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Breathing current domains in globally coupled electrochemical systems:
A comparison with a semiconductor model
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Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemi-
cal systems with anS-shaped current-voltage characteristic under galvanostatic control are studied theoreti-
cally on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios
occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic
control both systems are unstable with respect to the formation of stationary large amplitude current domains.
The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics
of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of
the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and
chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results
obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in
globally coupled bistable systems with subcritical spatial bifurcations.
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I. INTRODUCTION

The focus of research in nonlinear dynamics has evol
from temporal instabilities over simple spatial patterns
complex spatio-temporal behavior and the control or s
chronization of such dynamics. Complex spatio-temporal
havior in reaction-diffusion equations, which is in a wid
sense the class of equations dealt with also in electroch
istry, might be found when instabilities breaking time a
space symmetries interact. A generic case is the interac
of Turing @1# and Hopf bifurcation in a two-componen
activator-inhibitor system in which the involved species d
fuse. Complex spatio-temporal dynamics has been fo
near this codimension-two point theoretically@2–4# as well
as experimentally@5–7#.

In electrochemical systems that can be described by a
component model one variable typically is of an electri
nature and the associated transport mechanism is migra
rather than diffusion@8,9#. The decisive variable for the dy
namics of the electric circuit is the double-layer potent
fDL , measuring the voltage drop across the interface
tween the working electrode and the electrolyte solut
@10#. Local perturbations in the double layer potential a
mediated through the electric field in the electrolyte. Th
spatial inhomogeneities in the double layer potential are
not only by its nearest neighbors, but by a whole range
neighboring sites which makes the coupling nonlocal@11#.
The degree of nonlocality depends on the geometry of
electrochemical cell, most importantly on the positions of
working electrode~WE!, the counter electrode~CE!, and the
reference electrode~RE! with respect to each other@12#. Fur-
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thermore, it can be shown that the galvanostatic opera
mode~constant current control! introduces an additional glo
bal coupling into the system@13#.

The role of the second variable in two compone
activator-inhibitor systems in electrochemistry is playe
e.g., by the chemical concentration of the reacting specie
the double layer or by the density of adsorbed molecules
the WE.

Over the last decade global coupling has been an ac
area of research. Global coupling is present in systems
are subject to external control, e.g., via an electric circ
~such as in electrochemical@12–20#, semiconductor@21–28#,
and gas discharge@29# systems! or via the electric control of
the temperature in catalytic reactors@30–35#. But global cou-
pling may also be due to transport processes that happe
time scales much faster than all other relevant time scale
the system, e.g., fast mixing in the gas phase@36–41#. A
variety of other systems are described by dynamics that
clude global coupling, e.g., ferromagnetic@42#, biological
@43#, and chemical systems in which the global coupling c
be light induced@44,45#. Abstract theoretical models are dis
cussed, e.g., in@46–48#.

Results regarding electrochemical systems with glo
coupling have been reported for systems with anN-shaped
current-voltage characteristic~termed N-NDR systems
N-shaped negative differential resistance! for different types
of global coupling. In these systems the double layer pot
tial acts as an activator and global coupling introduced by
galvanostatic control mode was shown to accelerate fr
motion @11,14# thus having a synchronizing effect on th
spatial dynamics. Desynchronizing global coupling of the
tivator was shown to stabilize potential fronts, leading to tw
stationary potential domains@15,49#. Also the formation of
pulses and standing waves was observed@17,18,50#.

In electrochemical systems with anS-shaped current-
voltage characteristic~S-NDR! the roles of activator and in

/

©2001 The American Physical Society29-1



in
th
d
ai
s

b
ith
id
m
ia
a

ed

ic
ac

a
c

he
a

to

ra

r t

i
tr
by
tu

ag

od
uc

el
n-

ik

m

er

ain
e
of

the
em-
end
ally
ue
cal
n of
ider-
lly

ce
ters
del.
by
he
ec.
ls.
vior
in
ec.
ri-
re-

ion
s
he

e
.

itate
loy
re

ach
is

ric
igh

on-
a
r
e

d

F. PLENGE, P. RODIN, E. SCHO¨ LL, AND K. KRISCHER PHYSICAL REVIEW E64 056229
hibitor are reversed, leading to a global coupling of the
hibitor under galvanostatic conditions. This leads to
opposite effects opposed to N-NDR systems, i.e., current
mains that are stabilized by the constant current constr
@16#. Similar results on accelerated and decelerated front
globally coupled semiconductors withS- or Z-shaped
current-voltage characteristics have also been obtained@24#.

In the present paper we focus on the latter case of glo
coupling of the inhibitor in an electrochemical system w
anS-shaped current-voltage curve. Furthermore, we cons
systems with high electrolyte conductivity. In such syste
the migration coupling is so efficient that any spatial var
tion in fDL can be neglected, which results in an addition
global coupling@16#. The set of equations to be investigat
is thus of the general form:

tfDL

]fDL

]t
5g~fDL ,^u&G!, ~1!

tu

]u

]t
5 f ~fDL ,u!1DDu, ~2!

whereu stands for the activator variable, whose dynam
comprises an autocatalytic chemical step. The angular br
ets denote the spatial average over the spatial domainG. f is
autocatalytic inu; g exhibits a monotonic characteristic as
function of fDL and u. tfDL(u) denote the characteristi

times for changes infDL andu, respectively.
A formally very similar set of equations describes t

dynamics in bistable semiconductor systems operated vi
external load resistance@21,22,28,51#. The formation and dy-
namics of current density patterns in bistable semiconduc
was extensively studied@23,26,52–54#. In this respective
class of semiconductor systems the current-voltage cha
teristic also resembles the shape of anS, which points to the
fact that the roles of the dynamic variables are very simila
the electrochemical model: The voltage dropu across a semi-
conductor device acts effectively as an inhibitor, and it
subject to a global constraint imposed by the external elec
circuit. The role of the activator variable might be played
different physical quantities, such as the electron tempera
@21#, the concentration of excess carriers@55#, the charge
density in resonant tunneling structures@54,56,57# ~note that
for bistable resonant tunneling structures the current-volt
characteristic isZ-shaped resulting in anactivatory, not in-
hibitory effect of the global constraint!, the voltage drop
acrosspn junctions in thyristors@25,58#, or the interface
charge density in a heterostructure hot electron di
~HHED! @53#. The dynamic equations are of the same str
tural form as Eqs.~1! and~2!; only the local nonlinear func-
tions f andg differ from the electrochemical model.

For the current density dynamics in a class of mod
originally derived for the HHED in one or two spatial dime
sions under galvanostatic~current-controlled! conditions, in-
teresting complex spatio-temporal patterns termed ‘‘sp
ing’’ and ‘‘breathing’’ current filaments were found@51,52#.
Recently, a sufficient condition for the onset of such co
plex spatio-temporal dynamics was given@26#.
05622
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Realizing the obvious similarities, we show in this pap
that the methods~e.g., for analyzing the dynamics! devel-
oped for the semiconductor system can be applied to g
insight into the interaction of different instabilities in th
electrochemical system. Results regarding the possibility
the occurrence of complex spatio-temporal behavior and
mechanisms that lead to such behavior are given. It is
phasized whether the different dynamical regimes dep
upon the general structural form of the equations, especi
regarding the influence of global coupling, or if they are d
to special properties of the underlying physical or chemi
system, and thus the local dynamics. Hence a compariso
electrochemical and semiconductor systems gives cons
able insight into generic complex dynamics of globa
coupled bistable systems.

The paper is organized as follows. In Sec. II we introdu
the electrochemical model, discuss its important parame
and the mechanisms leading to global coupling in the mo
In Sec. III we characterize the dynamics of the model
linear stability analysis along the lines developed for t
semiconductor model and by numerical simulations. In S
IV we compare the important features of the two mode
The mechanism leading to complex spatio-temporal beha
in both models is different and this difference is explored
this section in some depth. We summarize our results in S
V and give a short outlook to applications in terms of expe
mental verifications and transfer of the electrochemical
sults to the semiconductor model.

II. MODEL

The central variable in electrochemical pattern format
is the double-layer potentialfDL , the potential drop acros
the interface between the WE and electrolyte solution. T
dynamic evolution equation forfDL can be deduced from th
local charge balance at the electrode/electrolyte interface

To make things as transparent as possible and to facil
later comparison with the semiconductor model, we emp
the idealized geometry shown in Fig. 1. WE and CE a
equally sized rectangular plates positioned parallel to e
other in a boxlike cell with otherwise insulating walls. Th
geometry imposes no-flux boundary conditions forfDL and
u; there will be no spatial inhomogeneities of the elect
field at the interface imposed by this geometry. For very h

FIG. 1. Schematic setup of the electrochemical system. A c
stant currentI 0 is applied in an electrochemical cell consisting of
rectangular working electrode~WE!, electrolyte, and a rectangula
counter electrode~CE!. WE and CE form the top and bottom of th
boxlike cell with otherwise insulating walls.fDL is the voltage drop
across the interface.i r andi C symbolize reaction current density an
capacitive current density, respectively.
9-2
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BREATHING CURRENT DOMAINS IN GLOBALLY . . . PHYSICAL REVIEW E64 056229
electrolyte conductivitiess, spatial inhomogeneities in th
double layer potential are damped out very fast via the e
cient coupling through migration currents. It follows th
spatial variations offDL can be neglected. This effectivel
introduces a global coupling in the system, since local p
turbations in fDL are felt instantaneously in the who
double layer.

In the following we additionally assume current co
trolled conditions. Galvanostatic control is known to intr
duce an additional global coupling into the system@12,16#.
Assuming a specific double layer capacitanceC, the dynamic
equation for the double layer potential reads

C
]fDL

]t
52 i r~fDL ,^u&!1 i 0 , ~3!

where i r(fDL ,u) is the reaction current density andi 0 de-
notes the imposed current density. The activator variablu
describes the evolution of the coverage of the WE by
adsorbate or the concentration of a chemical species in
reaction plane. Its dynamics will be modeled by an equat
of the form ~2!, where we restrict our system to one spat
dimension~1d! since the qualitative behavior should also
captured on 1d domains. 1d domains also resemble the
ation of a very large aspect ratio of the rectangular dom
where one spatial dimension is too small to allow for spa
instabilities and can thus be eliminated.

We use the following model functions for the local d
namics of the activator and the reaction current densityi r

i r~fDL ,u!5~12u!efDL, ~4!

f ~fDL ,u!5~12u!e2nfDL
2

2gu2puenfDL
2

1gu ~5!

originally derived to describe pattern formation observed i
reaction, in which a reaction inhibiting adsorbate underg
a first order phase transition due to lateral interactions of
adsorbate molecules@59,60#. The transformations leading t
dimensionless units differ from the ones given in@59#; the
derivation is given in Appendix A. Note the nonpolynomi
nature of the functionf.

The dimensionless set of equations is thus

]fDL

]t
5g@ i 02~12^u&!efDL#, ~6!

]u

]t
5m@~12u!e2w(u,fDL)2puew(u,fDL)#1

]2u

]x2
~7!

with

w~u,fDL!5nfDL
2 1gu,

subject to the boundary conditions

]u

]x U
x50,p

50.
05622
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We normalize space to the interval@0,p# for computational
convenience and thus

^u&5
1

pE0

p

u~x!dx.

This leads to the proportionality of the parametersm,g
}L2; m andg still can be changed independently since a
other physical quantities enter these parameters~cf. Appen-
dix A!.

In Fig. 2~a! the nullclines of the system are depicted for
current densityi 0 that is set in the range of the negativ
differential resistance in the current-voltage characteri
@see Fig. 2~b!#. The S-shaped current-voltage characteris
is depicted together with the load linei 5 i 0 in Fig. 2~b!. This
physically more intuitive (i -fDL)-plane representation wil
be used in the following.

The parametersn, p, andg are fixed throughout this pape
at the valuesn50.025, p50.5, andg522.4 ~cf. Appendix
A!. The dynamics is determined by the model parametersm,
essentially proportional toL2, the relaxation time ratio of the
activator and inhibitorg/m ~independent ofL), and the gen-
eral excitation level controlled by the imposed current de
sity i 0. The relaxation time ratio can be accessed easily
the concentrations of the reacting and adsorbing species;i 0 is
set by the galvanostatic control unit.

The numerical results discussed in Sec. III B were o
tained using pseudospectral decomposition in space@61# em-
ploying 15 spatial cosine modes~the results do not chang

FIG. 2. ~a! Nullclines of the model~6! and ~7! for an imposed

current density in the autocatalytic regime~solid line, u̇50; dashed

line, ḟDL50, i 051300; for the other parameters see Appendix A!.
~b! and ~c! S-shaped current-voltage curve together with the lo
line i 0 ( j 0) for the electrochemical@Eqs.~6! and~7!# and the semi-
conductor@Eqs.~13! and ~14!# system, respectively.
9-3
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F. PLENGE, P. RODIN, E. SCHO¨ LL, AND K. KRISCHER PHYSICAL REVIEW E64 056229
when a larger number of modes is chosen!. For the integra-
tion in time the routine lsode@62# and for continuation of
steady states and limit cycles the packageAUTO @63# was
used.

III. STABILITY ANALYSIS AND SIMULATIONS

A. Homogeneous steady state

In this section we consider the spatially uniform fixe
points of the system~6! and ~7! and their bifurcations. The
uniform steady state (fDL

ss ,uss) is given by i r(fDL
ss ,uss)

5 i 0 , f (fDL
ss ,uss)50 and corresponds to the homogeneo

S-shaped current-voltage characteristic@Fig. 2~b!#. Perturb-
ing the steady state with a perturbatio
@dfDLelt,du cos(nx)elt# ~consistent with the boundary con
ditions!, the temporal evolution of the perturbation is give
by the eigenvalues of the Jacobian matrixJ

l1,25
tr J

2
6A~ tr J!2

4
2detJ

and stability (Rel,0) implies that (detJ.0`tr J,0).
The Jacobian reads

J5S 2gs r 2g i ru

m f fDL m f u2n2D .

Subscripts denote partial derivatives with respect to the s
scripted variable and evaluation at the steady state~e.g., f u
5] f /]uu(f

DL
ss ,uss)). For brevity we denote s rª] i r /

]fDLu(f
DL
ss ,uss) .

The stability of the fixed point with respect to homog
neous fluctuations (n50) can be determined by inspecting

detJ52gm f uS s r2
f fDL

f u
i ru

D
52gm f uS s r1 i ru

duss~fDL!

dfDL
D

52gm f u

dir„u
ss~fDL!,fDL…

dfDL

and

tr J5m f u2gs r .

Obviously detJ.0 in general since m,g.0 and
f u@dir„u

ss(fDL),fDL…/dfDL#,0, which follows from the
fact that the branch of negative differential resistan
@dir„u

ss(fDL),fDL…/dfDL,0# is caused solely by the act
vator variableu, equivalent to saying thats r.0 in general.

However, trJ might change sign on the NDR branc
since f u.0 ands r.0, which leads to an oscillatory insta
bility ~Hopf bifurcation! of the homogeneous steady sta
~denoted by a superscript ‘‘h,’’ cf. Table I! at
05622
s
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m D h

5
f u

s r
. ~8!

Thus for g/m,(g/m)h ~low concentration of the reacting
species or high concentration of the adsorbate! the homoge-
neous steady state is unstable in a certaini 0 interval, since
f us r

21 depends on the imposed current density via the ste
state condition. When plotting the critical value (g/m)h as a
function of the imposed current density Fig. 3~a! is obtained.

For g/m.(g/m)max
h 52.231024 there are no oscillatory

solutions for anyi 0 and for g/m!(g/m)max
h the oscillatory

TABLE I. Abbreviations for bifurcation points.

h Hopf bifurcation of the homogeneous steady state
d domain bifurcation of the homogeneous steady state
sn-d saddle-node bifurcation of domains
hd Hopf bifurcation of the domain state
snp saddle-node bifurcation of breathing domains, i.e., perio

orbits
DH domain-Hopf codimension-two point~d and h!
TB Takens-Bogdanov codimension-two point~sn-d and hd!
DHD degenerate Hopf bifurcation of domains~snp and hd!

FIG. 3. ~a! Location of the Hopf bifurcation of the homogeneou
steady state in the (g/m-i 0)-parameter plane for the electrochemic
model ~6! and ~7!. For g/m.2.231024 the system is stable with
respect to homogeneous fluctuations.~b! Threshold for the spatia
instability of the uniform steady state in the (m-i 0) plane. For sys-
tem sizes smaller thanmmin53.54 the system is stable with respe
to spatial fluctuations.~c! Critical system sizeLcr of the spatial
instability for the semiconductor model@Eqs. ~13! and ~14!# as a
function of the imposed current densityj 0.
9-4
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instability takes place close to the turning points of t
current-voltage characteristic ati 05889 andi 051587.

To determine the stability with respect to spatially inh
mogeneous fluctuations, it is sufficient to consider the a
vator variableu, since sinusoidal perturbations do not affe
the average value ofu and thus the double layer dynamic
Therefore the steady state becomes unstable with respe
the nth mode for

m.
n2

f u
,

and the first mode to become unstable is always the m
with wave number one@64#. The wavelength of the first un
stable mode depends on the system size and is equal tL
for Neumann boundary conditions. In the following we ter
this instability domain bifurcation. The critical parameter
value is thus

md5 f u
21 . ~9!

This critical value is depicted in Fig. 3~b! as a function ofi 0.
For systems sizesm,mmin53.54 the spatial instability is
suppressed; this defines a natural length scale for the sys
For system sizes much larger than this natural length s
the spatial instabilities occur once again close to the turn
points of the current-voltage characteristic.

The spatial and oscillatory instabilities may coincide in
codimension-two point~domain-Hopf bifurcation, ‘‘DH,’’
cf. Table I! if

gDH5s r
21. ~10!

The respective imposed current density valuei 0
DH(m) is de-

fined as the solution of Eq.~9! with respect toi 0.

B. Homogeneous limit cycle and stationary domains

In this section we complete the picture of the differe
basic attractors of the model by including limit cycles a
stationary current domains into our stability analysis. An
lytical methods fail in most cases since the involved bifur
tions are either subcritical and thus do not allow for an a
plitude equation analysis and/or the considered system s
are intermediate, which excludes methods like singular p
turbation theory@65# to describe domain interface dynamic

For common concentrations and system sizes the do
layer dynamics will be much faster than the dynamics of
activator. For these conditions the parametersg andm will
be of the order 10 and 100, respectively. It follows that
most cases oscillatory instabilities are not present in the
tem and the only nontrivial mode is a stationary current
main as depicted in Fig. 4~a! for two values ofi 0. This cur-
rent domain is the final state of the system in the spati
unstable regime and the mechanism leading to such a sta
ary domain is well known~e.g.,@16,64#!.

The activator is bistable as a function of the double la
potential. An overcritical local fluctuation in a system wit
out global coupling that is prepared in the metastable s
would lead to the formation of a transition front to the gl
05622
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bally stable state. The global constraint, however, forces
system to maintain an average current. The system meets
constraint by taking on an inhomogeneous state in which
phases coexist. In other words, the front velocity becom
zero. The final state of the system is described by a Maxw
type construction: the intermediate, equistability double la
potentialfDL

eq , which is established in the stationary stru
ture, is determined by the equal-areas rule@28,64#

E
u1

u2
f ~fDL

eq ,u!du50. ~11!

In Fig. 4~b! the bifurcation diagram with respect toi 0 is
shown for m525, g510. Even though the system size
comparable to the interface width, as can be seen in Fig. 4~a!,
the above construction holds for a widei 0 interval. However,
since the arguments given above apply strictly only for in
nite systems, deviations near the turning points of
current-voltage characteristic of the domain are clearly v
ible. These deviations represent a boundary effect.

States with several domains are unstable due to the w
ner takes all principle@21,27#. Domains with an extremum
not located at the boundaries are unstable with respec
translation and will be attracted by the boundary.

FIG. 4. ~a! Stable domains for two values of the imposed curre
densityi 0 for the electrochemical model (m525,g510). ~b! Bifur-
cation diagram form525 andg510. Shown isfDL as a function
of the bifurcation parameteri 0 in the familiar current-potential
plane. The branch of negative differential resistance is unsta
~thin dashed line! with respect to domain formation. The doma
branches~thick lines! bifurcate subcritically~d! near the turning
points of the current-voltage characteristic. The stable and unst
domain branches~solid, respectively, dashed thick lines! are born in
a saddle-node bifurcation of domains~sn-d!. The domain branch
can be approximated by an equal-areas rule, Eq.~11!, in a hugei 0

interval yielding an equistability potentialfDL
eq .
9-5
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Figure 4~b! also shows that spatially patterned solutio
typically bifurcate subcritically from the homogeneous st
and meet the stable domain branch in a saddle-node bifu
tion ~sn-d, cf. Table I!. The domains remain stable in th
whole i 0 interval in which the current-voltage characteris
of the domain exhibits a negative differential resistance
these parameter values. This behavior can also be ratio
ized analytically@22,23#. The domain bifurcation is super
critical only in a smallm interval close to the minimal sys
tem sizemmin .

Whenm is fixed at a valuem.mmin and the double laye
dynamics is slowed down tog below m(g/m)max

h , the addi-
tional mode of homogeneous oscillations becomes prese
the system. Forg&m(g/m)max

h it bifurcates supercritically
from the spatially unstable state, therefore small amplitu
oscillations will be unstable with respect to spatial fluctu
tions for anyi 0. With increasing oscillation amplitude~de-
creasingg) the oscillations become stabilized in a pitchfo
bifurcation @cf. Fig. 5~a!#. This results in bistability of sta-
tionary domains and a uniform limit cycle in an intermedia
i 0 interval. The basins of attraction are separated by an
stable inhomogeneous limit cycle.

If g is lowered even further, the stationary current dom
will become unstable also. This can be rationalized by rec
ing that the stabilization mechanism of the domains is
positive global coupling onfDL . If the delay of the double

FIG. 5. ~a! Bifurcation diagram for the electrochemical mod
(m525,g5331023). Apart from the branches shown in Fig. 4~b!,
a branch of unstable homogeneous oscillatory solutions~open
circles! bifurcates supercritically~h! near the turning points of the
current-voltage characteristic. Shown is the maximum value offDL

during one oscillation cycle. After stabilization through a pitchfo
bifurcation, the stable homogeneous oscillations~full circles! are
separated from the stable domains by an unstable inhomogen
limit cycle ~open triangles!. ~b! Typical scenario of an oscillatory
instability of a domain for lower values ofg than in ~a! (m525,g
5131024,i 051000). Shown is the reaction current densityi r

5(12u)efDL as a function of space and time. At these parame
values the oscillatory instability of the domain is subcritical and
system finally settles down to homogeneous relaxation oscillat
~standard scenario!.
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layer dynamics becomes too large,fDL can no longer control
the interface stability. We denote the critical value of th
oscillatory instability of the domain byghd(m,i 0) ~cf. Table
I!. Numerical simulations show that the threshold for an
cillatory instability of the current domain lies typically below
the threshold for the Hopf bifurcation of the homogeneo
steady state

ghd~m,i 0!,gh~m,i 0!. ~12!

This can be understood in the frame of the eigenmodes of
current domain for large system sizes if we recall that
absence of global coupling the domain state has only
positive eigenvalue that tends to zero with increasing sys
size. The respective arguments are given in@23#. The nu-
merical investigations show that relation~12! in general
holds for small and intermediate system sizes also.

It follows that, in general, the homogeneous relaxat
oscillations represent an attractor when the domain loses
bility. The oscillatory instability of the domain is usuall
subcritical; a state close to the domain is eventually attrac
by the stable homogeneous limit cycle@see Fig. 5~b!#. This
can be regarded as the standard scenario~i.e., it exists in a
wide parameter range! of a domain instability in globally
coupled electrochemical systems with anS-shaped current-
voltage characteristic. In this case no complex spa
temporal behavior arises in the model.

C. Breathing current domains

We would expect complex spatio-temporal behavior if t
branch of inhomogeneous limit cycle solutions that bifu
cates from the domain branch at the point of the oscillat
instability of the domain becomes stabilized or bifurca
supercritically. In this case the system would exhibit bis
bility between a stable inhomogeneous limit cycle and
stable homogeneous one. We did indeed find such a situa
in the model for comparatively small system sizesm;10)
and relaxation times well below the onset of homogene
oscillations (g/m;731025). The instability leading to such
complex spatio-temporal behavior is shown in Fig. 6. In F

ous

r
e
s

FIG. 6. Oscillatory instability of a domain leading to stabl
periodically breathing current domains for the electrochemi
model (m510,g5731024,i 051000). ~In this simulation a stable
domain was prepared,g was lowered tog5731024, and a small
random fluctuation was added.!
9-6



th
ge
o
b
il-

t

-
otic

de
do-

ur-
ca-

ant
imit
sity

h
in

e
and
s
t
ee
nd
.
n-

p-
B
eet

the
ble
bi-
a

ho-
of
is

indi-
ter-

th-

rit
u

n
al
n
ge
o-
in
er
a

s

ets
sp

a

at

BREATHING CURRENT DOMAINS IN GLOBALLY . . . PHYSICAL REVIEW E64 056229
7~a! the corresponding bifurcation diagram form510 and
g5731024 is depicted.

Decreasing the imposed current density from values in
regime of bistability between a stable domain and homo
neous oscillations, the domain branch exhibits an oscillat
instability ~hd!. The branch of solutions that bifurcates su
critically is stabilized via a saddle-node bifurcation of osc
latory domains, i.e., periodic orbits~snp, cf. Table I!, which
can be seen in the enlarged bifurcation diagram, Fig. 7~b!.
The spatio-temporal behavior becomes more involved as

FIG. 7. ~a! Basis bifurcation diagram for stable periodic brea
ing for the electrochemical model (m510,g5731024). The oscil-
latory branch of the homogeneous limit cycles bifurcates superc
cally before the spatial instability and thus homogeneo
oscillations are stable nearly in the wholei 0 interval ~full circles!.
The equal areas rule, Eq.~11!, fails for this system size. The domai
branch~thick line! is unstable in a region of negative differenti
resistance~dashed thick line! near the lower saddle node bifurcatio
of domains. Marked with open triangles is an unstable inhomo
neous limit cycle. It is born in a pitchfork bifurcation of the hom
geneous limit cycle at highi 0 and terminates in the unstable doma
branch.~b! Enlargement of the bifurcation diagram at the low
turning point. Here also the branches of the inhomogeneous bre
ing mode are shown~diamonds!. The breathing mode bifurcate
subcritically ~hd! from the domain branch at higheri 0 ~open dia-
monds! and stable breathing~full diamonds! originates in an snp. In
the projection of the limit cycle on the double layer potential it g
close to the homogeneous steady state but not in real phase
~cf. text!. In the current density interval between approximatelyi 0

51000 andi 05975 the inhomogeneous limit cycle undergoes
period doubling cascade leading to chaotic breathing~open dia-
monds!.
05622
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imposed current densityi 0 is decreased. The limit cycle un
dergoes a period doubling cascade leading to stable cha
spatio-temporal motion~Fig. 8!.

Decreasingi 0 further, a reversed period doubling casca
occurs which leads again to stable period one breathing
mains. This branch then ends in a supercritical Hopf bif
cation of the domain very close to the saddle-node bifur
tion, in which stable and unstable domains originate~sn-d!. It
is interesting to note that the dynamic nature of the invari
set that separates the basins of attraction of the two l
cycles is changing with increasing imposed current den
from the unstable stationary domain~saddle point! to an un-
stable inhomogeneous limit cycle@see Fig. 7~b! for low i 0#.

The region in the (i 0-g)-parameter plane in which suc
complex spatio-temporal dynamics is found is depicted
Fig. 9 for m510. The lines of the Hopf bifurcation and th
domain bifurcation of the homogeneous steady state
their intersection point~DH! are shown. The main region
that were discussed above~and in part also exist for differen
values of m) are indicated. Note the existence of thr
codimension-two points: The point at which the domain a
Hopf bifurcation coincide~DH! was discussed in Sec. III A
At the DH the system has a pair of purely imaginary eige
values and a real eigenvalue equal to zero@66#. Unfoldings
of the DH have a further fine structure as discussed in A
pendix B; it is not shown in Fig. 9 for clarity. Denoted by T
is the point where saddle node and Hopf bifurcation m
~Takens-Bogdanov point! @66#. Note that in our case both
bifurcations involve inhomogeneous steady states~i.e., do-
mains! rather than homogeneous solutions. To the left of
TB point two saddle fixed points with one and three unsta
directions, respectively, originate from the saddle-node
furcation; to the right of it there is a saddle fixed point and
stable node. Again the fine structure, most remarkably a
moclinic bifurcation that should be present in the vicinity
the TB point is omitted. The third codimension-two point
a degenerate Hopf bifurcation of domains~DHD!, in which
the saddle-node bifurcation of periodic orbits~snp! coincides
with the Hopf bifurcation of the domain~hd!.

We omitted in the bifurcation diagram~Fig. 9! some of
the branches mentioned above. Furthermore, there are
cations of the presence of additional bifurcations that de

i-
s

-

th-

ace

FIG. 8. ~a! Periodically breathing domains with period two
i 05990 and ~b! chaotically breathing domains ati 05980 (m
510,g5731024).
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mine the exact location of the lower boundary of the regi
of complex behavior. Its detailed study is beyond the sc
of this paper.

IV. COMPARISON AND DISCUSSION

In this section we compare the different dynamic instab
ties and regimes described in the preceding section with
sults obtained earlier for the semiconductor model. T
semiconductor model used has the~nondimensionalized!
form

ȧ5
u2a

~u2a!211
20.05a1

]2a

]x2
, ~13!

FIG. 9. Existence region of stable periodic breathing in
( i 0-g)-control-parameter plane~hatched region! for the electro-
chemical model (m510). The main dynamic regimes, characteriz
by attractors, are indicated by the numbers 1–9; the attractors
given in Table II. Shown by solid lines are the lines of the dom
bifurcation ~d! and the saddle-node bifurcation in which the d
mains originate~sn-d! ~both independent ofg). The domain bifur-
cation and the Hopf bifurcation of the homogenous steady state~h,
solid! intersect in a Turing-Hopf-type codimension-two point~DH!.
The dashed line shows the oscillatory instability of the domain~hd!.
Denoted by snp~solid line! is the line of the saddle-node bifurcatio
of periodic orbits, i.e., breathing domains.

TABLE II. Dynamic regimes indicated in Fig. 9.

~1! One stable homogeneous fixed point.
~2! Bistability between stable domain and homogeneous fi

point.
~3! Only one stable domain.
~4! One stable homogeneous limit cycle.
~5! Stable or unstable homogeneous limit cycle~cf. Appendix

B! and stable domain.
~6! Stable homogeneous limit cycle and stable domain.
~7! Stable breathing current domains~periodic or chaotic! and a

stable homogeneous limit cycle.
~8! The Hopf bifurcation of the domain is subcritical, thus on

stable homogeneous oscillations are present.
~9! Region in which three attractors exist~cf. Fig. 7 for i 0

>1010): Stable domains, stable breathing domains,
stable homogeneous limit cycle.
05622
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u̇5a~ j 02u1^a&L!, ~14!

whereu denotes the potential drop across the semicondu
device~corresponding tofDL) anda describes the interface
charge density in the HHED~corresponding tou). The sys-
tem length isL and thus^a&L5L21*0

La dx. The current-
voltage characteristic of the HHED is given byj 5u2a. It
also has the shape of an ‘‘S’’ @Fig. 2~c!#. If space is rescaled
to the interval@0,p#, the model exhibits the same structur
dependence on three parameters as Eqs.~6! and ~7!

ȧ5m (s)S u2a

~u2a!211
20.05aD 1

]2a

]x2
, ~15!

u̇5g (s)~ j 02u1^a&p!, ~16!

with m (s)5(L/p)2 and g (s)5(L/p)2a. These parameter
can be interpreted in the same way as in the electrochem
model.

The two models possess equivalent basic modes:
branch of negative differential conductivity is unstable w
respect to spatial perturbations for sufficiently large syst
sizesL.Lmin @cf. Fig. 3~c!# and to homogeneous oscillation
for sufficiently slow dynamics of the voltage dropu ~small
a). However, the temporal instability of the filament ma
lead to qualitatively different spatio-temporal dynamic
Apart from the breathing mode that the semiconductor m
els also exhibit,@26,28,53,67# the system displays a comple
spatio-temporal mode termedspiking @see Fig. 10~a!#
@51,52#. This mode evolves because the spatially inhomo
neous limit cycle that constitutes breathing comes even
ally, with decreasingg, very close to the homogeneous fixe
point. This points to a structurally different dynamic regim
as compared to the electrochemical system and facilitates
formulation of a sufficient condition for the occurrence
complex spatio-temporal dynamics@26#. In the following
this will be explained in some detail.

Consider the bifurcation diagram of the semiconduc
model for parameter values at which complex spat
temporal dynamics is found@Fig. 10~b!#. Let us denote by
j 0
d(m), j 0

h(m,g) and j 0
hd(m,g) the parameter values at whic

the spatial instability of the homogeneous steady state,
oscillatory instability of the homogeneous steady state,
the oscillatory instability of the filament, respectively, occu
For an interval of imposed current densitiesj 0 no trivial state
is stable, since, in contrast to the electrochemical model,
mogeneous oscillations are not present in the system for
posed current density values within this interval; howev
the filament is already oscillatorily unstable@ghd(m,i 0)
.gh(m,i 0)#. Thus a sufficient condition for complex dynam
ics is

j 0
h~m,g!. j 0

d~m!` j 0
hd~m,g!. j 0

d~m!.

The limit case j 0
hd(m,g)5 j 0

h(m,g)5 j 0
d(m)[ j 0

DH(m) @70#
can be reformulated as a condition for the time scale of
inhibitor g such that the condition can be tested for differe
system sizes@26#:

re

d

d
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ghd
„i 0

d~m!….gDH~m!. ~17!

The above inequality becomes clear if one considers tha
oscillatory instability of the filament is shifted toward high
imposed current density values when loweringg, whereas
the Hopf bifurcation point of the homogeneous steady s
behaves in the opposite way and the spatial instability d
not depend ong.

In Fig. 11 both critical time scales are plotted for bo
models. For the electrochemical model the critical tim
scales are also shown for the upper part of theS-shaped
current-voltage characteristic. The above arguments
equally apply for this region. As indicated by the hatch
region for the semiconductor system in Fig. 11~a!, condition
~17! is fulfilled for a large interval of system sizesL ~respec-
tively, m (s)) for the lower part of theS-shaped current-
voltage characteristic. Apart from spiking, a broad variety
periodic and chaotic spatio-temporal modes has been fo
in this interval@26#. Condition~17! is never found to hold for
the upper part for the semiconductor model~not shown!. It
can be seen in Figs. 11~b! and 11~c! for the upper and lower
part of theS-shaped current-voltage characteristic, resp
tively, that condition~17! is apparently never fulfilled in the
electrochemical system for any system size.

Thus also the absence of spiking in the electrochem
system is easily understood; spiking evolves when
breathing mode eventually comes very close to the plan

FIG. 10. ~a! Spiking current filament in 1d (L540,a
50.035,j 051.2). ~b! Bifurcation diagram for the semiconducto
system for complex spatio-temporal dynamics (L540,a50.06).
Shown is the potential drop across the semiconductoru, respec-
tively, the maximumu during one oscillation versus the impose
current densityj 0 at the lower turning point of the current-voltag
characteristic. In the current interval shown by the dashed lines
trivial state of the system is stable. The lower boundary is the s
tial instability of the homogeneous steady state~thin lines! and the
upper one is the oscillatory instability of the filament~thick lines!.
Homogeneous oscillations are not present in this current den
interval; they bifurcate at higher current density values~open circles
in the upper right corner!. The resulting inhomogeneous oscillation
~diamonds! that bifurcate subcritically from the stable doma
branch are born by a saddle-node bifurcation of periodic orbits
05622
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homogeneous modes which constitutes a stable focus in
plane. The relaxation close to the homogeneous fixed p
in the plane of the homogeneous modes leads to the sm
almost homogeneous, oscillations and then the spike evo
again as the trajectory leaves the plane of homogeneous
namics along the unstable direction of the homogene
fixed point ~cf. Fig. 10!. In the electrochemical system th
plane of homogeneous modes always constitutes an uns
focus for parameter values in which the domain loses sta
ity and thus the trajectory of inhomogeneous oscillatio
never comes close to the unstable homogeneous fixed p

V. CONCLUSIONS

The comparison of the two models presented in this pa
allows us to identify bifurcations that exist in bistable sy
tems subject to global inhibition. Apart from electrochemic
and semiconductor systems such dynamics might be enc
tered in a variety of other systems, e.g., gas discharge
vices @68#.

Stationary large amplitude spatial patterns called doma
or filaments appear via a subcritical spatial bifurcation of
uniform state and form attractors in the whole range of
fective autocatalysis for common parameter values in s

o
a-

ity

FIG. 11. Thresholds for oscillatory instabilities at imposed c
rent density values at which the homogeneous steady state bec
unstable with respect to spatial fluctuations~effective three param-
eter continuation! to test condition~17!. The threshold for an oscil-
latory instability of the domain@ghd

„i 0
s(m)…# and the codimension-

two point ~DH! analogous to a Turing-Hopf codimension-tw
bifurcation @gDH(m)# are shown as dashed and solid lines, resp
tively. In ~a! the two curves are shown for the semiconductor s
tem ~double logarithmic plot! for 2d domains at the lower turning
point of the current-voltage characteristic. The hatched region in
cates the region in which the sufficient condition~17! for complex
spatio-temporal dynamics is fulfilled. In~b! and~c! ghd

„i 0
s(m)… and

gDH(m) are shown for the electrochemical model for the two d
main bifurcations at low and high current densities, respectively
9-9
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systems. A characteristic length scale can be defined
facilitates quantitative comparison of the respective mod
For comparable time scales of activator and inhibitor sta
homogeneous relaxation oscillations can be expected.
slow dynamics of the globally coupled inhibitor oscillato
instabilities of the domains occur, initially near the turnin
points of the current-voltage characteristic of the doma
However, the routes to complex spatio-temporal patterns
pend on the local dynamics and might thus differ in ea
individual system under consideration.

We have identified the following scenarios: If the Ho
bifurcation of the domain is supercritical, the system w
display stable breathing domains. In the case of a subcri
bifurcation the dynamics depends upon the further struc
of the bifurcation diagram. If condition~17! is fulfilled, the
onset of stable breathing or spiking modes can be expec
When inequality~17! is not fulfilled and the oscillatory in-
stability of the domain is subcritical, no general statem
regarding the resulting dynamics is possible. Either homo
neous relaxation oscillations or complex spatio-temporal
namics may result in this case.

We have demonstrated the above general statements
two models exhibiting different scenarios leading to sta
complex spatio-temporal dynamics, thus illustrating the g
eral scheme. Condition~17!, which ensures that stationary o
uniform modes are either unstable or do not exist, is fulfil
for the semiconductor system in a wide parameter range,
it can never be satisfied in the specific electrochemical mo
~6! and~7!. As a consequence the electrochemical breath
current domains always coexist with homogeneous osc
tions. Thus they have a small basin of attraction compare
the situation in the semiconductor model~13! and~14! where
no other mode is stable in a certain parameter range.
another consequence spiking current filaments are o
present in the semiconductor system. Complex dynam
could only be found near the turning point of the curre
voltage characteristic corresponding to the lower value of
imposed current density in both systems.

These results emphasize the necessity to incorporate
spatial degree of freedom when studying electrochem
systems with negative differential resistance. Breathing c
rent domains constitute a qualitatively new mode of comp
spatio-temporal dynamics in electrochemical systems
ported here for the first time. This mode may evolve to c
otic spatio-temporal dynamics via a period doubling casca

It should be noted that recent experimental studies of
CO oxidation on Pt single crystal electrodes have sho
small amplitude oscillations of the potential in the range
negative differential resistance@69#. This system might be an
experimental illustration of the above results, and theref
spatially resolved measurements would be desirable.
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APPENDIX A: NONDIMENSIONALIZATION

In this section we give the transformations yielding t
dimensionless model equations~4! and~5!. In physical units
the equations read@59#

C0

dfDL

dt
5 i082xnFc̄rkr~12^u&!expS x

anF

RT
~fDL2Ṽ! D ,

]u

]t
5kadc̄ad~12u!exp@2aw8~fDL ,u!#

2kduexp@~12a!w8~fDL ,u!#,

with

TABLE III. Typical parameter values.

kad513104
cm3

mol s C052031026
C

V cm2

kd5531023 s21

C15231026
C

V cm2

krexpS2 anF

RT
ṼD5231028

cm

s c̄ad5131026
mol

cm3

Nmax5131014 cm22

Du5131025
cm2

s
n51

g8521.23105
J

mol
x51 a51/2
T5300 K

FIG. 12. Bifurcations and projections of phase portraits close
the codimension-two domain-Hopf bifurcation~DH!. Thick solid
line: spatial instability of the homogeneous steady state~d!. Thin
solid line: Hopf bifurcation of the homogeneous steady state~h!.
Dashed line: Hopf bifurcation of the stationary unstable dom
~hd!. Dash-dotted line: pitchfork bifurcation of limit cycles tha
stabilizes the homogeneous limit cycle~pf!. ‘‘u’’ and ‘‘n’’ denote
the planes of uniform and~nonuniform! domain modes, respec
tively.
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w8~fDL ,u!5
C02C1

2NmaxkBT
fDL

2 1
g8u

RT
.

The meaning of the numerous constants is given in@59# and
typical values of the constants are shown in Table III. T
model equations~4! and ~5! are retained via the transforma
tions of the variables according to

fDL→fDL8 5
anF

RT
fDL ,

t→t85
p2Du

L2
t,

x→x85
p

L
x,

and with the introduction of the parameters

m5
L2kadc̄ad

p2Du

,

p5
kd

kadc̄ad

,

n5
R2T~C02C1!

2NmaxkBan2F2
,

g5
ag8

RT
,

g5
a~ ln F !2

p2DuRTC0

c̄rkrexpS 2x
anF

RT
ṼD ,
ud

v

05622
e

i 05
i 08

nFc̄rkrexpS 2x
anF

RT
ṼD .

With the values given in Table III the parametersp, n,
andg are fixed ton50.025@71#, p50.5, andg522.4. They
correspond to such physical values as free adsorption site
interaction strength.g depends on the well accessible co
centration of the reacting species, which can be varied o
several decades;m.100@L(cm)#2; i 0 can be set by the gal
vanostatic control unit and typical values will be of ord
103–104.

APPENDIX B: BIFURCATIONS AND PHASE PORTRAITS
NEAR THE DH –CODIMENSION-TWO POINT

In Fig. 12 the bifurcations and phase portraits near
codimension-two point in which the domain bifurcation a
Hopf bifurcation of the homogeneous steady state meet~DH!
is shown. The additional branches not shown in Fig. 9 ar
Hopf bifurcation of the unstable stationary domain leading
an unstable inhomogeneous limit cycle and the pitchfork
furcation of periodic orbits that stabilizes the homogeneo
limit cycle born in the Hopf bifurcation of the homogeneo
steady state and which is the origin of another unstable
homogeneous limit cycle@cf. Fig. 5~a!#. Both branches ter-
minate in the DH. The respective phase portraits~insets! de-
pict the dynamics schematically in a projection on the pla
spanned by the eigenvectors of the two complex conjug
eigenvalues describing the Hopf bifurcation of the homo
neous fixed point, respectively, the stationary unstable
main. The third direction describes the subcritical dom
bifurcation ~spatial mode!.
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@29# H. Willebrand, T. Hünteler, F.-J. Niedernostheide, R. Dohme
and H.-G. Purwins, Phys. Rev. A45, 8766~1992!.

@30# V. Barelko, I. Kurochka, A. Merzhanov, and K. Shkadinsk
Chem. Eng. Sci.33, 805 ~1977!.

@31# S.A. Zhukov and V.V. Barelko, Sov. J. Chem. Phys.1982, 883
~1984!.

@32# M.D. Graham, S.L. Lane, and D. Luss, J. Phys. Chem.97, 889
~1993!.

@33# U. Middya, M.D. Graham, D. Luss, and M. Sheintuch,
Chem. Phys.98, 2823~1993!.

@34# U. Middya and D. Luss, J. Chem. Phys.100, 6386~1994!.
@35# J. Annamalai, M. Liauw, and D. Luss, Chaos9, 36 ~1999!.
@36# F. Mertens, R. Imbihl, and A. Mikhailov, J. Chem. Phys.99,

8668 ~1993!.
@37# F. Mertens, R. Imbihl, and A. Mikhailov, J. Chem. Phys.101,

9903 ~1994!.
@38# M. Falcke and H. Engel, Phys. Rev. E50, 1353~1994!.
@39# K. Rose, D. Battogtokh, A. Mikhailov, R. Imbihl, W. Enge

and A. Bradshaw, Phys. Rev. Lett.76, 3582~1996!.
@40# G. Veser, F. Mertens, A.S. Mikhailov, and R. Imbihl, Phy

Rev. Lett.71, 935 ~1993!.
@41# M. Falcke and H. Engel, Phys. Rev. E56, 635 ~1997!.
@42# F.J. Elmer, Phys. Rev. A41, 4174~1990!.
@43# K.H. Seung, C. Kurrer, and Y. Kuramoto, Phys. Rev. Lett.75,

3190 ~1995!.
@44# I. Schebesch and H. Engel, inSelf-Organization in Activator-

Inhibitor Systems: Semiconductors, Gas–Discharges and
Chemical Active Media, edited by H. Engel, F.-J. Niedernos
heide, H.-G. Purwins, and E. Scho¨ll ~Wissenschaft & Technik-
Verlag, Berlin, 1996!.

@45# V.K. Vanag, Y. Lingfa, M. Dolnik, A.M. Zhabotinsky, and
I.R. Epstein, Nature~London! 406, 389 ~2000!.
05622
e
@46# D. Battogtokh, M. Hildebrand, K. Krischer, and A. Mikhailov

Phys. Rep.288, 435 ~1997!.
@47# D. Lima, D. Battogtokh, A. Mikhailov, P. Borckmans, and G

Dewel, Europhys. Lett.42, 631 ~1998!.
@48# H. Hempel, I. Schebesch, and L. Schimansky-Geier, Eur. P

J. B 2, 399 ~1998!.
@49# P. Grauel and K. Krischer, Phys. Chem. Chem. Phys.3, 2497

~2001!.
@50# R.D. Otterstedt, P.J. Plath, N.I. Jaeger, and J.L. Hudson

Chem. Soc., Faraday Trans.92, 2933~1996!.
@51# A. Wacker and E. Scho¨ll, Z. Phys. B: Condens. Matter93, 431

~1994!.
@52# S. Bose, A. Wacker, and E. Scho¨ll, Phys. Lett. A 195, 144

~1994!.
@53# A. Wacker and E. Scho¨ll, Semicond. Sci. Technol.9, 592

~1994!.
@54# A. Wacker and E. Scho¨ll, J. Appl. Phys.78, 7352~1995!.
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