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Breathing current domains in globally coupled electrochemical systems:
A comparison with a semiconductor model
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Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemi-
cal systems with ars-shaped current-voltage characteristic under galvanostatic control are studied theoreti-
cally on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios
occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic
control both systems are unstable with respect to the formation of stationary large amplitude current domains.
The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics
of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of
the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and
chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results
obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in
globally coupled bistable systems with subcritical spatial bifurcations.
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[. INTRODUCTION thermore, it can be shown that the galvanostatic operation
mode(constant current contrpintroduces an additional glo-
The focus of research in nonlinear dynamics has evolvetal coupling into the systerfi.3].
from temporal instabilities over simple spatial patterns to The role of the second variable in two component
complex spatio-temporal behavior and the control or synactivator-inhibitor systems in electrochemistry is played,
chronization of such dynamics. Complex spatio-temporal be€-9., by the chemical concentration of the reacting species in
havior in reaction-diffusion equations, which is in a wider the double layer or by the density of adsorbed molecules on

sense the class of equations dealt with also in electrochentPe WE. ) )
istry, might be found when instabilities breaking time and OVer the last decade global coupling has been an active

space symmetries interact. A generic case is the interactiof €& of research. Global coupling is present in systems that

' : s bject to external control, e.g., via an electric circuit
of Turing [1] and Hopf bifurcation in a two-component are supje . ! T
activator-inhibitor system in which the involved species dif- (such as in electrochemicgl2—2(, semiconductof21-24,

fuse. Complex spatio-temporal dynamics has been foun nd gas dischard®9] systemgor via the electric control of

. i . ; ) e temperature in catalytic react¢8d—35. But global cou-
near th's. codimension-two point theoretical§-4] as well pling may also be due to transport processes that happen on
as experimentally5-7].

; ) time scales much faster than all other relevant time scales in
In electrochemical systems that can be described by a twg,q system, e.g., fast mixing in the gas ph&36—41. A
component model one variable typically is of an electrlcalvariety of other systems are described by dynamics that in-
nature and the associated transport mechanism is migratifjyde” global coupling, e.g., ferromagnefi¢2], biological
rather than diffusiori8,9]. The decisive variable for the dy- [43], and chemical systems in which the global coupling can
namics of the electric circuit is the double-layer potentialpe light induced44,45. Abstract theoretical models are dis-
¢pL, measuring the voltage drop across the interface begussed, e.g., if46—48§.
tween the working electrode and the electrolyte solution Results regarding electrochemical systems with global
[10]. Local perturbations in the double layer potential arecoupling have been reported for systems withNwshaped
mediated through the electric field in the electrolyte. Thusgcurrent-voltage characteristi¢termed N-NDR systems:
spatial inhomogeneities in the double layer potential are felN-shaped negative differential resistanter different types
not only by its nearest neighbors, but by a whole range obf global coupling. In these systems the double layer poten-
neighboring sites which makes the coupling nonldddl].  tial acts as an activator and global coupling introduced by the
The degree of nonlocality depends on the geometry of thgalvanostatic control mode was shown to accelerate front
electrochemical cell, most importantly on the positions of themotion [11,14] thus having a synchronizing effect on the
working electrodgWE), the counter electrod€CE), and the  spatial dynamics. Desynchronizing global coupling of the ac-
reference electrod@RE) with respect to each othgt2]. Fur-  tivator was shown to stabilize potential fronts, leading to two
stationary potential domair45,49. Also the formation of
pulses and standing waves was obseij\iet18,5Q.

*Electronic address: krischer@fhi-berlin.mpg.de; URL: http:/  In electrochemical systems with aB-shaped current-

www.fhi-berlin.mpg.de/pc/spatdyn voltage characteristi(S-NDR) the roles of activator and in-
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hibitor are reversed, leading to a global coupling of the in-
hibitor under galvanostatic conditions. This leads to the
opposite effects opposed to N-NDR systems, i.e., current do-
mains that are stabilized by the constant current constraint
[16]. Similar results on accelerated and decelerated fronts in
globally coupled semiconductors witls- or Z-shaped
current-voltage characteristics have also been obtdi4{d

In the present paper we focus on the latter case of global £ 1 schematic setup of the electrochemical system. A con-
coupling of the inhibitor in an electrochemical system with giant current,, is applied in an electrochemical cell consisting of a
anS-shaped current-voltage curve. Furthermore, we consid&gctangular working electrod@VE), electrolyte, and a rectangular
systems with high electrolyte conductivity. In such systemscounter electrodéCE). WE and CE form the top and bottom of the
the migration coupling is so efficient that any spatial varia-poxlike cell with otherwise insulating wallgsp, is the voltage drop
tion in ¢p_ can be neglected, which results in an additionalacross the interfacé, andi . symbolize reaction current density and
global coupling[16]. The set of equations to be investigated capacitive current density, respectively.
is thus of the general form:

Realizing the obvious similarities, we show in this paper
ddpL that the methodge.g., for analyzing the dynamicslevel-
TéoL " ot =9(¢oL.(0)c), @) oped for the semiconductor system can be applied to gain
insight into the interaction of different instabilities in the
electrochemical system. Results regarding the possibility of
To—="F(pp.,0) +DAS, (2)  the occurrence of complex spatio-temporal behavior and the
at mechanisms that lead to such behavior are given. It is em-
phasized whether the different dynamical regimes depend
where ¢ stands for the activator variable, whose dynamicsupon the general structural form of the equations, especially
comprises an autocatalytic chemical step. The angular brackegarding the influence of global coupling, or if they are due
ets denote the spatial average over the spatial do@ains  to special properties of the underlying physical or chemical
autocatalytic ing; g exhibits a monotonic characteristic as a system, and thus the local dynamics. Hence a comparison of
function of ¢p. and 6. 7, (4 denote the characteristic electrochemical and semiconductor systems gives consider-
times for changes iy, and 6, respectively. able insight into generic complex dynamics of globally
A formally very similar set of equations describes thecoupled bistable systems.
dynamics in bistable semiconductor systems operated via an The paper is organized as follows. In Sec. Il we introduce
external load resistan¢g1,22,28,5). The formation and dy- the electrochemical model, discuss its important parameters
namics of current density patterns in bistable semiconductorand the mechanisms leading to global coupling in the model.
was extensively studie23,26,52—-52% In this respective In Sec. lll we characterize the dynamics of the model by
class of semiconductor systems the current-voltage charatinear stability analysis along the lines developed for the
teristic also resembles the shape ofSarwhich points to the =~ semiconductor model and by numerical simulations. In Sec.
fact that the roles of the dynamic variables are very similar tdV we compare the important features of the two models.
the electrochemical model: The voltage droacross a semi- The mechanism leading to complex spatio-temporal behavior
conductor device acts effectively as an inhibitor, and it isin both models is different and this difference is explored in
subject to a global constraint imposed by the external electrihis section in some depth. We summarize our results in Sec.
circuit. The role of the activator variable might be played byV and give a short outlook to applications in terms of experi-
different physical quantities, such as the electron temperatur@ental verifications and transfer of the electrochemical re-
[21], the concentration of excess carri¢fb], the charge sults to the semiconductor model.
density in resonant tunneling structufésl,56,57 (note that

a0

for bistable resonant tunneling structures the current-voltage Il. MODEL
characteristic iZ-shaped resulting in aactivatory, not in-
hibitory effect of the global constraintthe voltage drop The central variable in electrochemical pattern formation

acrosspn junctions in thyristors[25,58, or the interface is the double-layer potentiabp_, the potential drop across
charge density in a heterostructure hot electron diodé¢he interface between the WE and electrolyte solution. The
(HHED) [53]. The dynamic equations are of the same struc-dynamic evolution equation fapp_ can be deduced from the
tural form as Eqgs(1) and(2); only the local nonlinear func- local charge balance at the electrode/electrolyte interface.
tionsf andg differ from the electrochemical model. To make things as transparent as possible and to facilitate
For the current density dynamics in a class of modeldater comparison with the semiconductor model, we employ
originally derived for the HHED in one or two spatial dimen- the idealized geometry shown in Fig. 1. WE and CE are
sions under galvanostaticurrent-controlle@iconditions, in-  equally sized rectangular plates positioned parallel to each
teresting complex spatio-temporal patterns termed ‘“spik-other in a boxlike cell with otherwise insulating walls. This
ing” and “breathing” current filaments were fourié1,52. geometry imposes no-flux boundary conditions figy;, and
Recently, a sufficient condition for the onset of such com-6; there will be no spatial inhomogeneities of the electric
plex spatio-temporal dynamics was givi26]. field at the interface imposed by this geometry. For very high
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electrolyte conductivitiesr, spatial inhomogeneities in the (@
double layer potential are damped out very fast via the effi-
cient coupling through migration currents. It follows that ]

spatial variations ofpp, can be neglected. This effectively
introduces a global coupling in the system, since local per-
turbations in ¢, are felt instantaneously in the whole
double layer.

In the following we additionally assume current con- ®)
trolled conditions. Galvanostatic control is known to intro-
duce an additional global coupling into the systgh?,16. 3000
Assuming a specific double layer capacita@céhe dynamic ir 2000
equation for the double layer potential reads 1000
0
S0k i (gou () o, 3

©

wherei (¢p. ,0) is the reaction current density amgl de-
notes the imposed current density. The activator varigble
describes the evolution of the coverage of the WE by an 4
adsorbate or the concentration of a chemical species in the
reaction plane. Its dynamics will be modeled by an equation
of the form(2), where we restrict our system to one spatial
dimension(1d) since the qualitative behavior should also be ) )
captured on 1d domains. 1d domains also resemble the situ- F/G- 2- (@ Nullclines of the model) and (7) for an imposed
ation of a very |arge aspect ratio of the rectangu'ar doma|nCUrrent denSIty in the aUtOCﬁtalyth reglr(EIld ||ne 0 0; dashed
where one spatial dimension is too small to allow for spatialine, ¢p =0, io=1300; for the other parameters see Appendjx A
instabilities and can thus be eliminated. (b) and (c) S-shaped current-voltage curve together with the load

We use the following model functions for the local dy- lineio (jo) for the electrochemicdEgs.(6) and(7)] and the semi-
namics of the activator and the reaction current derisity ~ conductorlEgs. (13) and (14)] system, respectively.

0 12

i(dpL,0)=(1—60)e’or, (4 We nor_malize space to the interyd,r] for computational
convenience and thus

f(bpL,0)=(1—f)e "#o.9"—pgersbr "9’ (5) 1
<0>=—J O(x)dx.
originally derived to describe pattern formation observed in a mJo
reaction, in which a reaction inhibiting adsorbate undergoe
a first order phase transition due to lateral interactions of th
adsorbate moleculd§9,60. The transformations leading to
dimensionless units differ from the ones given[&9]; the
derivation is given in Appendix A. Note the nonpolynomial
nature of the functiori.

The dimensionless set of equations is thus

his leads to the proportionality of the parametersy
%L2; u andy still can be changed independently since also
other physical quantities enter these parameietsAppen-
dix A).

In Fig. 2(a) the nullclines of the system are depicted for a
current densityiy that is set in the range of the negative
differential resistance in the current-voltage characteristic
0¢DL [see Fig. 2)]. The S-shaped current-voltage characteristic

=v[iog— (1—(6))e?oL], (6) s depicted together with the load lime i in Fig. 2(b). This
physically more intuitive i(-¢p,)-plane representation will
, be used in the following.
B -0 The parameters, p, andg are fixed throughout this paper
at = u[(1-g)e" (" 9o)—p et o]+ a2 (7 atthe valuesy=0.025,p=0.5, andg= — 2.4 (cf. Appendix
A). The dynamics is determined by the model parameigrs
with essentially proportional th?, the relaxation time ratio of the
activator and inhibitory/ u (independent of), and the gen-
W(8,dp,)= V¢2DL+99 eral excitation level controlled by the imposed current den-
sity ig. The relaxation time ratio can be accessed easily via
subject to the boundary conditions the concentrations of the reacting and adsorbing spegiés;
set by the galvanostatic control unit.
90 The numerical results discussed in Sec. Il B were ob-
=0. tained using pseudospectral decomposition in spatkem-
x=0 ploying 15 spatial cosine modéthe results do not change

ox

056229-3



F. PLENGE, P. RODIN, E. SCHO., AND K. KRISCHER PHYSICAL REVIEW E64 056229

when a larger number of modes is chosdfor the integra- TABLE |. Abbreviations for bifurcation points.

tion in time the routine Isod§62] and for continuation of

steady states and limit cycles the packagso [63] was h Hopf bifurcation of the homogeneous steady state

used. d domain bifurcation of the homogeneous steady state
sn-d  saddle-node bifurcation of domains

IIl. STABILITY ANALYSIS AND SIMULATIONS hd  Hopf bifurcation of the domain state o o
snp saddle-node bifurcation of breathing domains, i.e., periodic
A. Homogeneous steady state orbits

In this section we consider the spatially uniform fixed PH  domain-Hopf codimension-two poirid and b

points of the systent6) and (7) and their bifurcations. The TB ~ Takens-Bogdanov codimension-two po(en-d and hy
uniform steady state &5 ,6%) is given by i (4% 6% DHD degenerate Hopf bifurcation of domaitenp and hd
=ig, f(¢p, ,6°=0 and corresponds to the homogeneous
S-shaped current-voltage characterigftég. 2(b)]. Perturb- N
ing the steady state with a  perturbation (Z) :E )
[ 8¢pp eM, 56 cosfixe] (consistent with the boundary con- wl oo

ditions), the temporal evolution of the perturbation is given

by the eigenvalues of the Jacobian mattix Thus for y/u<(y/w)" (low concentration of the reacting
] =Y species or high concentration of the adsorb#tie homoge-
7\12=r—i (rJd) —detJ neous steady state is unstable in a cerigimterval, since
c 2 4 f,,ofl depends on the imposed current density via the steady

state condition. When plotting the critical valug/()" as a
and stability (Ren<0) implies that (de§>0/\trJ<0).  function of the imposed current density FigaBis obtained.
The Jacobian reads For y/ > (ylu)h =2.2X10"* there are no oscillatory

solutions for anyi, and for y/ u<(y/u)h., the oscillatory

— YOy o ’}/| o )
J= .
2 @ 3 T . .
mfgp  pufo—n (i, =2.2x10*
s~ 2}
Subscripts denote partial derivatives with respect to the sub- :f:
scripted variable and evaluation at the steady d@., f, S 1}
=ﬂf/a0|(¢stL’053). For brevity we denote o,:=di,/
Iboul (453 69 - %8 10 12 14 16
The stability of the fixed point with respect to homoge- 2!
neous fluctuationsn=0) can be determined by inspecting () so
f
4 25t
detd=—yuf, O'r—f—DLirﬁ) *
[
deoy d’DL)) 0
=—yufy opti, —— 0.
YTyl Ol dépL
) 40
_ o did(6%(do0). do) ©
YTy d¢DL 30
L
and 20
trd=puf,— yo,.

?bgl.ou;!y det]>0/d|n g<er(;eralh. srlln?e”,u,y>f0 ar;]d FIG. 3. (a) Location of the Hopf bifurcation of the homogeneous
o i (0°(boL), ¢pL)/dbp ]<0, which follows from the steady state in they{ u-io)-parameter plane for the electrochemical

fact that the branch of negative differential resistanc&,qel(e) and (7). For y/u>2.2x10"* the system is stable with
[di (6°{#pL), ppL)/d¢p.<0] is caused solely by the acti- yegpect to homogeneous fluctuatiofis. Threshold for the spatial
vator variableg, equivalent to saying that,>0 in general.  jnstapility of the uniform steady state in the.y) plane. For sys-

However, tJ might change sign on the NDR branch tem sizes smaller thap,,=3.54 the system is stable with respect
sincef,>0 ando,>0, which leads to an oscillatory insta- to spatial fluctuations(c) Critical system sizel, of the spatial
bility (Hopf bifurcation of the homogeneous steady stateinstability for the semiconductor modgEgs. (13) and (14)] as a
(denoted by a superscript “h,” cf. Table &t function of the imposed current density.
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instability takes place close to the turning points of the
current-voltage characteristic gf=889 andi,=1587.

To determine the stability with respect to spatially inho-
mogeneous fluctuations, it is sufficient to consider the acti-
vator variabled, since sinusoidal perturbations do not affect
the average value of and thus the double layer dynamics.
Therefore the steady state becomes unstable with respect to
the nth mode for

n

L x
. . (b) 2000

and the first mode to become unstable is always the mode

with wave number ong64]. The wavelength of the first un- sn-d | 7

stable mode depends on the system size and is equdl to 2 1500 - <~ _ d

for Neumann boundary conditions. In the following we term - | T .

this instability domain bifurcation The critical parameter N

value is thus 1000 L O

sn-d | : ——="""

pi=f,t. C) 7.7 78 & 79 8.0

This critical value is depicted in Fig(B) as a function of . b

For systems sizeg.< umin,=3.54 the spatial instability is FIG. 4. (a) Stable domains for two values of the imposed current
suppressed; this defines a natural length scale for the systefgnsityi, for the electrochemical modek(= 25,y=10). (b) Bifur-

For system sizes much larger than this natural length scafeation diagram fofu=25 andy=10. Shown is¢p, as a function
the spatial instabilities occur once again close to the turnin@f the bifurcation parametef, in the familiar current-potential
points of the current-voltage characteristic. plane. The branch of negative differential resistance is unstable

The spatial and oscillatory instabilities may coincide in a(thin dashed lingwith respect to domain formation. The domain
codimension-two point(domain-Hopf bifurcation, “DH,” branches(thick lineg bifurcate subcritically(d) near the turning
cf. Table ) if ' ' points of the current-voltage characteristic. The stable and unstable

domain branchegsolid, respectively, dashed thick linemre born in
DH_ -1 (10) a saddle-node bifurcation of domaifsn-d. The domain branch
' can be approximated by an equal-areas rule,(Ef), in a hugei,
interval yielding an equistability potentiahg| .

Y

The respective imposed current density valgié(x) is de-

fined as the solution of Eq9) with respect ta. )
bally stable state. The global constraint, however, forces the

system to maintain an average current. The system meets this
constraint by taking on an inhomogeneous state in which two

In this section we complete the picture of the differentphases coexist. In other words, the front velocity becomes
basic attractors of the model by including limit cycles andzero. The final state of the system is described by a Maxwell-
stationary current domains into our stability analysis. Ana-type construction: the intermediate, equistability double layer
lytical methods fail in most cases since the involved bifurcapotential ¢ , which is established in the stationary struc-
tions are either subcritical and thus do not allow for an am+yre, is determined by the equal-areas f@@,64
plitude equation analysis and/or the considered system sizes
are intermediate, which excludes methods like singular per- b2 eq _
turbation theory[65] to describe domain interface dynamics. L f(pl,0)do=0. (1)

For common concentrations and system sizes the double !
layer dynamics will be much faster than the dynamics of the
activator. For these conditions the parametgrand w will In Fig. 4(b) the bifurcation diagram with respect ig is
be of the order 10 and 100, respectively. It follows that inshown for u=25, y=10. Even though the system size is
most cases oscillatory instabilities are not present in the syssomparable to the interface width, as can be seen in Fay. 4
tem and the only nontrivial mode is a stationary current dothe above construction holds for a widginterval. However,
main as depicted in Fig.(d) for two values ofiy. This cur-  since the arguments given above apply strictly only for infi-
rent domain is the final state of the system in the spatiallynite systems, deviations near the turning points of the
unstable regime and the mechanism leading to such a stationdrrent-voltage characteristic of the domain are clearly vis-
ary domain is well knowr(e.g.,[16,64]). ible. These deviations represent a boundary effect.

The activator is bistable as a function of the double layer States with several domains are unstable due to the win-
potential. An overcritical local fluctuation in a system with- ner takes all principl¢21,27. Domains with an extremum
out global coupling that is prepared in the metastable stataot located at the boundaries are unstable with respect to
would lead to the formation of a transition front to the glo- translation and will be attracted by the boundary.

B. Homogeneous limit cycle and stationary domains
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FIG. 6. Oscillatory instability of a domain leading to stable,
periodically breathing current domains for the electrochemical
model (w=10,y=7x10 4i;=1000).(In this simulation a stable
domain was prepared; was lowered toy=7x10"*, and a small
random fluctuation was added.

Tt

FIG. 5. (a) Bifurcation diagram for the electrochemical model layer dynamics becomes too largf_can no longer control
(u=25,=3x10"3). Apart from the branches shown in Figbs,  the interface stability. We denote the critical value of this
a branch of unstable homogeneous oscillatory soluticoen  Oscillatory instability of the domain by"¥(w,io) (cf. Table
circles bifurcates supercriticallyh) near the turning points of the |). Numerical simulations show that the threshold for an os-
current-voltage characteristic. Shown is the maximum valugpf  Cillatory instability of the current domain lies typically below
during one oscillation cycle. After stabilization through a pitchfork the threshold for the Hopf bifurcation of the homogeneous
bifurcation, the stable homogeneous oscillatighsgl circles) are steady state
separated from the stable domains by an unstable inhomogeneous
limit cycle (open triangles (b) Typical scenario of an oscillatory hd, & he s
instability of a domain for lower values of than in(a) (x=25,y Yo <y o). (12)
=1x10"4,i,=1000). Shown is the reaction current density
=(1- 0)e’L as a function of space and time. At these parameter! his can be understood in the frame of the eigenmodes of the

values the oscillatory instability of the domain is subcritical and thecurrent domain for large system sizes if we recall that in
system finally settles down to homogeneous relaxation oscillationsbsence of global coupling the domain state has only one
(standard scenario positive eigenvalue that tends to zero with increasing system

. ) . size. The respective arguments are giver{28]. The nu-
Figure 4b) also shows that spatially patterned solutionserical investigations show that relatiqd?) in general
typically bifurcate subcritically from the homogeneous statey,g|4s for small and intermediate system sizes also.
and meet the stable domain branch in a saddle-node bifurca- | toj10ws that. in general, the homogeneous relaxation

tion (sn-d, cf. Table ). The domains remain stable in the ,gijations represent an attractor when the domain loses sta-
wholei, interval in which the current-voltage characteristic il The oscillatory instability of the domain is usually

of the domain exhibits a negative differential resistance forg hritical: a state close to the domain is eventually attracted
these parameter values. This behavior can also be ranonaé—y the stable homogeneous limit cydeee Fig. &)]. This

ized analytically[22,23. The domain bifurcation is super- can pe regarded as the standard scerfadg it exists in a
critical only in a smallu interval close to the minimal sys- yide parameter rangeof a domain instability in globally

tem Sizefmin. coupled electrochemical systems with &rshaped current-
Whenp is fixed at a valugu> umin and the double layer yqojtage characteristic. In this case no complex spatio-
dynamics is slowed down tg below x(y/ 1) max, the addi-  temporal behavior arises in the model.
tional mode of homogeneous oscillations becomes present in
the system. Forys,u(y/,u)ﬂw it bifurcates supercritically
from the spatially unstable state, therefore small amplitude
oscillations will be unstable with respect to spatial fluctua- We would expect complex spatio-temporal behavior if the
tions for anyiy. With increasing oscillation amplitud@e-  branch of inhomogeneous limit cycle solutions that bifur-
creasingy) the oscillations become stabilized in a pitchfork cates from the domain branch at the point of the oscillatory
bifurcation[cf. Fig. 5a@)]. This results in bistability of sta- instability of the domain becomes stabilized or bifurcates
tionary domains and a uniform limit cycle in an intermediatesupercritically. In this case the system would exhibit bista-
ip interval. The basins of attraction are separated by an urbility between a stable inhomogeneous limit cycle and a
stable inhomogeneous limit cycle. stable homogeneous one. We did indeed find such a situation
If v is lowered even further, the stationary current domainin the model for comparatively small system sizes- 10)
will become unstable also. This can be rationalized by recalland relaxation times well below the onset of homogeneous
ing that the stabilization mechanism of the domains is theoscillations ¢/~ 7x10°). The instability leading to such
positive global coupling orpp, . If the delay of the double complex spatio-temporal behavior is shown in Fig. 6. In Fig.

C. Breathing current domains
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(a) 1750
0 10 20 30 40 50 60
- 1250 | t
7.98
7.96
7.94
7.92
7.90
750 . . . .
77 78 19 80 81 oo m o B
¢DL’ ¢DLmax
(b) 1050 . ‘ — FIG. 8. (a) Periodically breathing domains with period two at
snp \ ‘A ip=990 and (b) chaotically breathing domains ay=980 (u
R \ =10,y=7%x10"%.
N ‘ 4
’, e > imposed current densitiy, is decreased. The limit cycle un-
FaY ; dergoes a period doubling cascade leading to stable chaotic
2 1000 F /3 Y/ 1 : | iofFiq. 8
\ Y spatio-tempora motioilFig. 8). . _
hd J\Qﬁ‘-‘;‘" Decreasing further, a reversed period doubling cascade
Y o;’/ ! occurs which leads again to stable period one breathing do-
i ! mains. This branch then ends in a supercritical Hopf bifur-
950 ) { . cation of the domain very close to the saddle-node bifurca-
7.8 7.9 8.0 tion, in which stable and unstable domains originated. It
O O is interesting to note that the dynamic nature of the invariant

set that separates the basins of attraction of the two limit

FIG. 7. (a) Basis bifurcation diagram for stable periodic breath- cycles is changing with increasing imposed current density
ing for the electrochemical model(=10,y=7x10 %). The oscil-  from the unstable stationary doméisaddle pointto an un-
latory branch of the homogeneous limit cycles bifurcates supercritistable inhomogeneous limit cycJsee Fig. Tb) for low ig].
cally before the spatial instability and thus homogeneous The region in the iG-y)-parameter plane in which such
oscillations are stable nearly in the whalginterval (full circles). complex spatio-temporal dynamics is found is depicted in
The equal areas rule, E(11), fails for this system size. The domain Fig. 9 for x=10. The lines of the Hopf bifurcation and the
branch(thick line) is unstable in a region of negative differential qomain bifurcation of the homogeneous steady state and
resistancédashed thick linenear the lower saddle node bifurcation their intersection pointDH) are shown. The main regions
of domains. Marked with open triangles is an unstable inhomogethat were discussed abot@nd in part also exist for different
neous limit cycle. It is born in a pitchfork bifurcation of the homo- values of x) are indicated. Note the existence of three
geneous limit cycle at highy and terminates in the unstable domain codimension-two points: The point at which the domain and
branch.(b) Enlargement of the bifurcation diagram at the lower Hopf bifurcation coincid.e(DH) was discussed in Sec. Il A
turning point. Here also the branches of the inhomogeneous breatf)- he DH the svstem has a pair of purely ima inar. el .
ing mode are showridiamond$. The breathing mode bifurcates V;.|Lee8 and a reél eigenvaluepequal Fio z[é)i/ﬁ] U?lfold)i/nggen

subcritically (hd) from the domain branch at highés (open dia- . . -
monds and stable breathing@ull diamonds originates in an snp. In of the DH have a further fine structure as discussed in Ap-

the projection of the limit cycle on the double layer potential it gets P€Ndix B; itis not shown in Fig. 9 for clarity. Denoted by TB
close to the homogeneous steady state but not in real phase spagethe point where saddle node and Hopf bifurcation meet
(cf. texd. In the current density interval between approximaigly ~(Takens-Bogdanov poin{66]. Note that in our case both
=1000 andi,=975 the inhomogeneous limit cycle undergoes abifurcations involve inhomogeneous steady stdtes, do-
period doubling cascade leading to chaotic breatHioggen dia- maing rather than homogeneous solutions. To the left of the
monds. TB point two saddle fixed points with one and three unstable
directions, respectively, originate from the saddle-node bi-
7(a) the corresponding bifurcation diagram far=10 and furcation; to the right of it there is a saddle fixed point and a
y=7x10"*is depicted. stable node. Again the fine structure, most remarkably a ho-
Decreasing the imposed current density from values in thenoclinic bifurcation that should be present in the vicinity of
regime of bistability between a stable domain and homogethe TB point is omitted. The third codimension-two point is
neous oscillations, the domain branch exhibits an oscillatora degenerate Hopf bifurcation of domai(i3HD), in which
instability (hd). The branch of solutions that bifurcates sub-the saddle-node bifurcation of periodic orbisnp coincides
critically is stabilized via a saddle-node bifurcation of oscil- with the Hopf bifurcation of the domaithd).
latory domains, i.e., periodic orbifsnp, cf. Table ), which We omitted in the bifurcation diagrartfig. 9 some of
can be seen in the enlarged bifurcation diagram, Fig).7 the branches mentioned above. Furthermore, there are indi-
The spatio-temporal behavior becomes more involved as theations of the presence of additional bifurcations that deter-
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TABLE Il. Dynamic regimes indicated in Fig. 9. U= al(jo—u+(a)) (14)
= R

D O.ne sFa.\bIe homogeneous fixed .point. . whereu denotes the potential drop across the semiconductor
2 Bls_tablllty between stable domain and homogeneous f'xeddevice(corresponding tapp,) anda describes the interface
3 gmlnt. ble domai charge density in the HHEcorresponding t@). The sys-
(4) Ony Otnle)fti e domain. limit cvel tem length isL and thus(a), =L 'f5adx. The current-
@ ne stable homogeneous timit cycle. , voltage characteristic of the HHED is given pyu—a. It
(5) Stable or unstable homogeneous limit cy@é Appendix also has the shape of ar§" [Fig. 2c)]. If space is rescaled
B) and stable domain. to the interval[ 0,77], the model exhibits the same structural

(6) Stable homogeneous limit cyc.le aod otable doroaln. dependence on three parameters as Ejgand (7)
(7) Stable breathing current domaiggeriodic or chaotigand a

stable homogeneous limit cycle. _ 7a
(€)) The Hopf bifurcation of the domain is subcritical, thus only a= 'S — 0.0% +—, (15)
stable homogeneous oscillations are present. (u—a)*+1 ox

9 Region in which three attractors exi&tf. Fig. 7 forig
=1010): Stable domains, stable breathing domains, and U=y(3)(jo—u+(a>w), (16)
stable homogeneous limit cycle.

with u®=(L/7)? and y®=(L/7)%a. These parameters
can be interpreted in the same way as in the electrochemical

mine the exact location of the lower boundary of the regimemodel

o; cromplex behavior. Its detailed study is beyond the scope The two models possess equivalent basic modes: The
of this paper. branch of negative differential conductivity is unstable with
respect to spatial perturbations for sufficiently large system
IV. COMPARISON AND DISCUSSION sizesL > L i, [cf. Fig. 3c)] and to homogeneous oscillations
In this section we compare the different dynamic instabili-for sufficiently slow dynamics of the voltage drap(small
ties and regimes described in the preceding section with re2). However, the temporal instability of the filament may
sults obtained earlier for the semiconductor model. Thdéad to qualitatively different spatio-temporal dynamics.
semiconductor model used has thieondimensionalized Apart from the breathing mode that the semiconductor mod-

form els also exhibit[26,28,53,6T the system displays a complex
spatio-temporal mode termedpiking [see Fig. 1(a)]
u—a J%a [51,57. This mode evolves because the spatially inhomoge-
= > —0.0%8+—, (13  neous limit cycle that constitutes breathing comes eventu-
(u—a)“+1 X ally, with decreasingy, very close to the homogeneous fixed

point. This points to a structurally different dynamic regime
as compared to the electrochemical system and facilitates the
formulation of a sufficient condition for the occurrence of
complex spatio-temporal dynamid¢®6]. In the following

this will be explained in some detail.

Consider the bifurcation diagram of the semiconductor
model for parameter values at which complex spatio-
temporal dynamics is founfpFig. 10b)]. Let us denote by
j3(m), jo(m,y) andjb%w,y) the parameter values at which
the spatial instability of the homogeneous steady state, the
oscillatory instability of the homogeneous steady state, and
the oscillatory instability of the filament, respectively, occur.
L5 For an interval of imposed current densitjgao trivial state
is stable, since, in contrast to the electrochemical model, ho-
mogeneous oscillations are not present in the system for im-
posed current density values within this interval, however,

1050

.- 1000 |

950
0

FIG. 9. Existence region of stable periodic breathing in the
(ig-v)-control-parameter plan¢hatched region for the electro- the filament is already oscillatorily unstab[eyhd(,u,io)

chemical model = 10). The main dynamic regimes, characterized he - i,
by attractors, are indicated by the numbers 1-9; the attractors are 7.(/""0)]' Thus a sufficient condition for complex dynam-

given in Table Il. Shown by solid lines are the lines of the domain'®S 1S

bifurcation (d) and the saddle-node bifurcation in which the do- h .d - hd .d

mains originatesn-d (both independent of). The domain bifur- Jo(t, )=o) Njo (s, ¥)>jo(p)-

cation and the Hopf bifurcation of the homogenous steady éfiate o hd h . . DH

solid) intersect in a Turing-Hopf-type codimension-two paipH).  The limit case jo (1, 7) =jo(u, ¥) =jo(#)=jo (x) [70]

The dashed line shows the oscillatory instability of the donflaéh. ~ can be reformulated as a condition for the time scale of the
Denoted by sngsolid ling) is the line of the saddle-node bifurcation inhibitor y such that the condition can be tested for different
of periodic orbits, i.e., breathing domains. system size$26]:
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FIG. 10. (a) Spiking current filament in 1d L(=40« o 05«
=0.035j,=1.2). (b) Bifurcation diagram for the semiconductor M
system for complex spatio-temporal dynamids=(40,c=0.06). 00 5'(_)— 100
Shown is the potential drop across the semiconduatarespec- n

tively, the maximumu during one oscillation versus the imposed
current densityjq at the lower turning point of the current-voltage  FIG. 11. Thresholds for oscillatory instabilities at imposed cur-
characteristic. In the current interval shown by the dashed lines ngent density values at which the homogeneous steady state becomes
trivial state of the system is stable. The lower boundary is the spaunstable with respect to spatial fluctuatidesfective three param-
tial instability of the homogeneous steady stéten lines and the  eter continuationto test condition(17). The threshold for an oscil-
upper one is the oscillatory instability of the filaméftttick lines. latory instability of the domaifiy"%(i5())] and the codimension-
Homogeneous oscillations are not present in this current densitywo point (DH) analogous to a Turing-Hopf codimension-two
interval; they bifurcate at higher current density val(gsen circles  pifurcation[ y°"(u)] are shown as dashed and solid lines, respec-
in the upper right corngr The resulting inhomogeneous oscillations tively. In (a) the two curves are shown for the semiconductor sys-
(diamonds that bifurcate subcritically from the stable domain tem (double logarithmic plotfor 2d domains at the lower turning
branch are born by a saddle-node bifurcation of periodic orbits. point of the current-voltage characteristic. The hatched region indi-
cates the region in which the sufficient conditi@y) for complex
(i S(M))> YPH( ). 17) spDatio-temporaI dynamics is fulfilled. iih) and (c) YMG5(w)) and
v-"(u) are shown for the electrochemical model for the two do-

) ] ) ) main bifurcations at low and high current densities, respectively.
The above inequality becomes clear if one considers that the

OSCi||at0ry |nstab|||ty Of the ﬁlament iS Sh|fted tOWard h|gher homogeneous modes Wh|Ch Constitutes a Stable focus in th|s
imposed current density values when loweripgwhereas plane. The relaxation close to the homogeneous fixed point
the Hopf bifurcation point of the homogeneous steady statgh the plane of the homogeneous modes leads to the small,
behaves in the opposite way and the spatial instability doegimost homogeneous, oscillations and then the spike evolves
not depend ony. again as the trajectory leaves the plane of homogeneous dy-
In Fig. 11 both critical time scales are plotted for both namics along the unstable direction of the homogeneous
models. For the electrochemical model the critical timefixed point (cf. Fig. 10. In the electrochemical system the
scales are also shown for the upper part of 8tshaped plane of homogeneous modes always constitutes an unstable
current-voltage characteristic. The above arguments dgycus for parameter values in which the domain loses stabil-
equally apply for this region. As indicated by the hatchedity and thus the trajectory of inhomogeneous oscillations
region for the semiconductor system in Fig(é)1 condition  never comes close to the unstable homogeneous fixed point.
(17) is fulfilled for a large interval of system sizés(respec-
tively, () for the lower part of theS-shaped current- V. CONCLUSIONS
voltage characteristic. Apart from spiking, a broad variety of '
periodic and chaotic spatio-temporal modes has been found The comparison of the two models presented in this paper
in this interval[26]. Condition(17) is never found to hold for allows us to identify bifurcations that exist in bistable sys-
the upper part for the semiconductor modebt shown. It  tems subject to global inhibition. Apart from electrochemical
can be seen in Figs. () and 11c) for the upper and lower and semiconductor systems such dynamics might be encoun-
part of theS-shaped current-voltage characteristic, respectered in a variety of other systems, e.g., gas discharge de-
tively, that condition(17) is apparently never fulfilled in the vices[68].
electrochemical system for any system size. Stationary large amplitude spatial patterns called domains
Thus also the absence of spiking in the electrochemicabr filaments appear via a subcritical spatial bifurcation of the
system is easily understood; spiking evolves when theainiform state and form attractors in the whole range of ef-
breathing mode eventually comes very close to the plane dective autocatalysis for common parameter values in such

056229-9



F. PLENGE, P. RODIN, E. SCHO., AND K. KRISCHER PHYSICAL REVIEW E64 056229

systems. A characteristic length scale can be defined that TABLE lll. Typical parameter values.
facilitates quantitative comparison of the respective models:
For comparable time scales of activator and inhibitor stablt?( _1x10t ﬁ . C
homogeneous relaxation oscillations can be expected. Fof mol s Co=20x10 V om?
slow dynamics of the globally coupled inhibitor oscillatory k—5x10% 1
instabilities of the domains occur, initially near the turning ° C,=2x10°®
points of the current-voltage characteristic of the domain. VvV cm?
However, the routes to complex spatio-temporal patterns de- anF. g Cm _ mol
pend on the local dynamics and might thus differ in eacHﬂeXp(_ﬁV =2x10° = Cag=1X107° o
individual system under consideration. B P

We have identified the following scenarios: If the Hopf Nma—1x10 cm D,=1x10°° e
bifurcation of the domain is supercritical, the system will S

display stable breathing domains. In the case of a subcriticdl =1
bifurcation the dynamics depends upon the further structure

of the bifurcation diagram. If conditiofiL7) is fulfilled, the = y=1 a=1/2
onset of stable breathing or spiking modes can be expectett=300 K

When inequality(17) is not fulfilled and the oscillatory in-
stability of the domain is subcritical, no general statement

J
g=-12X10° —
mol

regarding the resulting dynamics is possible. Either homoge- APPENDIX A: NONDIMENSIONALIZATION
neous relaxation osfcnla'tlons or complex spatio-temporal dy- | this section we give the transformations yielding the
namics may result in this case. dimensionless model equatio® and (5). In physical units

We have dem_o_n_strate_d the above g_eneral statements WitHe equations reaf59]
two models exhibiting different scenarios leading to stable
complex spatio-temporal dynamics, thus illustrating the gen-  d¢p, y _ anF -
eral scheme. Conditiofi7), which ensures that stationary or  Co—g~ =lo—xn FCrkr(1—<9>)eXD( Xﬁ(cbDL—V)) ,
uniform modes are either unstable or do not exist, is fulfilled
for the semiconductor system in a wide parameter range, but
it can never be satisfied in the specific electrochemical model
(6) and(7). As a consequence the electrochemical breathing
current domains always coexist with homogeneous oscilla- —kgbexd (1— o)W’ (¢p.,0)],
tions. Thus they have a small basin of attraction compared to
the situation in the semiconductor mod@&8) and(14) where  with
no other mode is stable in a certain parameter range. As
another consequence spiking current filaments are only 1000
present in the semiconductor system. Complex dynamics
could only be found near the turning point of the current-
voltage characteristic corresponding to the lower value of the
imposed current density in both systems.

These results emphasize the necessity to incorporate th
spatial degree of freedom when studying electrochemical
systems with negative differential resistance. Breathing cur-..+
rent domains constitute a qualitatively new mode of complex
spatio-temporal dynamics in electrochemical systems re- 990
ported here for the first time. This mode may evolve to cha-
otic spatio-temporal dynamics via a period doubling cascade

It should be noted that recent experimental studies of the
CO oxidation on Pt single crystal electrodes have shown
small amplitude oscillations of the potential in the range of 98508
negative differential resistan¢69]. This system might be an )
experimental illustration of the above results, and therefore
spatially resolved measurements would be desirable. FIG. 12. Bifurcations and projections of phase portraits close to

the codimension-two domain-Hopf bifurcatigH). Thick solid

line: spatial instability of the homogeneous steady stdie Thin
ACKNOWLEDGMENTS solid line: Hopf bifurcation of the homogeneous steady sthie

Dashed line: Hopf bifurcation of the stationary unstable domain

We acknowledge financial support from the Deutschehd). Dash-dotted line: pitchfork bifurcation of limit cycles that
Forschungsgemeinschatft in the framework of the Sonderforstabilizes the homogeneous limit cydlef). “u” and “n” denote
schungsbereich 555 “Complex Nonlinear Processes,’the planes of uniform andnonuniform) domain modes, respec-
projects B4 and B1. tively.
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, Co—Cy g'e
W' (doL. =5y — T ot T o=

ma

H
lo

— anF.\’
n Fcrk,exp< - X—V)
The meaning of the numerous constants is givef58] and RT
typical values of the constants are shown in Table Ill. The

model equation$4) and(5) are retained via the transforma-

tions of the variables according to

, anF
dpL— ¢DL:ﬁ boL

With the values given in Table Ill the parametgrsv,
andg are fixed tov=0.025[71], p=0.5, andg= — 2.4. They
correspond to such physical values as free adsorption sites or
interaction strengthy depends on the well accessible con-
centration of the reacting species, which can be varied over

. Dy several decadeg,=10( L(cm)]?; i, can be set by the gal-
t—t'= L2 t, vanostatic control unit and typical values will be of order
10°-10".
a
X—X'= RS

and with the introduction of the parameters

APPENDIX B: BIFURCATIONS AND PHASE PORTRAITS
NEAR THE DH —CODIMENSION-TWO POINT

L2k QE In Fig. 12 the bifurcations and phase portraits near the
u= ﬂ’ codimension-two point in which the domain bifurcation and
m°D, Hopf bifurcation of the homogeneous steady state r2e
is shown. The additional branches not shown in Fig. 9 are a
Kq Hopf bifurcation of the unstable stationary domain leading to
= k—— an unstable inhomogeneous limit cycle and the pitchfork bi-
adCad furcation of periodic orbits that stabilizes the homogeneous
5 limit cycle born in the Hopf bifurcation of the homogeneous
RT(Co—Cy)

V_—y
2N pakgan?F?

steady state and which is the origin of another unstable in-
homogeneous limit cyclécf. Fig. 5a)]. Both branches ter-
minate in the DH. The respective phase portréitsets de-

pict the dynamics schematically in a projection on the plane
spanned by the eigenvectors of the two complex conjugate
eigenvalues describing the Hopf bifurcation of the homoge-
neous fixed point, respectively, the stationary unstable do-
main. The third direction describes the subcritical domain
bifurcation (spatial modg
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