drastically improve the basic device characteristics, leading to much larger optical
gain, differential gain and narrower gain bandwidth. These would thus result in a highly desired
low operation threshold current at room temperature.

It turned out, however, that the standard patterning techniques such as optical lithography
or etching used so far to fabricate QDs and quantum wires did not provide the needed, espe-
cially lateral, confinement of the charge carriers at room temperature. Some of the methods
also introduce various imperfections which may act as nonradiative recombination centers, thus
limiting device performance.

The breakthrough came first with the observation that in the heteroepitaxial growth of
lattice-mismatched semiconductors under certain growth conditions defect-free, or coherent, is-
lands may spontaneously form on the substrate surface. It seems that the first report of this
phenomenon appeared as early as in 1985 [9]. Goldstein et al. observed “. . . In-rich clusters,
whose sizes are less than 100 Å”during molecular-beam epitaxial growth of InAs/GaAs strained-
layer superlattices. Shortly after, Eaglesham and Cerullo [10] and Mo et al. [11] observed self-
assembled coherent islands in the Ge/Si(100) system; Guha et al. [12] achieved coherent islands
in the InxGa1−xAs/GaAs(001) system. The remarkable feature which put these novel structures
in the limelight of materials science was, however, revealed in the analysis of the statistics on
the sizes and arrangement of the islands. By Atomic Force Microscopy (AFM) measurements,
Moison et al. [13] showed for InAs QDs on GaAs that their distribution in sizes displays remark-
ably low dispersion, ±10 %, and that their arrangement is rather regular. Similar results were
reported also by Leonard et al. [14].

1For a bulk material the DOS per unit volume D(E) ∼
√
E, while the corresponding for a quantum wire

D(E) ∼ 1/
√
E. The structure of the energy spectrum of a quantum dot is completely atom-like withD(E) ∼ δ(E).

1



2 1.2 Lattice-mismatched heteroepitaxy and the role of surface diffusion

(a) (b) (c)

Figure 1.1: Crystal growth modes (schematic) according to the classification given by Bauer [22]: (a)

Volmer-Weber mode, or island growth; (b) Frank-van der Merwe mode, or layer-by-layer growth; (c)

Stranski-Krastanov mode, or layer-then-island growth.

Thus the early 1990s brought into focus a novel class of nanostructures, “that could, in
effect, fabricate themselves” [15], with properties making them ideal candidates for applications
in optoelectronic devices. The proof of lasing from III-V QDs [16, 17] only quickened to the
utmost the interest, and now the first self-assembled InGaAs/GaAs QD lasers are a reality. It
was clear, however, that as a prerequisite for achieving the theoretical predictions for the device
performance [8], a thorough understanding of the mechanism(s) of self-organization is required.
This motivated enormous experimental and theoretical activity towards understanding the basic
processes in the heteroepitaxial growth of lattice-mismatched semiconductors with particular
emphasis on direct-gap systems, a typical example being In(Ga)As/GaAs.

For an excellent introduction to the field the reader is further referred to the recent compre-
hensive reviews and monographs [18–20].

1.2 Lattice-mismatched heteroepitaxy and the role of surface
diffusion

Generally in heteroepitaxial growth of thin films, the cohesive/adhesive properties of the deposit
differ from that of the substrate [21]. The lattice constant of the bulk phase of the deposited
material af may also be different from that of the substrate as, thus defining the relative lattice
mismatch of the heteroepitaxial system

ε0 = 1− af
as
. (1.1)

These factors, in turn, determine the functional dependence of the chemical potential of the film
µf(θ) on its thickness θ, which hereafter is assumed to be measured in monolayers (ML). It is the
µ-θ dependence that determines the three types of temporal evolution of the film morphology,
i.e. the growth modes, schematically presented in Figure 1.1.

The thermodynamic criterion that allows one to determine which mode would be adopted
was given by Bauer in 1958 [22] on the basis of considerations of the relation between the surface
energies of the substrate γs, of the epilayer γf , and that of the interface between them γi :

✧ Volmer-Weber (VW) mode [23], if γf + γi > γs;

✧ Frank-van der Merwe (FvdM) mode [24], if γf + γi < γs, ∀θ;

✧ Stranski-Krastanov (SK) mode [25], γf + γi ≶ γs.
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An equivalent thermodynamic criterion can be formulated [21] in terms of µf(θ) , respectively:
dµf/dθ < 0, dµf/dθ > 0, and dµf/dθ ≶ 0. It should be also noted that Bauer’s classification
refers to the thermodynamic equilibrium situation. However, in experimental work the terms
VW, FvdM, and SK are often used in a purely phenomenological sense.

It has been established that the formation of strained coherent islands occurs in SK growth
of semiconductor systems with large lattice mismatch, |ε0| & 2 %. Up to now self-assembled
QDs have been achieved in this growth regime for a variety of systems based on III-V compound
semiconductors, such as InAs/GaAs(001), InGaAs/GaAs(001), InAs/InP(001) to name a few,
for SixGe1−x/Si(001), and even for “exotic” materials like PbSe/Pb1−xEuxTe [26].

In the following, we shall be particularly
T = 600 Ks

J 10 mol cm sAs
12 -2 -1

2
»

J 10 (atoms cm s )Ga
12 -2 -1

1.0

0.5

0.0
0.0 1.0 2.0 3.0 11.0

As2
S

Figure 1.2: Sticking coefficient of As2 on a

GaAs(001) surface at 600 K as a function of the

Ga flux after Foxon and Joyce [27] (reproduced with

the kind permission of the authors, c©1977 North-

Holland Publishing Company).

concerned with the InAs/GaAs(001) mate-
rial system for which ε0 ' −7%. As men-
tioned already, its electronic structure and
transport properties has made it of primary
technological importance. InAs QDs are typ-
ically fabricated by both conventional MBE
and Metal-Organic Chemical Vapor Deposi-
tion (MOCVD). The initial “delivery” of InAs
to the GaAs(001) surface leads to formation of
a 2D film usually referred to as a wetting layer
(WL). Because of the large lattice misfit the
WL is metastable, and above a critical cov-
erage of θc =1.5–1.8 ML 3D coherent islands
form, as they provide an efficient way to re-
lieve the strain-induced elastic energy. How-
ever, still there is no consensus about the mechanism underlying this 2D → 3D transition and
the island ordering in sizes, and a number of both thermodynamic and kinetic models have been
proposed so far in the literature.

Detailed measurements of mass transfer in the SK growth of InAs on GaAs however strongly
indicated that “strain-dependent kinetics must be a key ingredient of an appropriate theoretical
framework describing the QD formation”, cf. Ref. [28]. On the other hand, in the MBE growth
of arsenide compound semiconductors it is the surface diffusion2 that mainly governs the incor-
poration of the cation species, e.g., Ga, In, Al, whereas the kinetics of arsenic incorporation is
dominated by adsorption/desorption of As2 or As4 molecules at surface sites with enhanced local
population of cations [30]. The latter realization dates back to the dawn of MBE experiments
and has been best demonstrated in the studies of As2-Ga interaction kinetics on GaAs(001),
Figure 1.2: the sticking coefficient of As2 approaches unity for adequate Ga population and,
vice versa, is zero if no Ga atoms are present on the surface.

When put together these experimental findings constitute the essence of a problem whose
theoretical treatment is the main goal of the present work: how diffusion properties of a cation
change on a semiconductor surface that supports strain, and what are, eventually, the mor-
phological consequences for the heteroepitaxial growth of self-assembled QDs? It is somewhat
surprising that this question has not been given due attention so far, and the impact of strain
on the surface diffusion process still remains elusive, although attempts to make its effect clearer
date back to the last decade [31]. Scarce information on the influence of strain is available re-
cently from molecular dynamics (MD) simulations based on empirical potentials [32]. Therefore

2The notion of surface diffusion, interestingly, has been deduced in the early experiments in the field of crystal
growth. It seems that Volmer and Estermann were the first to invoke surface diffusion arguments to rationalize
the experimentally observed growth kinetics of Hg crystals [29].
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there is a clear need for rigorous analysis of the problem that, apart from qualitative trends,
would be able to provide quantitative estimates for the strain renormalization of adatom diffu-
sivity, and thus will shed light on the relevance of strain-induced limitations in growth kinetics
of strained islands. The results from such an analysis would also allow for a more detailed com-
parison to adatom diffusivity on metal surfaces and bulk materials, where the effect of strain
has already gained substantial understanding [33–37].

The problem of surface adatom diffusion in InAs/GaAs(001) heteroepitaxy turns out to be
even more intricate than it appears at first sight. As we have just mentioned the growth mode
classifications dating back to Bauer [22], Figure 1.1, tend to be used to indicate the type of
resultant growth morphology. Thus, if one sticks to the original “taxonomy”, the SK growth of
InAs on GaAs(001) should be characterized first by formation of a pure, or nearly pure InAs
WL, and further nucleation and growth of islands of the same composition. However, a body of
experimental evidence (we shall consider it in detail in Chapter 5) has appeared that the actual
growth process deviates from the classical notion of SK growth, both in its initial and later
stages. The distinguishing characteristic of this “quasi-SK” mode is the substantial InAs-GaAs
alloying taking place once InAs is delivered to the GaAs substrate within the experimentally
relevant temperature range and not too low deposition rate. As a result, the WL is to be more
appropriately described as a strained ternary InxGa1−xAs alloy. Such a realization, by itself,
entails a number of questions that need be clarified by any theoretical scheme attempting a
microscopic description of InAs/GaAs(001) heteroepitaxy: What is the atomic structure of the
WL surface? How does the adatom migration on such a WL compare to that on the clean
substrate etc.. . . ? Current specialized literature, admittedly, does not provide an unambiguous
answer to these points. Thus, we find it of particular interest, but also regard it as a crucial
prerequisite to cover this issue within the framework of the powerful first-principles approach
mentioned in the Preface. The QD self-assembly in this heteroepitaxial system certainly contains
far more rich physics, thus we have tried to put emphasis on those problems where the ab
initio treatment is particularly valuable in providing information hardly accessible from other
theoretical methods or experiment. A brief survey of the present work’s contents is given in the
next section.

1.3 Overview

In what follows we have attempted a more topical structure of the thesis rather than following
the actual computational steps taken during the period of completion of the study. Thus, original
results may be found also in the introductory chapters.

We start first with a description of the theoretical grounds of this study: density-functional
theory and the plane-wave pseudopotential method (Chapter 2), elasticity theory (Chapter 3),
and the theory of diffusion on regular lattices (Chapter 4). In Chapter 5 a detailed analysis of the
early stages of InAs deposition on GaAs(001) is carried out. We address the clean (001) surfaces
of GaAs and InAs in Sec. 5.2 as a first step, and then the stability of the InGaAs(001) alloy
wetting layer is discussed in Sec. 5.3. Indium diffusion on the (2×3)-reconstructed InGaAs(001)
WL is considered in Sec. 5.4. Chapter 6 is dedicated to the microscopic analysis of In diffusivity
on the bare GaAs(001) substrate. For the example of In/GaAs(001)-c(4 × 4), we calculate the
microscopic characteristic of the migration potential in the conventional case of an unstrained
substrate. Then we consider a situation where the latter surface is subject to isotropic strain,
and the resulting renormalization of In diffusivity is discussed in detail in Sec. 6.4. The possible
implications for the growth kinetics of strained islands in lattice-mismatched heteroepitaxy are
discussed in Chapter 7, where we critically reexamine the microscopic results from the previous
analysis. Finally, we provide a brief Summary of the results obtained in the present work.



Chapter 2

Elements of computational materials
science

Modeling of complex systems and phenomena is a powerful method towards understanding,
predicting, and eventually controlling different aspects of the latter. In materials science, the
systems of interest typically consist of many particles (electrons, nuclei, atoms, molecules etc.),
of the order of Avogadro’s constant NA = 6.022× 1023 mol−1.

In a pure state, the N -particle quantum-mechanical system is described by a generally
complex-valued function of the particles’ spatial and spin coordinates Ψ(ξ1, ξ2, . . . , ξN ), with
ξi = (ri, si) being, respectively, the position and the spin of the ith particle. Solving the
Schrödinger equation for Ψ when N ∼ NA is neither useful nor possible.1 Our aim is to explore
the basic processes in semiconductor heteroepitaxy. But for these we would be inevitably bound
to solve a problem of a similar size. Fortunately the Lord is merciful and enabled us to develop
approximate methods which in conjunction with todays’ powerful computing machinery allow
the principles of quantum mechanics, which we usually call first, or ab initio, principles, to be
applied to real poly-atomic systems [38].

2.1 Hierarchy of approximations

Consider a system consisting of Ne electrons with coordinates r ≡ {ri} and Ni ions at points
R ≡ {RI}, in absence of external fields. When relativistic effects are negligible, its Hamiltonian
has the well-known structure

H =

Ne∑

i

p2i
2m

+

Ni∑

I

P2I
2MI

+ Vee(r) + Vei(r,R) + Vii(R), (2.1)

where the first two terms are the kinetic energies, Te and Ti, of the electronic and ionic subsystem,
respectively, and the contributions by the electron-electron, electron-ion and ion-ion Coulomb
interaction are denoted Vee, Vei, and Vii.

Early in 1927, Born and Oppenheimer already realized that the Hamiltonian of Eq. (2.1)
can be treated perturbatively [39] because of the usually small Ti due to the large masses of the

1In one of his lectures given at the Fritz-Haber-Institute, E. K. U. Gross used the following example to illustrate
the typical size of the full many-particle problem. Consider the nitrogen atom having 7 electrons (1s22s22p3)
described by 7 × 3 = 21 spatial coordinates. Let us estimate now the size of a rough table of the corresponding
wave function. Assuming only 10 entries per coordinate and 4 bytes per entry would give 4 × 1021 bytes. If we
want to store such a table on compact disks (CDs), say, each of 6.5×108 bytes size, then we would need ≈ 6×1012

CDs. Taking into account that a CD weighs about 10 g we end up with a demand of 6× 107 tons of CDs. . . :-)

5



6 2.1 Hierarchy of approximations

atomic nuclei; recall that the mass of a nucleon ∼ 103 ×melectron. In the spirit of perturbation
theory [40], H is cast in the form

H ≡ Te + Vee + Vei + Vii︸ ︷︷ ︸
H0

+Ti = H0 + λ4H1, (2.2)

with λ = (m/M0)
1/4 being the small parameter introduced by Born and Oppenheimer, where

M0 is some of the nuclear masses or their mean. Suppose that we have found the spectrum
{Un(R)} and eigenstates {ψn(r,R)} of the zero-order approximation H0 for some R = R0,
which is nothing but the Hamiltonian of the system for fixed nuclei. The complete neglect of
the Ti term, i.e. setting λ ≡ 0 in (2.2), yields the Born-Oppenheimer (BO) approximation. The
total energy of the many-particle system in this case is simply Un(R0) = En(R0) + Vii(R0),
where En(R0) is the spectrum of the many-electron Hamiltonian He = Te+Vee+Vei, depending
parametrically on the nuclear coordinates. However, in the BO approximation the assumption
is usually made that the electronic component stays in its ground state, n = 0, thus in the
following the term (ground-state) total energy for a particular configuration R of the nuclei will
refer to the quantity

E(R) ≡ U0(R) = E0(R) + Vii(R). (2.3)

In fact E(R) is a hypersurface in the configurational space spanned over the 3Ni nuclear degrees
of freedom and is usually termed the potential energy surface (PES).

Beyond the zero-order approximation solution to the exact Hamiltonian (2.1), for some R
close to R0, R−R0 = λu, is sought in the form

E = U (0)n + λE(1)n + λ2E(2)n + · · · , Ψ(r,u) = Ψ(0)n + λΨ(1)n + λ2Ψ(2)n + · · · . (2.4)

Born and Oppenheimer have shown [39, 41] that the zero-order approximation to the wave

function simply factors into a product of the zero-order electronic ψ
(0)
n (r) and nuclear wave

functions Φ(0)(u), i.e. Ψ
(0)
n (r,u) = Φ(0)(u)ψ

(0)
n (r), and the nuclear wave function satisfies the

Schrödinger equation,

λ2

[
−

Ni∑

I

(
M0

MI

)
~2

2m
∇2u

I
+ U (2)n + E(2)n

]
Φ(0)(u) = 0, (2.5)

where the second-order term λ2U
(2)
n ∼ λ2u2 in the expansion of Un(R0 + λu) plays the role of

an effective potential for the nuclear motion. It is immediately apparent that Eq. (2.5) describes
harmonic nuclear oscillations around R0, and the electrons move as if the nuclei are fixed at R0.
Thus, if the wave function in Eq. (2.4) is truncated up to the first order one obtains the harmonic
approximation. For the understanding of many features of condensed systems one needs to go
to higher approximations, but it turns out that no more than a step can be made further that
still preserves the simplicity of the harmonic approximation and yet is an improvement over the
latter. Indeed, if the perturbative expansion is only made up to terms O(λ2), the wave function
can be written as

Ψn(r,u) = [Φ(0)(u) + λΦ(1)(u) + λ2Φ(2)(u)]ψn(r,R). (2.6)

The physical picture that emerges in the interpretation of (2.6) is the adiabatic approximation:
the motion of the nuclei is described by the first factor and the electronic component adiabat-
ically follows the nuclear motion by adapting to the instantaneous nuclear configuration, as it
follows from the presence of R in the argument of the electronic wave function ψn. The PES
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determined within the adiabatic approximation, i.e. E(R) for all possible R, is the commonly
termed adiabatic PES. It is the PES that contains all the important information for the diffusion
process of adatoms on surfaces (Sec. 5.4, Sec. 6.2, and Sec. 6.3 present particular examples of
PES “mapping”).

The adiabatic picture is no longer applicable once we take into account terms O(λ3) or higher
orders. On the other hand, the BO approximation itself is inapplicable when Ti is not negligible
as in high-energy atom-surface collisions, or when electron-phonon coupling and electronic tran-
sitions to excited states are important. The properties of the systems and phenomena discussed
here can be, however, understood on the basis of the BO and the adiabatic approximation. Fur-
thermore the latter provide quite simple concept towards ab initio molecular dynamics (MD),
especially if the nuclei can be treated as classical charged particles:2

✧ For a particular fixed configurationR one solves the Schrödinger equation for the electronic
ground state, Heψ0(r,R) = E0(R)ψ0(r,R), or

−

Ne∑

i

~2

2m
∇2ri +

1

2

1

4πε0

Ne∑′

i,k

e2

|ri − rk|
− 1

4πε0

Ne∑

i

Ni∑

I

(ZIe)e

|ri −RI |


ψ0(r,R) = E0(R)ψ0(r,R),

(2.7)
where

∑′ indicates that the double summation includes only terms with i 6= k, ε0 is the
dielectric permeability of vacuum, and ZIe is the charge of the Ith nucleus;

✧ The ions are then moved classically according to the forces F calculated from E0(R),

MIR̈I = −∇RI
U0(R) = −∇RI

[E0(R) + Vii(R)] ≡ FI . (2.8)

The next level in the hierarchy of approximations appears when treating the many-electron
problem, Eq. (2.7). The latter by itself is of the same order as the one for the total Hamiltonian
H and is practically intractable for the systems under consideration. Dramatic reduction of the
degrees of freedom thus can be achieved if the many-electron problem is reformulated in terms
of an effective one-electron picture. The classic example described in all textbooks on quantum
mechanics is the Hartree-Fock (HF) approximation, where one employs a Slater determinant of
one-electron orbitals ϕi(ξi), ψ(ξ) = (1/

√
Ne!)

∑
P{p1,p2...}

(−1)Pϕp1(ξ1)ϕp2(ξ2) . . . ϕpNe
(ξNe) (P

being the parity of the permutation of state indices {p1, p2 . . .}, and the sum is over all permu-
tations) as a trial wave function, and the ground state of He is determined from a variational
principle. The HF approximation and its extensions have served as the ground for the major-
ity of the state-of-the-art computational methods in quantum chemistry, but when applied to
extended systems, such as crystals, one encounters principle problems. Suffice it to say that it
does not describe the electronic screening properly [38], which is a fundamental property of the
interacting electron systems.

Another “approach to the quantum many-body problem”, however, substantially increased
the scope of system sizes and phenomena complexity that can be treated from first principles. It
is the Density-Functional Theory (DFT) that allows for a maximum reduction in the degrees of
freedom by reformulating the many-body problem in terms of the single particle density [43,44].

DFT-based calculations have proven to be an efficient tool to explore the elementary processes
of crystal growth. Recent reviews provide quite a comprehensive account of the progress in this
field: please see, for example, the works by Ruggerone et al. [45], Ratsch et al. [46], Kratzer et
al. [30]. In the rest of this chapter, we briefly outline the main framework of the DFT formalism
and discuss features of the particular implementation used in the present work.

2See, for example, Sec. 3 in Ref. [42] for more detailed discussion on the applicability of classical and quantum
description.
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2.2 Density-Functional Theory (DFT) in a nutshell

2.2.1 Basic formalism

The origins of the density-functional formalism can be traced back to the Thomas-Fermi model
and its extensions. The “basic variable” in such an approach is the electron density n(r).3

The rigorous foundations of DFT were put forward in the pioneering work by P. Hohenberg and
W. Kohn [47] that appeared in 1964. They have originally established the following theorem [43,
47].theorem

Theorem 1 (Hohenberg-Kohn) Given an arbitrary number of electrons Ne moving under the
influence of static, local, and spin-independent external potential v(r), leading to the Hamiltonian

He = Te + Vee + v, (2.9)

with non-degenerate ground state ψ0, and corresponding ground-state density n0(r), being a func-
tional of v(r),

n0(r) ≡
〈
ψ0

∣∣∣∣∣

Ne∑

i

δ(r− ri)
∣∣∣∣∣ψ0

〉
, (2.10)

it follows then that

① [invertability] v(r), and therefore ψ0 are (to within a constant) unique functionals of n0(r);

② [variational access & universality] The energy functional

Ev[n] ≡
∫
v(r)n(r)dr+ F [n], (2.11)

where F [n] ≡ 〈ψ0|Te + Vee|ψ0〉 is a universal functional, assumes its minimum value for
the correct n(r),

E0 = min
n
Ev[n], (2.12)

if the admissible functions are restricted by the condition

N [n] ≡
∫
n(r)dr = Ne, n(r) > 0. (2.13)

The Hohenberg-Kohn theorem asserts the existence of the universal functional F [n], but “it
does not tell us how to construct” it formally [43]. Shortly after, in 1965, Kohn and Sham [48]
proposed an equivalent orbital scheme to treat the variational problem (2.12)–(2.13) that has
turned out to be the crucial step towards applications of the DFT.

The gist of their scheme is the existence of an auxiliary problem for non-interacting par-
ticles, with kinetic-energy functional Ts[n], and local single-particle potential vs(r), such that
the ground-state density of the interacting system n0(r) is reproduced by that of the aux-
iliary problem ns,0(r), n0(r) = ns,0(r). Then from the “auxiliary” one-particle Schrödinger
equation [−(~2/2m)∇2r + vs(r)]ϕs,i(r) = εiϕs,i(r) one gets a representation of n0(r), n0(r) =∑Ne

i |ϕs,i(r)|2. By virtue of the Hohenberg-Kohn theorem ϕs,i(r) = ϕs,i([n]; r), and therefore
Ts[n] is also a unique functional of n(r). The major advantage thus achieved was the exact
representation of the kinetic energy term, Ts[n] =

∑Ne
i

∫
ϕs,i(r)

∗[−(~2/2m)∇2r]ϕs,i(r)dr.
3In what follows r denotes a single Cartesian vector and should not be confused with the same notation used

in the context of Sec. 2.1.
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With this central assertion, for a particular external potential v(r) leading to ground-state
density n0(r), Eq. (2.11) can be written in the form

Ev[n] =

∫
v(r)n(r)dr+

1

2

e2

4πε0

∫∫
n(r)n(r′)

|r− r′| drdr
′ + G[n], G[n] ≡ Ts[n] + EXC[n], (2.14)

where, by definition, EXC[n] is the exchange-correlation energy functional of the interacting
system with density n(r). From the stationarity of Ev[n] upon density variations δn, such that∫
δn(r)dr = 0 (cf. Eqs. (2.12)–(2.13)) and the orbital representation of the kinetic term and n0,

Kohn and Sham have derived the system of equations to determine the auxiliary potential vs(r)
“generating” the quantity n0(r). The Kohn-Sham equations read [43,48]:

n0(r) =

Ne∑

i=1

|ϕ0,i(r)|2 (2.15)

HKS ϕ0,i(r) ≡
[
− ~2

2m
∇2r + vs([n0]; r)

]
ϕ0,i(r) = εiϕ0,i(r) (2.16)

vs([n0]; r) = v(r) +
e2

4πε0

∫
n0(r

′)

|r− r′|dr
′ + vXC([n0]; r), (2.17)

where the exchange-correlation potential is defined as the functional derivative of EXC[n],

vXC([n0]; r) =
δEXC[n(r)]

δn(r)

∣∣∣∣
n0(r)

. (2.18)

It is immediately apparent that the Kohn-Sham equations need to be solved self-consistently
due to the density dependence of the effective Kohn-Sham potential vs. In contrast to the HF
scheme, however, vs is common for all one-particle Kohn-Sham orbitals ϕ0,i(r). Thus, starting
from some initial guess for the density, n[0](r), the effective Kohn-Sham potential is set up
according to Eqs. (2.17), (2.18) and the new density n[1](r) is generated by Eqs. (2.16), (2.15)
and so forth. This procedure is repeated until a certain convergence criterion is fulfilled.

Once the self-consistent density is obtained, the ground-state total energy is computed from
Eq. (2.3), where E0 is given by the exact (alternative to (2.14)) expression

E0 =

Ne∑

i

εi −
1

2

e2

4πε0

∫∫
n0(r)n0(r

′)

|r− r′| drdr′ + EXC[n0]−
∫
vXC([n0]; r)n0(r)dr. (2.19)

Equation (2.19) is, in fact, the one given originally by Kohn and Sham in Ref. [48], and tied
to the original formulation of the Hohenberg-Kohn theorem. Subsequently the latter has been
generalized for degenerate ground state, spin-polarized systems, relativistic systems etc., thus
different modifications of Eq. (2.19) are available in the literature [43,44].

It should be stressed once again that the DFT formalism is exact in principle, only EXC[n]
must be approximated. Over the years a bunch of approximate expressions have appeared and
we shall briefly discuss them. Another stream of approximations have developed for the needs
of numerical treatment of Eq. (2.19) and will be addressed later in this chapter.

2.2.2 Approximations to EXC[n]: LDA, GGA

Already in their original work Ref. [48] Kohn and Sham considered the limiting case of slowly
varying densities, exploiting the Hohenberg-Kohn result [47],

EXC[n] ≈ ELDAXC [n] =

∫
εunif
XC

(n(r))n(r)dr, (2.20)
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with εunif
XC

(n) = εunif
X

(n) + εunif
C

(n) being the exchange & correlation energy per electron of a uni-
form electron gas of density n. In calculating the integral (2.20) the function εunif

XC
is evaluated

for the local density n(r) of the inhomogeneous system under consideration. The approximation
thus defined is the well-known Local-Density Approximation (LDA), or local spin-density ap-
proximation (LSDA) for spin-polarized systems, respectively, in which case εunif

XC
(n↑, n↓) takes as

arguments the spin-up and spin-down densities, n↑ and n↓, n↑(r) + n↓(r) = n(r). The exchange
part of εunif

XC
in atomic units (used hereafter) reads εunif

X
(n) = − 3

4π (3π
2n)1/3. The correlation

part εunif
C

is available explicitly as an asymptotic expansion in the low [49] and high-density [50]
limits. In practice, more recently one makes use of different parameterizations of the quantum
Monte-Carlo results of Ceperley and Alder [51]. For the LDA results reported here we have used
the one proposed by Perdew and Zunger [52]. It employs Ceperley’s parameterization [53] for
rs > 1, rs = (4π3 n)

−1/3 being the local Wigner-Seitz radius, which is smoothly tailored at rs = 1
to Gell-Mann and Brueckner’s result for high densities [50], 0 6 rs 6 1. For spin-unpolarized
densities, i.e. ζ ≡ (n↑ − n↓)/n = 0, it is given by

εLDA
C

(n) =





−0.1423
1 + 1.0529

√
rs + 0.3334 rs

, rs > 1

−0.048 + 0.0311 ln rs − 0.0116 rs + 0.002 rs ln rs, 0 6 rs 6 1
. (2.21)

The LDA is the most widely used approxi-
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Figure 2.1: Enhancement factor FXC(rs, s) for

the PW91 exchange-correlation functional (image

courtesy of Martin Fuchs). Projections for 10

equidistant values of rs are made onto the FXC-s

face of the plot. The local-density limit, s → 0

is given as the projection onto the FXC-rs face,

FXC(rs, 0) = FLDA
XC (rs).

mation, and a number of its properties are now
known and understood. It performs best for
(simple) metals, while for semiconductors and
insulators the band gap is underestimated by
up to 50 % in some cases, but this problem,
admittedly, is rather pertinent to the DFT in
principle. As regards cohesion and binding, the
LDA is found to “overbind”. As a result, the cal-
culated cohesive energies of solids and atomiza-
tion energies of molecules come out larger com-
pared to experiment, while lattice constants and
bond lengths are, respectively, smaller. Though,
LDA provides a rather adequate description of
bulk elastic properties for the systems under con-
sideration. Section 3.2 gives more details con-
cerning GaAs and InAs. Systematic deviations
are additionally found in the energetics of sur-
face chemical reactions; some trends are exem-
plified below for the hydrogen passivation of the
Si(001) surface. For a comprehensive overview of
LDA/LSDA the reader is referred, for instance,

to Sec. IV of Ref. [54] and Secs. 7.1 and 7.2 of Ref. [43].

A number of methods have been developed to remedy the deficiencies of the LDA. For a
system of nonuniform density EXC may no longer be adequately represented by Eq. (2.20), thus
one immediate modification appears to be the inclusion of gradient terms ∇n, which leads to
the Generalized Gradient Approximation (GGA) ,

EGGAXC [n] =

∫
f(n,∇n)dr. (2.22)
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Research is being carried out by many groups and various recipes for constructing f(n,∇n) have
been proposed. Commonly used forms of EGGAXC are, for example, those by Becke [55] (exchange
part) and Perdew [56] (correlation part) (BP), Becke [55] (exchange part) and Lee-Yang-Parr [57]
(correlation part) (BLYP), Perdew and Wang [58, 59] (PW91, known also as GGA-II), or the
new revision of PW91 by Perdew, Burke and Ernzerhof [60] (PBE).

The operation of the GGA is conveniently
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Figure 2.2: Performance of different exchange-

correlation functionals studied for the reaction ener-

getics of H2 dissociative adsorption and desorption

at the Si(001) surface.

described using as variables rs and the re-
duced (dimensionless) density gradient s(r) =
|∇n|/2kFn|n→n(r), where kF is the Fermi wave

vector, kF = (3π2n)1/3; the typical range for
s, e.g., in Al is s ' 0–3 [61], and for Si its
average value is ' 0.66 [62]. The non-locality
of the GGA is then expressed in terms of an
enhancement factor FXC over the local ex-
change [60], and Eq. (2.22) is rewritten as (ab-
sence of spin polarization is implied, ζ = 0)

EGGAXC [n] =

∫
εunif
X

(n)FGGAXC (rs, s)dr. (2.23)

The characteristic shape of FXC, i.e. the non-
locality, is shown in Figure 2.1 for the PW91
exchange-correlation functional; cf. also Fig-
ure 1 in Ref. [60] and the corresponding dis-
cussion therein. For all results reported in this
work, obtained within the GGA, we employ
the PBE functional, which is numerically very
similar, but simpler, compared to the PW91
functional. As features, shared by the PW91
and PBE functional, being in principle com-
mon for the GGA’s, and particularly relevant
to the present work, one can mention the im-
proved cohesive energies of solids compared
to LDA. Anticipating the further discussion,
the lattice constants of GaAs and InAs, calcu-
lated with the PBE EXC, however, are found
bigger than the experimental values (see Ta-
ble 3.1 on page 23). In the context of the
present study we note also that the surface
free energies within GGA are typically lower than the LDA-calculated values.

An example where the GGA is expected to improve over the LDA is the energetics of surface
chemical reactions. In an earlier work [63] we have studied the performance of different func-
tionals in the case of molecular hydrogen desorption and dissociative adsorption on the Si(001)
surface. The quantities of importance have meaning of relative energies—usually small differ-
ences of two large energies. The reaction energetics (adsorption, desorption barriers Eadsa , Edesa ,
and reaction enthalpy Erxn) was calculated for three cluster models of the clean Si(001) surface,
Si9H12, Si15H16, Si21H20, and then compared to a reference extended 5-layer slab model, assum-
ing the so-called pre-pairing scenario for the H2/Si(001) reaction mechanism (for an overview,
see for example Ref. [64]). The tests employed the LDA, BP, PW91 and BLYP functionals
and results are summarized in Figure 2.2. What is to be noticed is (i) the well-pronounced
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effect of the size of the system used to model the clean Si(001) surface; (ii) noticeable interplay
between the system size and EXC; (iii) different performance of the LDA and GGA function-
als. For discussion on the first two points we refer to Ref. [63]. Concerning the performance of
the functionals, we found that LDA underestimates the barrier to adsorption Eadsa . This is in
accord with the established picture that LDA tends to underestimate the adsorption barriers at
surfaces [65, 66]. For the slab model Eadsa is just vanishing, so the use of a GGA functional is
crucial for getting the correct qualitative behavior, complying with the experiment. The LDA
calculations provided also the lower bound for the desorption barrier Edesa . The heat of reaction
within LDA is larger than in GGA and, as seen from the bottom panel of Figure 2.2, the GGA
functionals give very similar results for Erxn. Thus the major effect in the change of the latter
quantity for the models considered comes from the type of approximation scheme used for EXC,
LDA versus GGA, while details in constructing f(n,∇n) seem to have only minor influence.

Besides the GGA scheme there exist other methods to go beyond the local-density approxi-
mation: the Self-Interaction Correction (SIC), the Optimized Effective Potential (OEP) method
etc., and the method of choice is often determined by the aspects of the process and properties
that need to be described. For an overview of these schemes, please see for example Section 2.7
in Ref. [38].

2.3 Practical aspects of DFT implementation schemes

2.3.1 Supercell approximation & plane-wave basis set

DFT allows the many-body problem, Eq. (2.7), to be mapped onto an effective single-particle
picture. Nonetheless, one could hardly solve the Kohn-Sham equations for 1023 electrons moving
in certain effective potential. This difficulty can be overcome if we consider only a “minimum
representation”of the system to be studied: e.g., the bulk unit cell for crystals, a slab representing
a surface (including eventually adsorbate structures) etc. This “proto-image” is put in a supercell
with certain size and symmetry properties, Figure 2.3. The supercell is a prism spanned by three
basis vectors a1, a2, and a3, and its volume is given by4 Ω = a1 · (a2 × a3) = εijka1,ia2,ja3,k,
where εijk is the unit fully antisymmetric (Levi-Civita’s) tensor. Periodic images of the supercell
are generated by translations t = n1a1 + n2a2 + n3a3, with ni = integer.

A surface can be viewed as a defect in the bulk crystal structure which destroys the perfect
periodicity in a certain crystallographic direction n. Such an aperiodic system is modeled within
the supercell approach by a slab representing a given number of atomic layers ∆s along the
surface normal n which are separated by a vacuum region ∆v. The values of ∆s and ∆v are
system specific but generally ∆s should be chosen large enough so that the interaction between
the two surfaces of the slab is negligible; the thickness of the vacuum “layer” ∆v also needs to
be sufficient not to introduce artifacts from the artificial periodicity along n. In the following
we explicitly specify details for the supercell used in each particular calculation. Supercells for
three typical classes of systems are sketched in Figure 2.3.

The treatment of electronic states in an external periodic potential, v(r + t) = v(r), is a
standard problem in solid state physics (see, for example, Chapter VI in Ref. [67]). The wave
function of a stationary state must satisfy the same translation invariance (within a phase factor),
ϕ(r + t) = const × ϕ(r). The Bloch theorem states that a wave function with such a property
has the form

ϕn,k(r) = eik·run,k(r), where un,k(r+ t) = un,k(r), (2.24)

n is the band index, k is the electron quasi-momentum, and 〈ϕn′,k′ |ϕn,k〉 = δnn′δkk′ . Being a

4In the following we use the Einstein summation convention:
∑

iAiBi ≡ AiBi ≡ A1B1 +A2B2 + · · · .
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(a)

∆s

∆v
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|a1|

(b)

(c)

Figure 2.3: Schematic representation of three basic types of systems: (a) Simple cubic unit cell for

bulk zincblende structure; (b) Slab representing GaAs(001) surface (2D projection onto the x-z plane)

with ∆s equal to 7 atomic layers and ∆v equivalent to ' 6 interlayer distances; (c) large supercell for an

isolated cluster (Si9H12).

periodic function, un,k can be expanded in a Fourier series, un,k(r) = (1/
√
Ω)
∑

G cn,k+G exp(iG·
r), where in principle the sum goes over an infinite number of reciprocal lattice vectors G =
m1b1+m2b2+m3b3, with (b1,b2,b3) being the basis in the reciprocal space and mi = integer.
Substituting the expansion for un,k into Eq. (2.24) we obtain

ϕn,k(r) =
1√
Ω

∑

G

cn,k+Ge
i(k+G)·r. (2.25)

This representation of the single-particle state ϕn,k is referred to as a plane-wave expansion.
Using the above expression for the Kohn-Sham orbitals, Eq. (2.16) takes a simpler secular form
with a diagonal kinetic term, and including the Fourier images of the potentials in the right-hand
side of Eq. (2.17),

∑

G′

[
1

2
|k+G|2δGG′ + v(G−G′) + vH(G−G′) + vXC(G−G′)

]
cn,k+G′ = εn(k)cn,k+G.

(2.26)
In practice, however, instead of the infinite series (that has to be made for each k) one uses a
truncated plane-wave expansion to include terms with kinetic energies only up to certain cutoff
E✄,

1

2
|k+G|2 6 E✄. (2.27)

The “quality” of the so produced finite basis set is entirely controlled by the energy cutoff—the
higher the E✄, the better the plane-wave representation. Note also that, by virtue of Eq. (2.27),
the number of G vectors, i.e. the number of plane-wave basis states NPW, is generally different
for each k, thus an alternative description in terms of the mean number of plane waves N̄PW can
be also employed. One says that an absolute convergence with respect to E✄ is achieved when
the total energy E no longer changes with increasing E✄. For this, in principle, very high cutoffs
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are required. Many of the quantities of interest are obtained as differences between total energies
(e.g., diffusion barriers) and it turns out that they “converge” much faster with respect to E✄,
thus calculations at lower cutoffs can be performed, and the value of E✄, ensuring “convergence”
of the calculated quantity, is determined by tests. For most of the results obtained in this work we
use E✄ = 10 Ry = 136.058 eV. The principle factor, however, that allows significant reduction
of the energy cutoff in calculations using plane-wave basis set is the pseudopotential concept,
briefly outlined in the next subsection.

2.3.2 Ab initio pseudopotentials, the fhi98PP package

The external potential v for the electrons is the superposition of the nuclear Coulomb potentials,
v(r) := −∑I ZI/|r−RI |. The electron wave functions in such a singular potential are rapidly
oscillating due to orthogonality, which leads to high kinetic energies. Very large E✄ would be
required to reproduce these rapid oscillations in the plane-wave expansion (2.25). Since the
number of matrix elements (HKS(k))GG′ increases as the squared number of plane-wave basis
states, N2

PW, then the “all-electron” problem may well become intractable for large systems (in
fact, already diamond is too hard), at first, because of high memory demands.

On the other hand, most properties of the condensed systems can be well described by
the valence electrons while the highly localized core electrons have only minor influence. The
concept of a pseudopotential (for an overview please see, for example, Ref. [68]) exploits these
features and within the frozen-core approximation eliminates the core electrons. This provides a
“softer”potential for the valence electrons which are described by nodeless pseudo wavefunctions.
Thus, a crucial parameter in the construction of atomic pseudopotentials is the cutoff radius
r✄, dividing the electron shell into a (chemically inert) core region (r 6 r✄), and a valence
region (r > r✄) responsible for the chemical bonding. The choice of r✄ should ensure that
the pseudopotential describes adequately the scattering properties of the ion in diverse atomic
environments, a property usually referred to as transferability. Yet, they have to be efficient in
reducing the overall computational effort.

Generally a norm-conserving pseudopotential is represented in the “semilocal” operator form

〈r|vps|r′〉 = vloc(r)δ(r− r′) +
lmax∑

l=0

l∑

m=−l

Y ∗lm(Ωr)δv
ps
l (r)

δ(r − r′)
r2

Ylm(Ωr′), (2.28)

where the local pseudopotential vloc(r) is independent of the angular momentum component l,
whereas the semilocal part contains components δvpsl (r) = vpsl (r)− vloc(r) for each l, Ylm being
the spherical harmonics, and Ωr is the body angle in the direction of r.

In this work, we use the plane-wave basis set in conjunction with ab initio pseudopotentials
generated and tested with the fhi98PP program package written by Martin Fuchs [69], which
provides as tools the pseudopotential generator psgen and an excellent testing utility pswatch.
The fhi98PP code implements the Hamann [70] and the Troullier-Martins [71] schemes for
generating norm-conserving pseudopotentials (different schemes have been proposed, e.g., in
Refs. [72, 73]).

As a first step, psgen solves the all-electron atom in a given reference configuration, obtaining
the all-electron potential and valence states. Then, within the selected scheme (Hamann or
Troullier-Martins) it creates intermediary screened pseudopotential vps,scrl (r) by inverting the
Schrödinger equation for the radial pseudo wavefunction Rpsl . The pseudo wavefunction is subject
to the requirements:

✧ for given l the corresponding eigenvalue should reproduce that of the reference state,
εpsl ≡ εnl, and the logarithmic derivatives of the pseudo and all-electron wavefunction Rnl

match for r > r✄
l ;
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Figure 2.4: Hamann-type ionic pseudopotentials used in the present work, generated with the PBE

EXC (graphical output from psgen). The valence configurations are, respectively, Ga:4s24p1, In:4s25s1,

and As:4s24p3. The legends give the core cutoff radii r✄
l for each momentum component, l = 0, 1, 2, as

used by psgen.

✧ meets the norm-conservation requirement:
∫ r

|Rpsl (εpsl , r
′)|2r′2dr′ ≡

∫ r

|Rnl(εnl, r
′)|2r′2dr′ for r > r✄

l ;

✧ Rpsl (r) is nodeless.

The actual ionic pseudopotential does not depend on the valence configuration, and is produced
by “unscreening”,

vpsl (r) = vps,scrl (r)− vH([n
v
0]; r)− vXC([n

v
0]; r), (2.29)

i.e. subtracting the Hartree and exchange-correlation contribution of the valence shell with den-
sity nv0(r) =

1
4π

∑
l fl
∣∣Rpsl (εpsl , r)

∣∣2 , where the occupation numbers fl are those for the all-electron
reference problem. This procedure implies a linear exchange-correlation interaction between the
core and the valence electrons, thus only nv0(r) enters as argument in vXC . When required, how-
ever, the core-valence nonlinearity is formally accounted for by considering dependence on the
total density n0 = nv0 + ncore0 . Though, in practice one can include only a partial core density
ñcore0 [74] set up according to a cutoff radius r✄

nl , so that it is a smooth function for r < r✄
nl and

ñcore0 ≡ ncore0 beyond r✄
nl (see Ref. [75] and the extensive list of references therein). In such a case

the exchange-correlation term in Eq. (2.29) is replaced: vXC([n
v
0]; r) → vXC([n

v
0 + ñcore0 ]; r). In

the psgen tool the explicit treatment of the core-valence nonlinearity is activated by a non-zero
input value of the r✄

nl parameter.
In practice, to reduce the computational effort in the calculations, the semilocal part of the

so constructed pseudopotentials is further brought to a fully nonlocal, separable form following
Kleinman and Bylander [76], and one of the semilocal pseudopotential components is taken for
the local potential,

vpsl (r, r′) := vloc(r)δ(r − r′) +
〈r|δvlRpsl 〉〈δvlR

ps
l |r′〉

〈Rpsl |δvlR
ps
l 〉

, (2.30)

The Kleinman-Bylander form, however, may induce artificial, ghost states in the spectrum of
the pseudoatom, thus leading to a non-transferable pseudopotential. The pswatch utility allows
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a thorough test for detecting such ghost states, which involves also the analysis by Gonze et
al. [77], and provides additional functionalities to assess the pseudopotential quality. With its
help, the transferability of all pseudopotentials used here was carefully tested. Further details
on the fhi98PP program can be found in the original work by Fuchs and Scheffler [69].

The actual PBE-GGA pseudopotentials employed in the present work are shown in Fig-
ure 2.4. For all species, the d component of the ionic pseudopotential was used as local, lloc = 2.
Cohesive properties of the elemental and compound materials to be considered in the following
chapters, calculated within the LDA, are collected in Appendix A.

2.3.3 Brillouin zone sampling

One important consequence stemming from the spatial periodicity within the supercell approach
and the Bloch theorem is that all physically inequivalent values of the quasi-momentum k lie
within a single unit cell in the reciprocal space, termed the Brillouin zone (BZ). Thus integrals
over momentum space are conveniently reduced to integration over the volume of the BZ, ΩBZ =
(2π)3/Ω. Hence, the electron density n(r), is given by

n(r) = Ω
∑

n

∫

BZ
f(εn(k))|ϕn,k(r)|2

dk

(2π)3
, (2.31)

where the summation goes over all bands and the occupancies have the step-like distribution
f(εn) = (2s+ 1)θ(εn(k)− εF), with εF being the Fermi energy, and s = 1/2.

In the numerical treatment of (2.31)
∫
dk is transcribed into a sum over discrete set of Nk

“k-points”,

Ω

∫

BZ
. . . (k)

dk

(2π)3
→ 1

Nk

Nk∑

i

. . . (ki) (2.32)

Strictly speaking, the precise representation of the integral requires summation over a large
number of k-points, corresponding to all allowed values of k in the irreducible part of first BZ,
as determined by the (Born-von Kármán) periodic boundary conditions [78, 79]. In practice,
however, one makes use of relatively small set of specially selected k-points. Generally they are
specified as

ki = k
(i)
1 b1 + k

(i)
2 b1 + k

(i)
3 b3, i = 1, . . . , Nk. (2.33)

In this work we use a generalized version of the Monkhorst-Pack scheme [80] to construct

the “k-mesh”. The three coefficients k
(i)
j in Eq. (2.33) have the form

k
(i)
j =

2p
(i)
j + 2qj − lj − 2

2lj

{
qj = 1, 2, . . . , lj

i = 1, 2, . . . , Nk

. (2.34)

Figure 2.5 illustrates the essence of the approach as applied to a system with 2D periodic-
ity. In fact, Eqs. (2.33) and (2.34) can be viewed as a rule according to which the BZ is
“tiled” into small polyhedra of the same shape, lj along each basis vector bj , resulting to
a fragmentation of l1 × l2 × l3 tiles in total. Then N s

k k-points with “local” coordinates(
p
(1)
1 , p

(1)
2 , p

(1)
3

)
, . . . ,

(
p
(Ns

k)
1 , p

(Ns
k)

2 , p
(Ns

k)
3

)
are generated in each of the tiles. It is the value of

N s
k that is referred to as the number of special k-points. As an alias for the so constructed set

of k-points we shall use here the signature

{[(
p
(1)
1 , p

(1)
2 , p

(1)
3

)
, . . . ,

(
p
(Ns

k)
1 , p

(Ns
k)

2 , p
(Ns

k)
3

)]
, l1 × l2 × l3

}
. (2.35)
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Monkhorst and Pack [80] have originally used a single special k-point in the center of the tile,
thus the corresponding signature reads {( 12 , 12 , 12), l1 × l2 × l3}.

The two particular realizations of the Monkhorst-Pack scheme, shown in Figure 2.5, also
illustrate the concept of equivalence: the sampling of the k-space is equally uniform for the two
different BZs. Since one often is interested in comparing results obtained from different setups,
the use of equivalent sets of k-points is one of the prerequisites for achieving comparability (cf.,
e.g., Sec. 3.2 in Ref. [81]).

Applying the Monkhorst-Pack scheme

Figure 2.5: BZs for (2 × 4) (spanned by b1
and b2) and c(4 × 4) (spanned by b′1 and b′2) sur-

face unit cells. The former has (4 × 2) periodicity

and the sampling is the Monkhorst-Pack mesh with

signature {( 12 , 12 , 0), 4 × 2 × 1} (◦). To obtain an

equivalent sampling in the latter case we can use 2

special k-points in each tile (•) leading to the set

{[( 12 , 0, 0), (0, 12 , 0)], 2 × 2 × 1}. Since a surface is

modeled by a slab (see Figure 2.3 (b)) we use a sin-

gle tile along b3.

produces a mesh of Nk = (l1 × l2 × l3) × N s
k

k-points, but this number can be even fur-
ther reduced. The point is that the BZ +
atomic basis are usually characterized by a
certain number of point symmetry elements
(e.g., rotations, mirror planes). As a result,
the N r

k symmetry-inequivalent k-points are
only a subset of the Nk points. The sum
(2.32) is then taken only over the reduced
set with corresponding weighting factors wi,∑Nr

k
i=1wi . . . (ki).

The actual pattern to be used in sampling
the BZ generally depends on the nature of
the problem that needs to be solved. Systems
with a gap in the energy spectrum typically
require fewer Nk, whereas in case of metallic
systems a much denser k-mesh is to be em-
ployed, ensuring good sampling of the Fermi
surface. The “quality” of the k-mesh should
necessarily be tested for each particular sys-
tem, so that a convergence of the total energy
is ensured with respect to Nk.

In many problems, however, one oper-
ates with total energies obtained for supercells
with varying volume V , but using the same
value of E✄. In such a situation, changes in
V lead to a discontinuous change of N̄PW, in-
ducing errors in the calculated quantities. A
few schemes for calculating corrections to energy and pressure have been proposed in the litera-
ture [82–84]. In the present work, when necessary, corrections to the total energy are evaluated
according to the scaling hypothesis die to Rignanese et al. [84], described in Appendix B.

2.3.4 Assembling all together: the fhi98md program

All results in the present work have been obtained with the fhi98md program [81, 85], devel-
oped at the Theory Department of the Fritz-Haber-Institute. The package, including also a
starting utility fhi98start to generate consistent input files, provides a complex set of func-
tionalities allowing DFT calculations of static, elastic, electronic properties of poly-atomic sys-
tems as well as finite-temperature MD simulations. A large part of the runs were carried out
with a parallel version of the program on a CRAY T3E shared-memory multiprocessor system
〈www.cray.com/products/systems/t3e/〉 using from 8 up to 128 processing elements (PEs).
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The preceding sections outlined the main features of the setup used in the fhi98md code.
When solving the Kohn-Sham equations (2.15)–(2.17), however, the size of the Kohn-Sham

Hamiltonian matrix (cf. Eq. (2.26)) may increase substantially for large systems. Then in the
self-consistent iterative procedure of Eq. (2.19) one would face the problem of a large matrix
diagonalization in every iteration, the effort for which scales as O(N 3

PW).
In the fhi98md code the eigenvalue problem is addressed, instead, on an iterative principle

having its origin in the Car-Parrinello method [86]. The wave functions ϕn,k(r) are considered

dynamic variables and are iteratively improved, starting from an initial guess ϕ
[0]
n,k(r), by solving

a particular equation of motion. The program offers three different schemes to iterate the wave
function: steepest descent method, Williams-Soler and damped Joannopoulos algorithms [87].
All operations are performed on a 3D Fourier mesh n1 × n2 × n3 whose size is determined
according to the sampling theorem

ni >
2

π
‖ai‖

√
E✄ , (2.36)

and an (inverse) fast Fourier transformation (FFT/IFFT) is used to switch between real-space
and reciprocal-space representation of the potentials and the wave functions.

In most of the actual problems of interest in materials science, one needs to know the lowest-
energy geometrical configuration R0 of the atoms in the system. Generally, it is a priori un-
known, but a hint can always be found to generate some initial, or starting, configuration that
is used in the search for R0. This procedure is referred to as structure (geometry) optimization
(relaxation), and within the BO approximation it can be realized on the basis of Eqs. (2.7) and
(2.8). Similarly, the same two-step scheme can be used in finite-temperature MD simulation.
Once the BO surface is reached, the so-called variational forces [88], FvarI = −

∫
δE
δn∇RI

n(r)dr,
vanish and FI in Eq. (2.8) is identified with the physical Hellmann-Feynman force

FHFI = −∂E(R)

∂RI
. (2.37)

On the other hand, as the plane-wave basis used by the fhi98md program is defined by the
cutoff energy E✄ (input parameter ecut), FvarI also vanishes [88]. Thus it is the Hellmann-
Feynman force (2.37) used in the program to operate on the atoms. In all structure relaxation
runs performed in this work, geometries were considered converged if the residual forces ‖FI‖ 6

0.0005 Ha/aB ' 0.025 eV/Å.
Further information about the fhi98md program, as well as a growing number of examples

for its application to diverse problems in physics, chemistry, and recently to biological systems
can be found on the home page of the Theory Department of the Fritz-Haber-Institute:

✧ 〈www.fhi-berlin.mpg.de/th/fhimd/〉

✧ 〈www.fhi-berlin.mpg.de/th/Meetings/trieste.html〉

✧ 〈www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/〉

✧ 〈www.fhi-berlin.mpg.de/th/paper.html〉



Chapter 3

Continuum elasticity theory

The discussion in Section 1.2 already suggested the importance of the elastic degrees of freedom in
a lattice-mismatched heteroepitaxial system. Depositing a material with a bulk lattice constant
much larger than that of the substrate, which is the case of InAs/GaAs, drives the substrate-WL
interface and the WL surface out of their (local) mechanical equilibrium. In order to understand
how this new condition will bias the surface adatom diffusion one therefore requires a knowledge
of the elastic properties of the InAs/GaAs heteroepitaxial system. The characteristic lengths
in the latter are typically much larger than the bulk lattice parameters of the two materials,
aInAs and aGaAs , respectively, which allows us to utilize the concept of an elastic continuum. The
language to describe the mechanics of a continuous medium is provided by continuum elasticity
theory [89].

Apart from the general introductory purposes of this chapter, here we derive results that
serve as a groundwork for introducing elastic deformations in the problem of surface adatom
diffusion.

3.1 Basic concepts

Generally, under the action of applied forces a point at position r = (x1, x2, x3) in a continuous
medium of volume V gets displaced to a new position r′ = (x′1, x

′
2, x
′
3), thus its displacement is

simply given by the vector

u = r′ − r, ui = x′i − xi, i = 1, 2, 3. (3.1)

The deformed state of a solid is then completely defined if u is specified for each r ∈ V, i.e.
if we know the vector field u(r). In fact the “continuity” of the medium requires that a point
is considered together with a surrounding infinitesimal neighborhood δV . The displacement at
r+ δr within δV can be written as

ui(r+ δr) = ui(r) +
∂ui(r)

∂xk
δxk. (3.2)

The derivatives of the displacement field ∂kui in Eq. (3.2) constitute the components of the
(generally non-symmetric) elastic distortions tensor γik [90]. In a more formal approach γik can
be decomposed into a symmetric and an antisymmetric parts, respectively,

εik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
, and ωik =

1

2

(
∂ui
∂xk
− ∂uk
∂xi

)
. (3.3)

In the following we shall always assume that the deformations are small, so that |εik|, |ωik| ¿ 1.
Geometrically, the tensor ωik describes the infinitesimal rotations of the points in δV. Consider

19
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now the change of the volume δV as a result of a small deformation, and let δV ′ be its“deformed”
value. Exploiting the smallness of εik and after some algebra [89,90] one can easily show that

δV = δV ′(1 + εii) ≡ δV ′(1 + Tr ε). (3.4)

The tensor εik is called the strain tensor and, as indicated by Eq. (3.4), its trace determines the
relative change of the volume (δV ′ − δV )/δV upon deformation. One important special case is
realized when a solid is uniformly compressed or expanded, i.e. r′ = αr, with α being a scalar
constant. Substituting r′ in Eq. (3.1), and according to the definition Eq. (3.3), the strain tensor
adopts its simplest diagonal form

εik = const δik = (α− 1)δik. (3.5)

Any deformation leads to the appearance of internal tension, i.e. internal short-range forces,
in the solid attempting to restore its equilibrium state. The total force, acting on a part of the
solid of volume V , due to the surrounding parts, can be represented as an integral

∫
V P dV of the

volume force density P. Because of the short-range nature of the internal forces, the surroundings
act on V only through its surface, and therefore the volume integral can be transformed into one
over the surface of V. According to Gauss’s theorem, this is only possible if P is the divergence
of a second rank tensor, P = Divσ. In continuum elasticity theory, this equality introduces the
stress tensor σik, and thus

∫
Pi dV =

∫
∂σik
∂xk

dV =

∮
σiknk dA, (3.6)

where nk is the kth component of the unit vector n normal to surface element dA. In the case
of isotropic compression, each part of the solid experiences a constant pressure p, and σ takes
the simplest form σik = −p δik. It is intuitively clear, however, that the elastic deformations are
proportional to the loading applied. In other words, there should be a dependence between the
strain and the stress tensors, and for small deformations Hooke’s law asserts its linearity, i.e.

εik = siklm σlm, or σik = ciklm εlm. (3.7)

These equations define two material tensors of rank four called the elastic, or stiffness, constants
tensor ciklm, and the elastic compliance tensor siklm. Since the latter relate symmetric tensors
of rank two, they are symmetric, too, with respect to the first and second pair of indices as well
as with respect to exchange of the pairs.1 Two consequences of such an inner symmetry are
to be pointed out: The number of the different tensor components is reduced from 34 = 81 to
6× (6 + 1)/2 = 21. The symmetries of the crystal lattice may further reduce this number, and
we will return to this point later in this section, when discussing elastic properties of bulk GaAs
and InAs. Secondly, one can migrate to contracted notations, the so-called Voigt notations, with
only two indices, e.g., ciklm → cλµ, where λ, µ = 1, 2, 3, 4, 5, 6.

In the context of the present work, it is however of primary interest to apply the basic
thermodynamic relations to the case of an elastically deformed media. Under the standard
assumptions that ensure the reversibility of the deformation process [89], the differentials of the
Helmholtz and the Gibbs free energy per unit volume, respectively, read2

dF = −S dT + σik dεik, dG = −S dT − εik dσik, (3.8)
1For brevity in the specialized literature, the inner symmetry of a rank four tensor with such symmetry

properties is designated as [[V 2]2]. In this notation, the inner symmetry of a rank r tensor symmetric with respect
to all indices is [V r], which indicates the fact that the components of such a tensor transform as a product of r
components of one and the same vector.

2Note that in these expressions F is a thermodynamic potential in the variables (T, εik), while G is so in
(T, σik).
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with S being the entropy per unit volume. From Eq. (3.8) it follows, for example, that σik =
(∂F/∂εik)T . For isothermal deformations, it can also be easily shown that

F =
1

2
σ : ε ≡ 1

2
σikεik =

1

2
ciklmεikεlm. (3.9)

From a computational point of view, this expression is fairly suitable, as it allows the elastic
constants to be easily extracted from total-energy calculations for an appropriately deformed
bulk unit cell. The quadratic form in Eq. (3.9) may contain, however, a considerable number
of terms, i.e. elastic constants, especially for crystals belonging to lower symmetry classes. On
the other hand only two independent scalar constants completely characterize the elastic prop-
erties of an isotropic material: e.g., the Poisson’s ratio ν and Young’s modulus Y, or the bulk
and the shear moduli, B and G, respectively. Consider, for example, the deformation of an
elastic bar under the action of a force p per unit area of its cross-section applied along its axis
(x3 ‖ z, x1,2 ‖x, y) [89, 90]. Then 1/Y is the ratio of the relative stretching of the bar εzz to
the applied loading p; the ratio of the lateral shrinkage to the longitudinal elongation of the bar
is Poisson’s ratio ν, and the relative change of the volume of the bar is characterized by 1/B
(compressibility), i.e.

εzz =
1

Y
p, εxx = −νεzz, Tr ε = − 1

B
p. (3.10)

The notions introduced in Eq. (3.10) can be generalized for anisotropic bodies, as real crystals
are, and ν, Y etc. have to be considered as functions of the crystallographic direction n with
certain Miller indices [hkl] ‖n: ν = ν(n), Y = Y (n) etc. In the next section, this is demonstrated
for bulk GaAs and InAs.

With the above remarks we can proceed to the issue of the mechanical equilibrium of a
semi-infinite elastic continuum. One can think, for instance, of the (001) surface of a GaAs
substrate. When the InAs islands form in heteroepitaxy, they can be considered as the “loading”
that creates forces with certain distribution P = P(r‖), r‖ being the surface coordinate, under
the action of which the substrate gets elastically deformed. The objective is therefore to work
out the resulting displacement field u(r) in the substrate, which in principle allows us to obtain
the “elastic” parts of the thermodynamic quantities. From a mathematical point of view, the
problem reduces to finding the surface elastic Green’s tensor χ, which determines the response
of the medium to the applied loading (assuming that the z axis is along the surface normal),

ui(r) =

∫
χik(r‖ − r′‖, z)Pk(r′‖) dr′‖. (3.11)

Solving this problem is a rather formidable task, and we shall provide only the final results for
the isotropic case to be used in the further discussion. If a force F is applied to a point r0‖
on the free surface, one can formally take its distribution to be P(r‖) = Fδ(r‖ − r0‖). We may

further assume r0‖ to be the coordinate origin, and the components of the displacement field at

the surface (z = 0) are then given by [89]:

ux =
1 + ν

2πY

1

r

{
−(1− 2ν)x

r
Fz + 2(1− ν)Fx +

2νx

r2
(xFx + yFy)

}
(3.12)

uy =
1 + ν

2πY

1

r

{
−(1− 2ν)y

r
Fz + 2(1− ν)Fy +

2νy

r2
(xFx + yFy)

}
(3.13)

uz =
1 + ν

2πY

1

r

{
2(1− ν)Fz +

1− 2ν

r
(xFx + yFy)

}
, (3.14)
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where r = ‖r‖‖ =
√
x2 + y2, which implicitly define the surface Green’s tensor χik(r‖, 0). Using

the latter from Eq. (3.11), one can find the solution to the problem for an arbitrary force
distribution P(x, y). In Sec. 3.4, we shall apply the above prescriptions to the particular case of
an isolated long flat island.

3.2 Elastic properties of bulk III-V semiconductors: GaAs, InAs

In this section, we describe how to employ DFT calculations to predict the elastic constants,
using the zincblende semiconductors GaAs and InAs as an example. These III-V compounds
have a face-centered Bravais lattice, space group F43m, and provide the simplest example of a
crystal as an anisotropic body, from the viewpoint of Eq. (3.9). Indeed, their crystal symmetry
reduces the number of different ciklm components from 21 to only 3:

c1111 → c11, c1122 → c12, c1212 → c44, (3.15)

where we have used the contracted Voigt notations in the right-hand sides. With the help of
Eqs. (3.7) and (3.15), the elastic energy density F , Eq. (3.9), takes the form

F (ε) =
1

2
c11ε

2
ii + c12(εxxεyy + εxxεzz + εyyεzz) + 2c44(ε

2
xy + ε2xz + ε2yz). (3.16)

The computational strategy dictated by the above functional dependence relies on the simple
observation that one may nullify some of the terms in Eq. (3.16) by properly straining the unit
cell used to represent the bulk material. If, for instance, a hydrostatic pressure p is simulated,
changing the equilibrium bulk lattice constant a0 → a = a0+ δa, then both the strain and stress
tensor are constant, and α = a/a0 in Eq. (3.5). Inserting εik = (a/a0−1)δik = (δa/a0)δik ≡ εδik
in Eq. (3.16) gives the well known result for isotropic and cubic media under hydrostatic stress
F = 3

2(c11 + 2c12)ε
2. On the other hand, by a uniaxial deformation, say, along any of the C4

axes of the cubic system, we can directly get c11 from F = c11ε
2/2.

When performing the DFT calculations with the fhi98md program one has to pay attention
to a few technical points: (i) The deformations realized in the actual calculations should not
drive the system out of the linear elastic regime where Eq. (3.16) is no longer applicable. (ii)
Secondly, one needs to handle in this case a plane-wave basis set whose quality changes because
of the change in the volume of the supercell used. For GaAs and InAs, especially for calculations
employing E✄ . 10 Ry, corrections to the total energy, e.g., using the scaling hypothesis (cf.
Appendix B and Appendix C) are required in order for a good fit of F (ε) to be achieved. (iii) In
principle, the calculation of the total energy for a strained material should proceed via relaxation
of the atomic positions, because of the concomitant bonds bending/stretching. In the case of
the zincblende structure, however, internal atomic displacements for any diagonal strain εδik
are not allowed by symmetry, so one can perform relaxation of the electronic component only.
For shear strains (εik with i 6= k and εii = 0) along the [111] direction, used when calculating
c44, the [111] bond is no longer equivalent to the other three bonds, and symmetry does allow
internal displacements of the anion and cation sublattices [91].

Taking into account the above points, we have carried out a set of calculations to determine
c11, c12, Poisson’s ratio ν and the bulk and Young’s moduli B, Y of GaAs and InAs. Practical
aspects of the calculations are described in Appendix C, and the results are collected in Table 3.1.
Note, however, that from c11 and c12 only the isotropic parts of ν and Y are accessible, which
are, in effect, the quantities tabulated in the reference literature [92]. Complete expressions for
ν and Y can be derived from Eq. (3.16) (see, for example, § 10, problem 3 in Ref. [89], and
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Table 3.1: Calculated values of the lattice constant a0 and elastic parameters for bulk GaAs and InAs

within LDA and PBE-GGA using four different cutoff energies. Young’s modulus and the bulk modulus,

Y, B and the stiffnesses c11, c12 are given in 1011 dyn cm−2. Experimental values are taken from Ref. [92].

E✄ a0 [Å] c11 c12 ν Y B
[Ry] LDA GGA LDA GGA LDA GGA LDA GGA LDA GGA LDA GGA

GaAs 8 5.53 5.77 12.15 9.16 5.68 3.82 0.32 0.29 8.46 7.06 7.47 5.42
10 5.54 5.78 12.34 8.96 5.36 3.67 0.30 0.29 9.22 6.85 7.19 5.13
16 5.54 5.77 12.46 9.30 5.51 3.69 0.31 0.28 8.92 7.34 7.44 5.33
32 5.53 5.77 12.51 9.44 5.37 3.79 0.30 0.29 9.30 7.15 7.43 5.36

Experiment 5.65 12.11 5.48 0.31 8.77 7.69

InAs 8 6.02 6.32 8.13 5.87 4.29 3.10 0.35 0.35 5.01 4.45 5.26 3.80
10 6.04 6.33 7.92 6.05 4.24 3.24 0.35 0.35 4.92 3.76 5.22 4.04
16 6.02 6.30 8.51 6.44 4.41 3.33 0.34 0.34 5.55 4.19 5.52 4.18
32 6.01 6.29 8.51 6.06 4.54 3.10 0.35 0.34 5.28 3.92 5.55 4.10

Experiment 6.06 8.33 4.53 0.35 5.22 5.80

Ref. [90]) and read:

Y −1(n) =
c11 + c12

(c11 + 2c12)(c11 − c12)
+

(
1

c44
− 2

c11 − c12

)
(n2xn

2
y + n2xn

2
z + n2yn

2
z), (3.17)

ν(n) =
1

2

[
1− Y (n)

c11 + 2c12

]
. (3.18)

The two index surfaces, Y (n) and ν(n), are rendered in Figure 3.1 using the experimental elastic
constants for GaAs and InAs (cf. the “Experiment” rows in Table 3.1). Both quantities reach
their extremal values along the (elastically soft) 〈100〉 and (elastically hard) 〈111〉 directions of
the cubic crystal, e.g.,

ν(〈100〉) = c12
c11 + c12

, Y (〈100〉) = c11 + c12
(c11 + 2c12)(c11 − c12)

. (3.19)

Thus, Eq. (3.19) was used to calculate ν and Y in Table 3.1. It is worth noting that both
LDA and GGA give a rather good representation of Poisson’s ratio for GaAs and InAs, while
systematic (with respect to E✄) under- or overestimation is observed for Young’s modulus and
the bulk modulus Y, B. The LDA calculated values are generally closer to the experimentally
determined ones though, and they also agree fairly well with Nielsen and Martin’s results for
GaAs [91] based on the microscopic stress theorem [93]. The (dimensional) elastic moduli within
the GGA (in our case employing the PBE exchange-correlation functional) turn out to be under-
estimated by . 30 %. This trend has been documented [75,94,95] for the bulk modulus of GaAs
and some elemental semiconductors (Si, Ge) as well, both in pseudopotential and all-electron
studies [75, 94, 95]. It can be, in fact, anticipated from the trend in the equilibrium lattice con-
stant a0, which is typically found to be larger in GGA (e.g., here by 2 % for GaAs and about
4 % for InAs, see Table 3.1).

A way to partly correct the errors from the “pseudoization” sometimes lies in taking into
account the nonlinear core-valence exchange and correlation [75] (Sec. 2.3.2). We have compared
the lattice constant of InAs calculated with an In pseudopotential incorporating a partial core
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Figure 3.1: (a), (b) Young’s modulus Y (n) as a function of crystallographic direction n for GaAs and

InAs, respectively, with equatorial cut given in (c); Similarly for Poisson’s ratio ν(n): (d) GaAs; (e) InAs

and the corresponding equatorial cut (f).

density ñcore0 with a cutoff radius r✄
nl = 1.4 Bohr to the values in Table 3.1. For the reference

cutoff energies E✄, a0 was still found to be too small by 2–3 % within the LDA. The GGA
figures did not improve either, although a0 is only ∼ 0.1 % larger than the values in Table 3.1
for E✄ = 16 and 32 Ry. Note that, in principle, the quite localized partial core density requires
higher E✄, thus the bulk calculations converge poorly for the lower energy cutoffs, and are
generally more expensive computationally. As taking account of the nonlinear core-valence
exchange and correlation in the In pseudopotential did not produce an improvement in the elastic
properties, we inferred that the error in the latter stems from the exchange-correlation functional
itself. It should be noted also that with the calculated equilibrium bulk lattice constants of
GaAs and InAs, Table 3.1, the intrinsic lattice misfit of an InAs/GaAs heteroepitaxial system,
according to Eq. (1.1), would be ε0 ≈ 8.5 %, which is somewhat larger than the experimental
value of ≈ 7 %.

3.3 Surface elasticity: thermodynamic aspects

3.3.1 Surface energy and surface stress

Let us consider now the passage from an infinite to a semi-infinite elastic continuum having a free
surface, or in general, to a heterogeneous system incorporating different phases and the interfaces
between them. Besides the volume V of the total system, a new parameter characterizing its
state is the area A of the interfaces. The corresponding“generalized force”γ is called the surface
energy and the total internal energy takes the form [96]

E = TS − pV + µN + γA, (3.20)
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where p is the pressure, and S, µ, N are, respectively, the entropy, chemical potential and
number of particles in the system. Furthermore, in analogy with bulk elasticity considerations,
one can define the surface strain and surface stress tensors εαβ and ταβ , respectively. Assume
the system is now perturbed so that the area A changes by a small amount dA. The differential
change in the energy dE then takes the form, similar to Eq. (3.8),

dE = TdS − pdV + µdN +Aταβdεαβ . (3.21)

Taking the full differential of Eq. (3.20) and comparing with the last equation we get the Gibbs-
Duhem relation for the total system [96],

Adγ + SdT − V dp+Ndµ+A(γδαβ − ταβ)dεαβ = 0, (3.22)

where we have used the 2D analog to Eq. (3.4), dA/A = Tr(dε) = δαβdεαβ . In equilibrium one
can think of a crystal, its surface, and vapor as a system consisting of three distinct phases:
two bulk phases and an “interphase”, the latter, actually, being characterized by certain set of
extensive quantities, e.g., S(s), V (s), N (s) On the other hand, for each of the two bulk phases
one has SdT − V dp + Ndµ = 0, which allows us to “extract” the surface analog to Eq. (3.22),
known as the Gibbs adsorption equation,

Adγ + S(s)dT − V (s)dp+N (s)dµ+A(γδαβ − ταβ)dεαβ = 0. (3.23)

In many respects, the guidelines for establishing surface thermodynamics, were laid by J. Willard
Gibbs in his masterpiece “On the Equilibrium of Heterogeneous Substances”, which appeared in
1877 [97]. He introduced the notion of a dividing surface between two phases and showed that a
particular fraction of the extensive quantities had to be ascribed to that geometric model object
in order that the equivalence to the real system be retained. According to the Gibbs approach
V (s) → 0, and we arrive at the fundamental result

dγ = −s(s)dT + (ταβ − γδαβ)dεαβ , s(s) = S(s)/A, (3.24)

which tells us that the surface energy and surface stress obey the relation

ταβ = γδαβ +

(
∂γ

∂εαβ

)

T

. (3.25)

This was established by Shuttleworth in 1950 [98], and has brought out clearly the subtle differ-
ence between γ and τ in the case of solids. For liquids, because of the absence of long-range order
and the mobility of its molecules, the surface energy does not change upon deformation, which
nullifies the derivative in Eq. (3.25) and ταβ = γδαβ . For a crystal, however, this is impossible
and τ cannot be identified with γ. A comprehensive discussion of the relation between surface
energy and surface stress was given, e.g., by Herring [99] as well as in the monograph by Defay,
Prigogine and Bellemans [100].

The knowledge of γ and τ is of particular importance, as it is well understood that the
equilibrium shape of a crystal for a given volume is determined by the minimum of its surface
free energy

∫
γdA [101, 102]. On the other hand, the interplay between γ and τ is a driving

force towards surface reconstructions [103], and has been also shown to have influence on the
equilibrium shape of QDs in InAs/GaAs lattice-mismatched heteroepitaxy [104].

The computational strategy for obtaining γ is usually based upon the original definition [97,
99,100],

γA = F (s) −
c∑

i=1

µiN
(s)
i . (3.26)
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In this expression, N
(s)
i /A is the surface density of the ith component of the system (i =

1, 2, . . . , c), and F (s) = E(s)−TS(s) is the Helmholtz surface free energy. The chemical potential
µi of the ith component is defined in both bulk phases,

µi =

(
∂F (v)

∂Ni

)

T,V,Nk 6=i

=

(
∂G(v)

∂Ni

)

T,σ,Nk 6=i

, v =

{
bulk crystal

vapor
, (3.27)

where F (v) and G(v) are, respectively, the Helmholtz and Gibbs free energies of the bulk phases,
where in the second case the bulk stress should be also kept constant when taking the partial
derivative (indicated by the subscript “σ”).

Thus, in practice [105, 106], for a GaAs surface (c = 2) at zero temperature and pressure,
Eq. (3.26) takes the form

γA = E(s) − µGaNGa − µAsNAs. (3.28)

In thermodynamic equilibrium, however,

µGa + µAs = µGaAs = µGa(bulk) + µAs(bulk) +∆HGaAs
f , (3.29)

where ∆HGaAs
f is the heat of formation of GaAs at p, T = 0. This equation can be used to

reduce the number of variables, e.g., by expressing µGa via µAs, and one obtains the expression
to calculate γ,

γA = E − µGaAsNGa − µAs(NAs −NGa︸ ︷︷ ︸
∆N

), (3.30)

where E is just the total energy of the slab representing the GaAs surface, and ∆N is the surface
stoichiometry. From Eq. (3.30) it follows that for a nonstoichiometric GaAs surface, ∆N 6= 0,
the surface energy displays dependence on µAs. The range of physically allowed variation for µAs
is set up by ∆HGaAs

f , and its upper limit is the chemical potential of the bulk crystal phase of
As, µAs(bulk). Thus, introducing µ

′
As = µAs − µAs(bulk), we can write

−|∆HGaAs
f | 6 µ′As 6 0, µ′As = µAs − µAs(bulk). (3.31)

Details on the cohesive properties of the elemental and compound materials involved in the
present work are given in Appendix A. In order to relate Eqs. (3.30)–(3.31) to the real experimen-
tal conditions, where p and T are essentially nonzero quantities, one needs to consider the corre-
sponding temperature and pressure dependence of the chemical potentials. It can be shown [5],
however, that for the experimentally relevant range of p and T, |δ(∆H III-V

f (p, T ))| . 0.05 eV,
which is negligible compared to ∆H III-V

f (0, 0), and will be disregarded in the following discussion.
As regards the surface stress tensor ταβ , one can calculate its components on the basis of

the microscopic stress theorem due to Nielsen and Martin [93] or, in a more direct way, using
Eq. (3.25). Two points are in order now: (i) the latter equation is derived for an unstrained
surface, εαβ = 0, and (ii) one needs to know the slope (∂γ/∂εαβ)ε=0, which obviously requires
the knowledge of γ = γ(ε). For small strains, γ can be represented as an expansion [19,103],

γ(ε) = γ0 +

(
∂γ

∂εαβ

)

ε=0

εαβ +
1

2

(
∂2γ

∂εαβ∂εµν

)

ε=0

εαβεµν , (3.32)

where γ0 = γ(ε = 0) is the free energy of the unstrained surface. From (3.32) one can formally
make a “linear-elastic extension” of Eq. (3.25),

ταβ (ε) = γ0δαβ +

(
∂γ

∂εαβ

)

ε=0︸ ︷︷ ︸
τ0

+Sαβµνεµν , (3.33)

where Sαβµν = ∂2γ/∂εαβ∂εµν is the tensor of “surface excess elastic constants” [103].
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Figure 3.2: (a) Atomic-resolution STM image of an InAs island grown on GaAs(001)-c(4 × 4) by

MBE. Four of the bounding facets are found to be the high-index {137} planes [108] (image courtesy of

Dr. J. Márquez and Dr. L. Geelhaar, FHI). The average aspect (height/base) ratio of these QDs was

only ' 1/6; (color) Tr ε for a pyramidal (b) and truncated pyramidal island (c) ((010) cross sections),

calculated by Moll et al. [104] within the finite-element approach (reproduced with the kind permission

of the authors, c©1998 APS).

3.3.2 Strain distribution and shape of InAs QDs

Since we are going to be mainly concerned with the effect of strain on the adatom diffusion in
the process of QD formation, it is of particular interest for us to know details about the strain
field in the substrate εαβ(r‖) induced by the growing island. On the other hand, the shape of
the island determines the force density distribution P(r‖) which, in turn, is needed to calculate
the resulting displacement field in the substrate.

The equilibrium shape of InAs islands on the GaAs(001) surface has recently become available
from first-principles calculations reported in a sequence of publications, Refs. [6, 104, 106, 107]
and can be described as “hills bounded by {110}, {111}, and {1̄1̄1̄} facets and a (001) surface
on top” [106]. Detailed analysis of the island energetics has also revealed that islands of larger
volume display a bigger height-to-base (aspect) ratio [104, 107], which implies that the island
shape changes continuously with volume. The experimentally observed island shapes, however,
are rather diverse, including pyramids and “plano-convex” lenses, as well as shapes bound by
high-index facets [108,109] with small aspect (height-to-base) ratios; such an island is shown in
Figure 3.2 (a). These shapes are clearly different from the theoretically determined equilibrium
ones, and this has been considered as indication that kinetics may also play role. This is still
a highly debated issue [19]. Essentially planar shapes were also reported in the cross-sectional
STM studies of stacked InAs QDs [110,111], being discussed also in the context of heteroepitaxy
of the Ge/Si(001) materials system [112].

Analysis of the strain distribution for a free-standing InAs island on GaAs substrate, em-
ploying a finite-element method, was reported by Moll et al. [104], Figure 3.2 (b,c). They have
considered initially a pyramidal island bound by {101} facets. In terms of Tr ε = εii the sub-
strate around the island edges was found to be compressed up to ' 4 %, while it was under
tensile strain beneath the island. The top of the island, on the other hand, is almost completely
relaxed.

In the growth of 3D stacked arrays (multisheet arrays) of QDs, the islands are further buried
and thus act as “stressors” for the GaAs capping layer. The calculation of the strain field in the
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latter usually relies on an approximation scheme where the QDs are considered as elastic point
defects in an isotropic medium. In such a case one can make use of the result by Maradudin
and Wallis [113], and the hydrostatic part of the surface strain due to an island at depth L and
r0‖ = 0 is given by

εii(x, y, z = 0) = − C

(x2 + y2 + L2)3/2

(
1− 3L2

x2 + y2 + L2

)
. (3.34)

C in this expression is a material constant ∝ ε0, Visland, and C > 0 for InAs/GaAs as well for
Ge/Si, i.e. when the matrix has a smaller lattice constant. One can easily realize that (3.34)
has an extremum just above the island, r‖ ≡ (x, y) = 0, εii(0) = 2C/L3 which implies maximum
tensile strain. Consequences of such a strain profile for In adatom diffusion on the GaAs capping
layer have been discussed, for example, by Xie et al. [114, 115], Tersoff et al. [15] considered its
effect on the island nucleation process for Ge/Si(001), and a semiqualitative kinetic model for
InAs/GaAs was proposed by Ledentsov et al. [116].

Thus in different stages of growth of a nanostructure, different regimes of strain may come
into focus. The strain field at a step or island edge varies slowly on the scale of the substrate
lattice constant. We can thus treat the inhomogeneously strained surface by performing DFT
calculations with a locally adjusted lattice parameter. Further details will be given in Chapter 6.

3.4 The “flat island” approximation

Let us illustrate now the use of Eqs. (3.12)–(3.14) on the example of a flat island, Figure 3.3.
This approximation to the real shape of a free-standing island has been considered in detail by
Tersoff and Tromp [112] in the context of quasi-1D quantum wires, self-assembly in Ge/Si(001),
and Ag/Si(001) lattice-mismatched heteroepitaxy. The typical geometry of a flat (or planar)
island is sketched in Figure 3.3.

As we shall see now, this approximation

ϑ

Figure 3.3: (a) Schematic view of a flat island of

rectangular shape. The geometry of the island cross-

section is given in panel (b). The width and height

are denoted, respectively, by s and h, and the tilt

angle of the side facets is ϑ.

allows a simple analytic expression to be de-
rived for the strain field induced in the sub-
strate by such an island. The “flatness” of
the island implies that the lattice constant
of material a and the characteristic dimen-
sions of the island are related via the inequal-
ity a ¿ h ¿ s, t. We make, however, an-
other simplifying supposition, that the island
is long enough and standing on an isotropic
substrate, so that variations in the strain field

along the extended island edges are negligible away from the corners. Thus we may formally
write s ¿ t and concentrate on the effective 1D problem as depicted in Figure 3.3 (b). Note
that such an assumption has a model character and is particularly valuable when putting the
further discussion in Chapter 7 in a more general framework.

As a first step, let us employ Eqs. (3.12)–(3.14) in order to determine the strain field due to
a continuous line of point force sources, having length L, i.e. a force density P with distribution

P(r‖) = Fδ(x)[θ(y)− θ(y − L)], with F = (Fx, 0, 0), (3.35)

schematically shown as a solid line in Figure 3.4 (a), where formally the finite length of the
line is represented as a difference of two step-like functions θ(y). The solution to this problem
can be viewed as a Green’s function in a more restricted sense, that would allow us to find the
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Figure 3.4: Towards the derivation of the strain field of a long flat island.

strain field of a force with an arbitrary distribution in x direction by solving integral of the type
(3.11). Note, however, that by convention Eqs. (3.12)–(3.14) give the displacement field at point
r‖ = (x > 0, y > 0), therefore we locate the “line of forces” in the way shown in Figure 3.4 (a)
(cf. also Eq. (3.35)), and consider the strain field ε̃xx along x at the point (x, L). It can be found
as a superposition of the fields εxx(x, y) due to all “point forces” along the line, i.e.

ε̃xx(x;L) =

∫ L

0
εxx(x, y)dy. (3.36)

The integrand can be easily worked out by differentiating Eq. (3.12) with respect to x, εxx =
∂ux/∂x. In the evaluation of Eq. (3.36) one has to calculate integrals of the type

In(x, l) =

∫ l

0

dy

rn
=

∫ l

0

dy

(x2 + y2)n/2
.

The corresponding indefinite integrals In(x) are straightforward to solve by differentiation with
respect to a parameter. Taking the x coordinate as the parameter, one finds the recurrence
relation,

∂In(x)

∂x
= −nxIn+2(x), I0 = l, I1(x) = ln |y +

√
x2 + y2|, In(x, l) = In(x)|l0,

and Eq. (3.36) takes the final form

ε̃xx(x;L) =
1 + ν

πY
Fx[(3ν − 1)xI3(x, L)− 3νx3I5(x, L)]. (3.37)

On the basis of this result, one can consider the general situation, shown in Figure 3.4 (b), where
the point for which the strain is to be calculated does not have a special position along the y
axis, as in Figure 3.4 (a). One can therefore partition the length t into L (L < t) and t−L, and
apply the previous considerations to both fragments, as a result redefining ε̃xx(x;L) as

ε̃xx(x;L, t) := ε̃xx(x;L) + ε̃xx(x; t− L). (3.38)

The meaning of ε̃xx(x;L, t) is simple: it plays the role of a Green’s function with respect to the
xx strain component. Thus, for an arbitrary force density distribution in the x direction Px(x),
say in the interval x ∈ [−s, 0], we can work out the strain field in analogy to Eq. (3.11),

εxx(x;L, t) =

∫ 0

−s
ε̃xx(x− x′;L, t)Px(x′)dx′, (x′ < x). (3.39)
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Figure 3.5: Strain field ε(x) in the substrate, according to Eq. (3.41), for two flat islands of width

s1 = 20 nm and s2 = 12 nm, whose edges are separated by distance L = 80 nm. The island/substrate

system is assumed to be InAs/GaAs, and ϑ = 45◦.

In particular, this equation is immediately applicable to the case of a planar island, as shown
in Figure 3.4 (c). If we consider points close to the island edge x = 0, one can formally neglect
the island corners. This corresponds to the short-range asymptotic regime x/t ¿ 1, as well as
to x/L¿ 1. The behavior of the integrals in Eq. (3.37) is then very simple,

I3(x, LÀ x) ' 1

x2
, and I5(x, LÀ x) ' 2

3

1

x4
.

and from Eqs. (3.37)–(3.39) we obtain finally

ε(x) ≡ εxx(x¿ t) = −2(1 + ν)(1− ν)
πY

∫ 0

−s

Px(x
′)

|x− x′|dx
′, (x¿ t). (3.40)

Let us now estimate Px(x) for the assumed island shape, Figure 3.3 (b). Following Tersoff
and Tromp [112], and according to Eq. (3.6), one can write Px = σ dh(x)/dx, where σ is the xx
component of the stress tensor of the island’s material uniformly strained to match the lattice
constant of the substrate, and h(x) is the “height function” of the island cross-section. From
Figure 3.4 (c) it is obvious that Px is non-vanishing only within the projections of the (long)
side facets, l = h cotϑ, i.e. for x ∈ (−s,−s+ h cotϑ) ∪ (−h cotϑ, 0), where h(x) = x tanϑ, and
therefore the force density is a constant, Px = −σ tanϑ ≡ P0. The integral (3.40) is thus taken
over the above specified range of x and the resulting strain field reads

ε(x) =
2(ν2 − 1)

πY
P0 ln

∣∣∣∣
(h cotϑ+ x)(s− h cotϑ+ x)

x(s+ x)

∣∣∣∣ . (3.41)

Strictly speaking, this expression diverges at the island edges, and therefore we have to exclude
from consideration unphysical stripes of width a around the island edges that should be taken
to be of the order of the lattice constant of the substrate material, cf. Ref. [117]. In Figure 3.5,
the actual profile of ε(x) is plotted for two flat islands having similar aspect ratios: h : s = 1 : 8
for the larger and h : s = 1 : 10 for the smaller one.



Chapter 4

Surface diffusion

4.1 General background

4.1.1 Diffusion PES

Surface diffusion is the ultimate process

U(X,Z)

Z

Z0 X

Figure 4.1: Schematic of a two-dimensional

“slice” U(X,Z) through the multidimensional

potential energy hypersurface for the adatom-

surface interaction. Z is the distance to the sur-

face, and X is the adatom coordinate along given

surface direction.

through which mass transport occurs on sur-
faces. It can be viewed as a particular case of
diffusion in media with reduced dimensionality.
The possibility for a 2D diffusive motion of ad-
particles (e.g., atoms, molecules, small clusters,
but eventually vacancies as well) is intimately
related to the specifics of the adsorbate-surface
interaction. The latter by itself is a complex col-
lision problem for an atom hitting large-mass tar-
get [118]. Similarly to the discussion in Sec. 2.1,
let us denote the surface (target’s) degrees of
freedom R, and those of the “incidon” (adatom
etc.) Rad = (X,Y, Z). The atom-surface colli-
sion mechanics is then governed by the corre-
sponding interaction potential energy hypersur-
face U(R,Rad). In most situations of interest,
however, it turns out that the BO and adiabatic
approximations are well justified for the surface,
and therefore one can consider the interaction
potential restricted to the spatial degrees of freedom of the adsorbate, U(X,Y, Z). Thus the
problem reduces to a single-particle dynamics in U(Rad).

Perpendicular to the surface, U(Z) is usually represented as long-range attractive and short-
range repulsive part whose superposition gives rise to a local minimum for a certain Z = Z0, Fig-
ure 4.1. An atom colliding with the surface may lose enough energy so that it gets adsorbed in
this minimum. U(X,Y ) displays qualitatively different behavior—it is an oscillatory (periodic)
and bound quantity in the surface plane. This is schematically shown in Figure 4.1, of course,
only for a single “in-plane” degree of freedom X. It is this feature of U(X,Y ) that makes the
diffusive motion possible. In a more strict way, denoting by a1 and a2 the basis of the surface
unit cell, we can write down

U(Rad‖ + t) = U(Rad‖ ), Rad‖ = (X,Y ), (4.1)

31
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where t = na1 +ma2 (n,m = integer) is arbitrary translation within the surface plane. This
equation is a simple expression of the translational invariance (regularity) of the surface crystal
structure. The knowledge of the latter is therefore the most important prerequisite for study-
ing surface diffusion. Furthermore U(X,Y ) will “inherit” the point-group symmetry properties
as determined by the plane Bravais lattice of the crystal surface (e.g., oblique, p-rectangular,
c-rectangular, square, or hexagonal), which property, as we shall see, reduces greatly the com-
putational effort in determining U(X,Y ). The minima of U(X,Y ) will generally provide stable,
or eventually metastable, adsorption sites for the adatom, and we shall denote them in the fol-
lowing Ai = (Xi, Yi), i = 1, 2, . . . , Nb, with Nb being the number of such sites within a single
surface unit cell.

Within the computational scheme outlined in Chapter 2, U(X,Y ) is defined as the minimized
difference

U(X,Y ) = min
R′⊆R

min
Z
E(R,Rad)− Eslab − Eatom. (4.2)

In this expression E(R,Rad) stands for the total energy of the adatom + surface system; Eslab

and Eatom are, respectively, the energies of the bare surface (modeled by a slab) and the
isolated atom. Minimization is carried out with respect to the “height” of the adatom Z, and a
given subset R′ or eventually all coordinates R of the substrate atoms. This is accomplished
in practice via constrained atomic relaxation, and specific details will be given in all particular
cases in the following. The definition (4.2) gives, in fact, the binding energy of the adatom with
lateral coordinate Rad‖ , and is usually referred to as the (diffusion) adiabatic PES (compare also

with the discussion in Sec. 2.1).

4.1.2 Surface diffusion tensors

Tracer diffusion tensor

The PES, as introduced in Eq. (4.2), emerges from a ground-state formalism. At finite tempera-
ture, a realistic description of the adatom-surface system requires taking account of the adatom
coupling to the phonon modes of the substrate. As a result of the latter, an adatom adsorbed at
some site Ai may escape from the local minimum to a neighboring site Af . The nature of such a
jump motion is determined by the relation of a few time scales: the time 1/Γ an adatoms“waits”
before escaping the potential well, the characteristic period 1/Γ(0) of the adatom oscillations in
the well, and the time it takes to cross the potential barrier, τd. Then if 1/Γ, τd À 1/Γ(0), the
adatom motion will be a stochastic process [4] and can be described as a 2D random walk on
the regular network of sites Ai [119, 120]. An example of such a network is given in Figure 4.2.
Thus, a random walker at site A2 may jump to any of the A1, A3, and A3′ sites. We shall
assign to each of these possibilities corresponding jump, or transition, rates, i.e. probability that
the event occurs per unit time. If the initial site of the transition is Ai and the final one is Af ,
then we shall denote the corresponding escape rate

Γfi ≡ Γf←i. (4.3)

In Sec. 4.3 we discuss some properties of Γ’s and outline a method commonly employed to
determine them.

Systematic description of a stochastic process requires determination of its statistical proper-
ties. The central quantity of interest is the mean square displacement 〈|Rad‖ (t)|2〉 of the adatom,

which is a (finite, positive) non-vanishing quantity, and especially its long time limit, t → ∞.
Here 〈. . .〉 implies averaging over an equilibrium ensemble of adatoms. In terms of 〈|Rad‖ (t)|2〉
one defines in the most general case the tracer diffusion tensor D∗αβ [33] (see also Part 1 in
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Figure 4.2: Schematic representation of random walk on a 2D lattice with Nb = 5. The stable ad-

sorption sites for the adatom are shown as circles and transitions between them are denoted by arrows:

Γfi := Ai ➞Af . Symmetry equivalent sites are denoted by primed indices, e.g., A2 and A2′ . The

dashed boxes outline the unit cell of the 2D lattice (in this example it belongs to the mm2 symmetry

class, c-rectangular Bravais lattice). The basis associated with the lattice coordinate system is (en, em),

while that of the Cartesian one is (x, y), and the vector index n = (n,m) labels the unit cell. The network

connectivity could be substantially complicated (see the gray lines) if two more sites (A4 and A4′) are

added, Nb = 7.

Ref. [121] and Chapter 16 in Ref. [118]):

D∗αβ = lim
t→∞

1

4t

〈[
Radα (t)−Radα (0)

] [
Radβ (t)−Radβ (0)

]〉
, (4.4)

where we have suppressed the “‖” subscript to simplify the notation, but we will use it explicitly
when necessary. In the following, we use Greek letters to denote tensor in-plane components,
i.e. in Eq. (4.4) α, β = x, y, Radx ≡ X, etc. In the case of isotropic surface diffusion,

D∗αβ = D∗δαβ , (4.5)

where D∗ is the tracer diffusion coefficient. Tensor notations will be used in the following only
in the cases where diffusion anisotropy is to be highlighted.

It is imperative to point out that the definition (4.4) applies strictly only to the random
walk of an isolated adatom, the so-called tracer. In relation to the experimental situation, it
therefore corresponds to a low adatom concentration and/or a vanishing interaction between
the adatoms. The most important consequence of the rate description of the tracer diffusivity
is that D∗ should be a function of the transition rate(s),

D∗ ∝ Γ. (4.6)

An efficient scheme to work out the functional dependence (4.6) rests on the random walk
formalism described in Sec. 4.2.
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Chemical diffusion tensor

The simple “jump” picture pertinent to tracer diffusion becomes far more complicated, or even
not meaningfully defined, if one considers an adsorbate layer of interacting adatoms. A gradient
of the surface adatom density n(r) will cause the system support a non-vanishing current density
j. Then a simple linear response relation follows,

j = −D ·∇n(r), jα = −Dαβ∇β n(r) (4.7)

known as the Fick’s first law. This phenomenological equation introduces the chemical diffusion
tensor Dαβ (or chemical diffusion coefficient D in the isotropic case). Combining Eq. (4.7) with
the continuity equation ∂n/∂t = −∇ · j leads us to the Fick’s second law, which is nothing but
the diffusion equation,

∂

∂t
n(r, t) = ∇·D ·∇n(r, t) = Dαβ∇α∇β n(r, t), (4.8)

where the second equality holds for a position-independent chemical diffusion tensor.

In most cases, when applied to surface phenomena, the above approach is based on a gener-
alized version of Eq. (4.7) in terms of the gradient of the surface chemical potential µ(r). If the
latter is assumed to change only due to variation of n(r), then one readily gets the generalization

j =
n

kBT

(
∂(µ/kBT )

∂ lnn

)−1

T

D ·∇µ, (4.9)

where the quantity [∂(µ/kBT )/∂ lnn]T is usually referred to as the “thermodynamic factor”. In
the very special case when the adparticles’ velocities are completely uncorrelated [33], it can be
shown that

D

D∗
= thermodynamic factor ≡

(
∂(µ/kBT )

∂ lnn

)

T

, (4.10)

which is known as the Darken relation [33]. This last result unequivocally points to the
nonequivalence of the chemical and tracer diffusion coefficients in the general case. In the “di-
lute” limit (low adatoms concentration) when interactions between adatoms can be neglected,
these two quantities coincide. Indeed, this is a trivial consequence of the fact that in this case
µ = µ0 + kBT lnn, where µ0 depends on temperature T and external parameters.

In conclusion, we should stress that the diffusion coefficient/tensor calculated within the
supercell approach (Sec. 2.3.1) can be endowed with the physical meaning of a tracer diffusion
coefficient. Everywhere in Chapters 5 and 6 this will be implied.

4.2 Random walk formalism for the tracer diffusion tensor

4.2.1 Master equation of a 2D random walk

We turn now to the problem defined by Eq. (4.6). The natural language to derive the general
form of the D∗-Γ relation is that of probability theory. The method outlined in this section
builds upon the underlying assumption that the stochastic motion of an adatom on the 2D
regular lattice of sites Ai is a Markoff process (for a concise classification of stochastic processes
see, e.g., Sec. 2.4.1 in Ref. [122]). That is, the“state”of the random walker at time t may depend
on the “next earlier time” t′ < t, but not on more detailed prehistory of the adatom motion. Let
now the “state” of the adatom be its coordinate. Then the central quantity we most want to
know is the probability Pi(n, t) of finding the adatom at the site Ai in the nth unit cell at time
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t. If the random walk takes place on a 2D lattice of size N ×M (n = 1..N,m = 1..M) and the
common Born-von Kármán periodic boundary condition is imposed, then Pi(n, t) would satisfy
a relation similar to Eq. (4.1). Let us remember that Pi(n, t) is subject to the fundamental
requirement to fall into the “physical region”

0 6 Pi(n, t) 6 1, and
∑

i,n

Pi(n, t) ≡
Nb∑

i

N∑

n=1

M∑

m=1

Pi(n,m, t) = 1. (4.11)

For a Markoff process, the dynamics of the Nb quantities Pi(n, t) are governed by the master
equation

d

dt
Pi(n, t) =

Nb∑

j=1

∑

n′

Γij(n− n′)Pj(n′, t)
︸ ︷︷ ︸

rate in

−Pi(n, t)
Nb∑

j=1

∑

n′

Γji(n
′ − n)

︸ ︷︷ ︸
rate out

, i = 1, 2, . . . , Nb,

(4.12)
where Γij(n−n′) is just the rate at which an adatom jumps from site Aj in the n′th cell to site
Ai in the nth neighbor cell. A very comprehensive account of the method to obtain a solution
to the master equation in the form (4.12) is given, for instance, by Natori and Godby [123] and
Kley [5], where applications to diffusion, respectively, on stepped surfaces and low-index GaAs
surfaces were considered.

Here we want to notice the formal correspondence (upon the replacement t → t/i~) of the
Nb coupled linear differential equations with constant coefficients to the Schrödinger equation
for the tight-binding electron spectrum especially of 2D systems, e.g., CuO2 and RuO2 planes in
the superconducting cuprates and ruthenates, respectively [124]. With the help of the Fourier
transform

Pj(n, t) =
1√
NM

∑

q

eiq·nPj(q, t)





q = 2π
( p
N ,

q
M

)

p = 1..N

q = 1..M

, (4.13)

the system (4.12) can be brought to the compact form

d

dt
P(q, t) = Γ(q) ·P(q, t)

{
P ≡ (P1, P2, . . . , PNb

)
T

Γ ≡ [Γij ]
, (4.14)

where the (generally non-symmetric) Nb ×Nb matrix

Γij(q) =
∑

n

e−iq·nΓij(n)− δij
Nb∑

k=1

∑

n

Γki(n). (4.15)

is commonly termed the transition rate matrix [119]. If P(q, 0) is the initial condition for
the probability state vector, then the solution to Eq. (4.14) can be written in terms of the
corresponding Green’s tensor Gik, in a similar fashion to the way it was done in Sec. 3.1,
P(q, t) = G(q, t) · P(q, 0), where formally G(q, t) = exp[Γ(q)t].1 However, if Γ has Nb non-
degenerate eigenvalues γk, then a complete, biorthogonal set {ξ(k), ζ(k)} exists,2 and one can

1The matrix exponent exists in the sense of the series
∑

n Γ
ntn/n! = 1+ Γ t+ 1

2!
Γ · Γ t2 + · · · .

2ξ(k) and ζ(k) are solution of the eigenvalue problem and its adjoint, respectively:

Γijξ
(k)
j = γkξ

(k)
i , and ζ

(k)
j Γji = γkζ

(k)
i ,

satisfying the completeness and orthogonality relations,
∑

k ξ
(k)
i ζ

(k)
j = δij , and ξ(i) · ζ(j) = δij .
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employ the spectral decomposition Γij =
∑Nb

k=1 γkξ
(k)
i ζ

(k)
j .3 Hence, the most general form of the

solution to Eq. (4.14) reads

P(q, t) = G(q, t) ·P(q, 0), with G(q, t) =

Nb∑

k

eγk(q)t ξ(k)(q)ζ(k)(q). (4.16)

Substituting (4.16) back into Eq. (4.13), we get the real-space solution to the master equation
(4.12),

P(n, t) =
∑

n′

G(n− n′, t) ·P(n′, 0), with G(n, t) =
1

NM

∑

q

eiq·nG(q, t). (4.17)

The passage to an infinite lattice, N,M → ∞, in this equation can be simply accomplished by
the replacement

∑
n′ →

∑∞
n′,m′=−∞, and using the integral representation for the Green’s tensor

G(n, t) =

Nb∑

k=1

∫ π

−π

dq

(2π)2
eγk(q)t+iq·n ξ(k)(q)ζ(k)(q), (4.18)

where the continuous variable q = (p, q), and dq = dpdq. This expression is the major result of
the above considerations, and has a simple physical meaning. Indeed, at the initial moment t = 0,
the exponent in the integrand becomes purely imaginary, and we can immediately take advantage
of the completeness of the biorthogonal set (see the footnotes on page 35). Furthermore, the
principle contribution to the integral over q comes from the region q ' 0, and therefore the
integration can be extended over the range (−∞,∞), thus recognizing the Fourier integral
representation of the delta function δ(n). These remarks show that Gik(n−n′, 0) = δikδ(n−n′),
i.e. the Green’s tensor“starts”at t = 0 as a delta-like peak centered at n′, and the time evolution
of its profile, according to Eq. (4.18), is governed by relaxation times |1/γk(q)| of the Nb modes.

4.2.2 The hydrodynamic limit

In order to calculateD∗αβ , according to Eq. (4.4), one needs to consider the long-time asymptotics
of the Green’s tensor (4.18). From simple qualitative arguments, it is clear that its behavior
for t→∞ will be determined only by the mode γk with the longest relaxation time 1/γk. The
stability of this mode implies that only small “wave-vectors”q ' 0 are essential, so we can refer
to it also as being in the long-wavelength limit, where the discreteness of the lattice is no longer
important. In fact, a stability analysis of the solution to the master equation (4.12) with any
initial condition P(n, 0) starting in the “physical region” (4.11) tells us [125] that there is one
and only one (say, that corresponding to k = 1) vanishing eigenvalue, and the real parts of the
rest of the spectrum are negative:

γ1(0) = 0, and Re[γk(q)] < 0, ∀k > 2. (4.19)

Therefore the long-time asymptotic behaviour of (4.18) will be governed by the “highest” branch
of the spectrum, γ1.

lim
t→∞

G(n, t) = lim
t→∞

∫ π

−π

dq

(2π)2
eγ1(q)t+iq·n ξ(1)(q)ζ(1)(q) (4.20)

3This decomposition follows immediately from the completeness of the biorthogonal set.
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The principal part of the integral in Eq. (4.20) comes from the region q ' 0, and can be extracted
via saddle-point integration [126] (for a rigorous derivation,4 see Ref. [5]). We provide here the
final asymptotic result, which has the familiar Gaussian shape,5

G(n, t) =
1√

4πσ1t
exp

(
−|s1 · n|

2

4σ1t

)
1√

4πσ2t
exp

(
−|s2 · n|

2

4σ2t

)
ξ(1)(0)ζ(1)(0) (4.21)

= G(n, t) ξ(1)(0)ζ(1)(0). (4.22)

In this expression, {s1, s2} and {σ1, σ2} are respectively the eigenvectors and eigenvalues of the
“Hessian” matrix H of the diffusion mode γ1 at q = 0,

H = S · H̃ · S−1, H = − 1

2!
∇q∇q γ1(q)

∣∣∣∣
q=0

. (4.23)

Equation (4.23) is just the eigenvalue decomposition of H, i.e. Sµν = sµ,ν (µ, ν = 1, 2) is the

matrix of the eigenvectors, and H̃µν = σµδµν the corresponding matrix of eigenvalues.

We can make now the final step and define an adatom density n(n, t) in terms of P(n, t) [5],

n(n, t)
def
=

1

A

Nb∑

k=1

Pk(n, t) ≡
1

A
ζ(1)(0) ·P(n, t), (4.24)

where we have used the fact that ζ(1)(0) = (1, 1, . . . , 1) (this can be immediately verified by
considering the adjoint eigenvalue problem for [Γ(0)]T and the definition Eq. (4.15)) and A
is the area of the unit cell of the 2D lattice. In the long-wavelength (hydrodynamic) limit
n = (n,m) can be considered as continuous variable, and we obtain

n(n, t) =

∫
dn′G(n− n′, t)n(n′, 0). (4.25)

Because of the integral operator form of Eq. (4.25), G(n, t) is sometimes called the diffusion
kernel. On the other hand, it can be readily verified that n(n, t) satisfies Fick’s second law,
Eq. (4.8), but including the tracer diffusion tensor D∗αβ ,

∂

∂t
n(n, t) = D∗αβ∇α∇β n(n, t), α, β = n,m. (4.26)

From Eqs. (4.25) and (4.26) we obtain the final form of the tracer diffusion tensor in lattice
coordinates (see Figure 4.2), which, remarkably, is just given by Eq. (4.23)

D∗ = S · H̃ · S−1. (4.27)

This simple result has, in fact, rather general basis. It was obtained by Festa and Galleani
d’Agliano [127] for the Smoluchowski equation [128] with periodic external potential (see also
Sec. 12.7.2 in Ref. [122]). The latter will be discussed in more details later in Sec. 7.3.

Alternatively, with the help of the coordinate transformation matrix Bαβ = eα,β , the diffusion
tensor (4.27) reads in Cartesian coordinates

D∗ = B ·H · BT . (4.28)

4The method employs essentially the properties (4.19), as well as the vanishing of the gradient ∇qγ1(q)|0 = 0.
5cf. also any 10 DM banknote from the pre-Euro era ;-).
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Equation (4.28) is the final expression for the diffusion tensor of an isolated random walker,
and we shall use it in what follows to calculate diffusion coefficients of indium adatoms on
an InGaAs(001) wetting layer (Chapter 5) and a bare GaAs(001) substrate (Chapter 6). The
above prescription is an Nb-dimensional eigenvalue problem for the transition matrix Γij(q),
and we need to determine only the “highest energy” branch γ1(q), which is vanishing for q ' 0.
However for some adsorbate/substrate systems, Nb may well be as large as 5 or even bigger,
which makes it impossible to write down an analytical solution of the eigenvalue problem in closed
form. A workaround can exploit the hydrodynamic limit itself—we can work with accuracy not
exceeding O(|q|2) [123]. On the other hand, γ1 satisfies the characteristic polynomial of Γ,
det |Γij − γ1δij | =

∑Nb
n=0 anγ

n
1 = 0. Thus we can truncate the latter up to terms O(γ1) and

obtain simpler, approximate expression for H,

Nb∑

n=0

anγ
n
1 ' a0(q) + a1(q)γ1(q) +O(γ21) = 0

γ1(q ' 0) ' −
a0(q)

a1(q)





⇒ H ' 1

2a1(0)
∇q∇q a0(q)

∣∣∣∣
q=0

. (4.29)

Hence, the calculation of the diffusion tensor, Eq. (4.28), reduces to working out the first two
coefficients in the characteristic polynomial of the transition matrix Γ(q). Equations (4.28) (or
Eq. (4.27) in lattice coordinates) and (4.29) represent the desired functional form of the relation
(4.6).

4.3 Transition-State Theory

The formulation of the diffusion coefficient(s)

Ai Tk Af

∆F

F

“reaction coordinate”

initial state
final state

transition state (“activated complex”)

Figure 4.3: Schematic of the lowest free energy

path for a thermally activated jump of an adatom

from Ai to Af over the saddle point Tk, Ai

Tk

➞

Af .

in terms of the transition rates Γij opens another,
even more challenging question as to how can
one calculate Γ’s? Being intimately related to
the fundamental problem of a particle in poten-
tial well, the latter question has attracted exclu-
sive interest in almost all natural sciences, and
a number of methods have been developed. For
a nice review on the subject, we refer the reader
to the excellent essay by Hänggi, Talkner, and
Borkovec [129].

Different schemes for calculating Γ represent
different levels of complication in the treatment
of the adatom/surface system [121]. The sim-
plest, and apparently straightforward approach
is to employ MD simulations of the diffusion pro-
cess. A rough estimate of the feasibility of this
approach within first-principles schemes turns

out to be rather discouraging (especially from the viewpoint of a PhD student; see, for ex-
ample, A. Kley’s discussion in Sec. 5.1 of Ref. [5]). In this work we shall use a computationally
expedient and efficient (statistical) tool known as transition-state theory (TST) [129–131]. The
TST has its origin in Eyring’s absolute rate theory [130,132].

The underlying idea of the transition-state theory is illustrated in Figure 4.3. Let the ini-
tial state of our adatom/surface system be represented on the free-energy diagram by the Ai

point. The highest point along the lowest free-energy path to the next (meta)stable point Af
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is the “activated point”Tk. Eyring has dubbed the system at the activated point an “activated

complex” [132]. In considering the absolute rate Γfi for the transition Ai

Tk

➞ Af the underly-
ing assumption has been made that the initial state and the activated complex are at thermal
equilibrium.6 Eyring showed then that the absolute rate Γfi is given by

Γfi = κ(T )
kBT

2π~
Zk
Zi
, (4.30)

where Zk ≡ Z(Tk), and Zi ≡ Z(Ai) are the canonical partition function of the system, respec-
tively, for the activated complex and for the initial state. The factor κ is introduced to account
for “transition state recrossing” events, reducing the absolute rate, and thus κ 6 1. The other
simplifying assumption specific for the TST is that all activated complexes reach the final state,
i.e. recrossings of the saddle point Tk are neglected, so κ ≡ 1, and we arrive at the simpler
version of (4.30),

ΓTSTfi =
kBT

2π~
Zk
Zi

=
kBT

2π~
exp

(
−∆F

kBT

)
, ∆F = F (Tk)− F (Ai). (4.31)

In the second equality, we have used the canonical expression for the Helmholtz free energy,
F = −kBT lnZ. ∆F is usually referred to as the free energy of activation. In the following, we
shall drop the superscript “TST” and the expression (4.31) will be always implied by Γfi. The
above consideration points directly to one of the limitations for the applicability of the TST: the
equilibrium assumption requires that ∆F À kBT. The latter condition will be therefore used to
estimate whether an adsorption site is diffusion “active”, i.e. has to be included in the random
walk formalism from the preceding section.

In the practical application of Eq. (4.31) to surface diffusion, one usually considers the surface
as a heat bath of harmonic oscillators. In this approximation, the partition functions entering
Eq. (4.31) can be expressed via the normal modes of the system. At Ai, the latter is described

by N normal modes with angular frequencies ω
(i)
n . At the saddle point Tk, however, the mode

related to the reaction coordinate has an imaginary frequency and has to be excluded from the
summation when setting the partition function. Note, that such a statement implies that the
reaction coordinate can be separated from all other degrees of freedom of the system, which is
another important approximation in the transition state theory. Thus, at Tk there are N − 1

normal modes with frequencies ω
(k)
n .

The Helmholtz free energy of a crystal lattice considered as “collection of N independent
oscillators” ωn has the form [41]

F = U

︸ ︷︷ ︸
static part

+

N∑

n=1

1
2~ωn + kBT

N∑

n=1

ln(1− e−~ωn/kB
T )

︸ ︷︷ ︸
vibrational part

, (4.32)

where U is the total energy of the static lattice. For the adatom/surface system, U is identified
to be its ground state total energy. It is that quantity accessible through the DFT computational
scheme, Chapter 2. A similar expression can be written for the transition state, in which case the

summation has to be made over the N − 1 normal modes ω
(k)
n . Substituting F (Tk) and F (Ai)

in Eq. (4.31) with (4.32), and taking into account the basic thermodynamic relation between

6It seems that Arrhenius was the first to introduce the equilibrium argument in the reaction-rate theory [129,
133].
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the (vibrational) entropy of the system Svib and the Helmholtz free energy, Svib = −(∂F/∂T )V ,
we obtain the harmonic approximation for Γfi,

Γfi = Γ
(0)
fi exp

(
−∆U

kBT

)
, (4.33)

Γ
(0)
fi =

kBT

2π~
exp

(
−∆Uvib
kBT

+
∆Svib
kB

)
. (4.34)

The static total energy difference ∆U in Eq. (4.33) is the quantity commonly referred to as
diffusion barrier ; ∆Uvib and ∆Svib in Eq. (4.34) stand, respectively, for the differences between
vibrational energy and entropy of the saddle point Tk and the initial state Ai. The prefactor

Γ
(0)
fi is usually interpreted as an attempt-to-escape frequency of the adatom in the metastable

site Ai (but see the discussion by Wahnström in Sec. 16 of Ref. [118]).

One important particular case of Eq. (4.34) occurs in the classical limit T À ΘD, ΘD
being the Debye temperature [41]. InAs and GaAs have relatively low ΘD (ΘInAsD = 247 K,
ΘGaAsD = 344 K [92]), thus at the typical growth conditions T ' 400–600 ◦C, all vibrational
modes ωn will be populated, so we can take the classical limit in Eq. (4.34). For ~ωn/kBT ¿ 1,
expanding the logarithm in Eq. (4.32),

ln

[
1− exp

(
− ~ωn
kBT

)]
≈ ln

(
~ωn
kBT

)
− ~ωn

2kBT
, (4.35)

it is easily worked out that

∆Uvib
kBT

=
N−1∑

n=1

1−
N∑

n=1

1 = −1, (4.36)

∆Svib
kB

=
N∑

n=1

ln

(
~ω(i)n
kBT

)
−

N−1∑

n=1

ln

(
~ω(k)n

kBT

)
− 1. (4.37)

As a result we obtain the well-known expression [129,131,132]

Γ
(0)
fi =

1

2π

N∏
n=1

ω
(i)
n

N−1∏
n=1

ω
(k)
n

. (4.38)

Notice that all T -factors that appear in the expansion of (4.34) cancel out to give a tem-
perature independent frequency prefactor (4.38) in the classical, harmonic limit.7 This simple

formula represents, by itself, a prescription towards calculating Γ
(0)
fi in DFT [5, 136], where the

frequencies ωn are evaluated from the force-constant matrix of the adatom/surface system in
the particular configuration (e.g., Ai, Tk, etc.).

It is usually believed, and for a number of systems it has been demonstrated, that the
frequency prefactor Γ(0) obeys the so-called Meyer-Neldel rule [137, 138]. This rule establishes
a subtle relation between the prefactor Γ(0) and the activation barrier ∆U in a Van’t Hoff-
Arrhenius type of temperature dependence (4.33): activated processes with higher ∆U are
characterized by higher Γ(0). This phenomenon is known also as the compensation effect , and

7Valuable discussion on these points can be found in the Letter [134] and the follow-up Comment [135].
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a simple graphical illustration is shown in Figure 4.4 (cf. also Ref. [136]). In mathematical
notation, the Meyer-Neldel rule can be written in the general form [138]

Γ(0) = Γ
(0)
0 exp

(
∆U

∆0

)α
, 1

2 6 α 6 1, (4.39)

where ∆0 is the Meyer-Neldel energy, and α

∆U

U

“reaction coordinate”

Figure 4.4: Simple qualitative sketch of the

Meyer-Neldel effect (the full line corresponds to a

“reference” process). The process occurring with

lower barrier (dashed curve) will exhibit lower at-

tempt rates as well, because of the smoother poten-

tial relief. And vice versa, the higher potential “cor-

rugation” (dotted curve) is compensated by higher

attempt-to-escape frequencies.

is a constant exponent specific for the mech-
anism of activation.

We would like to note, however, that even
in the specialized literature the Meyer-Neldel
rule “still tends to exist in a sort of limbo
between fully accepted physical law and un-
explained correlation . . . ” [137]. In theoret-
ical studies on surface diffusion, the effect
has been analyzed mainly for diffusion rates
on metal surfaces [138]. In the context of
adatom diffusion on strained surfaces, Ratsch
and Scheffler [136] conducted a first-principles
study of Γ(0) for Ag/Ag(111). They found,
however, that the latter system obeys rather
an anticompensation rule. For surface dif-
fusion in lattice-mismatched semiconductor
heteroepitaxy we are unaware of similar stud-
ies. In Chapter 6, we briefly discuss the rel-
evance of the Meyer-Neldel effect for the in-
dium diffusion on strained GaAs(001)-c(4×4)
surface.





Chapter 5

Early stages of InAs/GaAs(001)
heteroepitaxy

5.1 Introduction

MBE growth of InAs on the (001) surface of GaAs follows, in terms of the observed surface
morphology, the SK mode (see Figure 1.1 (c) on page 2). The first stage of this process, up to
coverages θ 6 θc ' 1.8 ML±10 %, is characterized by the formation of a pseudomorphic [21] InAs
film—wetting layer (WL)—fully strained to match the lattice constant of the GaAs substrate.
Recent experimental studies focusing on this early stage of InAs/GaAs(001) deposition, however,
revealed that the WL formation (for not too low deposition rate [139]) has a more complex nature
than that given in the plain SK picture. This has been captured quite aptly by Joyce et al. [140]:
“. . .Wetting layer formation is a very complex issue, where it is much easier to state what does
not happen than what does.”

The first important deviation from the conventional SK growth mode is that the WL does
not consist of pure InAs but is rather of mixed InxGa1−xAs composition, i.e. it is a surface
alloy with (dependent of temperature and deposition rate) x = 0.2–0.6 [140]. This has been
found in a number of RHEED (Reflection High-Energy Electron Diffraction) and STM in situ
measurements [140–146]. A schematic diagram of surface phases as a function of substrate
temperature, reconstruction and amount of InAs deposited as given by Belk et al. [142] (see
also Fig. 1 in Ref. [145]) is shown in Figure 5.1. It is immediately apparent that, for example, a
complete (1×3)-reconstructed monolayer forms even for submonolayer delivery of InAs, which is
only possible if the film is an InxGa1−xAs alloy. Notably, for substrate temperatures T < 450 ◦C
and small InAs coverage the (1 × 3) structure coexists with surface domains having the same
RHEED pattern as the clean GaAs(001)-c(4× 4) substrate. On increasing the temperature, the
(1×3) phase becomes incommensurate, reflecting the increased disorder in the film morphology.
Note also that in the temperature window T ' 450–500 ◦C, a (2× 4) phase is observed for high
InAs coverages.

The other remarkable feature is related to the dependence of the integrated island vol-
ume V∫ on the InAs coverage beyond the 2D→3D transition. Surprisingly, it was found
that V∫ substantially exceeds the amount of material deposited after the islands have nucle-
ated [143,144,146,147]. This was interpreted as a clear indication for the active role of the WL
in supplying extra material (and/or serving as a “conductor” for material from the substrate) to
be incorporated into the islands.

Thus the presence of an (In,Ga)As “active WL” renders the classical SK mode not fully
adequate to describe the MBE of InAs on GaAs(001). Very recently, however, Wang et al.
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Figure 5.1: Diagram of surface phases during InAs deposition on GaAs(001) substrate as derived from

RHEED patterns, according to Belk et al. [142]. The symbol “a” in the reconstruction patterns stands for

“asymmetric (incommensurate)” (reproduced with the kind permission of the authors, c©1998 Elsevier;

colors added by E.P.). Note the domination of triple-period surface structures (❶–❺) for deposition on

GaAs(001)-c(4× 4).

[107, 148] extended the notion of a SK growth mode to systems in a constrained, rather than a
full, thermodynamic equilibrium, and showed that material transfer from the WL to the growing
islands may be a key process for understanding the island size distribution. Nevertheless, up to
now, our knowledge of the importance of alloying and the pseudomorphism1 for the mechanism
of strain relief and island growth kinetics in InAs/GaAs(001) heteroepitaxy is far from being
complete. In fact, the interplay between surface strain, alloying, and surface mass transport is
an issue of rather general interest. These are directly related, e.g., to the indium segregation
process, which is a main point of concern in technology and fabrication of high-quality InAs films
and InAs/GaAs heterostructures, or, in general, to the problem of compositional modulation
and ordering in semiconductor compounds [149].

In this chapter, we shall consider the effect of strain on alloying and indium mobility in
the initial stages of InAs/GaAs(001) heteroepitaxy. In relation to the “phase” diagram in Fig-
ure 5.1, we focus on the triple-period structures (regions ❶–❺) thus extending the previous
work, Refs. [107,148,150], that concentrated mainly on the (2× 4)-phase (region ❻) of the WL.
Experimentally InAs is deposited on a few hundred nm thick GaAs buffer layer, grown at higher
T ∼ 550–650 ◦C. The substrate is then cooled down to T ∼ 450 ◦C, where the MBE growth is
performed typically under As-rich conditions. Thus, the first question to be answered concerns
the morphology of the (001) substrate surface under these growth conditions. In Sec. 5.2, we
address the structure and thermodynamic stability of the clean (001) surfaces of GaAs and InAs,
which is, in principle, one of the most fundamental and intensely studied problems in surface
science [96, 151, 152]. In contrast to GaAs(001) and InAs(001), available structural information
about the WL is very scarce, to say the least. No atomic models for the triple-period recon-
structions were proposed in either of the STM experimental studies Refs. [140–144,146], perhaps
because of the difficulties in obtaining high resolution STM images, as well as in preparing suffi-
ciently large well-ordered single-phase domains on the WL to be scanned. Therefore, in Sec. 5.3,
we discuss in detail a few possible atomic geometries for the InxGa1−xAs(001) surface alloy, sug-
gested in other experimental studies, and compare their thermodynamic stability and intrinsic

1That is, “enforced isomorphism” [21].
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surface properties to those of the clean binary (001) surfaces. The energetics of the (most ener-
getically favorable) InxGa1−xAs(001)-(2 × 3) film as a function of its thickness is compared to
the previous studies on the (2× 4)-reconstructed WL [107,150]. Finally, in Sec. 5.4, we consider
the specifics of indium diffusion on the pseudomorphic InGaAs(001)-(2× 3)-alloy WL.

5.2 The clean (001) surfaces of GaAs and InAs

5.2.1 Surface reconstruction and relaxation: basic principles

GaAs and InAs crystals are characterized by

✂

[110]

[ 1̄
10
]

[0
01
]

top view

cation (Ga,In)

anion (As)

Figure 5.2: Schematic of a process of (001)

surface creation by “cleaving” the bulk arsenide

compound along the dashed line, i.e. cutting the

shaded bonds (top panel). As a result, the pe-

riodicity of the so created surface is 4 times

larger along [110] crystallographic direction as

compared to the ideal bulk terminated surface

(e.g., if cutting was done with an ideal (001)

plane). Brighter little ellipses represent the As

dangling bonds, and the darker ones—those of

the cations (Ga, In).

sp3-hybrid-type bonding of partial ionic char-
acter [79]. Consider now a process of dividing
the infinite crystal into two semi-infinite parts
bounded by the (001) crystal plane. This can be
achieved, e.g., by the hypothetic cleaving pro-
cess sketched in Figure 5.2. Cutting of anion-
cation bonds leaves at least one unpaired orbital
per atom, the so-called dangling bond. Such an
electronic configuration is very energetically un-
favorable, and the surface undergoes a transi-
tion into a lower energy state. The two main
processes which occur are atomic displacements
from the ideal bulk positions and/or rebond-
ing, eventually (but not necessarily) leading to
lowered surface translational symmetry; in gen-
eral, however, adding/removing/substituting of
atoms is also possible. The former is usually
referred to as surface relaxation, and the lat-
ter as surface reconstruction. Since the recon-
struction process also naturally includes atomic
displacements, we use it here in a more general
sense to indicate any structural changes at sur-
faces [151, 152]. A rigorous treatment can be
found, for example, in Ref. [153]. In order to
designate a reconstructed surface with Miller in-
dices (hkl), whose unit cell is spanned by vectors
a1 = na′1, a2 = ma′2, (a

′
1,a
′
2) being the primitive

vectors of the ideal surface, we use the (slightly
modified) Wood’s notations [154],

AIIIBV(hkl)-[identifier](n×m). (5.1)

The majority of the experimentally observed
semiconductor surface reconstructions, in par-
ticular those of the (001) surfaces of GaAs and
InAs, have been rationalized in terms of a few principles.2 In brief, reconstructions lower the

2An explicit formulation and a comprehensive discussion was given by Duke [151]:

① “Reconstructions tend either to saturate surface ‘dangling’ bonds via rehybridization or to convert them
into nonbonding electronic states.”



46 5.2 The clean (001) surfaces of GaAs and InAs

Table 5.1: Structural chemistry parameters of the (001) reconstructed surface. Nad and Ncd denote,

respectively, the number of anion and cation dimers per surface unit cell, and Nadb, Ncdb, similarly, the

number of the dangling bonds.

reconstruction stoichiometry [1/A1×1] Nad Ncd Nadb Ncdb
c(4× 4) 5/4 15 0 10 0

β2(2× 4) 1/4 3 0 6 4
α2(2× 4) 0 2 2 4 4
ζ(4× 2) −1/4 0 3 8 10

surface energy by rendering the surface ground state semiconducting, and preserving the surface
charge neutrality. The latter is known also as the electron counting rule (ECR) [155]. It effec-
tively means that the surface dangling bonds of the electronegative element (e.g., Ga, In) tend
to be empty (thus merging with the conduction band), while those of the electropositive element
(As) are filled, and fall into the valence band. It should be emphasized, however, that these
empirical principles give only a guideline towards the most likely route of surface stabilization.
It is then the minimal property of the surface free energy γ (see Sec. 3.3.1) that determines which
one out of a few possible reconstructions will be observed ideally in thermodynamic equilibrium
(a typical example where the ECR is not fulfilled are the Sb-rich (n × 5) reconstructions of
the GaSb(001) surface [156]). In the next subsection, we briefly discuss the reconstructions of
the GaAs(001) and InAs(001) surfaces which are currently believed to be the most stable ones,
relevant for the InAs/GaAs(001) heteroepitaxy.

5.2.2 Atomic structure

GaAs(001)

The MBE-grown GaAs(001) surface has been found to form a relatively large number of re-
constructions as a function of growth temperature T and As:Ga flux ratio (or beam-equivalent
pressure, BEPAs/BEPGa) [151, 157–161]. In order of decreasing BEPAs, three basic types of
equilibrium reconstruction patterns are observed: c(4 × 4) (≡ centered (4 × 4)), (2 × 4), and
(4 × 2). This sequence, coincidently, gives also the chronological order in which their atomic
geometries were identified.

c(4× 4) The c(4 × 4) reconstruction is the one prepared under the most As-rich conditions,

usually by cooling the substrate under As2 or As4 flux. The early RHEED [162] and X-
ray experiments [163] gave evidence for a As-stabilized double-layer structure consisting
of As-As dimers, with the dimer bond being along the [110] direction, adsorbed on a full
As monolayer. A few possible geometries were proposed, containing from one to three

② “In many cases (and in all quasi-one-dimensional ones) surfaces can lower their energies by atomic relax-
ations leading to semiconducting (as opposite to metallic) surface state eigenvalue spectra.”

③ “The surface structure observed will be the lowest free-energy structure kinetically accessible under the
preparation condition.”

④ “Surfaces tend to be autocompensated.”

⑤ “For a given surface stoichiometry, the surface atomic geometry is determined primarily by a
rehybridization-induced lowering of the surface state bands associated with either surface bonds or (filled)
anion dangling bond states.”
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As dimers in the surface unit cell. The STM experiments by Biegelsen et al. [157] have
provided unambiguous evidence only for the three-dimer model, shown in Figure 5.3 (a).
The latter was supported also by subsequent theoretical work [5,6], and is adopted in the
present work. Accordingly, the GaAs(001)-c(4 × 4) reconstruction can be described as
rows of As dimers (adsorbed on complete As monolayer) running in the [1̄10] direction,
with units of three As dimers interrupted by a dimer vacancy. The X-ray diffraction
measurements [163] reported a dimer bond length of d = 2.59 ± 0.06 Å. The excessive
As content leads to a fractional surface stoichiometry ∆N/A = 5/4A−11×1 (see Table 5.1
and Eq. (3.30) on page 26). On the basis of Table 5.1 (cf. also Figure 5.3 (a)) one
can easily verify that the c(4 × 4) reconstruction fulfills the ECR: the 15 × 1

2 electrons
available from the 3 surface dimer bonds and the 12 dimer back-bonds equal exactly the
10× 3

4 electrons needed to fill the 10 As dangling bonds. Most importantly, as seen from
Figure 5.1, GaAs(001)-c(4×4) forms the substrate for the initial stages of InAs deposition
for temperatures T . 500 ◦C.

(2× 4) Under typical MBE growth conditions, the GaAs(001) surface forms the As-rich (2×4)
reconstruction, which is of primary technological importance. The “2-by” periodicity was
understood to be due to the As-As dimerization along [1̄10] taking place in the topmost As
layer (see, e.g., Figure 5.2), while the “by-4” pattern in [110] direction was interpreted as
stemming from one or two missing dimers (“As-dimer-vacancy”) [164]. Farrell and Palm-
strøm [165] have found that the RHEED patterns along this direction provided evidence
for three different phases as a function of temperature (maintaining the As4 flux constant):
α (T & 595 ◦C), β (T ∼ 550 ◦C), and γ (T & 505 ◦C). Details on the atomic geometry
of the possible models have been largely debated, but only very recently the structure of
the GaAs(001)-(2 × 4) surface was finally resolved by LaBella et al. [166] in favor of the
so-called β2 reconstruction, shown in Figure 5.3 (b).

β2(2× 4) The atomic geometry of the β2 reconstruction was first theoretically proposed

by Chadi [164]. It has two As dimers in the topmost and one in the third atomic
layer (trench dimer), Figure 5.3 (b). Its “construction” can be easily understood
when compared with the top view in Figure 5.2. The number of dangling bonds is
first reduced by dimerizing topmost As atoms along [1̄10] direction, leading to the
2× periodicity. The next modification is to remove the twofold coordinated Ga atom
in the second atomic layer, and again dimerize the exposed third-layer As atoms
in the same [1̄10] direction.3 Such an atomic configuration satisfies the ECR as
Ncdb × 3

4 e
− = Nadb × 1

2 e
− (cf. Table 5.1), and is found to be energetically more

favorable than the similar β model having three coplanar As-dimers [5, 150, 167].
Precise X-ray diffraction measurements [168] have found almost identical bond lengths
for the top and trench As dimers—2.51 Å and 2.49 Å, respectively.

α2(2× 4) The α2 model, Figure 5.3 (c), has been recently considered as a possible

structure of the high-temperature α “phase” [165, 169]. It is derived from β2 by
removing one of the top As dimers, after which rebonding of the two exposed Ga
atoms leads to Ga-Ga bonds (dimers) along [110] direction. This reconstruction, just
like α, is stoichiometric (∆N = 0, Table 5.1) and fulfills the ECR. Very recently a
number of groups [170–174] have found in first-principles calculations that the α2
reconstruction is energetically more favorable than the α structure by a few meV/Å2.
Their results, however, suggest that its stability is restricted to a very narrow region

3See also the slide collection available at 〈w3.rz-berlin.mpg.de/∼kratzer/lectures/cargese1/index.html〉.
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(a) : c(4× 4)
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(b) : β2(2× 4)
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Figure 5.3: Atomic structure of stable reconstructions of GaAs(001) and InAs(001) surfaces. Only the

topmost 4 atomic layers are shown (Ga, In: shaded circles, As: open circles). Shaded polygons indicate

the surface unit cell. All top views represent a surface area A equivalent to 4 unit cells, i.e. A = 16a20, a0
being the lattice constant of the bulk compound. Side views are provided in the lower part of each panel.

of As pressures before the GaAs(001) exhibits the typical (4 × 2) pattern at As-
poor conditions. On the other hand, combined STM and RHEED measurements by
Hashizume et al. [175] lend support for the α model. Thus, although theoretical
work finds the α2 geometry preferable, it may not be kinetically accessible under
the preparation conditions [176] (see also the footnote on page 45). In contrast, on
InAs(001), it is the stable reconstruction for intermediate-to-As-poor conditions.

(4× 2) Under As-poor (Ga-rich) conditions the (001) surface develops a (4 × 2), or c(8 × 2)

reconstruction pattern, the latter being a centered combination of (4× 2) structural units.
It was originally believed that the β2 model accounts for the observed features in the STM
images [151,157,177]; the Ga-rich counterpart is a 90◦-rotated β2(2×4) unit (because of the
zincblende registry in [001] direction), where the dimerization occurs between Ga atoms.
This model has been recently dethroned by the DFT calculations by Lee et al. [174]. These
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authors proposed the so-called ζ(4×2) structure whose geometry is radically different from
all considered so far for the III-V(001) surfaces, in that it displays subsurface dimerization
of the group-III atoms, Figure 5.3 (d). The ζ model complies with the ECR, and was
found to result in 0.44 eV lower surface energy per unit cell. Kumpf et al. [178] also
demonstrated its uniqueness in interpreting the X-ray diffraction measurements of the
metal-rich GaAs, InAs, and InSb (001) surfaces. In the present work we adopt the ζ(4×2)
model, Figure 5.3 (d), as the most stable reconstruction of the GaAs(001) surface in an
As-poor environment.

It should be noted that in addition to the above described geometries, the GaAs(001) surface
displays a number of kinetically driven reconstructions. For example, Däweritz and Hey [158]
reported 14 different reconstruction patterns for the vicinal GaAs(001) surface. Majority of
them are transient disordered “phases” existing in the transition region between the equilibrium
reconstructions. In the typical temperature range where GaAs(001) is used as a substrate for
InAs deposition [142], as seen from Figure 5.1, a (2× 4)-c(4× 4) transition occurs at T ∼ 480–
500 ◦C. Detailed analysis [179, 180] shows that no other “phases” are involved in the latter.

InAs(001)

On the basis of simple electrostatic arguments by Northrup and Froyen [167], one can anticipate
similarities between the reconstructed InAs(001) and GaAs(001) surfaces. In the larger region
of experimentally relevant conditions, the InAs(001) surface forms a (2× 4) pattern, but, unlike
GaAs(001), the c(4× 4) reconstruction has never been observed experimentally, except for very
low temperatures, T . 300 ◦C [180]. Instead, in the As-rich limit, STM and X-ray diffraction
experiments [171, 181, 182] as well as first-principles calculations [6, 104, 106, 150, 171] support
the β2 structural model, Figure 5.3 (b). The bond lengths of the top and trench dimers (2.47 Å
and 2.44 Å, respectively [182]) are very similar to those on GaAs(001)-β2(2× 4), thus, because
of the larger lattice constant of InAs, one might expect more strained surface bonds.

The atomic structure for moderate As coverages is less clear. Upon annealing an As-stabilized
InAs(001)-(2× 4) surface at 340 ◦C, Yamaguchi and Horikoshi [181] observed a dominant single
As-dimer structure, interpreted as the α2 reconstruction, Figure 5.3 (c), formed by desorption
of one top As dimer from the β2 unit. Recently Ratsch et al. [171] came to the same conclusion
in a combined DFT and STM study.

In the In-rich limit, the InAs(001) surface develops, similar to GaAs(001), a (4× 2)/c(8× 2)
reconstruction pattern [178,181,183,184]. At present, however, the most stable atomic arrange-
ment in the (4 × 2) unit is still being debated, but it appears that the most likely geometry
is provided by the novel ζ model, Figure 5.3 (c). In fact, Kumpf et al. [178] have already es-
tablished experimentally (a slightly modified version of the ζ(4× 2) for GaAs(001)) this model
for the InAs(001) in In-rich conditions. Theoretical work so far has not convincingly found any
stable (4 × 2) reconstruction in this limit [104, 106, 150, 171], which is probably because the ζ
structure was unknown at the time. Indeed, in the next section, we shall show that the ζ(4× 2)
model is a possible reconstruction of InAs(001) for low As pressure.

5.2.3 Surface stability

Technical details

The equilibrium phase diagrams for all the surfaces considered in the present work are calculated
on the basis of the theoretical scheme outlined in Sec. 3.3.1. Within the supercell approximation
(Sec. 2.3.1), the (001) surface is modeled by a slab, whose “top” side represents (an initial guess
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to) the atomic geometries in Figure 5.3. The thickness of the slab ∆s, depending on the particular
reconstruction, is chosen so that the “bottom” side is always terminated by a group-III atomic
layer, i.e. Ga or In. The 2×8 cation dangling bonds of this layer are then passivated by fictitious
hydrogen atoms (H∗) (in tetrahedral coordination) of fractional charge ZH∗ = 114 , in order to
mimic the missing ∆s+1st As layer [185]. This choice is easily rationalized in terms of the ECR,
according to which a group-III cation contributes 3

4 e− to a bond, whereas the group-V anion
contributes 54 e−. This procedure has proven to be computationally very expedient as it allows
an efficient decoupling of the two slab surfaces, and thereby using relatively “thinner” slabs (see
Figure 5.5 below).

As a first step in calculating the surface energy γ of a particular reconstruction, one needs to
compute the total energy of the corresponding slab Eslab. Towards this end, the atomic geometry
for each reconstruction, Figure 5.3, is optimized by relaxing all atomic spatial degrees of freedom
except those of the bottom cation layer and the passivating H∗’s (see also Subsection 2.3.4).
Since the LDA gave a better representation of the bulk elastic properties of GaAs and InAs (see
Table 3.1 on page 23), it is used in all total-energy calculations of surface energies, employing
E✄ = 10 Ry, and working at the “theoretical” bulk lattice constant a0 as given in Table 3.1. As
we attempt to compare relative stability of structures with different plane symmetries, it is also
imperative to ensure equivalent sets of k-points (Sec. 2.3.3) in sampling the surface BZ. The
equivalent Monkhorst-Pack sets for the c(4×4) and (2×4) reconstructions used throughout this
work are illustrated in Figure 2.5 on page 17.

Within such a scheme, Eq. (3.30) is no longer directly applicable, as Eslab contains contri-
butions from c = 3 components: cation (Ga or In), anion (As), and H∗. Thus, as a second
step, one needs to subtract the contribution from the H∗-passivated bottom slab surface. This
is achieved here by calculating the total energy of a thick slab with the same lateral size (n×m)
and both surfaces H∗-passivated, identically to the slab representing the reconstructed surface;
we shall term it hereafter a H∗-slab. Symmetry equivalence between the two hydrogenated slab
surfaces (within the zincblende F 4̄3m space group) requires an odd number of atomic layers
(4n+ 1, n = 1, 2, . . . ) and a 90◦ relative rotation of the terminating H∗ pairs on both sides (see
Figure 5.4). Thus, we can use Eq. (3.30) with the substitution E → Eslab − 1

2E
H∗-slab, where

EH
∗-slab is just the total energy of the unrelaxed H∗-slab, and the factor 1

2 appears because
we need to subtract the contribution from only one H∗-passivated surface (note, that this step
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according to the scaling hypothesis (Appendix B).

results also in a partial subtraction of the contribution from the bulk material). Furthermore,
at zero temperature and pressure, µGaAs,InAs is identified with the total energy per pair of the
bulk compound EIII-V2

µGaAs(0, 0) := EGaAs2 , µInAs(0, 0) := EInAs2 (5.2)

(see also Appendix A). The extra As for the nonstoichiometric reconstructions is assumed to
be in equilibrium with a reservoir of bulk As metal with the rhombohedral A7 structure (see
Appendix A and Subsection 3.3.1). Figure 5.4 represents a step-by-step description of the above
procedure for the GaAs(001)-β2(2× 4) surface.

In order to determine ∆s of the slab representing the reconstructed surface and the thickness
of the vacuum region in the supercell, ∆v, a set of test calculations was carried out, and the
output for the example of GaAs(001)-c(4 × 4) is summarized in Figure 5.5. Since the recon-
structions considered here (Figure 5.3) have different registries of the topmost atomic layers, the
corresponding slabs comprised ∆s = 7 atomic layers for c(4×4) and ζ(4×2), whereas the (2×4)
slabs were built up from ∆s = 8 layers; ∆s = 9 was used for the H∗ slabs. Vacuum spacing in all
cases was kept to ∆v = 6 interlayer distances. Figure 5.5 also provides an estimate for the error
bar of the calculated relative values of the surface energies within the above described scheme:

δγ ∼ ±1–2 meV/Å
2
(see the footnote on page 47). Within this accuracy, present figures for the

(001) surface are found to be in excellent agreement with the results in Refs. [5,6,105,150], where
very similar settings have been used. The absolute values, however, may be strongly affected by
the exchange-correlation functional. As already mentioned in Subsection 2.2.2, the use of the
GGA leads to (in some cases much) lower γ. For example, while LDA gives at the As-rich limit
µ′As = 0 (cf. Eq. (3.31)) for GaAs(001)-c(4× 4) γLDA ' 43 meV/Å2, Figure 5.5, the PBE-GGA

results in γPBE ' 11 meV/Å2. Tests were made also with a very thick “symmetric” slab with
∆s = 15 atomic layers and both sides representing the GaAs(001)-c(4× 4) reconstruction so the
necessity of H∗-termination was eliminated; all atoms, except those in the middle layer, were
allowed to freely relax. Results of these tests were found to be practically identical to the pre-
viously cited numbers, which demonstrated nicely the reliability of the computational scheme
from Figure 5.4. As the LDA leads to higher cohesive energies for the reference bulk materials,
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using the LDA. Dashed lines indicate the physical range of variation of µAs−µAs(bulk), which is given by

the formation enthalpy ∆H III-V
f of the corresponding binary compound, Appendix A.

the difference in γ reflects the fact that creating a surface by bond cutting is less costly in GGA
than in LDA. Relative stability, however, being determined by differences in γ, is similarly well
described in both exchange-correlation schemes.

Surface phase diagrams

Calculated surface energies γ of the four phases, considered for the clean GaAs(001) and
InAs(001) surfaces, Figure 5.3, are shown as a function of µAs(p = 0, T = 0) on Figure 5.6.
In the case of GaAs(001), this set of reconstructions has been discussed, to our knowledge, only
by Lee et al. [174] (see Fig. 2 in Ref. [174]). Apart from the rigid shift of the whole phase
diagram and a difference ∼ 0.1 eV in ∆HGaAs

f (because of the use of PBE-GGA by those au-
thors4) we find very good agreement between Figure 5.6 and Ref. [174]. Thus, under very As-rich
conditions, the c(4×4) reconstruction is prominently the most stable one, while in the moderate-
to-As-rich region, the β2(2 × 4) phase is lowest in energy. This sequence is well-established in
most theoretical work [5, 6, 105, 150, 167, 171]. At the Ga-rich side of the phase diagram, Lee et
al. [174] demonstrated that taking into account the ζ(4 × 2) model is crucial for determining
the equilibrium reconstruction of the GaAs(001) surface. No conclusive answer, however, can be
given as regards stability of the α2(2× 4) phase. While found stable by Ratsch et al. [171] and
Schmidt et al. [170], who did not consider the ζ structure, it is apparent that the stoichiometric
α2 is always higher in energy than ζ for µ′As lower than the value at which β2, α2, and ζ are
nearly energetically degenerate. In principle, one can speculate that, because of the degeneracy,
entropic contributions to γ at realistic growth temperatures may render α2 preferable, but so
far no clear experimental evidence has been found in favor of such an argument.

The calculated phase diagram for the InAs(001) surface displays a similar order of stable
phases as a function of decreasing µAs : β2(2× 4), α2(2× 4), and ζ(4× 2). We do not find the
c(4×4) reconstruction stable, in contrast to the results by Ratsch et al. [171]. Apparently taking
into account the α2(2×4) and ζ(4×2) reconstructions significantly reduces the range of stability

4Strictly speaking, for a given reconstruction, LDA and GGA should result in different stoichiometries
∆N/A1×1, due to the difference in the equilibrium bulk lattice constant a0. A simple estimate using values
for a0 from Table 3.1, however, gives |δ(∆N/A1×1)| ∼ O((δa0/a0)

2) ∼ 0.1 %, which is a negligible quantity.
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of the β2(2×4) phase [6,104,150]. The α2 reconstruction, having only one top dimer in the unit
cell (Figure 5.3 (c)), is also believed to be the one observed in the STM experiments [171, 181]
under As-poor conditions. In the very In-rich limit, the ζ(4×2) reconstruction becomes the most
favorable one. Insofar as our phase diagram could be compared to that in Ref. [171], the so-called
α3(2× 4), predicted to be stable by those authors, seems to be higher in energy than ζ(4× 2).
Thus, in agreement with Kumpf et al. [178], we predict that the ζ model might account for the
(4 × 2) pattern commonly observed in As-deficient environment. This statement, however, is
subject to the following proviso. The atomic arrangement/stoichiometry for InAs(001)-ζ(4× 2)
as reported by Kumpf et al. differs slightly from that of the GaAs(001)-ζ(4 × 2) surface. The
best fit to the X-ray diffraction data was obtained if only 13 % of the higher In subsurface
dimers were present, and all four-fold coordinated hollow sites were almost fully occupied by In
atoms (cf. Fig. 5 in Ref. [178]). Our tests of a few such structures, however, resulted only in
higher surface energies. On the other hand, a different model for the In-rich InAs(001)-(4 × 2)
reconstruction was proposed earlier by Ohkouchi and Ikoma [183]. The STM experiment by
Kendrick et al. [184] also provided support for the same structure. Wang et al. [150], however,
calculated γ for this reconstruction (called I(4× 2) in Ref. [150]) to be about 5 meV/Å2 higher
than the β2(4×2), having the same stoichiometry. Thus, more detailed investigations are needed
to single out the most stable reconstruction of InAs(001) under In-rich conditions. This regime
in case of InAs/GaAs(001) heteroepitaxy would correspond to region ❼ in Figure 5.1, and is
beyond the scope of the present work.

In comparison, surface energies of InAs(001) reconstructions, except c(4 × 4), are lower in
absolute values, which is due to the smaller EInAscoh , and the bigger bulk lattice constant aInAs

as compared to GaAs (cf. Table 3.1 on page 23, and Appendix A); e.g., for the stoichiometric
α2(2 × 4) reconstruction γGaAs − γInAs = 16 meV/Å2. Furthermore, at µAs = µAs(bulk), all four

stoichiometries/reconstructions for InAs(001) lie within a surface energy range of only 5 meV/Å2,
while for GaAs(001), they cover much a wider range of ' 30 meV/Å2. The difference in the bulk
lattice constants also leads to a relative difference in the surface stoichiometries ∼ 2ε0 (i.e. less
steep lines for InAs). Thus, one can read off Figure 5.6 that the β2, α2, and ζ reconstructions
for InAs share a surface energy band of ∼ 5 meV/Å2 in the whole allowed range of µAs values.
This is an important point which implies a bigger sensitivity of the InAs(001) phase diagram in
general. In particular, as discussed by Ratsch [186] very recently, deviations from mechanical
equilibrium could thereby significantly change the relative stability of the surface phases. We
address this aspect below in fuller detail.

Surface stress

For a lattice-mismatched heteroepitaxial system like InAs/GaAs(001), as follows from the dis-
cussion in Sec. 3.3, the relative stability of the surface phases depends on the strain. In the
linear elastic regime, it is the surface stress tensor ταβ that determines the γ-ε functional rela-
tion. The calculation of ταβ carried out in this work relies on Eq. (3.25), and therefore reduces
to finding (∂γ/∂εαβ)ε=0. It should be emphasized, however, that, except for calculating stress
differences [187], the computational scheme outlined in the beginning of this subsection (cf. also
Figure 5.4) leads to major difficulties in working out individual tensor components ταβ , mostly
because of the need to subtract the contribution due to the H∗-passivated surface of the slab.
Recall that the two sides of the H∗-slab are related via a mirror rotation symmetry. We have
thus focused only on isotropic compressive and tensile strains.

Isotropic strain εαβ = εδαβ for a particular reconstruction of the clean (001) surfaces is
realized by rescaling the lateral size of the supercell and the atomic coordinates according to ε.
The same procedure is applied also to the H∗-slab and the bulk material. In calculating total
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energies of the strained slabs, no atomic relaxations were performed, as the energy contributions
due to relaxations are O(ε2), and thus do not affect the first derivative [6,187]. Surface energies of
the considered reconstructions are calculated for ε ∈ {±4 %, ±2 %, 0}, and corrected according
to the scaling hypothesis, Appendix B and Appendix C.

Figure 5.7 shows the calculated γ(ε) dependence. In order to determine its slope at ε = 0,
the calculated points are fitted by a third-order polynomial γ(ε) =

∑3
n=0 γ

(n)εn. The free term
in the latter γ(0) ≡ γ0 ≡ γ(ε = 0); because of the isotropic deformations, however, the coefficient
γ(1) in the linear term, according to Eq. (3.25), gives the intrinsic part of the trace Tr ταβ ,

γ(1) = Tr ταβ − 2γ0 =

(
∂γ

εxx
+
∂γ

εyy

)

ε=0︸ ︷︷ ︸
σx+σy

(5.3)

It should be pointed out that this method for determining surface stress is subject to substantial
uncertainty due to the residual forces acting on the atoms in the supercell. Hence, the typical
error bar in calculating ∂γ/∂εαβ is ±20 meV/Å2 [6]. For present purposes, “exact”quantification
of |σx + σy| is not crucial, as the qualitative trends for γ upon applied isotropic strain are well
reflected by sign(σx + σy). From Figure 5.7, having the above reservations in mind, we can
conclude that the dominant component of the intrinsic stress of the c(4 × 4), β2(2 × 4), and
α2(2× 4) reconstructions for both GaAs(001) and InAs(001) is tensile, i.e. σx + σy > 0 (cf. the
slopes of the tangents in Figure 5.7). In contrast, for the ζ(4× 2) reconstruction, again for both
surfaces, it is compressive, σx+σy < 0. On the other hand, γ(ε) for c(4×4) is a concave function
at ε = 0, whereas for all other reconstructions it is convex. Combining Figures 5.6 and 5.7, i.e.
working out γ = γ(µAs, ε), one can build up a diagram of the stable surface phases as a function
of µAs and ε, Figure 5.8.

For GaAs(001), as seen from Figure 5.8, isotropic strain in the considered range of ±4 %
reduces the c(4×4) domain, while β2(2×4) gets shifted symmetrically to more As-rich conditions.
In the As-poor limit, isotropic strain has more profound effect. Compressive strain, ε < 0,
enlarges the α2(2×4) domain, while for ε > 0, α2 disappears, and ζ(4×2) becomes the dominant
phase. In the case of InAs(001), the conjecture made for ε = 0 that the c(4× 4) reconstruction
is energetically unfavored can now be extended to ε 6= 0. Remarkably, compressive strain favors
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Figure 5.8: Diagram of surface phases as a function of µAs and isotropic strain ε.

exclusively the α2 phase, and at about −4 % compressive strain, it appears to be the only stable
reconstruction of the InAs(001) surface. This is a clearly different situation from GaAs(001)
as was recently also pointed out by Ratsch [186]. On the other hand, under tensile strain, the
range of stability of ζ(4 × 2) increases at the expense of the α2 and β2 phases which are still
favored but shifted towards the more As-rich limit.

These features are interpreted [186] in terms of the effect of strain on dimer bonds at the
(001) surfaces, which are strengthened by collinear to the dimer bond compression and weakened,
respectively, by expansion. On the unreconstructed (001) surface, Figure 5.2, the atoms that
would form a dimer are not nearest neighbors, so a large relaxation (“buckling”) occurs upon
dimer formation. On the c(4×4) and ζ(4×2), dimers are oriented along [110] direction, while for
β2(2×4), they are 90◦ rotated. The α2(2×4) reconstruction displays dimers in both directions:
As dimers along [1̄10] and In dimers along [110], cf. Figure 5.3. Thus it is generally argued (cf.
Ref. [187]) that the stress component parallel to the dimer bond σ‖ is due to individual dimers.
If we map x ‖ [11̄0], and y ‖ [110], then σx + σy in Eq. (5.3), e.g., for the c(4 × 4) and ζ(4 × 2)
reconstructions, should be dominated by σy. Indeed, Silveira and Briones [188] have followed the
σx ≡ σ[11̄0] evolution during the c(4×4)→ (2×4)→ (4×2) phase transition on the GaAs(001),
and found almost identical low σx stress levels for the c(4×4) and (4×2) phases. For InAs(001),
Ratsch [186] also noted the similarity between tensile isotropic and tensile uniaxial strain along
[110] direction. Details in the overall effect of strain, however, cannot be rationalized solely using
the above arguments, and one should include in the analysis other structural motifs present at
the surface; e.g., the ζ(4× 2) reconstruction displays three-fold coordinated As atoms in the top
layer, which are not present in the other reconstructions.

5.3 Structure and energetics of InGaAs alloy wetting layer

5.3.1 Structural models

Discussion in the current literature on the structure of the WL in InGa/GaAs(001) heteroepitaxy
is rather speculative. As mentioned in Sec. 5.1, there is a growing amount of strong experimental
evidence that the WL is an InGaAs ternary alloy characterized by triple-periodicity patterns in
diffraction experiments, Figure 5.1. In another group of experiments, a (2 × 4)-reconstructed
WL was reported [109,161,189,190]. The limited number of theoretical publications also found
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the α(2 × 4) [6] or β2(2 × 4) [107, 148, 150] phases to be stable for the WL. Those authors,
however, did not consider (n× 3) reconstructions, though they were cautious to mention such a
possibility. The typical difficulties in determining atomic arrangement on the WL were brought
out clearly recently by Márquez in combined STM and LEED (Low-Energy Electron Diffraction)
measurements [161]. Intriguingly, the LEED pattern from a 1 ML thick InAs film grown on
GaAs(001)-c(4×4) indicated a (1×3) reconstruction, while the high-resolution STM image was
interpreted as a γ(2×4)-like phase [165]. The explanation to reconcile these observations is given
in Figure 5.9, and suggests significant structural disorder in the underlying (2 × 4) structure,
thus leading to small domains of local (1× 3), (2× 3), or c(4× 4) symmetry.

A qualitatively different driving force for the

[1̄10]

[1
10
]

Figure 5.9: Illustration of As dimers arrange-

ment on 1 ML thick InAs film on GaAs(001) lead-

ing to a mixed (1×3) and c(4×4) LEED pattern

as suggested by Márquez [161]. Shaded boxes in-

dicate local periodicity.

observed triple periodicity is the interplay be-
tween compositional modulation and ordering.
While never observed for clean binary III-V sur-
faces, a (2 × 3) reconstruction is known to form
for pseudomorphic InxGa1−xAs films [191, 192].
Sauvage-Simkin et al. [193] demonstrated by X-
ray diffraction that In-Ga ordering stabilizes the
(2 × 3) reconstruction under As-rich conditions,
leading to an indium surface concentration of
x = 2

3 . The structural model they deduced from
the X-ray data is shown in Figure 5.10 (b). It was
also confirmed by subsequent experimental stud-
ies [145, 194]. Detailed analysis further revealed
that In “depletion”, x < 2/3, leads to incommen-
surate (2×m) reconstruction with m < 3, while
m > 3 for x > 2/3 [145, 194] (cf. Appendix D).
Similar geometry was proposed by Ohkouchi and
Gomyo [195] for an ordered GaInAs overlayer
on InP(001), shown in Figure 5.10 (d). In the
present work, we include also two other models

suggested by RDS (Reflectance-Difference Spectroscopy) measurements [196,197]: (1× 3), Fig-
ure 5.10 (a), and α2(2× 3), Figure 5.10 (c).

For an indium concentration x = 2
3 , the (1 × 3) and (2 × 3) models are characterized by

continuous top-layer rows of “chemisorbed” As dimers running along [1̄10] direction. In the
third layer, x× (n×m) cation positions are occupied by In and (1− x)× (n×m) by Ga atoms,
the latter preferentially occupying the site below the As dimers. The doubled periodicity along
[1̄10] for the (2× 3) reconstruction is due to the structural motif comprising an As dimer back-
bonded to the four third-layer In atoms, Figure 5.10 (b) (see also Appendix D). The (1 × 3)
model is simply derived from (2 × 3) by removing these dimers and dimerizing In atoms along
[110] direction, Figure 5.10 (a). The α2(2 × 3) reconstruction is very similar to the α2(2 × 4)
for the clean binary surfaces, Figure 5.3 (c): the second-layer dimers along [110] are now formed
by In atoms, and no trench dimers are present giving the ×3 periodicity in the same direction.
The (4 × 3) reconstruction is obtained from (2 × 3) by removing every fourth As dimer in the
topmost layer leading to doubled periodicity in [1̄10] direction.

5.3.2 Energetics

In order to determine the most favored reconstruction of the WL, we first consider the ther-
modynamic stability of the (n × 3) reconstructions from Figure 5.10 for the reference amount
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Figure 5.10: Structural models for the (n×3)-reconstructed InxGa1−xAs(001) alloyWL for θ = 2/3 ML

of indium. Only the topmost 4 atomic layers are shown (In,Ga: shaded circles, As: open circles). Shaded

polygons indicate the surface unit cell. All top views represent a surface area equivalent to 4 unit cells,

except for (4× 3), corresponding to 2 unit cells. Side views are provided in the lower part of each panel.

θ = 2/3 ML of InAs deposited. This set of reconstructions was further extended by including
α2(2 × 4) which our calculations from the previous section, Figure 5.8, showed to be the dom-
inant phase on the compressively strained InAs(001) surface. In fact, for a sufficiently thick
WL, one would expect the reconstruction to be the one of the clean InAs(001) surface; this is
indeed the case also for region ❻ in Figure 5.1. The α2 reconstruction, on the other hand, has
not been considered in previous theoretical work [6, 107, 148, 150]. Therefore it is interesting
to compare its energetics under As-rich conditions to that of both the ×3- and the previously
studied β2(2 × 4)-reconstructed WL [107], which is important especially for the later stages of
the WL formation or after the 2D→3D growth mode crossover.

The technical settings for the calculations were already described in Sec. 5.2.3. Slabs with
∆s = 7 atomic layers were used for the (n × 3), n = 1, 2, 4 reconstructions, and ∆s = 8 for
α2(2× 3) and α2(2× 4). The equivalent Monkhorst-Pack k-point sets used for the (n× 3) unit
cells read as follows: (1 × 3)—{( 12 , 12 , 0), 8 × 3 × 1}; (2 × 3)—{( 12 , 12 , 0), 4 × 3 × 1}; (4 × 3)—
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Figure 5.11: Formation energy of In2/3Ga1/3As(001) film with different reconstructions (a) as a

function of µAs, and (b) as a function of isotropic strain ε at µAs = µAs(bulk). γf(µAs(bulk)) of the β2(2×4)

reconstruction on panel (a) is obtained from Ref. [107] by extrapolation to θ = 2/3, and shifting by

−0.2 eV× 1
4A

−1
1×1 to account for the fact that γf has been calculated therein at µAs = µAs(bulk)− 0.2 eV.

{(12 , 12 , 0), 2 × 3 × 1}. Since coverage of 2/3 ML cannot be trivially realized for the α2(2 × 4),
reconstruction we have made a linear interpolation from a set of calculations at 1/2 ML and
3/4 ML. The procedure for creating the thicker slabs needed for the study of the WL energetics
as a function of its thickness θ will be described later in this subsection. Since we have to deal
with an InGaAs ternary compound, special care should be paid to defining the energy quantities
for its surface.

The notion of a surface energy γ was derived from a gedanken experiment of cleaving a
binary bulk compound. Such a procedure, however, is not formally applicable for a strained
surface alloy, such as the pseudomorphic InxGa1−xAs(001) WL. The quantity which in this case
can be “safely” defined through a procedure similar to that in Figure 5.4, as discussed in detail
by Wang et al. [107, 148, 150], is the formation energy γf of the InGaAs(001) film with definite
thickness θ. In analogy to Eq. (3.30),

γfA = E − µGaAsNGa − µInAsNIn − µAs (NAs −NGa −NIn)︸ ︷︷ ︸
∆N

, (5.4)

which is derived from Eq. (3.26) for c = Ga, In, As, assuming equilibrium conditions with the
bulk binary compounds,

µGa + µAs = µGaAs, µIn + µAs = µInAs := µunstrainedInAs . (5.5)

The “:=” equality in Eq. (5.5) implies that the so defined γf is a total quantity including the
elastic energy of the WL.

Figure 5.11 shows the calculated formation energy γf of the InxGa1−xAs(001) for the refer-
ence thickness θ = 2/3 ML. There are a few remarkable features to be pointed out for γf of the
pseudomorphic In2/3Ga1/3As(001) film strained to match the lattice constant of the GaAs(001)
substrate, Figure 5.11 (a): (i) under (very) As-rich conditions none of the reconstructions con-
sidered can compete with the (2 × 3) model; (ii) very importantly, within the computational
accuracy, In2/3Ga1/3As(001)-(2× 3) is energetically degenerate to the GaAs(001)-c(4× 4) bare
substrate in the As-rich limit (stoichiometries of these reconstructions differ by only ' 7 %,
∆N(2×3) =

7
6A
−1
1×1); (iii) with the As chemical potential decreasing, the α2(2×4) reconstruction
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Figure 5.13: (a) Formation energy of WL as a function of its thickness θ. γf(θ) for the β2(2 × 4)

reconstruction is taken from Ref. [107]. The gray symbol corresponds to the surface energy of a fictitious

GaAs(001)-(2× 3) reconstructed surface obtained as the (x→ 0)-limit of InxGa1−xAs(001)-(2× 3). Full

symbols give the minimum γf for a fixed θ, while the other tested configurations are indicated by open

symbols. (b) Strain-thickness dependence of γf of InxGa1−xAs(001)-(2×3) WL. Contour labels are given

in meV/Å2.

becomes the most favorable; (iv) at the (2 × 3) → α2(2 × 4) transition, the β2(2 × 4) phase
appears to be nearly degenerate in energy.

The low γf of the (2×3) reconstruction is somewhat unexpected, because none of the (n×3)
models fulfills the ECR, and they are therefore of metallic character. This surface, however,
displays strong tendency towards dimerization, leading to 1 dangling bond per 1×1 area. Thus,
our result seems to be in accord with the recent studies on the high-index GaAs(2 5 11) surface
by Geelhaar et al. [198], who revealed that “the minimization of the number of the dangling
bonds” is a superior process to the ECR in stabilizing semiconductor surfaces (further aspects
will be discussed in the next section). It also lends credibility for the (2 × 3) structural model
as proposed by Sauvage-Simkin et al. [193], Figure 5.10 (a).

Another important feature of the pseudomorphic In2/3Ga1/3As(001) film shows up upon
considering γf as a function of the applied isotropic strain ε, Figure 5.11 (b). The dominant
component of the intrinsic surface stress, Eq. (5.3), for all reconstructions is compressive, i.e.
σx+ σy < 0, in contrast to the As-rich reconstructions of GaAs(001) and InAs(001), Figure 5.7.
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This is understood as to be due to the insertion of the indium atoms, having larger ionic radius,
and attempting to form longer bonds to As (see Table A.2 in Appendix A). Clearly the (2× 3)
reconstruction has the lowest formation energy over almost the entire range of strain. At the
reference thickness θ = 2/3 ML, however, a (2 × 3) → (1 × 3) transition might occur for
isotropic compression |ε| & 3 %. One can also note the apparent similarity in γf(ε) for the α2
reconstructions; removal of the trench dimer from the α2(2 × 4) phase to form the cation-rich
α2(2 × 3) does not lead to any significant change in the qualitative behavior. On the basis of
the above first-principles results we single out the (2× 3) reconstruction as the most preferable
one for the In2/3Ga1/3As(001) film under As-rich conditions.

The next question to be answered is how the energetics of the (2×3) reconstruction compares
to that of α2(2 × 4) and β2(2 × 4) [107] as a function of the WL thickness θ. This problem is
approached here in analogy to Refs. [107, 150]. For given x, In atoms occupy x(n×m) sites in
the cation sublattice. Thus, the formation energy γf(θ) of the (2×3) and α2(2×4)-reconstructed
WL is calculated as the minimum of γf over a few possible configuration of In atoms. Figure 5.12
shows the sites included in the tests. We consider only pairwise occupation of the two cation
sites along the [1̄10] direction of the unit cell, also ensuring that the substrate is represented by
at least 4 atomic layers of GaAs. It is interesting to note that for the (2 × 3) reconstruction,
the sites marked ‘2’ in Figure 5.12 (a), below the As dimer, are unfavorable for In insertion.
While for x = 1/3 the three symmetry inequivalent pairs (e.g., 1-1′, 1-3, and 1-3′) that can be
formed out of the two pairs 1-1′ and 3-3′ are energetically degenerate, we find that θ = 1 ML
is realized by occupying pairs 1, 3, and 6. Once pair 6 is occupied the next two In atoms
(θ = 113 ML) are incorporated into sites 4-4′, or 5-5′ as these are symmetry equivalent. The
α2(2× 4) reconstruction follows different pattern, favoring formation of complete cation layers,
and is thus very similar to β2(2× 4) [107]. For example, 6 In atoms (θ = 0.75 ML) occupy pairs
1–3, and at θ = 1.75 ML In forms two complete cation layers, i.e. pairs 1–7.

The thickness dependence of γf is shown
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Figure 5.14: Diagram of the (2×3), β2(2×4), and

α2(2× 4) reconstructions of the WL as a function of

its thickness θ and µAs.

in Figure 5.13 (a), where we have also added
the curve for the β2(2 × 4) reconstruction,
previously calculated by Wang et al. [107] us-
ing very similar computational settings (note
that γ(µAs) of the GaAs(001)-β2(2 × 4) sur-
face from Figure 5.6 coincides with that calcu-
lated in Ref. [150]). Clearly, at the (very) As-
rich limit, formation of a (2×3)-reconstructed
InGaAs(001) surface alloy is the most advan-
tageous process for the entire range of θ con-
sidered. This conclusion seems not to be af-
fected by the accuracy of the calculations, as
the (2 × 4) reconstructions lie higher in en-
ergy, well beyond the typical error bar. In-
terestingly, γf for α2(2 × 4) displays a min-
imum at θ = 3/4 ML, while the minima for
β2(2×4) and (2×3) are shifted to lower “cov-
erages” by about 1/2 ML. Furthermore, for
θ & 2/3 ML, γf(θ) of InGaAs(001)-(2× 3) is,

to a good accuracy, a linear function of θ. In Figure 5.13 (b), we also present its dependence on
isotropic strain. As can be seen, compressive strain strongly destabilizes the (2×3) films beyond
θ ∼ 1/3 ML, while under tensile strain ε & 2 %, γf varies little as a function of θ; within the
range of parameters considered, γf has a global minimum for the In2/3Ga1/3As(001) film under
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2 % tensile strain.

The trend from Figure 5.13 (a), however, corresponds to the extreme case of very As-rich
conditions. In order to obtain γf in the whole experimentally relevant range of µAs, we take into
account the effect of surface stoichiometry, Figure 5.11 (a), which results in the µAs-θ “phase”
diagram shown in Figure 5.14. Thus, within the reconstructions considered, we find that a
submonolayer InAs deposition on the GaAs(001)-c(4×4) substrate under As-rich conditions leads
to the formation of an InGaAs(001)-(2 × 3) WL. In order to compare with the experimentally
derived diagram of surface phases due to Belk et al. [142] (cf. Sec. 5.1), we note that the µ′As-axis
in Figure 5.14 can be mapped onto the (substrate temperature) T -axis in Figure 5.1, with lower
temperatures corresponding to higher |µ′As| values. It is then easily established that Figure 5.14
reproduces another experimentally observed trend: in the low-temperature growth regime the
the range of the (2×3) phase retracts at higher θ, where the (2×4) phase becomes the dominant
one. As mentioned already, the commensurate (2 × 3) reconstruction develops only for an In
surface concentration x = 2/3 ML, while deviations from this amount result in incommensurate
“phases” [145].

On the other hand, the resolution in the STM
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Figure 5.15: LDA band structure of

the In2/3Ga1/3As(001)-(2 × 3) surface. High-

symmetry lines in the surface 2×3 Brillouin zone
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experiments [141–143] did not allow for resolving
the atomic arrangement between the continuous
As dimer rows characteristic for both the (1× 3)
and (2×3) models, Figure 5.10 (a,b). Distinction
between the latter two is further made ambigu-
ous, as the half-order X-ray diffraction lines in-
dicative of the 2× periodicity were impossible to
measure, cf. Ref. [194]. Our results also show
that for somewhat less As-rich growth condi-
tions, the (2×4) reconstruction is to be expected
for the WL. For lower coverages, β2 appears to
be dominant. On increasing θ, interestingly, the
α2 domain increases mostly at the expense of
β2, to reach a “maximum” range of stability at
1–1.5 ML. Beyond this thickness, we expect that
the range of the β2(2×4) WL reconstruction in-
creases again. In conclusion, Figure 5.14 shows
that surface alloying induces a new type of recon-
struction(s) that should be taken into account
in analyzing the kinetics/thermodynamics of the
growth processes in the InAs/GaAs(001) heteroepitaxy.

5.4 Indium diffusion on InGaAs(001)-(2× 3) wetting layer

5.4.1 PES

In order to investigate the specifics of cation surface diffusion related to the alloying discussed
in the previous section, we consider as a representative system In/In2/3Ga1/3As(001)-(2 × 3).
This choice was dictated by the stability analysis as shown in Figures 5.11, 5.13, and 5.14.
Furthermore, as mentioned already, the In2/3Ga1/3As(001)-(2×3) reconstruction does not fulfill
the ECR. This shows up nicely in its electronic spectrum, Figure 5.15. Clearly, one band,
associated with the continuous As dimer rows in [1̄10] direction, crosses the Fermi level along
the J-K and J′-Γ symmetry lines in the surface BZ, leading to a metallic state. Thus, In diffusion
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Table 5.2: Binding energy Eb (eV) of an In adatom at the sites on the In2/3Ga1/3As(001)-(2 × 3)

surface, denoted in Figure 5.16.

Site
A1 A2 A3 T1 T2 T3 T4 T5 T6

Eb −1.61 −1.56 −1.46 −1.48 −1.39 −1.37 −1.32 −1.29 −1.27
[1
10
]
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Figure 5.16: Potential-energy landscape for an In adatom on the In2/3Ga1/3As(001)-(2 × 3) surface.

Contour-line spacing is 0.1 eV; atomic positions in the unit cell (dashed rectangles) of the clean surface

are indicated for atoms in the upper three layers, cf. also Figure 5.10 (b).

on a metallic, ternary surface alloy may also be considered as a problem on its own merits.
The diffusion problem for an In adatom on the In2/3Ga1/3As(001)-(2× 3) surface is pursued

within the framework of the method outlined in Chapter 4. Unlike the previous section, now
we model the surface by taking 2 surface unit cells stacked in [1̄10] direction, thereby form-
ing a supercell with 4 × 3, periodicity and using the Monkhorst-Pack set {( 12 , 12 , 0), 2 × 3 × 1}.
This is required in order for us to decouple periodic images of the adsorbate. For the sake of
achieving an improved description of substrate-adsorbate binding energy, the PBE-GGA was
employed as well. Comparison of the surface geometries as obtained from LDA and PBE op-
timization is provided in Appendix D, along with the one derived from the X-ray diffraction
experiment Ref. [193].

As a first step, we map the PES, Eq. (4.2), as explained in Sec. 4.1, relaxing the indium
adatom from Z ' 2 Å above the surface, and keeping the bottom double-layer of the slab and
the terminating H∗ fixed. Since the clean surface symmetry has two mirror planes, we need to
map only 1/4 of the (2 × 3) unit cell. Accordingly, the constrained relaxation was performed
for an equidistant grid of 35 points, and surface symmetry was exploited to assemble the whole
PES. For plotting, the set of points has been fitted by a third-order polynomial in the X and
Y variables, and the resulting PES is shown in Figure 5.16. Binding energies of the In adatom
Eb calculated according to Eq. (4.2) are collected in Table 5.2. The remarkable feature of the
PES for indium diffusion is its small “corrugation”. Notice that the maximum difference in
calculated binding energy max∆Eb ' 0.5 eV. Within this energy interval, we find 3 (symmetry
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inequivalent) potential minima connected via 6 saddle points, which implies small energy barriers
∆E. From the PES and Table 5.2, we conclude that indium adatoms are preferentially adsorbed
at the A1 site, between the center chemisorbed As dimer and the dimer bound to the third-layer
In atoms. Another adsorption site, A2, appears on both sides of the edge chemisorbed As dimer.
The troughs between the chemisorbed As dimers give rise to a shallower site A3.

It should be stressed out that the so mapped PES, Figure 5.16, is the lowest energy surface
resulting from our particular relaxation procedure. As brought out clearly by Kley et al. [199], the
interaction of the adatom with the dimer structural motif typical for reconstructed semiconductor
surfaces is a crucial process in establishing the relevant diffusion PES. In particular, Kley et al.
showed that Eb of a Ga adatom coupling to an As dimer on the GaAs(001)-β2(2×4) surface can
be significantly increased when the dimer bond splits so as to allow Ga to be inserted in between
the two As atoms. The underlying mechanism has been identified to be the replacement of the
rather weak surface As-As dimer bond by stronger cation-As bonds, cf. Ref. [5, 199].

The atomic geometry of the In2/3Ga1/3As(001)-(2×3) pseudomorphic film, on the one hand,
is characterized by a relatively high density of As dimers. On the other hand, the X-ray diffrac-
tion experiment by Sauvage-Simkin et al. [194] provided evidence for a highly disordered dis-
tribution of the As dimers bonded to the subsurface In atoms. These authors rationalized the
observation in terms of a tendency for exposing nondimerized As atoms, which would cause the
ECR to be obeyed, and thus render the surface semiconducting. For a valid description of In
diffusion by the PES shown in Figure 5.16, we therefore have to check if reaction of In with the
As-As bonds can lead to more stable binding sites for In than the minima of the PES. To this
end, we have recalculated Eb at the T3, T5, and T6 sites. As a result, it turned out that dimer
splitting indeed lowered the energy at the T3 site to Eb = −1.5 eV, but such an effect was not
found for either of the T5 and T6 sites related to the topmost layer (“chemisorbed”) As dimers.
Even though bonding at the T3 is strengthened this process does not lead to appearance of a
new stable adsorption site; in fact, an In adatom that has been caught in such a bonding config-
uration would rather “tip” in the [110] direction and fall into the most stable A1 site. Detailed
analysis of the reaction of In with surface As-As bonds will be carried out later on, in Sec. 6.3.
On the basis of the above remarks, we justify the use of the “conventional” PES in Figure 5.16
in applying the random walk formalism.

5.4.2 Diffusion coefficients

The procedure for working out the diffusion characteristics of a single adatom was described in
Sec. 4.2. Accordingly we map a 2D translationally invariant lattice onto the set of adsorption
sites as located in Figure 5.16. Because of themm2 plane symmetry of the (2×3) surface unit cell
there are Nb = 6 adsorption sites in total: A1, A1′ , A2, . . . , A3′ (notice that in Figure 5.16 the
primed site labels were omitted for the sake of clarity). The random walk process on the network
thus defined is sketched in Figure 5.17. Therefore, in order to derive the diffusion tensor D∗αβ of
the In adatom, we have to deal with the six-dimensional eigenvalue problem of the transition rate
matrix Γij , Eq. (4.15). Themaster equation for the probability vector P = (P1, P1′ , . . . , P3′)

T
,

set up according to Figure 5.17, leads to the following rather general form of Γij ,

Γij(q) =




−Σ1 eipΓ11 (1 + e−iq)Γ12 0 Γ13 Γ13

e−ipΓ11 −Σ1 0 (1 + e−iq)Γ12 Γ13 Γ13

(1 + eiq)Γ21 0 −Σ2 eipΓ22 Γ23 eiqΓ23

0 (1 + eiq)Γ21 e−ipΓ22 −Σ2 Γ23 eiqΓ23

Γ31 Γ31 Γ32 Γ32 −2Σ3 (1 + eiq)Γ33

Γ31 Γ31 e−iqΓ32 e−iqΓ32 (1 + e−iq)Γ33 −2Σ3



,

(5.6)
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Figure 5.17: Network of binding sites for In adatom on the In2/3Ga1/3As(001)-(2×3) surface according

to Figure 5.16, cf. also Figure 4.2 on page 33.

where the diagonal terms read

Σ1 = Γ11 + 2Γ21 + 2Γ31, Σ2 = 2Γ12 + Γ22 + 2Γ32, and Σ3 = Γ13 + Γ23 + Γ33.

According to Eq. (4.29), we need to work out the first two coefficients in the characteristic poly-
nomial of (5.6). Although this is a tractable problem for software like Mathematica [200], the
result is rather lengthy for any analytic analysis, and one has to seek for simplifying arguments
requiring knowledge of all transition rates Γij , which is beyond the scope of the present work.
Nevertheless, we can assume that, e.g., it is more likely for an In adatom at site A3 to escape
towards a neighboring A1 site rather than A2 when crossing the saddle point T4, as the latter
route also requires crossing of T1. By the same token, we neglect reverse jumps, thus setting
Γ32 = Γ23 = 0 in Eq. (5.6). Furthermore, the coordinate transformation matrix Bαβ = eα,β has
the simple diagonal form

B =

(
3 0
0 2

)
a0√
2
, (5.7)

where, since the InGaAs(001)-(2 × 3) film is pseudomorphic to the GaAs substrate, a0 is the
equilibrium bulk lattice constant of GaAs, Table 3.1. Hence, from Eqs. (4.29), (4.28), and (5.7)
within the assumptions made, we obtain the In diffusion coefficients in Cartesian coordinates,

D∗[110] '
9Γ12Γ13Γ31[Γ21Γ22 + Γ11(Γ12 + Γ22)]

4[Γ21Γ22 + Γ11(Γ12 + Γ22) + Γ31(Γ12 + Γ22)][Γ13Γ21 + Γ31(Γ13 + Γ31)]
a20 (5.8)

D∗[1̄10] '
Γ12[Γ21Γ

2
13 + (2Γ21 + Γ31)Γ33Γ13 + 3Γ31Γ

2
33]

[Γ13Γ21 + Γ12(Γ13 + Γ31)][Γ13 + 2Γ33]
a20. (5.9)

The structure of these expressions could be described as a ratio between the rates for different
sequences of jump processes. Consequently, further simplifications may result from the smallness
of any Γij/Γkl terms in Eqs. (5.8)–(5.9). For example, let us consider the A1➞A3, A1➞A2, and
A3➞A1 transitions. From Table 5.2, one can estimate the corresponding diffusion barriers,

∆E(A1 −T4) ' 0.3 eV, ∆E(A1 −T1) ' 0.1 eV, ∆E(A3 −T4) ' 0.15 eV.
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Figure 5.18: (a) Van’t Hoff-Arrhenius plot of D∗ normalized to D∗
0 = a20Γ

(0) ' 3 × 10−2 cm2/s; (b)

Polar plot of D∗
eff(n) according to Eq. (5.14) for three different temperatures.

For simplicity we may assume that the attempt frequencies Γ
(0)
fi for these jumps are of the same

order of magnitude. It is then easy to work out that at T = 450 ◦C

Γ31/Γ13 ∼ 0.1, Γ31/Γ21 ∼ 0.05,

which, in principle, can be used for getting a more approximate analytic form of D∗[110] and
D∗
[1̄10]

.

It is, however, more instructive and useful to provide a numerical estimate based on expres-
sions (5.8)–(5.9). The problem one encounters in such an evaluation is related to the necessity

of knowing the numerical values of the frequency prefactors Γ
(0)
fi . But even they were a priori

known accurately, the uncertainty in the calculated binding energies ∼ ±0.01 eV would result in
an “exponentially large” uncertainty exp(±0.02/kBT ) in the jump rates Γfi, which at the typical
growth temperatures is a factor ∼ 2. Therefore for the qualitative analysis, it is more important

to obtain an order estimate for Γ
(0)
fi . This can be achieved, e.g., from the Debye temperature ΘD

of the substrate material, as Γ
(0)
fi ∼ kBΘD/2π~, or from the maximum phonon frequency, which

are typically quantities ∼ 1013 s−1. In the following, we shall use this value in order to calculate
the jump rates involved in Eqs. (5.8)–(5.9),

Γfi := 1013 s−1 × exp
[
−∆E(Ai

Tk−−→ Af )/kBT
]
, (5.10)

with diffusion barriers ∆E read from Table 5.2. For example, at T = 450 ◦C we find from
(5.10) for the Γ’s (in s−1):

Γ11 Γ12 Γ21 Γ22 Γ13 Γ31 Γ33
2.1× 1011 2.8× 1012 1.2× 1012 6.5× 1011 1.1× 1012 9.5× 1010 4.7× 1011

.

Now substituting Eq. (5.10) in (5.8) and (5.9), it is straightforward to obtain the tem-
perature dependence of D∗[110] and D∗

[1̄10]
, which allows us to determine the effective energy

barriers ∆Eeff associated with In diffusion along the [110] and [1̄10] directions from the Van’t
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Hoff-Arrhenius-type relations

D∗[110](T ) = D∗0 exp
(
−∆Eeff[110]/kBT

)
, D∗[1̄10](T ) = D∗0 exp

(
−∆Eeff[1̄10]/kBT

)
, (5.11)

with D∗0 = a20Γ
(0) = const. A semilogarithmic plot of (5.11) over the experimentally relevant

temperature range is given in Figure 5.18 (a). As can be seen, within the assumptions made,
indium diffusion on the In2/3Ga1/3As(001)-(2×3), is essentially anisotropic, with [1̄10], i.e. along
the continuous As dimer rows (Figure 5.16), being the fast diffusion direction. From the slopes
of the lines, Figure 5.18 (a), we determine

∆Eeff[110] = 0.29 eV, ∆Eeff[1̄10] = 0.13 eV. (5.12)

Visual inspection of Figure 5.18 (a) also shows that within the temperature range considered
D∗[110] is always smaller in value than D∗

[1̄10]
. For example, at T = 450 ◦C, the diffusion anisotropy

ratio, defined as D∗[110]/D
∗
[1̄10]

, is about 0.1.

Now let us recall that by definition, Eq. (4.4), D∗αβ is symmetric tensor of rank 2. In analogy
to vector analysis, one can consider the normal component of D∗αβ along an arbitrary unit vector
n within the (001) surface plane, defined as

n ·D∗ · n = D∗αβnαnβ , ‖n‖ = 1. (5.13)

On the other hand, we showed that x ‖ [110] and y ‖ [1̄10] are the principle axes of the D∗αβ
tensor. Therefore the normal component (5.13) reaches extremal values in these crystallographic
directions, being equal to the eigenvalues D∗[110] and D∗

[1̄10]
, as given by Eqs. (5.8) and (5.9),

respectively. Thus, if φ is the polar angle in the (001) surface plane measured with respect to
the [110] direction, n = (nx, ny) = (cosφ, sinφ), we can rewrite Eq. (5.13) as

n ·D∗ · n = D∗[110] cos
2 φ+D∗[1̄10] sin

2 φ.

As a result, with the help of this quantity we can conveniently reformulate the problem of In
adatom diffusion on the (001) plane in terms of a single, angle-dependent “effective” diffusion
coefficient D∗eff (see also the contribution by H. Bonzel in Ref. [121]), identified with the normal
component of the tracer diffusion tensor,

D∗eff(n) := n ·D∗ · n. (5.14)

A representative plot of this simple expression is given in Figure 5.18 (b) for three different
temperatures.

Finally, we should mention that all considerations in this section referred to In diffusion on the
commensurate (2 × 3) reconstruction for which the In-Ga ordering “locks” the In composition
in the first subsurface cation layer to x = 2/3 [145]. We thus expect that as long as the
same cation configuration is preserved in this subsurface layer, the PES in Figure 5.16 would
approximately describe In diffusion on thicker layers as well, θ > 2/3 ML. The above results,
however, are not applicable to the case of incommensurate (2 ×m) “phases”, with m ≶ 3, that
are believed to be realized through local “stacking faults” in the local ordering of the In-rich
blocks (see Appendix D). Given also the overall disorder in the InGaAs(001) WL, any more
detailed analysis appears to be hardly achievable. Yet, as we shall see in Chapter 7 these results
are of particular value when comparing with In diffusion on the bare GaAs(001).



Chapter 6

Indium diffusion on the bare
GaAs(001)-c(4× 4) substrate

6.1 Introduction

From the technological point of view, for-

Figure 6.1: Formation energy γf of InAs film with

θ = 1 ML on the GaAs(001) surface (thin lines). For-

mation energy of 3D pyramidal islands + γ of the

bare reconstructed GaAs(001) surface is indicated

with the thick line (reproduced from Ref. [150] with

the kind permission of the authors, c©2000 JSAP).

mation of the pseudomorphic WL, discussed
in Chapter 5, is the “elementary” process pre-
ceeding the formation of 3D coherent islands
during InAs/GaAs(001) heteroepitaxy. As it
is homogeneously strained to match the lat-
tice constant of the underlying GaAs(001)
substrate, diffusion on such a film is only a
particular case of adatom migration where the
strain ε enters the problem as a constant pa-
rameter. However, once the islands are nu-
cleated they continue to grow, incorporating
material also from the WL. As discussed in
Sec. 3.3.2, these islands are themselves under
compressive strain, whereas the substrate be-
neath is expanded. As a consequence of this
expansion, the substrate surface around an
island is under compressive strain. These fea-
tures were also clearly demonstrated in the
elastic problem for a long flat island consid-
ered in Sec. 3.4, see Figure 3.5 on page 30.
Supply of further material to the growing is-
land would be then governed by diffusion through this ring-shaped area of compressive strain.
On the other hand, in the growth of multisheet arrays of QDs, the tensile strain on the capping
layer in the regions above the buried islands [115, 170] may again affect the growth kinetics of
the next layer of islands to be formed on the capping layer.

From the limited published data about strain effects on diffusion, it appears surprising
that compressive surface strain could lead to a self-limiting effect on the island growth. First-
principles calculations for diffusion on close-packed metal surfaces, in particular Ag/Ag(111),
Ref. [35, 201], have demonstrated that compressive strain increases the adatom diffusivity by
reducing the diffusion barrier. Schroeder and Wolf [202] have extended this finding to diffusion

67



68 6.1 Introduction

on (001) surfaces of simple cubic, fcc, and bcc lattices. Recent molecular dynamics (MD) simu-
lations using empirical potentials showed the same trend for Ga, In, and As adatom diffusion on
a (2× 1)-reconstructed GaAs(001) surface [32]. These results also agree with an earlier study of
Ga kinetics on the strained GaAs(001) surface [31]. A different strain dependence of diffusion
was found, however, for Si adatom [203, 204] and dimer [205] diffusion on the Si(001) surface,
where tensile strain leads to an overall decrease in the diffusion barriers. Yet, the majority of
the theoretical studies on semiconductor systems provide only scarce quantitative information
about the influence of strain on the diffusion process.

The aim of this chapter is, thus, to report the
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Figure 6.2: Equidistant grid of 54 points

(X,Y ) used for mapping the PES for In on the

GaAs(001)-c(4× 4) surface. Because of the mm2

plane symmetry (c-rectangular Bravais lattice)

one needs to sample only 1/4 of the surface unit

cell. The final “map” is then assembled by apply-

ing the symmetry operations, e.g., two reflections

in the m[110] and m[1̄10] mirror planes.

results of DFT calculations for the tracer diffu-
sion of a single In adatom in the presence of a
strain field ε(r‖) in the surface [206]. In par-
ticular, we investigate the strain dependence of
In diffusion on the bare GaAs(001)-c(4× 4) sur-
face, cf. Figure 5.3 (a) on page 48. We have
chosen this reconstruction because, as seen from
Figure 5.1, it forms the substrate for the ini-
tial stages of InAs deposition for temperatures
T . 500 ◦C. Therefore, on the one hand, we can
use this system to study the conventional diffu-
sion (i.e. on a strain-free surface) of the first In
atoms in the formation of the WL. On the other
hand, we could employ the c(4 × 4) reconstruc-
tion to model also the surface of the strained
capping/spacer GaAs layer with buried islands in
the growth of 3D stacks of QDs, where the strain
field due to the latter is usually approximated by
Eq. (3.34). Importantly, from the recent study
of Wang et al. [150], Figure 6.1, we could further
speculate that the problem of In diffusion on the
strained bare GaAs(001)-c(4×4) surface appears
under very arsenic-rich growth conditions. Ac-

cording to Figure 6.1, In deposition under high As overpressure is expected to lead to direct
formation of 3D InAs islands: notice that for µAs− µAs(bulk) ∈ (−0.12, 0) eV the energy of InAs
islands + bare GaAs(001)-c(4× 4) substrate (the thick line) is lower than γf of 1 ML thick InAs
film with either the β2(2× 4) or c(4× 4) reconstruction.

The mapping of the PES for In diffusion on the unstrained GaAs(001)-c(4× 4) surface was
performed with identical settings as in Sec. 5.4, and is presented in Sec. 6.2; Figure 6.2 shows
the set of equidistant grid points in the (001) plane used in the PES mapping. As a reference
for calculating the binding energy of the adatom according to Eq. (4.2) for ε 6= 0 we have
used the sum of the total energy of the properly strained bare surface and the energy of a free,
spin-polarized In atom (cf. Appendix A). In Sec. 6.3, we discuss in great detail the In adatom
interaction with the surface As dimers, thus extending results for the case of In/InGaAs(001)-
(2 × 3). The effect of strain is then addressed in Sec. 6.4. In order to investigate the influence
of strain on surface diffusion, the lateral lattice constant a was uniformly changed in the range
of ±8 % around its value a0 calculated for the unstrained material, thus defining the isotropic
surface strain tensor εαβ = εδαβ , with ε = a/a0 − 1, relaxing the system again in the same
manner, and recording the In binding energy for the relevant sites on the PES.
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Table 6.1: Binding energy Eb (eV) of an In adatom at the sites on the GaAs(001)-c(4 × 4) surface,

denoted in Figure 6.3.

Site
A1 A2 T1 T2 T3 T4

Eb −2.21 −1.54 −1.56 −1.44 −1.27 −1.17
[1
10
]

[110]

✖

✖ ✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

T1 T2 A2 A1 T3 T4

-1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 -2.2eV

Figure 6.3: Potential-energy landscape for an In adatom on the GaAs(001)-c(4 × 4) surface. The

adatom is relaxed from 2 Å above the surface. Atomic positions are indicated for atoms in the upper

four layers (As: empty circles; Ga: filled circles), and the dashed squares show the surface unit cell.

6.2 Diffusion on the unstrained substrate

6.2.1 PES

The mapping procedure resulted in the PES shown in Figure 6.3, and the binding energies of
the In adatom at the adsorption sites (Ai) and saddle points (Tk) are given in Table 6.1. The In
adatom, like Ga/GaAs(001)-c(4×4) (cf. Subsection 6.2.3), preferentially adsorbs at the four-fold
coordinated hollow site A1 (the missing dimer position), where it interacts with the dangling
bonds of the second layer As atoms. Two other very shallow minima A2 are located in between
the center and the two edge dimers. Jumps between the adsorption sites occur through four
symmetry-inequivalent saddle points Tk, with T1 being lowest in energy. In comparison to the
PES for In diffusion on the In2/3Ga1/3As(001)-(2 × 3) surface, Figure 5.16, it becomes evident
that In migration on the GaAs(001)-c(4 × 4) substrate is governed by a substantially more
“corrugated” PES—as can be easily read off Figure 6.3, in the present case max∆Eb ' 1.1 eV,
about twice that found for the former PES, Figure 5.16.

In a simplified picture, the In adatom migrates by a random walk on a 2D square lattice
defined by the A1 sites, Figure 6.4, Thus, from the viewpoint of network connectivity, this is
the simplest possible case. However, we account for hops between them via both T1 and T2-
A2-T2 (gray arrows in Figure 6.4), with rates Γ11 and Γ̃11, respectively. Indeed, once the In
adatom has reached the A2 site, it needs to overcome a barrier E(T2) − E(A2) of only 0.1 eV
in order to move towards a neighboring A1 site. As E(T2)−E(A2) . 2kBT for typical growth
temperatures, the adatom is unlikely to equilibrate at the shallow well A2 before it escapes.
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Thus, it is justifiable to use a single rate Γ̃11 for the whole path T2-A2-T2.

6.2.2 Diffusion coefficients

Effective diffusion coefficients can now be extracted by again applying the random walk formal-
ism from Sec. 4.2. Because of the simple diffusion network with Nb = 1, Figure 6.4, the problem
is now reduced to finding dynamics of a single scalar quantity—the probability P1. Accordingly,
the transition rate “matrix” (4.15) also reduces to a single element,

Γ(q) = −4(Γ11 + Γ̃11) + 2Γ11[cos(p) + cos(q)] + 4Γ̃11 cos(p− q). (6.1)

Hence, using the coordinate transformation matrix

B =

(
1 1
−1 1

)√
2a0, (6.2)

and Eqs. (4.29)–(4.28), it is easily shown that the diffusion tensor in Cartesian coordinates reads

D∗αβ =

(
D∗[110] 0

0 D∗
[1̄10]

)
= 4a20

(
Γ11 + 4Γ̃11 0

0 Γ11

)
. (6.3)

The factor “4” with Γ̃11 is partly due to the
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Figure 6.4: Network of binding sites for In

adatom on the GaAs(001)-c(4×4) surface, cf. also
Figure 6.3.

fact that there exist two equivalent T2-A2-T2
paths across the block of three dimers. Another
factor two enters because the In adatom trav-
els a

√
2-times longer distance than along the

path crossing the saddleT1, in the [110] direction
to reach a neighboring A1 site. Equation (6.3)
thus implies that an isolated In adatom migrates
slightly faster in [110] direction, across the dimer
rows, than along the dimer rows in [110] direc-
tion, with an anisotropy ratio

D∗[110]

D∗
[1̄10]

= 1 + 4
Γ̃11
Γ11

. (6.4)

The related diffusion barriers entering the rates
Γ11, and Γ̃11 are, respectively,

∆E = 0.65 eV, ∆Ẽ ' 0.8 eV

(cf. Figure 6.3, and Table 6.1). It is now tempting to perform a similar numerical estimate as it
was done for In diffusion on the In2/3Ga1/3As(001)-(2×3) surface, Subsection 5.4.2. The present

case is considerably simpler. One needs to know in addition only the frequency prefactors Γ
(0)
11

and Γ̃
(0)
11 . Assuming that they differ inessentially, we have calculated Γ

(0)
11 using the harmonic

approximation (Sec. 4.3) for the lattice vibrations and a force-constant matrix involving only

the degrees of freedom [5, 136] of the In adatom, and found Γ
(0)
11 ' 1.5 THz (' 0.2 × 1013 s−1)

which was used to evaluate the diffusion coefficients. The resulting temperature dependence of
D∗[110] and D

∗
[1̄10]

is shown in Figure 6.5 (a). It is immediately apparent that diffusion anisotropy

is much less pronounced than in the case of diffusion on the In2/3Ga1/3As(001)-(2× 3) surface,
Figure 5.18 (a). This is also well manifested in the polar plot Figure 6.5 (b). For example, at
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Figure 6.5: (a) Van’t Hoff-Arrhenius plot of D∗ normalized to D∗
0 = a20Γ

(0) ' 5 × 10−3 cm2/s; (b)

Polar plot of D∗
eff(n) according to Eq. (5.14) for three different temperatures with D∗

[110] and D
∗
[1̄10] from

Eq. (6.3).

T = 450 ◦C, D∗[110]/D
∗
[1̄10]

exceeds unity by about 50 %, which gives also an estimate for the

contribution of the A1
A2←→ A1 route. Nevertheless, as can be seen from Figure 6.5 (a), the

slopes of the two lines are nearly the same and, therefore we infer similar effective diffusion

barriers in both the [110] and [1̄10] directions, being practically that for the A1
T1←→ A1 route,

∆Eeff ' 0.65 eV.
At sufficiently low temperatures, however, one should include A2 in the 2D network of sites,

Figure 6.4, and consider branching of the diffusion pathways towards neighboring A1 or A2
sites. Although an analytic result for D∗αβ can still be derived in this case, the expressions are
rather cumbersome and one has to seek for simplifications as already discussed for In diffusion
on the In2/3Ga1/3As(001)-(2× 3) surface, Subsection 5.4.2.

6.2.3 Comparison with Ga diffusion on GaAs(001)-c(4× 4)

Recently LePage et al. [207] carried out a combined first-principles (within the LDA) and kinetic
Monte Carlo (kMC) study of Ga diffusion on the GaAs(001)-c(4× 4) surface; cf. also Ref. [208].
The PES for Ga is shown in Figure 6.6 (a), and on panel (b) we have sketched the corresponding
network of sites relevant for the random walk formalism. Upon visual inspection of Figure 6.3
and Figure 6.6 (a), it appears that indium diffuses on a less corrugated PES, although the
relevant diffusion barriers for In are higher than those for Ga. At the A1 site, which is the most
stable for both In and Ga, the In adatom is less bound than Ga by ≈ 0.8 eV. Furthermore, the
c(4 × 4) PES provides two additional adsorption sites for Ga as compared to In: between the
edge dimers, A3 in Figure 6.6 (b), as well as in between the dimer vacancy and the center dimer
along [110], A2 in Figure 6.6 (b). At the A3 site, Ga is more strongly bound than In by 1.0 eV.

These differences can be rationalized easily in terms of the differences in the cation-As bond
strength in the corresponding binary compounds (GaAs, InAs) and the larger ionic radius RiIn of
indium; for example, at four-fold coordination Ri

In3+/R
i
Ga3+

' 1.3 [209]. We note, however, that
part of the difference is to be attributed to the use of the LDA in Ref. [207]. The cohesive energy
per cation-As pair (see also Appendix A) is lowest for InAs (E InAscoh = 6.20 eV), as compared to
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Figure 6.6: (a) (color) Potential-energy landscape for a Ga adatom on the GaAs(001)-c(4×4) surface,

calculated by LePage et al. [207] (reproduced with the kind permission of the authors, c©1998 APS). (b)

Network of binding sites for the Ga adatom as deduced from Ref. [207].

GaAs (EGaAscoh = 6.52 eV) and AlAs (EAlAscoh = 7.56 eV). The barriers for diffusion of group-III
cations on the GaAs surface generally follow the trend given by the binding energies, as has
also been observed in a first-principles study of Ga and Al diffusion on the GaAs(001)-β2(2× 4)
surface [199].

In analogy to the previous subsection, we can derive the 5 × 5 transition rate matrix cor-
responding to the network in Figure 6.6 (b). Note that no jumps between A1 and A3 are
considered, and therefore Γ13, Γ31 terms are not present:

Γij(q) =




−2Γ21 Γ12 ei(p+q)Γ12 0 0
Γ21 −(Γ12 + 2Γ32) 0 Γ23 Γ23

e−i(p+q)Γ21 0 −(Γ12 + 2Γ32) e−ipΓ23 e−iqΓ23
0 Γ32 eipΓ32 −2Γ23 0
0 Γ32 eiqΓ32 0 −2Γ23



. (6.5)

As a result, the tracer diffusion tensor for the Ga adatom in Cartesian coordinates reads

D∗αβ =

(
D∗[110] 0

0 D∗
[1̄10]

)

= 2a20




Γ12Γ21Γ23Γ32
(Γ12 + 2Γ32)[Γ12Γ23 + 2Γ21(Γ23 + Γ32)]

0
Γ21Γ23Γ32

Γ12Γ23 + 2Γ21(Γ23 + Γ32)


 . (6.6)
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The diffusion anisotropy then adopts the simple form

D∗[110]

D∗
[1̄10]

=
1

1 + 2Γ32/Γ12
. (6.7)

Note that Eqs. (6.6)–(6.7) are exact within the random walk formalism. On the other hand,
numerical values are available from the kMC simulation by LePage et al. [207] employing a

site-independent frequency prefactor [210], Γ
(0)
fi ≡ Γ(0) := kBT/π~. At T = 200 ◦C, the diffusion

coefficients of Ga on the GaAs(001)-c(4× 4) surface were found to be

D∗[110] = 1.66× 10−8 cm2/s, and D∗[1̄10] = 1.74× 10−8 cm2/s, (6.8)

which led the authors to infer an isotropic surface diffusion of the Ga adatom, D∗[110]/D
∗
[1̄10]
∼ 1.

Now, taking into account that1 Γ32/Γ12 ∼
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Figure 6.7: Binding energy of an In adatom inter-

acting with the center As dimer as a function of the

Z-coordinate of the adatom ZIn. The latter is mea-

sured from the z-coordinate of the center dimer for

the bare surface. Arrows indicate the order in which

the calculations were performed: adsorption (◦) and
desorption (¦).

10−3, we find that the kMC result is compati-
ble with Eq. (6.7), which can also be rewritten
as

D∗[110]

D∗
[1̄10]

' 1−O(Γ32/Γ12). (6.9)

Consequently, given the essentially isotropic
Ga migration, the tracer diffusion tensor,
Eq. (6.6), reduces to the simple form (4.5)
with

D∗ ≈ 2
Γ21Γ32
Γ12

a20 ' 2.2× 10−8 cm2/s. (6.10)

This simple quantitative comparison demon-
strates clearly the value of having at our dis-
posal analytic expressions derived from the
random walk formalism (Sec. 4.2) in validat-
ing predictions of the kMC approach.

6.3 Interaction of indium
with As-As bonds

Since the c(4 × 4) reconstruction represents a double layer of arsenic, of which the top As
atoms form As dimers, Figure 5.3 (a), the incorporation of In into the cation sublattice requires
the topmost arsenic layer to be eventually replaced by In atoms. One obvious way how this
incorporation could occur is by splitting of the As-As bonds in a reaction with an In adatom.
For an understanding of heteroepitaxy, it is therefore important to study such processes. It
seems that Kley et al. [199] were the first to point out that the adatom interaction with the
surface As dimers may have important consequences for the cation diffusivity. For a Ga adatom
approaching normally a trench dimer on the β2(2× 4)-reconstructed GaAs(001), Figure 5.3 (b),
they found that |Eb| is increased by about 1 eV, thus amounting to −3.2 eV, when the adatom
splits the dimer bond. Our results from Sec. 5.4 also suggested the same trend for In interacting
with the [1̄10]-aligned As dimer bonds on the In2/3Ga1/3As(001)-(2 × 3) surface, although the
energy gain from such a process appeared nearly an order of magnitude smaller than that
reported for Ga/GaAs(001)-β2(2× 4).

1At the simulation temperature (T = 200 ◦C) LePage et al. [207] estimated the relevant transition rates to be,
respectively, Γ21 = 5.4× 109 s−1, Γ12 = 5.1× 1011 s−1, Γ32 = 3.3× 108 s−1, and Γ21 = 5.4× 1011 s−1.
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Figure 6.8: (a) Binding energy of an In adatom interacting with the center As dimer as a function of

the As-As distance d and the In height above the midpoint of the dimer ZIn, as indicated in the inset.

(b,c) The bonding configuration and the valence electron density in the plane containing the adatom and

the dimer for the two deeper minima of Eb.

In our approach we first sample Eb as a function of the adatom height ZIn above the T4 site
(see the inset in Figure 6.8 (a)), and the resulting Eb-ZIn dependence is shown in Figure 6.7.
To be more specific, a series of calculations is conducted for a set of predefined values of ZIn,
where in each calculation the adatom is kept fixed, while the substrate is allowed to freely relax.
In subsequent calculations of the series, the geometry of the substrate atoms from the previous
calculation is used as input. Thus, if R′in, and R

′
out denote, respectively, the initial guess for the

substrate coordinates to be relaxed and their optimized values (cf. also Eq. (4.2)), this means
that in the jth run

R
′[j]
in = R

′[j−1]
out .

We find that the outcome of such a series of calculations depends on the initial geometry.
While a set of data points modeling adsorption, starting from ZIn = 3 Å above the closed dimer,
shows an energy minimum at ZIn ' 2.7 Å, a series of calculations for desorption, starting from
an adatom incorporated in between the As dimer atoms at ZIn ' 0.5 Å, finds a minimum at
ZIn ' 1.3 Å. Both minima have nearly the same depth, Eb ≈ −1.2 eV. The corresponding
bonding configurations and total valence electron densities are shown in Figure 6.8 (b) and (c).
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Figure 6.9: Different bonding configurations of an In adatom interacting with the edge As dimer;

atomic positions in the topmost two atomic layers are shown (In: shaded circle, As: empty circles). (a)

In adatom sitting above the closed edge dimer, similar to Figure 6.8 (b) (configuration corresponding

to the T3 site). φ indicates the As-In-As bond angle; (b) In adatom splitting the dimer, similar to

Figure 6.8 (c); (c) In adatom splitting the dimer back-bond.

The discontinuity and hysteresis in Eb seen in Figure 6.7 due to the dimer opening or closing
indicates that the information gained from the ZIn coordinate alone is insufficient for building up
a complete picture of the adatom-dimer interaction. Indeed, the latter poses a multidimensional
problem, since not only the adatom itself, but also all degrees of freedom of the surface atoms
are involved in this processes. Therefore, even a full relaxation starting from an adatom above
the surface may only lead to a local minimum Z0, while other minima may exist that can only
be reached from different starting configurations. In fact, one could already conclude from the
“1D” sampling, Figure 6.7, that the adatom-surface distance ZIn and the As-As distance d in
the dimer are most important, and the 2D configurational space defined by these coordinates is
suitable to image the In-surface dimer interaction.

Towards this end, a special constrained relaxation was carried out, allowing the In adatom
and the central As dimer beneath it to be moved as a rigid unit, as sketched in the inset in
Figure 6.8 (a). The relative position of these three atoms defines a point in a 2D (d, ZIn)-slice
through the corresponding multidimensional energy hypersurface. Performing the constrained
relaxation, we succeeded in mapping out the 2D PES governing the In-surface interaction in
a point-by-point fashion, Figure 6.8 (a). As a result, it becomes evident that the adatom,
approaching the dimer, first goes through a minimum of Eb with the dimer bond being d =
2.56 Å, Figure 6.8 (b). Upon further pushing towards the surface, the In adatom splits the
dimer bond, overcoming a barrier of ' 0.35 eV, and stays shortly within the ZIn channel in a
second shallower feature of the PES. The formation of directed In-As bonds (see Figure 6.8 (c))
gives rise to a third minimum of Eb at (d = 5.1, ZIn = 1.3) Å.

In a similar way, we analyze the adatom interaction with the edge dimers in the c(4 × 4)
unit cell, Figure 6.9. Since the edge dimer has only one neighbor, the second-layer As atoms
are expected to relax more efficiently. Indeed, comparing similar bonding configurations for
the In atom at the center dimer, Figure 6.8 (c), and at the edge dimer, Figure 6.9 (b), we
find Eb = −1.3 eV for the latter, which is only slightly lower than Eb(T3), Table 6.1. A third
possibility, where In attacks the outer back-bond of an edge dimer, is shown in Figure 6.9 (c).
This configuration results in Eb = −1.25 eV.

It is now clear that additional binding sites for In, related to broken As-As bonds,
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Figure 6.10: (a) Binding energy Eb as a function of isotropic strain ε for an In adatom at the A1

and T1 sites; (b) diffusion barrier ∆E ≡ Eb(T1)−Eb(A1) as a function of ε. Full curves on both panels

represent least-squares polynomial fits to the calculated points.

are energetically higher than adsorption on the PES in Figure 6.3, and are therefore not
substantially populated in equilibrium. Thus, the mechanism operating in the case of
Ga/GaAs(001)-β2(2 × 4) is strongly suppressed for In/In2/3Ga1/3As(001)-(2 × 3), and absent
in the In/GaAs(001)-c(4 × 4) system. Indeed, the more bulky In adatom with an ionic radius
larger than that of Ga, when inserted into the As dimer, introduces a substantial elastic
distortion of the dimer As back-bonds that cannot be energetically compensated by the gain
due to rehybridization. Note that even in the case of an open dimer, the In adatom resides
1.3 Å above it, Figure 6.8 (c), which implies an As-In-As bond angle φ ' 125◦, while the Ga
adatom is incorporated almost collinearly with the two As atoms [199] φ ' 175◦. This analy-
sis also justifies the use of a single PES, Figure 6.3, for In diffusion in the random walk formalism.

6.4 Effect of strain

The foregoing discussion allows us to single out the main route for the adatom migration:

A1
T1←→ A1. Hence, the objective in this section is to analyze the influence of surface elas-

tic strain on the Γ11 rate. A non-vanishing strain field in the substrate results in a different
equilibrium configuration of the topmost atomic layers. Consequently, both the surface phonon
spectrum and the PES will experience changes affecting in turn both the frequency prefactor and
activation energy in the exponential in Eq. (4.33). The net effect of strain is thus determined
by the interplay between the latter two effects. One may expect, however, that the dominant
contribution comes from variations in the diffusion barrier

∆E ≡ Eb(T1)− Eb(A1), (6.11)

for it enters an exponential. This motivated us to concentrate mainly on the strain renormal-
ization of ∆E, but our approach also allows for the influence of Γ(0) to be incorporated without
detailed knowledge of its functional dependence on strain.

For each particular value of ε the In adatom is placed above theA1 and T1 sites and the same
relaxation scheme as for mapping the PES, Subsection 6.2.1, is applied to obtain the respective
binding energy Eb(ε). The calculated values are shown in Figure 6.10. Interestingly, we find
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Figure 6.11: Migration potential (oscillating curve) for an In adatom approaching a long, coherently

strained InAs island on the GaAs(001)-c(4 × 4) surface, cf. also Figure 3.3. In addition to the diffusion

potential due to the atomic structure of the surface, the strain field in the substrate induced by the island

gives rise to a repulsive potential that lifts both the binding energies (thick lower line) and transition

state energies (thick upper line) close to the island.

that ∆E(ε) is a monotonically decreasing function for any tensile strain (ε > 0) employed in the
calculations, Figure 6.10 (b). To be specific, this behavior has its onset at ' 3 % compressive
strain, where ∆E reaches a maximum of 0.68 eV. Applying larger compressive strain leads to
a reduction of ∆E, with the ∆E(0) value recovered again for ε = −0.06. The non-monotonic
dependence on strain can be rationalized by inspecting the Eb(ε) curves, given in Figure 6.10 (a).
While for ε < 0, Eb at the adsorption site A1 follows a linear law [211],

Eb(ε;A1) ' −2.2 eV + |ε| × 3.8 eV, (6.12)

the binding energy at the saddle point T1 contains, although small, non-linear terms in strain
which do not cancel in the evaluation of ∆E. For an inhomogeneously strained sample, the pro-
nounced strain dependence of Eb for both the adsorption site and the saddle point will introduce
a position dependence of ∆E. This finding complies with none of the two limiting scenarios
of changes of ∆E discussed in the literature [202], where either only Eb(Ai) or only Eb(Tk)
contributes. Figure 6.11 illustrates a result for a particular geometry obtained by substituting
ε(x) from Eq. (3.41) into Eq. (6.12), for an InAs island on GaAs with height h = 2 nm and
base length s = 16 nm. As can be seen from the figure, the effect of strain leads to a repul-
sive potential with a strength of up to 0.2 eV, that affects both the binding energy and, to a
slightly smaller extent, the diffusion barriers for an In adatom that attempts to approach this
island. This repulsive interaction can significantly slow down the speed of growth of strained
islands [212].

We would also like to emphasize that the commonly employed linearity [213, 214] for the
strain dependence of the diffusion barrier δ(∆E(ε)) is not justified in the case of In/GaAs(001)-
c(4× 4), as clearly seen from Figure 6.10 (b). Thus one needs to go to higher order terms in ε
to adequately describe the observed δ(∆E(ε)) behavior. It is also important to point out that
strain does not qualitatively change the discussion about the interaction of the In adatom with
As-As bonds, based on the PES in Figure 6.8. Extensive tests over the entire range of strain
considered here were carried out for Eb of In at the two stable minima, Figure 6.8 (b) and (c),
and are shown in Figure 6.12. We found that the binding configuration of Figure 6.8 (b) was
always slightly preferable over the one in Figure 6.8 (c), but the strongest binding site for In
remains to be A1.
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Up to now, reports in the literature about the effect of strain on the diffusion barrier are
scarce. A slight lowering of the diffusion barrier upon tensile strain (ε > 3.5 %) has been
reported for Ag self-diffusion on a Ag(111) slab within the effective-medium theory [34]. The
first-principles treatment of the same system [35] has found instead a linear increase of the
barrier with strain. For semiconductors, a lowering of the diffusion barrier upon tensile strain
has only been reported for Si adatom and dimer diffusion on Si(001) [203–205], although the
underlying binding trends inferred from the MD simulations [203] are opposite to those shown
in Figure 6.10 (a).

Given the strain dependence of the diffusion
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Figure 6.12: Binding energy of an In adatom

at the T4 site (cf. Figure 6.3) for the bonding

configurations depicted in Figure 6.8 (b), and (c).

barrier described above, the basic question arises
whether diffusion limitations can be observed in
the growth kinetics of InAs on GaAs. This would
be the case if the adparticle diffusivity is reduced
for relevant material parameters and growth con-
ditions. As the substrate around an InAs island,
e.g. of pyramidal or truncated pyramidal shape,
is under compressive strain (cf. Ref. [104] and
Figure 3.5 on page 30), an indium adatom ap-
proaching the island samples the ε < 0 branch
of ∆E(ε). This branch is accurately described by

δ(∆E(ε)) = δEmax

[
1−

(
ε

|εmax|
+ 1

)2]
, ε < 0.

(6.13)
Equation (6.13) gives the excess diffusion barrier
over the one for the unstrained surface ∆E(0),
parameterized by the maximum excess δEmax =
30 meV, and the strain value at which it occurs,

εmax = −3 %. On the basis of Eq. (6.13), one can write a rather general expression for the
diffusion coefficient taking into account the effect of strain,

D∗(ε) = D∗0(1 + 2ε) δΓ(0)(ε) exp

[
−δ(∆E(ε))

kBT

]
, (6.14)

where D∗0 ≡ const is the value of D∗ for the unstrained surface, δΓ(0) = Γ(0)(ε)/Γ(0)(0) is
the reduction or enhancement factor of the attempt frequency Γ(0), and 2ε ≡ Tr εαβ is the
relative change in the surface area. A first estimate of the expected reduction of D∗ within the
temperature range 350–500 ◦C used for InAs deposition on the c(4×4)-reconstructed GaAs(001)
substrate in Ref. [142], Figure 5.1 can be obtained by inserting Eq. (6.13) in (6.14), setting
δΓ(0) ≡ 1. The resulting reduction,

D∗(εmax)/D
∗
0 ' 0.6, (6.15)

turns out to be small due to the smallness of δEmax. As a consequence, changes of the prefactor
due to the effect of strain on lattice vibrations are equally important in determining the strain
renormalization of the In diffusivity on the GaAs(001)-c(4×4) surface in the relevant temperature
regime.

Although it is possible to obtain δΓ(0) from first-principles calculations, it is difficult to get
an estimate that is better than a factor of two with reasonable computational effort (see also
the discussion in Subsection 5.4.2). Hence we consider δΓ(0) as an independent parameter in
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the following analysis. Thus the right-hand side of Eq. (6.14) is a function of three parameters,
ε, δΓ(0), and T. The region in parameter space where strain-induced growth limitations can be
expected is defined by the requirement

D∗(ε; δΓ(0), T )/D∗0 < 1. (6.16)

Figure 6.13 represents the isosurfaceD∗/D∗0 = 1 in the 3D parameter space of ε, δΓ(0), and T.We
note that the reduction in diffusivity due to positive δ(∆E), especially for lower temperatures,
persists even for δΓ(0) > 1, i.e. in presence of the Meyer-Neldel compensation effect [138], cf.

also Sec. 4.3. However, for a very strong compensation effect, δΓ(0)(ε) > δΓ
(0)
c ' 2, no decrease

in D∗ in the relevant range of ε and T values can be expected. Finally, we have performed

DFT calculations to obtain an estimate of Γ
(0)
11 (−0.04), using the harmonic approximation for

the lattice vibrations and a force-constant matrix involving only the degrees of freedom [5,136]
of the In adatom. This estimate indicates ∼ 70 % increase of the prefactor for 4 % compressive
strain. In this case one cannot expect more than a few percent maximum reduction of D∗, which
would in turn make diffusion limitations for the specific example of the GaAs(001)-c(4×4) surface
rather unlikely.





Chapter 7

Consequences for growth

7.1 Introduction

The QDs self-assembly can be considered as the second stage in the (quasi) SK growth of
lattice mismatched heteroepitaxial systems. Now a great number of experiments have shown
that these 3D coherent islands often exhibit a rather narrow size distribution. This property
was particularly enhanced in the higher layers of 3D stacks of islands obtained from repeated
deposition of heteroepitaxial films separated by spacer layers; a sample illustration is given in
Figure 7.1. This feature is essential for the usefulness of these nanostructures as QDs, and for
their envisaged application in future optoelectronic devices [19, 215].

Considerable theoretical efforts have been made

Figure 7.1: Sketch of a vertical stack of 2D

QD arrays where ordering in the higher layers is

improved.

in order to rationalize the observed regularities
in island sizes and ordering. Some approaches
have attempted to describe the islands as equi-
librium structures [19, 148, 216–218]. As an al-
ternative explanation, the role of kinetics for the
growth of heteroepitaxial islands has been em-
phasized [213,214,219]. It is possible that intrin-
sic features of the kinetics of the growth process
give rise to regular structures. For instance, self-
limiting effects in strained island growth could
result in a preferred island size, either due to a
limitation in material supply [114, 115, 212, 220,
221], or due to nucleation barriers in the growth
of the islands’ side facets [222,223].

In this final chapter we would like to dis-
cuss the impact of our results from Chapters 5
and 6 for growth in two typical situations, (i)
nucleation on a strained capping layer for low
In concentrations (Sec. 7.2), and (ii) diffusion-limited growth of quasi-one-dimensional islands
(Sec. 7.3). These topics have been discussed previously in the literature in the context of thermo-
chemical diffusion [114,115,212,220,224]. Our focus here will be on a kinetic description inspired
by the results of our atomistic calculations (Chapter 5, Chapter 6), attempting also a more gen-
eral context in the following discussion.

81
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7.2 Growth on a capping layer with buried islands

As already mentioned in Subsection 3.3.2, in successive stages of growth of vertically stacked QD
arrays, different regimes of strain are realized. When a 2D sheet of InAs QDs is completed and
capped by a spacer GaAs layer, the GaAs lattice is expanded in the regions above the buried
InAs QDs [225,226]. Let us consider now the onset of In deposition onto the spacer layer before
nucleation of the first new islands. In order to employ the results from the previous chapter
we assume that the (001) surface of the GaAs capping layer is characterized with a well-defined
reconstruction, taken to be c(4 × 4) [227], Figure 5.3 (a). Then a stationary concentration of
adatoms on the surface builds up by the equilibrium between supply from an atomic In beam
source and loss due to evaporation of In. However, the concentration may vary laterally along
the surface. In the stationary state the local concentration n(r‖) is given by local equilibrium,

n(r‖) = n0 exp[−U(r‖)/kBT ], (7.1)

where U(r‖) is the binding energy of the In adatoms at site A1, and r‖ is the coordinate within
the surface. U(r‖) is a function of local strain as given by Eb(ε(r‖)) in Figure 6.10 (a). As can be
seen from this figure, the binding strength increases for any tensile strain ε > 0. Thus, the local
concentration of adatoms, and hence the nucleation probability for a new island, is increased in
the region above a buried island where the capping layer surface is under tensile strain. Our
calculations, thus, provide a microscopic foundation for the frequently made assumption [15,225]
that it is easier to nucleate an InAs island on those regions of the capping surface where the
GaAs lattice constant increased, and thus more closely matches the InAs lattice constant.

7.3 Diffusion limitations in island growth kinetics

The conditions under which kinetic growth limitations can be expected were discussed already in
Sec. 6.4 (see Eq. (6.16) and Figure 6.13). It is interesting to illustrate the possible consequences
of such limitations for the island sizes. This is pursued here within the framework of a simple
model problem based on the flat island approximation [112], Sec. 3.4. One might think, for
instance, of adatom diffusion towards the extended edge of a quantum wire.

As a first step, we address the strain renormalization of the adparticle diffusivity due to an
isolated island. The strain field it creates in the underlying substrate, within the model adopted,
is given by Eq. (3.41). To assess quantitatively the role of diffusion limitations, we insert the
numerical values for δEmax and εmax obtained in Sec. 6.4. We shall further suppose that a low
adatom concentration is maintained at the surface, so that the adsorbate-adsorbate interactions
are negligible. In such a case, as discussed in Subsection 4.1.2, the tracer diffusion coefficient(s)
D∗ and the chemical diffusion coefficient(s) D become equivalent, so we suppress hereafter the
“*” superscript. For three islands of different sizes, Figure 7.2 shows the spatial dependence of
D(x) obtained by inserting Eq. (3.41) into Eq. (6.14), for δΓ(0) = 1 and T = 450 ◦C. As can
be seen from the short-range behavior (i.e. close to the island edges) of the diffusion coefficient,
the larger islands can be about 20–30 % more effective in hindering the adatom migration (due
to reduced D) provided that no substantial compensation (Meyer-Neldel) effect from the Γ(0)

prefactor is present, cf. also Sec. 4.3. However, as we have shown in Sec. 6.4, Figure 6.11, the
compressive strain field around an island gives rise to an effective repulsive potential. Since
this effect is independent of the prefactors and is larger in magnitude, it will bring about a
slowdown in adatom migration rate toward the island even if the above mentioned situation is
realized. Consequently, as long as the islands grow via strain-dominated surface mass transport,
the compressive strain field may lead to retarded growth of the larger islands.
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InAs/GaAs.

Consider now two islands of characteristic size s1 and s2, with s1 > s2, separated by a
distance L À s1, s2, Figure 7.3. A supply of adparticles to the surface is maintained by a
stationary flux F0. One may ask then, what is the steady-state adparticle density distribution
n(x) at the surface, and how does it affect the diffusional currents of single adatoms toward the
islands, −j1 and j2? This is a standard problem in kinetics [228,229]; however, we require it to
be solved for a spatially varying migration potential U(x) due to the presence of strained islands.
Again, we can exploit the results obtained in Sec. 6.4, identifying U(x) with Eb(ε(x)) for the
adsorption site A1. The single atom density n(x, t) then satisfies a Smoluchowski equation-type
equation [122,127,128] that takes explicit account of the field of force due to U(x),

∂n

∂t
=

∂

∂x

[
D(x)

(
∂n

∂x
+

n

kBT

dU(x)

dx

)]
+ F0 (7.2)

Since a stationary solution is sought, ∂n/∂t = 0, one can also replace ∂/∂x → d/dx, so
Eq. (7.2) reduces to

d

dx
n(x) +

1

kBT

dU(x)

dx
n(x) = − F0

D(x)
(x− x0), (7.3)

which is a linear inhomogeneous differential equation (x0 being a constant of integration). The
solution of the homogeneous problem has the form of Eq. (7.1), n(x) = n0 exp(−U(x)/kBT ), and
solution of the inhomogeneous equation can be found just by substituting the latter expression
in Eq. (7.3) and varying the constant n0, i.e. n0 → n0(x). In the simplest case, when the island
edges act as perfect sinks, we have the trivial boundary conditions

n(0) = n(L) = 0, (7.4)

thereby the stationary solution finally reads

n(x) = F0 exp

(
−U(x)

kBT

) x∫

0

x0 − x′
D(x′)

exp

(
U(x′)

kBT

)
dx′, (7.5)
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with 0 < x0 < L being the position between the two islands where the total adparticle current
vanishes,

j(x0) ∝ −
dn

dx

∣∣∣∣
x0

= 0,

x0 =




L∫

0

1

D̃(x)
dx



−1 L∫

0

x

D̃(x)
dx, (7.6)

with D̃(x) = D(x) exp[−U(x)/kBT ]. Thus, we can think of x0 as the marker that divides the
space between the islands into two capture areas: j1 is due to adparticles in the region x ∈ (0, x0),
while j2 is determined by those within (x0, L). It is now straightforward to obtain the result
that relates j1 with j2 ∣∣∣∣

j1
j2

∣∣∣∣ =
x0

L− x0
. (7.7)

Without the effect of strain, the adatom density has a simple parabolic profile,

n0(x) =
F0
2D0

(2x0 − x)x (7.8)

with its maximum being exactly at the midpoint between the two islands, x0 = L/2. The strain
renormalization of diffusion shifts x0 towards the bigger island, Figure 7.3, thus reducing the
particle current reaching this island. In order to achieve a rough estimate for the magnitude of
this effect, we have evaluated the current ratio (7.7) at T = 450 ◦C, using here the calculated
material parameters for the InAs/GaAs system within the PBE-GGA. We have further assumed
the right island in Figure 7.3 to be of fixed size and considered Eq. (7.7) as a function of the
size s2 of the left island; aspect ratios of the two islands were kept the same as in Figure 3.3,
h1/s1 = 1 : 8, and h2/s2 = 1 : 10, respectively. The result is shown in Figure 7.4, where the full
curve has been obtained for the case δΓ(0) ≡ 1. Thus it can be seen that doubling the size of
the island results in about 40 % reduction of the diffusional current directed to this island. One
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should keep in mind, however, that the presented dependence cannot be interpreted as a “time
evolution” of Eq. (7.7) for which, in principle, also s2 and L have to be considered variables.

It is also interesting to test the tendency
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Figure 7.4: Effect of island size (s1) on the |j1/j2|
ratio (7.7), cf. Figure 7.3, assuming fixed sized for

the right island and distance between the islands,

respectively, s2 = 12 nm and L = 80 nm. Dashed

line refers to the case where a compensation effect is

present (see discussion in text).

worked out for δΓ(0) ≡ 1 against inclusion
of a compensation effect from the prefac-
tor. From simple physical considerations, one
would have

δΓ(0)(ε) ∼ gTr ε ∼ gε,
where the g is to be interpreted as a sur-
face analog to the Grüneisen parameter [41].
With this remark, we have used a simple lin-

ear interpolation between the values of Γ
(0)
11

calculated for the unstrained surface and for
4 % compressive strain (Subsection 6.2.2,
Sec. 6.4). The result is given by the dashed
curve in Figure 7.4. Note that the dominant
effect stems from the Eb-ε dependence, as
shown in Figure 6.11 on page 77, rather than
from the diffusion barrier for the adatom, and
thus the overall decrease of |j1/j2| persists
even in the presence of the Meyer-Neldel ef-
fect.

This simple 1D model problem demon-
strates that the smaller island will grow faster,
until x0 gets shifted back towards the midpoint when the sizes of the two islands have become
equal. As a consequence, the strain-limited adatom diffusion will tend to equalize the island
sizes by controlling the capture areas for the two islands competing for the deposited material.
Thus far we have assumed that the boundary condition (7.4) is fulfilled, which implies that all
adatoms that have reached the islands edges got attached. Such a process, however, is energy
activated, and the barrier increases monotonically with the island size.1 Therefore we believe
that our results based on these simple model assumptions would not be changed qualitatively if
the model is further refined, e.g., by allowing for a kinetic barrier to attachment at the island
edges, and thereby nonvanishing particle densities at x = 0, L.

Finally we would like to comment briefly on a possible scenario for the lattice mismatched
heteroepitaxy of InAs on GaAs(001) which attempts to combine our results about the WL
stability and In mobility on it (Chapter 5) with the strain dependence of In diffusion on the
GaAs(001)-c(4× 4) substrate (Chapter 6).

As the MBE growth is usually performed under As-rich conditions, from the diagram in
Figure 5.14 one can expect that the initial delivery of InAs to the GaAs(001)-c(4× 4) substrate
will result in formation of a pseudomorphic InGaAs(001)-(2 × 3) alloy WL, and above certain
coverage the reconstruction changes to (2 × 4), Figure 5.14. Beyond the critical coverage θc,
coherent InAs will nucleate on the (2×4)-reconstructed WL and continue growing at the expense
of the WL. If the island densityNi is assumed fixed, the growth process will follow the mechanism
proposed byWang et al. [107,148], thereby thinning theWL. According to Figure 5.13 on page 59,
for µAs close to µAs(bulk) the decrease in θ may proceed to as low as ∼ 0.5 ML, where the
reconstruction is dominantly (2×3). At this stage, however, the WL is no longer homogeneously
strained as before the onset of islanding. The presence of the InAs islands now appears to be
crucial: the compressive strain field in the WL around the islands according to Figure 5.11 on

1Activated attachment, however in the context of thermo-chemical diffusion, was invoked,e.g., by Chen and
Washburn [220] for Ge/Si(001), demonstrating that it can lead to progressive slowdown of the growth of bigger
islands thus allowing the smaller ones to catch up in size.
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Figure 7.5: Schematic of an isolated pyramidal island decoupled from the WL through a ring-shaped

area of exposed bare GaAs(001)-c(4 × 4) substrate. The WL thickness at distance r from the island is

θ(r), approaching a constant value θ0 for large r.

page 58 may drive the InGaAs(001) WL unstable so that ring-shaped regions surrounding the
islands form, uncovering the bare GaAs(001)-c(4×4) substrate. Figure 7.5 presents a schematic
drawing of such a situation. Once such c(4 × 4) “rings” appear, the In adatom diffusion will
be governed by a different PES depending on whether it takes place on the WL or the bare
substrate. Thus, we expect reduced In mobility in vicinity of the InAs islands caused by the
“decoupling” from the WL. We stress that this slowdown comes from the PES “crossover”. An
additional effect of hindering will stem from the compressive strain field in the bare substrate
itself as demonstrated in Chapter 6. As a result, one can speculate [176] that the growth rate
of the larger InAs islands which have decoupled from the WL will be considerably reduced or
even vanish, leading to an equalizing effect on the island sizes, and consequently to a narrow
size distribution.

The plausibility of this hypothesis is, to a
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large extent, determined by the typical radius
r̄ of the c(4× 4) domains around the islands,
or in general, by the validity of the equilib-
rium assumptions. In principle, the method-
ology used in Refs. [107,148] should allow such
an evaluation to be achieved. In such a case,
however, the surface energy of the WL and
the energy of the WL-substrate interface (cf.
the γWL(θ) quantity, e.g., in Ref. [107]) will
acquire spatial dependence due to the later-
ally varying WL thickness θ(r‖).

An estimate for r̄ can also be based on
the phase equilibrium analysis carried out in
Chapter 5. Let we first assume that as a
result of the thinning, the WL has reached
thickness θ ' 2/3 ML, Figure 5.13. Hence,
for definiteness, from Figure 5.14 we choose
µ′As = −0.15 eV, which ensures the stability
of the (2× 3) reconstruction of the WL. Now
in order to determine how the equilibrium be-
tween the WL and the GaAs(001)-c(4 × 4)

substrate depends on the strain, we build up their “phase” diagram as function of µAs and ε,
just like it was done for the clean GaAs(001) and InAs(001) surface in Figure 5.8 on page 55.
It is shown in Figure 7.6. Using this diagram, it is easily established that at µ′As = −0.15 eV
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(see the dashed line), a (2 × 3) → c(4 × 4) reconstruction transition occurs for the “critical”
compressive strain εc = −0.15 %. Once εc is determined from the diagram Figure 7.6, the size
of the c(4× 4) domain r for a particular island is obtained as the solution of the equation

ε(r)− εc = 0. (7.9)

The calculated r thus will be, in fact, determined by the characteristic size of the island s,
r = r(s). Details in the ε(r) profile depend, of course, also on the island shape, but for simplicity
we can assume that the latter is the same within the dilute island array in question. If for the
given amount of deposited InAs we know the (stationary) distribution of islands in sizes (i.e.
number of 3D islands of characteristic size s per unit surface area) f(s), then r̄ can be obtained
by simple averaging,

r̄ =

∫
r(s)f(s)ds/

∫
f(s)ds.

Such a procedure in the realistic case of a planar array of 3D islands is a formidable task.
However, we can revert again to the simple 1D model, Figure 7.3. In this case we have just a
stripe of the uncovered substrate. Consider now the islands of width s1 = 20 nm. Substituting
ε(x) from Eq. (3.41) and εc = −0.015 into Eq. (7.9) we find x ' 5 nm.

Whether such domains of uncovered substrate around the InAs islands can be observed in
experiment remains to be seen. Thus far there are no such indications, which may imply that
the central local equilibrium assumption in the present theory is not fulfilled under the exper-
imentally relevant growth conditions for the InAs/GaAs(001) material system. Interestingly,
however, in the case of Ge/Si(001), such dips in the wetting layer around the Ge islands have
been observed; they are also somewhat visible in Figure 1 on page iii (cf. also Ref. [230]).





Summary

The goal of the present work was to provide understanding of surface diffusion in InAs lattice
mismatched heteroepitaxy on GaAs(001) on the atomic scale. The self-assembly of coherent 3D
islands (QDs) in the Stranski-Krastanov-type growth mode has made this material system of
primary technological interest, in view of the potential application of these QDs in optoelectronic
devices. The method we have employed to pursue the problem of In surface diffusion is based on
density-functional theory (Sec. 2.2), which is nowadays indispensable in exploring microscopic
processes in crystal growth in general.

Since the problem of surface diffusion is intimately related to the morphology of the surface
on which the diffusion process takes place, we had first to consider (Sec. 5.2) the thermodynamic
stability and elastic properties of the clean (001) surfaces of GaAs and InAs. The new element
in the present work is the inclusion of the novel ζ(4 × 2) model [174] for the InAs(001) surface
under In-rich conditions. We showed that this reconstruction is stable, and thus provided first-
principles evidence that there exists, indeed, a stable (4× 2) reconstruction in the As-poor limit
of the surface phase diagram of InAs(001). In Subsection 5.2.3, we calculated the trace of the
surface stress tensor for the clean surfaces and showed that for the clean binary (001) surfaces
under moderately As-rich conditions, the dominant stress component is tensile, while for the
cation-rich ζ(4× 2) phase it is compressive.

In considering the InAs/GaAs(001) growth process itself, we further focused on the alloying
which was experimentally found to occur in the initial stages of the wetting layer formation,
Sec. 5.3. Our stability analysis supports the experimentally proposed (2 × 3) structural model
for the InGaAs(001) surface. Importantly, we found that the pseudomorphic In2/3Ga1/3As(001)-
(2 × 3) film is considerably destabilized upon compressive isotropic strain, and a (2 × 3) →
(1 × 3) reconstruction transition may occur at about |ε| = 3 % compression. This part of
the work also extended the previous analysis of Wang et al. [107, 148, 150] by including the
α2(2×4) reconstruction for the WL. As a result we derived a diagram of the WL surface phases
(Figure 5.14), demonstrating that under As-rich conditions the (2×3) reconstruction is the most
favorable one for WL thickness up to θ ' 1–1.5 ML, while the α2(2×4) is dominant for moderate
As chemical potential. Surface alloying and pseudomorphism turned out to result in a relatively
“smooth” potential-energy surface for indium diffusion on the In2/3Ga1/3As(001)-(2 × 3) film,
Sec. 5.4. This finding led us to infer enhanced In migration on this surface.

Further analysis concentrated on the effect of strain on In diffusivity on the bare GaAs(001)-
c(4× 4) surface (Chapter 6) which is often used as substrate for InAs deposition, cf. Figure 5.1.
In particular, we quantified the strain dependence of the diffusion barrier ∆E for the indium
adatom, Sec. 6.4. Our atomistic calculations yielded a maximum increase of the In diffusion
barrier on GaAs(001)-c(4× 4) of 30 meV for isotropic compressive strain. Since at the relevant
growth condition this value is of the order of kBT, the effect on the diffusion coefficient is small.
However the strain field resulted in a pronounced strain dependence of the In binding along
the main diffusion route. This gives rise to a significant repulsive interaction between a strained
island and an adatom diffusing towards the island, Figure 6.11, which appears to be the dominant
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effect of strain on the adatom migration. The In interaction with the surface As dimers was
also investigated in Sec. 6.3. We do not find convincing evidence for considerably more stable
adsorption sites for indium due to As-As bond splitting.

Finally, in Chapter 7, a simple 1D model problem was employed to demonstrate that strain-
limited diffusion can lead to self-limiting growth of strained islands. The discussion presented
in this work, however, referred to diffusivity of a single adatom, the so-called tracer diffusion
(Sec. 4.1.2). Concluding, we would like to emphasize that if any collective effects are to be
included, one has to calculate interaction parameters between diffusing adatoms, and consider
adatom concentrations where these interactions are effective. Nevertheless our microscopic re-
sults could serve as an input, for example, to kinetic Monte Carlo simulations (see, e.g., Sec. 6.2.3)
in order to shed more light on the effect of strain on adatom diffusivity in this important material
system.

✧✧✧



Kurzfassung

Ziel der vorliegenden Arbeit ist es, Einblicke in die Oberflächendiffusion in der Heteroepitaxie
von InAs auf GaAs(001) auf atomarer Skala zu liefern. Aufgrund der Gitterfehlanpassung kommt
es in diesem Materialsystem zur spontanen Ausbildung kohärenter dreidimensionaler Inseln im
Stranski-Krastanov Wachstumsmodus. Diese so genannten Quantenpunkte verleihen diesem
System große technologische Bedeutung in Hinblick auf die potentielle Anwendung in optoelek-
tronischen Bauelementen. Die Methode, die wir benutzt haben, um das Problem der Ober-
flächendiffusion von In anzugehen, basiert auf der Dichtefunktionaltheorie (Abschnitt 2.2), die
heutzutage unentbehrlich bei der Untersuchung von mikroskopischen Prozessen im Kristallwach-
stum ist.

Da das Problem der Oberflächendiffusion eng verbunden ist mit der Morphologie der Ober-
fläche, auf der die Diffusion stattfindet, haben wir im ersten Teil der Arbeit (Abschnitt 5.2)
die thermodynamische Stabilität und die elastischen Eigenschaften der reinen (001)-Oberfläche
von GaAs und InAs untersucht. Das Besondere an der vorliegenden Arbeit ist, dass wir eine
neuartige ζ(4×2) Struktur [174] der InAs(001)-Oberfläche unter In-reichen Bedingungen berück-
sichtigt haben. Wir haben gezeigt, dass diese Rekonstruktion stabil für InAs(001) ist und haben
damit einen theoretischen Beweis der Existenz einer stabilen (4× 2) Rekonstruktion an der As-
armen Grenze im Oberflächenphasendiagram von InAs(001) geliefert. Darüber hinaus wurde in
Abschnitt 5.2.3 die Spur des Oberflächenspannungstensors für die reine Oberfläche berechnet
und gezeigt, dass für die reinen binären Oberflächen unter schwach As-reichen Bedingungen die
dominante Komponente einer Zugspannung entspricht, während für die kationreiche Phase eine
Druckspannung dominiert.

Bei der Untersuchung des Wachstums von InAs/GaAs(001) haben wir uns auf die Legierungs-
bildung konzentriert, die experimentellen Hinweisen zufolge im Anfangsstadium der Ausbildung
der Adsorbatschicht stattfindet, Abschnitt 5.3. Unsere Analyse der Stabilität bestätigt das ex-
perimentell vorgeschlagene Modell der InGaAs(001)-Oberfläche. Ein wichtiges Ergebnis ist, dass
der pseudomorphe In2/3Ga1/3As(001)-(2× 3)-Film unter isotroper Druckspannung beträchtlich
destabilisiert ist und bei einer Druckspannung von |ε| = 3 % ein Rekonstruktionsübergang
(2 × 3) → (1 × 3) stattfinden kann. Dieser Teil der Arbeit ging über die Analyse von Wang et
al. [107, 148, 150] insofern hinaus, als auch die α2(2 × 4) Rekonstruktion als Benetzungsschicht
betrachtet wurde. Als Resultat wurde ein Diagramm der Oberflächenphasen der Benetzungs-
schicht erstellt (Abbildung 5.14), das veranschaulicht, dass die (2× 3)-Rekonstruktion die gün-
stigste unter As-reichen Bedingungen bis zu einer Dicke der Adsorbatschicht von θ ' 1–1.5 ML
ist, während bei ausgewogenem III-V-Verhältnis eine α2(2×4)-Phase dominiert. Die Legierungs-
bildung und das pseudomorphe Wachstum führen zu einer relativ ”glatten” Potentialfläche für
die In-Diffusion auf dem In2/3Ga1/3As(001)-(2× 3) Film, Abschnitt 5.4. Dieses Ergebnis deutet
auf eine verstärkte In-Migration auf der Oberfläche hin.

Desweiteren wurde der Effekt einer mechanischen Verspannung auf die In-Diffusivität auf
der reinen GaAs(001)-c(4 × 4)-Oberfläche untersucht, die oft als Substrat für die Deposition
von InAs dient, cf. Abbildung 5.1. Unsere Berechnungen ergeben einen maximalen Anstieg
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der In-Diffusionbarriere von 30 meV bei isotroper Druckspannung, Abschnitt 6.4. Da unter den
relevanten Wachstumsbedingungen dieser Wert von der Größenordnung kBT ist, ist der Effekt
auf den Diffusionskoeffizienten klein. Allerdings führt das Verzerrungsfeld zu einer deutlichen
Abhängigkeit der Bindung des Indium-Adatoms entlang des Diffusionspfades. Dies verursacht
eine stark repulsive Wechselwirkung zwischen der verspannten Insel und dem Adatom, Abbil-
dung 6.11, das zur Insel diffundiert. Diese Wechselwirkung stellt den dominierenden Effekt
der Verspannung auf die Adatommigration dar. Die Wechselwirkung von Indium mit den As-
Oberflächendimeren wurde auch berücksichtigt, Abschnitt 6.3. Wir haben keinen Hinweis auf
die Existenz eines deutlich stabileren Adsorptionsplatzes für In durch die Aufspaltung der As-
As-Bindung gefunden.

Schließlich wurde in Kapitel 7 ein einfaches eindimensionales Modell benutzt, um zu zeigen,
dass die Diffusion auf verspannten Oberflächen ein Grundprinzip des sich selbst begrenzenden
Wachstums verspannter Inseln ist. Allerdings bezieht sich die Diskussion in dieser Arbeit auf die
Diffusion eines einzelnen Adatoms, auf den so genannten ”Tracer”-Diffusionskoeffizienten (Ab-
schnitt 4.1.2). Abschließend wollen wir betonen, dass zur Berücksichtigung kollektiver Effekte
die Wechselwirkungsparameter zwischen diffundierenden Adatomen berechnet werden müssen,
und zwar mit Adatom-Konzentrationen, bei denen diese Wechselwirkungen relevant sind. Un-
sere mikroskopischen Ergebnisse können jedoch als Eingangsparameter einer kinetischen Monte-
Carlo-Simulation dienen, um den Effekt der Verspannung auf die Adatom-Diffusivität in diesem
technologisch wichtigen System zu untersuchen.

✧✧✧



Rez»me

Celta na nastoÂwata rabota bexe da se postigne razbirane na atomno nivo
na povÄrhnostnata difuziÂ pri heteroepitaksialnoto izrastvane na InAs vÄrhu
GaAs(001). Samoorganiziraneto na koherentni trimerni ostrovqeta pri Stranski-
KrÄstanov re¼im na izrastvane prevÄrna tazi materialna sistema s rexetÄqno
nesÄotwectwie ot pÄrvostepenno znaqenie s ogled na potencialnoto prilo¼enie na
tezi kvantovi toqki v optoelektronnite uredi. MetodÄt, ko½to be izpolzvan za
izuqavane na povÄrhnostnata difuziÂ na In, se bazira na teoriÂta na funkcionala
na plÄtnostta (Razdel 2.2), koÂto v dnexno vreme e nezamenima pri izsledvaneto na
mikroskopiqnite procesi v kristalniÂ raste¼ kato cÂlo.

TÄ½ kato problemÄt za povÄrhnostna difuziÂ e tÂsno svÄrzan s morfologiÂta na
povÄrhnostta, vÄrhu koÂto se realizira difuzionniÂt proces, nie trÂbvaxe pÄrvo
da razgledame (Razdel 5.2) termodinamiqnata stabilnost i elastiqnite svo½stva
na qistite (001) povÄrhnosti na GaAs i InAs. NoviÂt element v nastoÂwata rab-
ota e vkl»qvaneto na noviÂ ζ(4× 2) model [174] i za InAs(001) povÄrhnost pri bedni
na In usloviÂ na izrastvane. Nie pokazahme, qe tazi rekonstrukciÂ e stabilna za
InAs(001), i po tozi naqin privedohme dokazatelstvo ot pÄrvi principi, qe naistina
sÄwestvuva stabilna (4 × 2) rekonstrukciÂ v bednata na As graniqna oblast ot fa-
zovata diagrama na InAs(001) povÄrhnost. V Razdel 5.2.3 presmetnahme sledata na
tenzora na povÄrhnostno napre¼enie za qistite povÄrhnosti i pokazahme, qe za qis-
tite binarni (001) povÄrhnosti pri umereno bogati na As usloviÂ na raste¼ dom-
inantnata komponenta na napre¼enie sÄotvetstva na raztÂgane, dokato za kationno
bogatata ζ(4× 2) faza dominantnata komponenta sÄotvetstva na svivane.

Pri razgle¼daneto na samiÂ proces na izrastvane na InAs vÄrhu GaAs(001)
nie se koncentrirahme vÄrhu obrazuvaneto na povÄrhnostna splav, eksperimen-
talno nabl»davano v naqalniÂ stadi½ na formirane na mokrewiÂ slo½, Razdel 5.3.
NaxiÂt analiz na stabilnostta na posledniÂ poddÄr¼a eksperimentalno pred-
lo¼eniÂ (2 × 3) strukturen model za ternarnata InGaAs(001) povÄrhnost. Va¼no
e da se otbele¼i, qe ustanovihme znaqitelna destabilizaciÂ na psevdomorfniÂ
In2/3Ga1/3As(001)-(2 × 3) film pri izotropna deformaciÂ na svivane; sÄwto taka,
pri priblizitelno |ε| = 3 % svivane bi mogÄl da se realizira (2 × 3) → (1 × 3)
prehod v rekonstrukciÂta. Tazi qast ot rabotata razxiri predixniÂ analiz na
Wang et al. [107, 148, 150] vkl»qva½ki i α2(2 × 4) rekonstrukciÂ za mokrewiÂ slo½. V
rezultat na tova postroihme diagrama na povÄrhnostnite fazi na mokrewiÂ slo½
(fig. 5.14), demonstrira½ki qrez neÂ, qe pri bogati na As usloviÂ (2 × 3) rekon-
strukciÂta e energetiqno na½-izgodnata za debelini na mokrewiÂ slo½ do θ ' 1–1.5
monosloÂ, a α2(2×4) e dominirawa pri umereni sto½nosti na himiqniÂ potencial na
As. Obrazuvaneto na povÄrhnostna splav i prisÄwiÂ í psevdomorfizÄm se okazaha,
qe vodÂt do otnositelno “ravna” potencialna povÄrhnost za difuziÂ na indi½ vÄrhu
In2/3Ga1/3As(001)-(2× 3) film, Razdel 5.4.
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Po-natatÄxniÂt analiz be fokusiran vÄrhu efekta ot deformaciÂta vÄrhu di-
fuziÂta na indi½ vÄrhu qistata GaAs(001)-c(4×4) (Glava 6) povÄrhnost, koÂto qesto
se izpolzva kato podlo¼ka za otlaganeto na InAs, v¼. fig. 5.1. V qastnost, nie
opredelihme koliqestveno zavisimostta na difuzionnata bariera ∆E za indieviÂ
atom ot prilo¼enata deformaciÂ, Razdel 6.4. Naxite mikroskopiqni izqisleniÂ
dadoha 30 meV maksimalno narastvane na ∆E pri izotropna deformaciÂ na svivane.
TÄ½ kato pri tipiqnite usloviÂ na izrastvane tazi sto½nost e ot porÂdÄka na kBT,
efektÄt vÄrhu difuzionniÂ koeficient e slab. Deformacionnoto pole obaqe dovede
do izrazena deformacionna zavisimost na energiÂta na vrÄzka na indieviÂ atom po
glavniÂ difuzionen kanal. Tova pora¼da znaqitelno otblÄskvawo vzaimode½stvie
me¼du edin napregnat ostrov i atom, difundiraw kÄm nego, fig. 6.11, koeto se ÂvÂva
dominanten efekt ot deformaciÂta vÄrhu povÄrhnostnoto migrirane na atoma. Raz-
gledano bexe podrobno i vzaimode½stvieto na In s povÄrhnostnite As dimeri. Nie ne
ustanovihme dokazatelstva za znaqitelno po-stabilni adsorpcionni vÄzli za indi½
v rezultat na razkÄsvane na As-As dimerni vrÄzki.

NakraÂ, v Glava 7 bexe izpolzvan oprosten ednomeren model, za da se
demonstrira, qe deformacionno ograniqenata difuziÂ sÄdÄr¼a prototip na
samoograniqavawiÂ se raste¼ na napregnati ostrovi. DiskusiÂta, predlo¼ena v
nastoÂwata rabota obaqe, se otnasÂxe za difuziÂta na edin izoliran atom, taka
nareqenata “tracer” difuziÂ (Razdel 4.1.2). V zakl»qenie iskame da podqertaem, qe
za vkl»qvaneto na kakvito i da e kolektivni efekti e neobhodimo da se presmetnat
parametrite na vzaimodeistvie me¼du difundirawite atomi i da se razgle¼dat
takiva atomni koncentracii, za koito tezi vzaimode½stviÂ sa efektivni. Nezav-
isimo ot tova naxite mikroskopiqni rezultati biha mogli da se izpolzvat kato
vhodni danni naprimer za kinetiqni Monte Karlo simulacii, za da se hvÄrli poveqe
svetlina vÄrhu efekta ot elastiqnite deformacii za povÄrhnostnata difuziÂ v tazi
va¼na materialna sistema.

✧✧✧



Appendix A

Structural and cohesive properties of
Ga, In, As, GaAs and InAs

Ga, In, As

The atomic structure of bulk Ga, In, and As metals employed in this work is shown in Figure A.1.
Geometry optimization was carried out at E✄ = 10 Ry, within the LDA, and the Monkhorst-Pack sets
{( 12 , 12 , 12 ), 5×5×5} for Ga and In, and {( 14 , 14 , 14 ), 5×5×5} for As. In optimizing the structure of α-Ga,
Figure A.1 (a), and bct In, Figure A.1 (b), only the lattice constant a0 was varied, while all other degrees
of freedom were kept fixed at their experimental values [92].

Full optimization was performed for bulk rhombohedral As (A7 structure). As a first step the total
energy of the supercell was sampled as a function of its volume V and fitted by the Murnaghan’s equation
of state, Eq. (C.1). In this set of runs the total energy for a given Vi values was determined by full
optimization of all internal degrees of freedom (cf. Figure A.1 (c)),

E(V ) = min
a0,u

E(V, a0, u)

∣∣∣∣
V=const

.

At the so determined equilibrium volume further optimization of a0 and u was carried out, cf. Fig-
ure A.1 (c).

In order to calculate cohesive energies of these elemental metals one needs access to the total energy
of the isolated Ga, In, and As atoms. The latter was calculated by putting the atom in a large cubic
supercell of volume 12× 12× 12 Å3, and using k-point mesh consisting of the Γ-point only. Account of
the spin polarization lowers the energy of the free atom by ∆Eσ, as given in Table A.1.

Table A.1: Structural parameters of bulk Ga, In, and As metals. Numbers in brackets indicate

the experimental values kept fixed in the structure optimization. Cohesive energy Ecoh and the spin

correction [231] to the total energy of the corresponding free atom ∆Eσ are given in eV/atom.

a0 [Å] c/a0 Ecoh ∆Eσ

LDA Exp. LDA Exp. LDA Exp.

Ga 4.34 4.52 [1.692] 3.50 2.81 −0.15
In 3.17 3.24 [1.525] 3.06 2.52 −0.13
As 3.74 3.76 2.721 2.777 4.05 2.96 −1.41

GaAs, InAs

Bulk GaAs and InAs have the zincblende crystal structure (see, e.g., Figure 2.3 (a) on page 13). It can
be described as fcc lattice + diatomic basis: one of the species is located at (0, 0, 0) and the other is
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Figure A.1: (a) Base centered orthorhombic structure of α-Ga. The coordinates of the four atoms basis

in units of the corresponding conventional unit cell edges (a0, b, c) reads (±u, 0,±v), and ( 12 ±u, 0, 12 ±v).
The translation vectors ti are given by t1 = (a0, 0, 0), t2,3 = (0,±b/2, c/2); (b) Body centered tetragonal

unit cell (highlighted atoms) of In. It can be considered also as a face centered tetragonal lattice (thin

lines). Note that the c/a0 ratio of the bct unit cell is
√
2 larger than that of the fct structure; (c)

Rhombohedral (A7) structure of As. The diatomic basis (open circles) reads (0, 0, 0), and u
∑

i ti. The

length of the translation vectors ti is a0 and the angle between them is α. One can alternatively describe

the structure by defining α and the c/a0 ratio of the unit cell [232].

Table A.2: Cohesive energy Ecoh and formation enthalpy ∆Hf(0, 0) in eV/atom of bulk GaAs and

InAs. Experimental values are taken from Ref. [92]. dIII-V =
√
3 a0/4 is the nearest-neighbor cation-anion

distance.

dIII-V [Å] Ecoh ∆Hf
LDA Exp. LDA Exp. LDA Exp.

GaAs 2.40 2.45 4.12 3.26 −0.68 −0.84
InAs 2.61 2.62 3.75 3.10 −0.38 −0.44

shifted 1/4 along the body diagonal a0(
1
4 ,

1
4 ,

1
4 ). However, in the present work these bulk compounds

were represented by a simple cubic unit cell and details of the actual optimization procedure are given in
Appendix C. The cohesive energy of these binary compounds is calculated from the expression

EIII-V
coh = EIII-V

2 − EIII
atom − EV

atom, (A.1)

where EIII-V
2 is the total energy per pair of the III-V crystal, and Eatom is the total energy of the free

atom including ∆Eσ. The formation enthalpy (heat of formation) at zero temperature and pressure
∆HIII-V

f (0, 0) is given by a similar expression,

∆HIII-V
f (0, 0) = EIII-V

2 − EIII
bulk − EV

bulk, (A.2)

where Ebulk is the total energy per atom of the bulk elemental metals. The calculated values of Ecoh and
∆Hf(0, 0) are given in Table A.2.



Appendix B

Scaling hypothesis for corrections to
total energy and pressure

Following Rignanese et al. [84], assume that N
d

PW is the mean number of plane waves used in an actual
calculation for given E✄ and supercell volume V. For simplicity NPW can be defined either as geometric
or arithmetic mean of the actual number of plane waves for each k-point N d

PW,k, i.e.

N
d

PW(E✄, V ) =
∏

k

[
Nd

PW,k(E✄, V )
]wk

, or N
d

PW(E✄, V ) =
∑

k

wkN
d
PW,k(E✄, V ), (B.1)

with
∑

k wk = 1. Let also denote by N
c

PW the ideal number of plane waves for the same E✄ and V,
determined according to the number of states in the reciprocal space comprised in a sphere of radius√
2E✄,

N
c

PW(E✄, V ) =
V

(2π)3
× 4

3
π(2E✄)3/2. (B.2)

Thus, N
c

PW is a smooth function of its arguments while N
d

PW changes discontinuously due to the discrete
nature of the reciprocal space.1 Consider now the total energy from a computer run as a function of
NPW used and the supercell volume V, E[NPW, V ]. Then an actual run at E✄ will give as a result

Ed(E✄, V ) = E[N
d

PW(E✄, V ), V ], (B.3)

while the calculated value in a “hypothetical” ideal run at the same E✄ would be

Ec(E✄, V ) = E[N
c

PW(E✄, V ), V ]. (B.4)

It is the latter quantity that one should use in reality to determine the materials properties. The main
objective of a correction scheme is thus to extrapolate the actual output Ed(E✄, V ) to the smooth“ideal”
function Ec(E✄, V ). On the basis of Eqs. (B.3) and (B.4) trivial relation can be obtained for the correction
at cutoff energy E✄ and volume V,

Ec(E✄, V ) = Ed(E✄, V ) +
{
E[N

c

PW(E✄, V ), V ]− E[N
d

PW(E✄, V ), V ]
}
. (B.5)

The function E[NPW, V ], however, is a priori unknown, so the common sense tells us that we need to
sample the total energy for a set of (NPW, V ) values and to interpolate the energy values, which is not
always the most enlightening idea.

Rignanese et al. [84] have proposed a different approach which allows the interpolation to be performed
for a single reference volume V0. Their technics relies on the hypothesis that the difference between energy
at V1 and V0 for fixed E✄ is independent of E✄, which can be “encrypted” in the form

Ec(E✄, V1) ≈ Ec(E✄, V0) + f(V1 − V0), ∀E✄. (B.6)

1The etymology of the superscripts c and d used by Rignanese et al. is “continuous” and “d iscontinuous”.
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This supposition is referred to as the scaling hypothesis. An immediate consequence from Eq. (B.6) is
that also the partial derivatives ∂Ec(E✄, V )/∂E✄ at constant volume are independent of V,

∂Ec(E✄, V )

∂E✄

∣∣∣∣
V=V1

≈ ∂Ec(E✄, V )

∂E✄

∣∣∣∣
V=V0

. (B.7)

Using this property we can now differentiate Eq. (B.4),

∂Ec(E✄, V )

∂E✄
=

∂E[NPW, V ]

∂NPW

∣∣∣∣
NPW=N

c

PW(E✄,V )

∂N
c

PW(E✄, V )

∂E✄
, (B.8)

and use Eq. (B.2) to calculate ∂N
c

PW/∂E✄ = (V/2π2)
√
2E✄. Inserting Eq. (B.8) into Eq. (B.7) we get

the relation
∂E[NPW, V ]

∂NPW

∣∣∣∣V=V1

NPW=N
c

PW(E✄,V1)

≈ V0
V1

∂E[NPW, V ]

∂NPW

∣∣∣∣V=V0

NPW=N
c

PW(E✄,V0)

, (B.9)

being valid whenever

N
c

PW(E✄, V0) =
V0
V1
N
c

PW(E✄, V1). (B.10)

Now addressing the correction to the energy one can formally cast the second term in the right-hand
side of Eq. (B.5) in integral form (changing also V to V1 for consistency),

Ec(E✄, V1) = Ed(E✄, V1) +

N
c

PW(E✄,V1)∫

N
d

PW(E✄,V1)

∂E[NPW, V ]

∂NPW

∣∣∣∣V=V1

NPW=N
1

PW

dN
1

PW, (B.11)

where a simplified notation is introduced, N
1

PW = N
c

PW(E✄, V1). With the account of Eq. (B.9) and the
condition for its validity (B.10) Rignanese et al. have derived the following final expression,

Ec(E✄, V1) ≈ Ed(E✄, V1) + E

[
V0
V1
N
c

PW(E✄, V1), V0

]
− E

[
V0
V1
N
d

PW(E✄, V1), V0

]
. (B.12)

From pragmatic point of view this expression is fairly convenient and has simple meaning: for a reference
volume V0 one calculates E[NPW, V ] for a few values of NPW. Usually it is E✄ that is used as input
parameter to the programs (the ecut input parameter in the fhi98md program [81]) rather than NPW, so
a set of computer runs are performed for a few values of E✄. The resulting output energy values are then
interpolated in order to get the sacramental curve E[NPW, V0]. Once we have it, Eq. (B.12) is directly
used to work out the correction to total energy value calculated at different volume V1.

Corrections to pressure, P (V ) = −∂E/∂V, follow from Eq. (B.12) by differentiating it with respect
to volume at constant E✄,

P c(E✄, V1) ≈ P d(E✄, V1)−
V0
V 2
1

N
d

PW(E✄, V1)
∂E[NPW, V ]

∂NPW

∣∣∣∣V=V0

NPW=
V0
V1
N

d

PW(E✄,V1)

. (B.13)

By very similar considerations Eqs. (B.12) and (B.13) can be generalized also for the case when,
apart of the volume dependence, the total energy depends on the shape of the supercell as well [84].
Equation (B.13) is then reformulated in terms of corrections to the stress tensor σik(E✄, V ). In Ap-
pendix C we demonstrate a practical procedure for implementing the corrections to total energy as given
by Eq. (B.12).



Appendix C

Calculation of elastic moduli

As a first step we calculate the equilibrium lattice constant a0 of the bulk compounds by performing total
energy calculations of a simple cubic unit-cell varying its size a so as to sample the expected minimum
of E(V ), e.g., for GaAs a was changed between 9.0 a.u. and 11.5 a.u., and 11.0–12.8 a.u. for InAs when
using the PBE exchange-correlation functional. For fixed E✄ the calculated total energies are fitted with
the Murnaghan’s equation of state [233].

E(V ) = E(V0) +
V B0

B′
0

[
(V0/V )B

′
0

B′
0 − 1

+ 1

]
− V0B0

B′
0 − 1

, (C.1)

valid for pressures p < 1010 Pa; B0 and B′
0 are, respectively, the bulk modulus and its pressure derivative

at V0,

B0(T ) = B(T, V0) = −V
(
∂p(T, V )

∂V

)

T,V=V0

, B′
0(T ) =

(
∂B(T, V (T, p))

∂p

)

T,V=V (T,p=0)

. (C.2)

Once we have a0 determined similar procedure is applied to calculate the elastic moduli. Below we describe
all steps in the form of ready-to-use Mathematica notebook [200] (version 4.0) which contains also
comments on the specific implementation aspects.

Calculation of elastic moduli
This notebook calculates the c11  bulk elastic modulus of GaAs.   First the total energy was sampled for
11  values  of  the  supercell  volume  V = V0  H1 + ¶zz L,  with  ¶zz Î @-4 %, +4 %D  .  The  set  of  runs  of  the
fhi98md   program  employed   LDA  and  8  Ry  cutoff  energy.  In  order   to  correct  the  total  energy
according to the scaling hypothesis (Appendix B)  only an additional set of 4 runs was performed at V0

for Ecut= 6, 7, 9, and 10 Ry. 
Required input: 
     �  file with  E=E(V) in the format (the input file GaAs.zz_LDA_8Ry.npw):

   V N
���

PW E
     �  file with  E = E @N���

PW , V = V0 D in the format  (the input file GaAs.LDA_V8_gauge.dat): 
  N

���
PW E

     �  V0 , EHV0 L, and Ecut

The notebook can be easily customized to calculate any of the elastic moduli and to evaluate corrections
according to the scaling hypothesis.
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à Pre−settings  and input

First, because we use lots of similar variables names, we switch off the General::spell1 message
since it’s somewhat irritating. The two input files are then read in and displayed by  using the postfix
version of TableForm.

Off[General::spell1]

$DefaultFont = 8"Times-Roman", 8<;
path = "~/Math/GaAs/dat/";

file1 = "GaAs.zz_LDA_8Ry.npw";
file2 = "GaAs.LDA_V8_gauge.dat";

bulkDat = ReadList@path <> file1, Real, RecordLists ® TrueD;
bulkDat �� TableForm

1096.65 419.726 -34.4299
1108.08 423.483 -34.4311
1119.5 427.74 -34.4322
1128.07 430.613 -34.4324
1136.63 434.486 -34.433
1142.35 434.862 -34.4317
1148.06 438.358 -34.4328
1156.63 441.744 -34.4325
1165.19 445.621 -34.4322
1176.62 448.87 -34.4302
1188.04 453.735 -34.429

gaugeBulk = ReadList@path <> file2, Real, RecordLists ® TrueD;
gaugeBulk �� TableForm

281.986 -34.2918
355.979 -34.3669
434.862 -34.4317
518.2 -34.4878
612.72 -34.5387

Here  we  define  the  other  input  parameters:  V0  is  the  equilibrium  supercell  volume  in  aB
3 ,

V0 = VHT , p = 0L,   E0  is  the  corresponding  total  energy  E0 = EHV0 L  in  Ha  and  Ecut  is  the  cutoff
energy (in Ry) of the plane waves basis set used in the main set of runs.   

V0 = 1142.35; H* equilibrium supercell volume *L
E0 = -34.4317; H* total energy at V0 *L
Ecut = 8.0 ; H* cutoff energy at which E0 is calculated *L
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Let  us also define two  simple auxiliary functions f2[]  and f3[]  for  fitting,  respectively,  with
second and third order polynomials employing the built−in  Mathematica function Fit[].

f2@dat_?ListQ, var_D := Fit@dat, 81, x, x^2<, xD �. 8x ® var<
f3@dat_?ListQ, var_D :=
Fit@dat, 81, x, x^2, x^3<, xD �. 8x ® var<

The following function is nothing but Eq. (B.2), i.e. the ideal number of  plane waves N
���c

PW  for  the
specified Ecut.

Npwc@ecut_, V_D := HV � H6 Pi^2LL ecut^1.5

With the above definitions one can easily get the wanted analytic curve E@N���
PW, V0D as required by the

scaling hypothesis, see Eq. (B.12). Second order polynomial fit  provides very good representation of
the E - N

���
PW dependence.

fitBulk = f2@gaugeBulk, xD
-33.9201 - 0.00158718 x + 9.44191´10-7 x2

In order to visualize the above function together with the calculated points we plot separately the list
gaugeBulk  to which we assigned the data in  file2,  and the analytic fit   fitBulk.  As we are
interested only  in  the combined graphics each individual graphics output is  suppressed by  setting
DisplayFunction ® Identity in the plotting functions.

bgpl = ListPlot@gaugeBulk,
Axes ® False,
Frame ® True,
GridLines ® Automatic,
PlotStyle ® PointSize@0.02D,
DisplayFunction ® IdentityD

� Graphics �

fbgpl = Plot@fitBulk, 8x, 250, 650<,
DisplayFunction ® IdentityD

� Graphics �

Using Show[] the graphics objects generated with the two previous inputs are rendered together to the
default display. 

gcurveBulk = Show@bgpl, fbgpl,
FrameLabel ® 8"N

���
PW", "E@N���

PW,V0D Ha.u.L"<,
DisplayFunction ® $DisplayFunctionD
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à Correction to the total energy according to the scaling hypothesis (Appendix B).

First we define function that simply eliminates the hard−coded variable x used in the fitting. A simple
replacement rule is used, {x ® Npw}, similar to the definitions of f2[] and f3[].

Ebulk@Npw_D := fitBulk �. 8x ® Npw<
Next we just transcribe the final expression for the corrections to total energy, Eq. (B.12), into Mathe-
matica syntax. To be more specific, the following function represents only the difference  of the last
two terms in the right−hand side of Eq. (B.12), which is, in effect, the wanted correction to the calcu-
lated total energy  EdHEcut, VL (the third column of the list bulkDat).

EcorSHbulk@V_, Npw_D :=
Ebulk@HV0� VL Npwc@Ecut, VDD - Ebulk@HV0� VL NpwD

With the help of the above function we can obtain the corrected total energy values and to prepare at
the same time suitable list of points to be plotted. This employes the concept of a pure function. We
Map[]  (via the shorter synonym /@ )  the pure function {...,...}& to the raw data stored in
bulkDat. The first part of the list gives the relative change of the volume which is nothing but the
strain value, while the second part takes the corresponding fields from the input data and calculates the
corrected total energy density measured with respect to EHV0L � V0.

bulkSHcor = 8H#@@1DD - V0L � HV0L,H#@@3DD + EcorSHbulk@#@@1DD, #@@2DDD - E0L � V0< & �� bulkDat;

Now we would like to compare the raw and the corrected total energy density values. The raw data are
first centered to HV0, E0 � V0L  and then we fit  both the raw and corrected data in order to get plotable
expressions.

bulkRaw = 8H#@@1DD - V0L � HV0L, H#@@3DD - E0L � V0< & �� bulkDat;
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curveRaw = f3@bulkRaw, xD
-8.70381´10-7 + 4.04007´10-6 x + 0.00178951 x2 + 0.00455226 x3

curveFit = f3@bulkSHcor, xD
-1.15771´10-6 + 6.6329´10-6 x + 0.00206542 x2 - 0.00258827 x3

The next  four  cells  produced  the  graphical  output  displaying the  calculated and corrected data  points
along  with  the  polynomial  fits  to  them.  The  MultipleListPlot  package  is  used  to  render  the
discrete points on a single graphics.

apl = Plot@8curveRaw, curveFit<, 8x, -0.05, 0.05<,
PlotStyle ® 8
GrayLevel@0.5D,
RGBColor@1, 0, 0D<,

DisplayFunction ® IdentityD
� Graphics �

<< Graphics‘MultipleListPlot‘

lpl = MultipleListPlot@bulkRaw, bulkSHcor,
Axes ® False,
Frame ® True,
SymbolShape ® 8
PlotSymbol@Box, Filled ® FalseD,
PlotSymbol@Diamond, 3D<,

SymbolStyle ® 8
GrayLevel@0D,
RGBColor@1, 0, 0D<,

GridLines ® Automatic,
AspectRatio ® 1,
DisplayFunction ® IdentityD

� Graphics �

The calculated points are shown as open squares (�), and the corrected ones as solid diamonds (�).

Show@lpl, apl,
FrameLabel ® 8"strain ¶zz", "E Ha.u.�aB

3 L"<,
DisplayFunction ® $DisplayFunctionD
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à Calculation of c11

The last two expressions (cur veRaw, cur veFi t ) represent, in fact, the elastic free energy density as
a function of strain for the case where the deformation is realized only along the z axis, i.e. ¶zz ¹ 0, and
¶xx = ¶yy = ¶ik º 0. In this way we obtain, according to Eq. (3.16), the c11  elastic constant just from the
doubled  coefficient  in  the  above  expressions.   A  simple  function  is  defined  to  extract  the  proper
coefficient  and  to  convert  the  units  to  1011  dyn � cm-2  usually  used  to  measure  the  elastic  constants,
please see Table 3.1.

ToDyne@fit_ D : = Coefficient @fit , x ^ 2D * 2942

This is the  c11  value calculated from the corrected total energy values,

c11 = 2 ToDyne@curveFit D
12.153

whereas the value that one would obtain from the calculated total energy values, if uncorrected, is

c11raw  =  2  ToDyne[curveRaw]

10.5295

The two numerical values differ by 13%, which is, in fact, nicely seen in the above plot where the two
polynomial fits have different curvatures at V0 : 

Abs[ ( c11−c11r aw) / c11]

0.133586

At least within LDA the use of the scaling hypothesis at this low energy cutoff results in a very good
agreement with the experimental value of c11 (Table 3.1)
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Geometry of the
In2/3Ga1/3As(001)-(2× 3) surface
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Figure D.1: Atomic structure and geometry parameters of the commensurate In2/3Ga1/3As(001)-(2×3)
surface, see Table D.1.

The commensurate (2 × 3)-reconstructed InxGa1−xAs(001) surface alloy is characterized with In-
Ga ordering which locks the In concentration in the topmost cation layer to x = 2/3 [145, 193]. The
integer “by-3” periodicity along [110] direction can be represented as a repetition of three structural
blocks (A,B,C) each of width a0/

√
2, a0 being the lattice constant of bulk GaAs: ABCABCAB . . . ,

Figure D.1. The values of the bond lengths and atomic coordinates indicated in Figure D.1 obtained
from LDA and PBE-GGA optimized slab geometries are collected in Table D.1 and compared with the
X-ray diffraction (XD) data due to Garreau et al. [145]. Previously Bellaiche et al. [234] considered only
a (2× 2) fictitious reconstruction (mimicking part of the (2× 3) model) within the LDA and found very
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Table D.1: Atomic coordinates and bond lengths as indicated in Figure D.1. X and Y are measured

in units 2 × a0/
√
2 and 3 × a0/

√
2, respectively, while Z is given in units of the bulk lattice constant

a0 with respect to the Z coordinate of Ga(5). Experimental XD data are those reported by Garreau et

al. [145] with an error bar of ±0.004 for the in-plane coordinates, and ±0.005 for the Z coordinate.

LDA GGA XD [Å] LDA GGA XD

Atom X Y Z X Y Z X Y Z d11 2.48 2.52 2.44

As(1) 0. 0.395 0.544 0. 0.397 0.534 0. 0.398 0.519 d22 2.45 2.50 2.51

As(2) 0.343 0. 0.385 0.347 0. 0.383 0.343 0. 0.384 d13 2.46 2.55 2.49

As(3) 0.25 0.353 0.290 0.25 0.353 0.291 0.25 0.35 0.275 d34 2.68 2.82 2.69

In(4) 0.262 0.151 0.065 0.264 0.150 0.060 0.267 0.151 0.063 d35 2.36 2.47 2.40

Ga(5) 0.25 0.5 0. 0.25 0.5 0. 0.25 0.5 0. d24 2.59 2.71 2.63

good agreement with the earlier XD experiment by Sauvage-Simkin et al. [193] regarding especially the
lateral coordinates of As(2) and In(4).

Incommensurate phases

The incommensurate (2×m) reconstruction with m < 3 (e.g., (2× 2.5), (2× 2.7) [145]) is accounted for
in terms of randomly missing C blocks leading to local ABAB . . . sequences, Figure D.2 (a). And vice
versa: for the In-enriched surface incommensurate reconstructions withm > 3 occur (e.g., (2×3.33) [145])
associated with a CC “stacking fault” shown in Figure D.2 (b): ABCCAB . . . .

C A B A B C

C A B C C A B C

(a)

(b)

Figure D.2: Sample“stacking faults” in the surface cation ordering along [110] direction as proposed by

Garreau et al. [145]. Note that an ABABAB . . . stacking would reproduce the GaAs(001)-c(4×4) recon-

struction if the proper chemisorbed As(1)-As(1) dimers are removed. Similarly, the ABCCABCCA . . .

results in the (2× 4) reconstruction observed for lattice matched In0.53Ga0.47As/InP(001) [235].
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berg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, S. V. Zaitsev, N. Yu. Gordeev,
Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gösele, and J. Hey-
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[128] M. v. Smoluchowski, Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und
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