
ar
X

iv
:c

on
d-

m
at

/0
10

72
49

v1
  [

co
nd

-m
at

.d
is

-n
n]

  1
2 

Ju
l 2

00
1

EPJ manuscript No.
(will be inserted by the editor)

Replica-symmetry breaking in dynamical glasses

Susanna C. Manrubia1, Ugo Bastolla1 and Alexander S. Mikhailov2
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Abstract. Systems of globally coupled logistic maps (GCLM) can display complex collective behaviour

characterized by the formation of synchronous clusters. In the dynamical clustering regime, such systems

possess a large number of coexisting attractors and might be viewed as dynamical glasses. Glass properties

of GCLM in the thermodynamical limit of large system sizes N are investigated. Replicas, representing

orbits that start from various initial conditions, are introduced and distributions of their overlaps are

numerically determined. We show that for fixed-field ensembles of initial conditions all attractors of the

system become identical in the thermodynamical limit up to variations of order 1/
√

N , and thus replica

symmetry is recovered for N → ∞. In contrast to this, when random-field ensembles of initial conditions

are chosen, replica symmetry remains broken in the thermodynamical limit.

PACS. PACS-05.45.-aNonlinear dynamics and nonlinear dynamical systems – PACS-05.45.Xt Synchro-

nization; coupled oscillators – PACS-75.10.Nr Spin-glass and other random models

1 Introduction

The rich collective behaviour displayed by globally cou-

pled logistic maps (GCLM) [1,2] has made them to be-

come a paradigm of complex dynamical systems. Initially,

GCLM were introduced as a mean field approach to cou-

pled map lattices. Subsequently, they have been used as

metaphors of neural dynamics, ecology, and cell differen-

tiation [3]. Understanding the properties of GCLM can

be seen as a first step towards grasping the dynamics and

emergent properties of real, high-dimensional systems. The

dynamical equations describing the system are

xi(t + 1) = (1 − ǫ)f(xi(t)) +
ǫ

N

N
∑

j=1

f(xj(t)) (1)

where

http://arXiv.org/abs/cond-mat/0107249v1
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f(x) = 1 − ax2 (2)

is the logistic map. The parameter ǫ ∈ [0, 1] gives the

strength of coupling among elements. For ǫ = 0 the ele-

ments evolve independently, and for ǫ = 1 they are syn-

chronized already after the first iteration and follow iden-

tical trajectories ever after. Between these two extreme be-

haviours, a broad spectrum of collective dynamics emerges.

The dynamics is strongly sensitive to the control parame-

ter a of the logistic map and depends on the size N of

the system. Figure 1 shows a rough phase diagram of

GCLM, based on the collective behaviour of the system

which is reached after (sometimes, very long) transients

[1,4,5]. The diagram includes both the parameter interval

a < 1.4 where dynamics of an individual map is peri-

odic and the interval 1.4 < a < 2 with chaotic individual

dynamics. It contains two large domains of synchronous

and turbulent phases. They are separated by a region with

glass-like behaviour. In the synchronous domain the states

of all elements are identical and the ensemble has the same

dynamics as a single map. In the turbulent phase, the en-

semble of maps is essentially desynchronized, though non-

trivial correlations have been detected even there [6]. The

glass region is characterized by the formation of various

dynamical clusters.

Numerical simulations of GCLM have shown that, in

the dynamical glass phase, the system displays sensitivity

to initial conditions. For fixed parameters ǫ and a (and

given N), a multiplicity of attractors can be reached [1,

7]. This property is similar to what is observed in glassy

systems, where the presence of quenched disorder causes

frustration and a large number of macroscopic configura-

tions are possible [8]. For this reason, GCLM have been de-

scribed as a dynamical counterpart to spin glasses [9], [10].

In a previous publication [12] two of us have introduced

a replica description for this system, defined overlaps and

numerically tested replica-symmetry breaking and ultra-

metric properties of GCLM. Our analysis has revealed a

strong size dependence of collective dynamics, indicating

that replica symmetry might be recovered in the thermo-

dynamic limit N → ∞. The aim of the present paper

is to investigate systematically the asymptotic statistical

properties of GCLM in this limit.

Our main result is that the asymptotic behaviour ob-

served in the thermodynamic limit is strongly dependent

on how the ensemble of initial conditions is prepared. In

previous studies [10,12], the procedures used for random

generation of initial conditions had a special property: in

the limit N → ∞ all generated initial conditions were

effectively identical up to order 1/
√

N . Therefore, all ex-

plored attractors in the glass phase became equivalent up

to variations of order 1/
√

N and the replica symmetry

was recovered in the thermodynamic limit. Now we show

that, if the initial conditions are prepared in such a way

that the initial field always retains macroscopic fluctua-

tions, the replica symmetry is clearly broken in the ther-

modynamic limit N → ∞. Thus, GCLM represent the

first known example of a dynamical glass with replica-

symmetry breaking and, as we show, this important sta-

tistical property does not represent a finite-size effect. Our



S.C. Manrubia, U. Bastolla, and A.S. Mikhailov: Glassy behaviour of GCLM 3

!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!

Turbulent phase 

Dynamical glass 

0.1

0.2

0.3

0.4

ε

1.4 1.6 1.8 2a

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1.2

Single map 
periodic

Single map chaotic

Synchronous phase

Fig. 1. Rough phase space of GCLM showing the main three

phases of the system.

results also imply that the boundaries between different

regions illustrated in Fig. 1 depend on the ensemble of

initial conditions, and that, for broad ensembles and ǫ not

too large, fully synchronized attractors can coexist with

multi-cluster attractors.

In the next section we introduce dynamical and statis-

tical measures needed to characterize clustered states of

GCLM. They include the splitting exponent, earlier pro-

posed by Kaneko [11], and a new repulsion exponent which

we suggest. Replicas and their overlaps are defined and

attraction basin weights are considered here. In Section 3

we perform a detailed analysis of the role of initial condi-

tions. Replica symmetry breaking and ultrametric prop-

erties of GCLM in the thermodynamic limit are investi-

gated in Section 4 under a truly random choice of initial

conditions. The paper ends with a discussion of the main

results, which are compared to the properties of other dis-

ordered systems.

2 Characterization of attractors

An attractor of the dynamical system (1) is characterized

by the formation of a number of clusters out of the ini-

tially symmetrical ensemble of maps. This is one of the

most intriguing properties of GCLM. Within each cluster

all elements are completely synchronized. A partition of

N maps into K clusters is defined by indicating the num-

bers Nk of elements in each cluster, k = 1, . . .K. In the

following, we assume that the clusters have been ordered

such that N1 ≥ N2 ≥ . . . ≥ NK−1 ≥ NK. Even if only

two clusters are present, this can correspond for N → ∞

to a huge number of different partitions, since the relative

sizes of clusters may vary.

In the periodic region, and for ǫ = 0, the elements can

be trivially classified into N/P groups, where P is the pe-

riod of the single map, and elements within each group

follow the periodic orbit of the single map with different

phases. At large enough ǫ the number of simultaneously

stable clusters decreases and their dynamical behavior dif-

ferentiates. This happens approximately in the whole area

labeled “dynamical glass” in Fig. 1. For ǫ large enough, all

of the maps are synchronized and the dynamics reduces to

that of the single element (synchronous phase). Note that

fully synchronized attractors and multi-cluster attractors

can coexist in some region of parameter space.

In the glass phase, attractors of GCLM correspond

to different partitions in clusters. The global dynamics of

each attractor can be periodic, quasiperiodic or chaotic.

The periodic collective dynamics is by far the most com-
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mon, and is typically found even in the parameter region

where the dynamics of a single map is chaotic.

2.1 Splitting and repulsion exponents

The route to synchronization can be easily found by study-

ing how the distance between elements evolves in time.

This is ruled by the equation

xi(t + 1) − xj(t + 1) = −(1 − ǫ)a
(

x2
i (t) − x2

j (t)
)

. (3)

Integrating it over a time T , one finds

|xi(t + T ) − xj(t + T )| = exp(Tλij) |xi(t) − xj(t)| , (4)

λij = ln (a(1 − ǫ)) +
1

T

∑

t

ln |xi(t) + xj(t)| , (5)

If two elements belong to the same cluster b, their dis-

tance has to shrink to zero. In this case, xi(t) ≈ xj(t) ≈

Xb(t). Kaneko [11] defined the splitting exponent to mea-

sure the rate of convergence to the orbit {Xb(t)},

λb = ln (2a(1 − ǫ)) + lim
T→∞

1

T

∑

t

ln |Xb(t)| , (6)

and defined an orbit as transversely stable if it has λb < 0

(see also [7]). While in the definition of the splitting ex-

ponent the partition N1 · · ·NK does not enter, it is the

distribution of the elements into clusters which decides

whether a set of orbits is a global attractor or not. All of

the stable periodic orbits of the single map have negative

splitting exponent for every positive ǫ. The splitting expo-

nent can be positive for non-entrained elements (forming

“clusters” of a single element) in the chaotic domain of

the logistic map.

Due to the unavoidable finite precision of digital com-

puters, the simulation of the deterministic system (1) can

lead to pseudo-attractors which are not stable against

transversal perturbations. In the results to be presented,

we have computed λb for all orbits and discarded unstable

attractors.

There is another condition which must be required for

having a stable partition and which, to our knowledge, has

not been made explicit yet. On the one hand, if two ele-

ments i and j belong asymptotically to two different orbits

b and c, their distances (5) should remain finite. On the

other hand, since the phase space is finite, the distances

cannot diverge. Thus, the orbits of the two clusters have

to fulfill the condition

λbc = ln (a(1 − ǫ)) + lim
T→∞

1

T

∑

t

ln |Xb(t) + Xc(t)| = 0 .

(7)

For periodic orbits, this condition is just a consequence

of periodicity. Nevertheless, it allows to rationalize some

features of GCLM. We call λbc repulsion exponent, since

its positive value would mean that the two orbits repel

each other, and define two orbits as orthogonal if their

repulsion exponent vanishes. A set of orbits is stable if

all of the orbits are transversely stable and all pairs of

orbits are orthogonal. This condition does not depend on

the partition of the N elements into the K orbits, but

a precise partition is needed so that the set of orbits is

invariant under the global dynamics.
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Note that, for ǫ = 0, the set of all periodic orbits, stable

and unstable, fulfill the orthogonality condition, which is

just equivalent to periodicity. Thus, if the dynamics of the

single map is periodic with period P , the P orbits obtained

from the different phases of the stable periodic orbit con-

stitute a stable set. As ǫ increases, the transversal stability

condition becomes easier to fulfill even for lower periodic-

ity orbits, but the orthogonality condition becomes more

difficult (notice that the larger the number of clusters, the

more demanding this condition). Thus at some point only

partitions with less than P clusters can be found. This is

probably a reason why only very small numbers of clus-

ters are typically observed in simulations. Additionally,

since the average value
∑

t ln |Xb(t)+ Xc(t)|/T cannot be

larger than log(2), no stable two cluster system can exist

for ǫ > 1−1/2a. This is only an upper bound, since the ac-

tual value of ǫ where multiple cluster attractors disappear

is much smaller.

In Fig. 2 we show the two splitting exponents as well

as the repulsion exponent for a two-cluster system with

parameters a = 1.3 and ǫ = 0.15. There is a continuous

spectrum of partitions allowed, and for all of them the

clusters move along period-two orbits, which are periodic

orbits of the two variable dynamical system

X1(t + 1) = 1 − a
(

(1 − ǫ(1 − p))X2
1 (t) + ǫ(1 − p)X2

2 (t)
)

X2(t + 1) = 1 − a
(

(1 − ǫp)X2
2 (t) + ǫpX2

1 (t)
)

, (8)

where p = N1/N is the fraction of elements in the largest

cluster and is kept fixed during the dynamics. Notice that

the repulsion exponent λ12 equals zero up to very high pre-

0.5 0.6 0.7 0.8
p

−0.2

0

0.2

0.4

0.6

0.8

1

P (two clusters)
exp (λ12 )
exp (λ2 )
exp (λ1 )

Fig. 2. Possible two-cluster partitions for a system with a =

1.3 and ǫ = 0.15. For different values of the relative size p of

the largest cluster the two clusters move along two period-two

orbits represented as empty and solid circles, respectively. The

fraction of initial conditions converging to two-cluster orbits is

shown as a dashed line. The remaining trajectories synchronize

completely to the stable period-four orbit. The two transversal

exponents λ1 and λ2 as well as the repulsion exponent λ12 are

shown. Notice that λ1 attains a minimum at p ≃ 0.52. Empty

circles represent the first period two orbit, full circles represent

the second one.

cision for all values of p. For these parameter values also

the completely synchronized state is stable, and moves

along a period-four attractor whose attraction basin cov-

ers roughly 70% of phase space for the values of p where

the two clusters are stable. At large p, the transversal

exponent λ2 approaches zero, and the two-orbit system

becomes unstable while the synchronized attractor covers

100% of phase space.
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2.2 Replicas and overlaps

In [12], two of us have introduced the concept of replica

in GCLM and a measure of similarity between them, the

overlap qαβ . A replica α is an orbit {xα
i (t)} of the whole

system, and different replicas are obtained from different

realizations of the initial conditions. Thus, the overlap qαβ

is a random variable dependent on the sets of initial condi-

tions {xα
i (0)} and {xβ

i (0)}. We investigate its distribution

for specific ensembles of initial conditions, keeping the pa-

rameters ǫ, a, and N fixed.

In order to compute the overlap, we transform the or-

bits into binary sequences, assigning a binary number σi(t)

to each element i at each time step t such that σα
i (t) = 1

if xα
i (t) > x∗, and σα

i (t) = −1 otherwise, with

x∗ =
−1 +

√
1 + 4a

2a
(9)

the fixed point of a single logistic map.

Finally, the overlap qαβ is defined as

qαβ =
1

NT

t0+T
∑

t=t0

N
∑

i=1

σα
i (t)σβ

i (t) . (10)

This quantity is computed after a large enough transient

time t0 has elapsed, so that the two trajectories reach

their asymptotic attractors, and averaged over the mini-

mal common multiple of the two periods or, in case the

asymptotic dynamics is not periodic, over a very large

simulation time T ≃ 102−4, depending on the underlying

dynamics. The overlap takes values between -1 and 1. In

order for it to be a meaningful measure of similarity, the

value 1 should be returned if and only if the two asymp-

totic attractors coincide. Even in this case, however, the

above formula can take different values depending on the

relative phase of the two orbits and on the permutation

of elements. To avoid this, the second orbit is shifted by

a number time steps with respect to the first one in order

to maximize the overlap. This procedure is similar to that

used in spin glasses with rotational symmetry [15]. Finally,

the degeneracy due to the arbitrary initial labelling can

be avoided through a proper reordering of the elements

once the stable attractor has been reached: Elements in

the largest cluster are assigned labels from 1 to N1, those

in the second largest from N1 + 1 to N1 + N2, and so on.

Using the previous definition, the overlap q returns a

finite positive value for clusters of periodic orbits and of

chaotic ones in the two-band chaos, due to the regular

alternation of plus one and minus one values in this re-

gion. Orbits with one-band chaos change the sign of the

sequence σ(t) in an uncorrelated fashion, implying that

in the limit T → ∞ their overlap with other orbits tends

to zero. Our numerical simulations indeed show that this

is the case. Thus, the definition of the overlap becomes

problematic for orbits with one-band chaos.

2.3 Attraction basin weights

The overlap distribution gives information on the distribu-

tion of attraction basin weights for the particular ensemble

of initial conditions chosen. In fact, we can write it as

P (q) =
∑

αβ

WαWβδ(q − qαβ) , (11)
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where α and β label all possible global attractors, qαβ is

their overlap, and Wα and Wβ are their attraction basin

weights, i.e. the fraction of initial conditions which con-

verge to the attractors α and β respectively, and whose

sum is normalized to unity. The overlap distribution con-

tains a delta distribution at q = 1, obtained for α = β,

whose size is equal to the average attraction basin weight:

Y =
∑

a

W 2
a . (12)

This parameter expresses the probability that two ran-

domly chosen initial conditions converge to the same at-

tractor and is able to distinguish between different situ-

ations. If Y is equal to or tends to one in the thermody-

namic limit, it means that there is only one relevant at-

tractor which attracts in this limit all of the phase space

of the system. If Y tends to zero in the thermodynamic

limit, it means that the system has in this limit a diverg-

ing number of different attractors and none of them is

dominant. The situation in between, when Y is finite but

smaller than one, means that there is a finite number of

relevant attractors.

For a fixed value of a and increasing ǫ, the collective be-

haviour of GCLM changes from turbulent to glassy (mul-

tiple clusters) to finally fall into complete synchronization.

This last transition can be characterized through different

parameters. Kaneko proposed to use the average cluster

number [1], which grows continuously from a finite value

in the dynamical glass phase to unity in the synchronous

phase (for fixed N). An alternative measure can be the

fraction WCS of initial conditions converging to the single

coherent attractor. It turns out that multiple-cluster at-

tractors have vanishing attraction basins in the thermody-

namic limit, so that the only nonvanishing contribution to

Y comes from the completely synchronized attractor, and

we can approximate Y ≃ W 2
CS. Thus we can also study

through the parameter Y the transition between complete

and partial synchronization.

3 Fixed-field ensemble

To compute overlap distributions and other statistical prop-

erties of GCLM, a set of replicas corresponding to differ-

ent initial conditions should be taken. Ideally, all initial

conditions should be present in the set. In an actual com-

putation, this is never possible. Instead, a large ensemble

of initial conditions is randomly generated. One expects

that averaging over this ensemble would be equivalent to

the ideal averaging over “all” initial conditions. However,

this would only be true if the employed random set is rel-

atively uniformly sampling the full space of initial condi-

tions. Some random sets of initial conditions may be miss-

ing this property. In previous numerical investigations [10,

12] of dynamical glasses, to generate a set of initial con-

ditions the coordinate xi(0) of each map i = 1, ..., N was

chosen independently and with a uniform probability den-

sity from the interval (−1, 1). It was tacitly assumed that

this procedure would yield uniform sampling of initial con-

ditions. However, the initial conditions generated in this

way become increasingly similar in the thermodynamic

limit N → ∞.
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As follows from (1) and (2), the dynamics of GCLM is

described by the equations

xi(t + 1) = 1 − a
[

(1 − ǫ)x2
i (t) + ǫm(t)

]

(13)

where

m(t) =
1

N

N
∑

i=1

x2
i (t) (14)

is the synchronizing field that acts on a given element i

and is collectively produced by the whole system.

Let us consider statistical properties of the initial syn-

chronizing field m = m(t = 0) in the limit of large N ,

when the coordinates xi(0) of each map i = 1, ..., N are

chosen independently and with a uniform probability den-

sity from the interval (−1, 1). Because this field represents

then a sum of a large number of independent random vari-

ables, it should obey for N → ∞ a Gaussian probability

distribution

p(m) =
1√
2πσ

exp

[

− (m − m)
2

2σ

]

(15)

where m is the mean value of the field m and σ is its

mean-square statistical variation. Using (14), we obtain

m =
1

N

N
∑

i=1

〈x2
i (0)〉 =

1

2N

N
∑

i=1

∫ 1

−1

x2dx =
1

3
(16)

and

σ = 〈(m − m)2〉 =
1

N2

N
∑

i=1

(〈x4
i (0)〉 − 〈x2

i (0)〉2) =
4

45N

(17)

Thus, in the thermodynamic limit N → ∞ the initial

synchronizing field approaches a constant value, indepen-

dent of the realization. For large N ’s it shows fluctuations

of order 1/
√

N . Such a set of initial conditions shall be

called a fixed-field ensemble below.

Below in this section we discuss glass properties of

GCLM for evolutions starting from a fixed field ensem-

ble (to our knowledge, this is the only way in which the

initial conditions have been so far modelled in the litera-

ture). As we shall see, this ensemble leads to replica sym-

metry, since all approached attractors are then identical

up to small variations which vanish in the thermodynamic

limit.

3.1 Transition to complete synchronization

At sufficiently high coupling strength ǫ, GCLM become

completely synchronized. We characterize the transition

to complete synchronization through the probability Y =

P (q = 1) (see Eq. (12)) that two randomly chosen initial

conditions from a fixed-field ensemble fall into the same

attractor, see Fig. 3. Our analysis is performed with a

value of the logistic parameter a = 1.3 where the single

logistic map is periodic with period four. The coexistence

of different attractors and their dynamics for this param-

eter choice have been previously considered in [7]. Near

the transition to complete synchronization the final stable

attractors consist of two clusters following the dynamics

of period two.

It is interesting how this transition takes place in the

thermodynamic limit. Each curve in Fig. 4 represents Y

for a given value of ǫ as a function of N . Even if the

completely synchronized state is stable for ǫ > ǫ1(a), the

smallest value at which the synchronized state is transver-

sally stable, this state is never observed until ǫ reaches a

larger value ǫ > ǫ2(a) [7]. The transition is discontinuous
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Fig. 3. Transition to complete synchronization. When cou-

pling ǫ is increased, the attraction basin of the completely syn-

chronous state grows until all initial conditions end there.
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Fig. 4. Average weight of an attractor basin Y = P (1) as a

function of the system size for a = 1.3.

(first order) and takes place at ǫ ≃ 0.165 for a = 1.3. For

smaller ǫ the system is in a phase where many different

attractors coexist. All of them are two-cluster attractors.

Since the average attraction basin weight Y vanishes in

the thermodynamic limit, the number of different attrac-

tors diverges for N → ∞. The unbounded increase of the

10
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Number of different initial conditions
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N
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Fig. 5. The number of different attractors reached by the sys-

tem increases as a power law of the number of random initial

conditions used. Increasing the latter number is equivalent to

exploring in higher detail the phase space. From top to bottom,

N = 16384, 4096, 1024, and 256.

number of different attractors for N → ∞ was indeed

one of the first indications that GCLM might represent a

glass-like system [10].

We have further examined how the number of attrac-

tors M visited by the system grows as the number I of

different initial conditions used increases. Our results for

ǫ = 0.15 and a = 1.3 are displayed in Fig. 5. We observe

an approximate power-law dependence M ∝ Iη, with an

exponent η dependent on the system size N . For I → ∞,

M should saturate at a finite value. Although the number

of different attractors grows fast, the bending at large I

for the largest size reflects the existence of an asymptotic

value M∞(N).
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Fig. 6. Data collapse of the normalized overlap distribution

under increasing system size; system parameters ǫ = 0.15 and

a = 1.3.

3.2 Distributions of overlaps

To quantify the similarity between different attractors, we

have calculated the overlap distributions for the same pa-

rameters, ǫ = 0.15 and a = 1.3, and different system sizes

N . As seen in Fig. 6, such distribution P (q) approaches a

delta-function in the thermodynamic limit N → ∞. The

width of the main peak in P (q) goes to zero as 1/
√

N .

Some finite-size effects can be observed in the bump at the

smallest size represented, and in the peaks which appear

intermittently for relatively large values of N , showing the

“locking” of the system close to prefered partitions, before

reaching the asymptotic behaviour.

The finite-size behaviour can also be more compli-

cated. Fig. 7 shows the overlap distributions obtained at

the same control parameter a = 1.3 for four different val-

ues of ǫ and systems of size N = 256. For small ǫ (Fig. 7a),

there is a large number of partititions close to the attrac-

tor with the largest basin, N1 = 149, N2 = 107. A second

group of attractors corresponds to three-cluster families

close to N1 = 115, N2 = 85, N3 = 55. The attractors

within each group are similar and their mutual overlaps

are close to unity, explaining the large weight of P (q) at

q ≃ 1. The overlaps between these two groups give a sec-

ond contribution around q = 0.7. The continuous line in

Fig. 7a shows the total distribution, the dashed line corre-

sponds to the attractors with the same number of clusters,

and the dotted line represents the contribution from the

overlaps between two- and three-cluster attractors. The

part of the distribution close to q = 1 results from three-

cluster attractors where the third cluster has only a few

elements. As the coupling strength grows, the three-cluster

attractors become less and less frequent, and two-cluster

attractors dominate (Fig. 7b,c). For large enough coupling

(an example is ǫ = 0.17 in Fig. 7d), the completely syn-

chronous state appears and starts to occupy an increas-

ingly large fraction of the phase space. Its self-overlap is

unity, while its overlap with the remaining two-cluster at-

tractors is small (three-cluster attractors are no longer

present). The overlap between one- and two-cluster at-

tractors explains the large contribution at small values

of q observed in Fig. 7d. If ǫ increases further, the com-

pletely synchronous state attracts more and more initial

conditions, P (q) tends to a delta-function at q = 1, and

the contribution at small q disappears.

In the chaotic domain of a single logistic map, for

a > a∞, a similar behavior but with strong finite-size

effects is observed. In a previous publication [12], we have
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Fig. 7. Overlap distributions for N = 256 and a = 1.3. (a)

ǫ = 0.05, (b) ǫ = 0.1, (c) ǫ = 0.14, and (d) ǫ = 0.17.

studied the parameters ǫ = 0.1 and a = 1.55. This point

had been also analysed in [10] for its glassy properties. The

overlap distribution is broad here and its shape keeps al-

most unchanged with the system size until N ≃ 4000. But

when N increases further, the most of the distribution’s

weight is shifted towards q ≃ 1, indicating that the attrac-

tors reached by the system indeed become very similar.

For ǫ = 0.3 and a = 1.9, we have observed that for sizes

up to N ≃ 3000, the overlap distribution P (q) remains

almost constant (see Fig. 4 in [12]). If we apply rescaling

similar to Fig. 6, only the two largest sizes (N = 2048

and N = 8192) seem to follow the expected asymptotic

behaviour and collapse.

Our analysis shows that, for N large enough, GCLM

tend to a prefered cluster partition. It can be said that the

same macroscopic state is always found in the thermody-

namic limit, apart from “thermal fluctuations” of order

1/
√

N . The origin of such fluctuations lies in the 1/
√

N

variations of the synchronizing field.

3.3 Distributions of cluster sizes

Information similar to the overlap distribution is contained

in the distribution Q(pk) of cluster sizes pk = Nk/N , i.e. of

the fractions of elements belonging to a cluster (obviously,

∑

k pk = 1). For large sets of initial conditions (varying

between 104 and 2×105 realizations) in the fixed-field en-

semble, we have computed the values of pk for all stable

partitions and thus obtained the distributions Q(pk) of

cluster sizes.

An example of such distributions for ǫ = 0.15 and

a = 1.3 and different system sizes is shown in Fig. 8a. We

see that in this case the asymptotic attractors are always

formed by two clusters of unequal size. Their dynamics

is periodic with period two. As N → ∞, the distribu-

tion Q(pk) shrinks in width around the two prefered sizes,

p1 ≃ 0.372 and p2 = 1 − p1. For large enough N the two

peaks approach a Gaussian distribution, and its width de-

creases proportional to 1/
√

N , as shown in Fig. 8b.

A similar behaviour was observed for other parameter

values. Generally, for sufficiently large N the distribution

of the sizes of the kth cluster is a Gaussian centered at a

prefered value p∗k. We show two more examples. In Fig. 9a

(ǫ = 0.3 and a = 1.9), the system tends to attractors with

two clusters of almost equal sizes, though occasionally also

three-cluster attractors are observed. Fig. 9b (ǫ = 0.1 and

a = 1.55) gives an example where attractors with four

clusters of different sizes are prefered. We show the total
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Fig. 8. (a) Distribution of cluster sizes for increasing system

size; parameters ǫ = 0.15 and a = 1.3. (b) Data collapse of the

size distribution for the largest cluster, with N1 ≃ 0.628N .

size distribution Q(pk) together with the size distributions

for clusters of rank one to four. Here, the prefered partition

is close to p1 = 0.307, p2 = 0.242, p3 = 0.2295, and p4 =

0.2215.

Thus, we have investigated numerically the statistical

properties of GCLM in the glass phase starting from initial

conditions in the fixed-field ensemble. The investigations

show that in the thermodynamic limit N → ∞ this system

has a great number of different attractors, increasing as a

power law of system size N . However, all these attractors

are very similar. Namely, the differences in their statistical

properties, such as the cluster sizes, are proportional to

1/
√

N and thus vanish in the limit N → ∞. This explains

why replica-symmetry is recovered in the thermodynamic

limit, when only the evolutions initiating from a fixed-field

ensemble are considered.

4 Random-field ensemble

4.1 The role of initial conditions

For given parameter values a and ǫ, many different or-

bits corresponding to a continuous spectrum of two-cluster

partitions and to complete synchronization are stable (see

Fig. 2). Yet, only one partition is chosen in the fixed-field

ensemble, up to variations of order 1/
√

N . The selection

of this prefered partition cannot be explained by a higher

stability of its orbit. For instance, Fig. 2 indicates that for

a = 1.3 and ǫ = 0.15 the transversal stability is strongly

increased at the cluster size p1 ≃ 0.522. However, the se-

lected partition in the fixed-field ensemble has in this case

the cluster size p1 = 0.628 whose stability is much weaker.

For parameters in the chaotic domain of a single logis-

tic map, the situation is similar. Stable attractors with

chaotic dynamics exist here, but the system often shows

a preference for the periodic ones.

To examine in more detail the role of initial conditions,

we use a slightly generalized version of the fixed-field en-

semble. Namely, we assume now that the initial coordi-

nates xi(0) of all maps are independently and uniformly
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Fig. 9. (a) Distribution of cluster sizes for different system

sizes, ǫ = 0.3, and a = 1.9. For N large enough, the sys-

tem chooses a partition formed by two clusters of similar sizes.

(b) Distribution Q(pk) for N = 8192 and parameters ǫ = 0.1

and a = 1.55. The whole distribution Q(pk) and individual

distributions for the largest, second, third, and fourth largest

clusters are displayed.

distributed between −ξ and ξ (note that the fixed-field

ensemble corresponds then to the choice ξ = 1). Cal-

culating again the statistical distribution of initial syn-

chronizing fields m, we find that in the thermodynamic

limit N → ∞ it is again given by a Gaussian distribution

with mean value m = ξ/3 and mean-square dispersion

σ = (4/45)(ξ/N). Hence, at time t = 1 the coordinates

xi(1) of the maps are given by

xi(1) = 1 − a
[

(1 − ǫ)x2
i (0) + ǫm

]

= 1 − a

[

(1 − ǫ)x2
i (0) + ǫ

ξ

3
+ O(N−1/2)

]

. (18)

Since xi(0) is uniformly distributed, x2
i (0) is distributed

with density 1/2x which diverges at x2
i (0) = 0, so that

the distribution of xi(1) has a pronounced maximum at

x = 1 − aǫξ/3 . This initial bias drives the system to-

wards the attractor closest to the most probable value of

xi(1). This is shown in Fig. 10, where we represent, as

a function of the fixed ensemble parameter ξ, the value

1 − aǫξ/3 where the maximum of xi(1) is expected, the

actually observed maxima of xi(1), and the coordinate on

the prefered asymptotic orbit. Varying ξ, the bias in the

initial value xi(1) changes and drives the system to dif-

ferent asymptotic orbits (full circles in Fig. 10), in turn

corresponding to different partitions of the elements. We

thus find p = 0.632 at ξ = 1 and p = 0.717 at ξ = 0.944.

Partitions with larger p cannot lead to two transversely

stable orbits, thus for ξ < 0.944 the completely synchro-

nized attractor is always reached.

It is interesting, in this framework, to look at the dy-

namics of synchronization for a = 1.3, ǫ = 0.15 and vary-

ing ξ (see Fig. 11). Different examples always show the

same pattern: after the first time step, the most popu-

lated region of phase space coincides with the maximum
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Fig. 10. For different values of the initial field, the figure shows

the most likely value of xi(1) (empty circles) and the coordinate

of the prefered attractor closest to this value (full circles). For

ξ < 0.944 the prefered attractor is completely synchronized.

in the distribution of xi(1). After very few time steps,

the two most populated “clusters” start to oscillate close

to a stable attractor made of two periodic orbits of pe-

riod two, but most elements are not synchronized yet and

the partition is quite different from the final one. At the

same time as oscillations around the periodic orbits are

dumped, more and more elements join the two clusters,

until the partition which stabilizes the periodic orbits is

reached. Thus the system first chooses the orbits and only

afterwards partitions which would stabilize them.

A similar route is observed even when the system tends

to the completely synchronous period-four orbit. First the

system approaches two period-two orbits which are very

close one to each other and starts to partition on them. At

some point, the smaller cluster is attracted by the larger

one and disappears. For some parameter values the period-

two orbit remains metastable for quite a long time, until it

0 20 40 60 80 100
t
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0
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0.4

0.6

0.8

1

p1

p2

Fig. 11. Dynamics of two-cluster synchronization for a = 1.3,

ǫ = 0.15 and N = 1000. The solid circles represent the coordi-

nates of the largest cluster, empty circles those of the second

larger cluster, the solid and dashed lines represent their sizes

respectively.

splits into a period-four orbit through a kind of dynamical

bifurcation (see Fig. 12). Even for values of a in the chaotic

phase we observed synchronization first through attrac-

tion towards prefered period-two orbits and then through

a bifurcation (see Fig. 13).

Summaryzing the findings of this section, we can say

that the initial synchronization field strongly biases the

elements towards a prefered region of phase space, lead-

ing them to periodic orbits which can be either stable

(and indeed stabilized through the appropriate partition

of the system) or metastable (and eventually transformed

to completely synchronous attractors).
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Fig. 12. Dynamics of complete synchronization for a = 1.3,

ǫ = 0.2 and N = 1000. Solid circles represent the coordinates

of the largest cluster, empty circles (linked by a line to guide

the eye) those of the second larger cluster, and the solid line

its size p2. The second cluster is attracted by the first one

and disappears at t ≃ 40, but the system continues oscillating

on a metastable period-two orbit until, through a dynamical

bifurcation, it reaches the stable period-four orbit.

4.2 Replica-symmetry breakdown in the random-field

ensemble

As shown in the previous section, by varying the parame-

ter ξ we can drive the system to macroscopically different

attractors. Thus an ensemble of initial conditions, where

ξ is randomly chosen for each initial state, is expected to

lead to very different attractors. We define a random-field

ensemble as a random set of initial conditions which is

generated in the following way: For each realization, we

first choose at random the parameter ξ form the interval

(0,1). Then the initial states xi(0) of all individual maps

in the system are independently drawn from the interval

(−ξ, ξ).

0 50 100 150 200
t

−0.5

0

0.5

1

Fig. 13. Dynamics of complete synchronization for a = 1.3,

ǫ = 0.25 and N = 1000. Solid circles represent coordinates

of the largest cluster, empty circles those of the second larger

cluster. The second cluster is attracted by the first one and

disappears at t = 110. The asymptotic dynamics is chaotic, but

the largest cluster approaches a metastable period-two orbit in

the first stage of the dynamics.
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Fig. 14. Distributions of overlaps for a = 1.3 and ǫ = 0.15

in the random-field ensemble for different system sizes N . The

value of P (1) is not represented. It accumulates around 50%

of the total weight of P (q).
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Fig. 15. Distributions of overlaps for a = 1.55 and ǫ = 0.1 in

the random-field ensemble for different values of N . For these

parameters the single map is chaotic. The value of P (1) ≃ 0

for all N .

When such random-field ensembles of initial condi-

tions are used, overlap distributions do not shrink to a

delta-function peak, but remain continuous in the ther-

modynamic limit. This is shown in Fig. 14, which dis-

plays overlap distributions in the random-field ensemble

for a = 1.3 and ǫ = 0.15 and different system sizes. In this

case, the weight of the completely synchronized attractor,

Y = P (q = 1) does not vanish in the glassy phase. We ex-

pect that the transition to complete synchronization is in

this case second-order like: Y tends continuosly to unity

as ǫ approaches the critical coupling at which only syn-

chronized orbits are stable.

We present also the distributions of overlaps for pa-

rameters in the chaotic domain of the single map, ǫ = 0.1

and a = 1.55, and three different values of the system

size N . There is again a qualitative difference between the

fixed-field and the random-field ensemble. While in the

former case the function P (q) showed a systematic loss of

structure for increasing N (see Fig. 1 in [12]), in the latter

situation it remains remarkably invariant with the growth

of the system size.

Thus, we see that for the random-field ensembles of ini-

tial conditions the overlap distribution becomes indepen-

dent of the system syze in thermodynamic limit N → ∞ .

The asymptotic overlap distribution is formed by a delta-

peak at q = 1 plus a broad, smooth part extending to low

values of the overlap q. The presence of such continuous

distribution is an indication of replica-symmetry break-

ing. The breakdown of replica symmetry means that, for

each orbit of GCLM, one can find orbits of gradually vary-

ing degrees of similarity within a large ensemble of orbits

generated by randomly chosen initial conditions.

4.3 Ultrametricity

Generally, the ultrametric distance d(A, B) between two

elements A and B in a hierarchy is defined as the num-

ber of steps one should go up in the hierarchy to find a

common ancestor of two elements A and B. If any three

elements A, B and C belong to a hierarchy, the inequality

d(A, C) ≤ max{d(A, B), d(B, C)} should hold. As a con-

sequence, the two maximal distances between elements in

any triad must always be equal. If overlaps qαβ between

any two replicas α and β are uniquely determined by the

ultrametric distance d(α, β) between the respective states,

the overlaps between any three replicas α, β and γ must

satisfy the relationship
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Fig. 16. Distribution H(∆q) of distances between the two

smaller overlaps our of a triad. In the thermodynamic limit

this function has a non-vanishing width. Same parameters as

in Fig. 15.

qαγ ≥ min{qαβ , qαγ} , (19)

implying that the two minimal overlaps in any triad of

replicas are always equal [13].

To check the presence of ultrametricity, we have to

consider triads of replicas α, β, and γ and calculate the

three overlaps that can be defined by combining them. If

the two minimal overlaps in any triad are always equal,

the ultrametricity is present. Formally, this amounts to

requiring that the relationship (19) always holds. That

condition can be numerically tested by generating triads

of replicas and computing the distribution H(∆q) over

the differences between the two minimal overlaps, ∆q ≡

|qαβ − qαγ |. If H(∆q) → δ(∆q) in the limit N → ∞, then

the system is ultrametric.

Previously, such calculations have been performed for

the fixed-field ensemble [12]. In this case case the distri-

bution H(∆q) approaches a delta-function δ(∆q) in the

limit of large system sizes N . However, as becomes clear

from the analysis of overlap distributions in the present

study, this behaviour simply reflects the vanishing diver-

sity of system attractors for the fixed-field ensemble in the

thermodynamic limit.

We have now repeated such calculations for the random-

field ensemble. Distributions H(∆q) of distances between

the two smaller overlaps in randomly generated triads of

replicas for two different system sizes are shown in Fig. 16.

We see that the distributions are broad and almost do not

depend on the system size. Thus, GCLM do not display

ultrametric properties.

Though replica-symmetry breaking is a necessary con-

dition for nontrivial overlap distributions, it does not im-

ply exact ultrametricity, which is a much more demand-

ing condition. Possible deviations from exact ultrametric-

ity have been discussed for spin glasses [13]. Parisi and

Ricci-Tersenghi [14] have shown that exact ultrametricity

can only hold under the conditions of stochastic stability

(i.e. that each replica is in a certain sense equivalent to

the others) and of separability (i.e. that all the mutual

information about a pair of equilibrium configurations is

already encoded in their overlap). Our numerical analy-

sis of GCLM shows that for the random-field ensemble in

the thermodynamical limit this system is characterized by

replica-symmetry breaking, but exact ultrametricity is ab-

sent. Note that though exact ultrametricity, which would
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have corresponded to the appearance of delta-function

peak at ∆q = 0, is not observed, the distributions H(∆q)

in Fig. 16 have a broad maximum at ∆q = 0. This indi-

cates that some weaker form of organization may still be

present here.

5 Discussion and conclusions

We have examined asymptotic glass properties of glob-

ally coupled logistic maps in the thermodynamic limit for

two different random ensembles of initial conditions. In

the fixed-field ensemble the initial value of the synchro-

nizing field becomes identical up to variations of order

1/
√

N that vanish in the thermodynamic limit.Therefore,

all attractors reached by the system become increasingly

similar for N → ∞. Dynamically, the bias due to the ini-

tial field drives the system towards the prefered attractor

and then the elements partition in such a way to stabilize

the prefered attractor. The overlap distribution tends to

a delta-function peak at q = 1, i.e., even when a diverging

number of attractors is present, they are all macroscop-

ically identical. Hence, replica symmetry is recoverd for

the fixed-field ensemble in the thermodynamic limit.

We have also found that, in the fixed-field ensemble,

the system undergoes a special phase transition when ǫ

overcomes a critical value. For smaller coupling, the sys-

tem is partitioned into a small number (close to the tran-

sition, usually two) of periodic orbits. Though all of the

attractors reached for different initial conditions are very

similar, their number diverges in the thermodynamic limit,

and their average attraction basin weight goes to zero. For

couplings larger than the critical one, the system synchro-

nizes completely for nearly all initial conditions in the

thermodynamic limit, and the average attraction basin

weight tends to unity. This situation is reminiscent to the

analogous transition in attraction basin weights observed

for random boolean networks [16] and for asymmetric neu-

ral networks [17]. In both cases, the average attraction

basin goes discountinuously (in the thermodynamic limit)

from the value zero, when the system is in the “ordered

phase”, to a finite value related to the average attraction

basin of random maps [18] in the chaotic phase. Though in

GCLM the finite attraction basin weight is a consequence

of complete synchronization, the formal analogy between

this system and dynamical systems with quenched disor-

der is very suggestive.

The asymptotic behaviour of GCLM in the thermody-

namic limit is essentially different when the random-field

ensemble of initial conditions is chosen. Because initial

synchronizing fields retain in this case macroscopic fluc-

tuations even for N → ∞, a broad range of attractors may

still be reached. In the random-field ensemble, the tran-

sition to complete synchronization (with the average at-

traction basin weight Y = 1) is expected to be continuous,

more in analogy with equilibrium mean-field spin glasses.

Examination of the overlap distributions has revealed that

replica-symmetry breaking persists in the thermodynamic

limit. Thus, GCLM reach the status of a dynamical coun-

tepart to mean-field spin glasses.
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