
VOLUME 87, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 20 AUGUST 2001

088303-
Spatial Symmetry Breaking in the Belousov-Zhabotinsky Reaction
with Light-Induced Remote Communication

M. Hildebrand,1,2 H. Skødt,1 and K. Showalter1,2

1Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045
2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

(Received 18 December 2000; revised manuscript received 2 May 2001; published 6 August 2001)

Domains containing spiral waves form on a stationary background in a photosensitive Belousov-
Zhabotinsky reaction with light-induced alternating nonlocal feedback. Complex behavior of colliding
and splitting wave fragments is found with feedback radii comparable to the spiral wavelength. A linear
stability analysis of the uniform stationary states in an Oregonator model reveals a spatial symmetry
breaking instability. Numerical simulations show behavior in agreement with that found experimentally
and also predict a variety of other new patterns.
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Physicochemical systems with coupled processes on
different length scales often exhibit stationary spatially
periodic structures arising from symmetry breaking insta-
bilities [1–3]. In nonequilibrium systems, such structures
occur in activator-inhibitor systems with short-range acti-
vation and long-range inhibition [1], while in equilibrium
systems they arise from the competition of short-range at-
tractive interactions and long-range repulsion [2]. Recent
investigations also revealed spatial symmetry breaking
arising from the interplay between short-range attractive
interactions and a long-range reaction-diffusion process
[3]. In this Letter, we report on novel spatiotemporal
patterns in the photosensitive Belousov-Zhabotinsky (BZ)
reaction [4] arising from a nonlocal feedback that imposes
short-range activation and long-range inhibition.

The photosensitive BZ reaction has proven to be an
ideal model system for studies of perturbed excitable me-
dia. The medium excitability can be precisely controlled
by exposure to 460 nm light, enabling the application of a
wide variety of external perturbations. Entrainment of spi-
ral wave meandering [5] and the formation of labyrinthine
patterns [6] have been found with periodic forcing.
Resonance attractors [7] and oscillatory cluster patterns
[8] were recently reported in photosensitive BZ systems
with different types of global feedback.

We study the photosensitive BZ reaction with nonlocal
coupling over a wide range of length scales, from much
larger than the characteristic reaction-diffusion length scale
to length scales that are comparable. The kernel of the
feedback alternates from positive (activatory) for short dis-
tances to negative (inhibitory) for larger distances. We
show below that such a feedback gives rise to a “Turing-
like” instability, and, as a result, patterns with more than
one characteristic length scale are formed.

Experiments were carried out with the catalyst of the
light-sensitive BZ reaction, Ru�bpy�21

3 , immobilized in
a thin slab of silica gel. The gel was continuously fed
with a fresh, catalyst-free BZ solution in a reactor ther-
mostated at 23.0 ±C to maintain constant, nonequilibrium
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conditions [9]. The silica gel medium was prepared by
acidifying a solution of 10% (w�w) Na2SiO3 and 2.0 mM
Ru�bpy�21

3 with H2SO4 and by casting a uniform 0.3 3

20.0 3 25.6 mm3 layer onto a microscope slide.
Prior to each experiment, the projected image was ad-

justed at each pixel by an iterative algorithm to ensure
a spatially uniform illumination field [6,10]. The local
concentration of oxidized catalyst was recorded with a
CCD-camera, and the recorded image was divided into an
array of 100 3 128 square cells. In all of our experiments,
the lateral size of each cell was much smaller than the spiral
wavelength. The nonlocal feedback occurred via an illu-
mination field (2.5 3 2.0 cm2) projected from a computer-
controlled video projector onto the face of the gel medium
through a 460 nm bandpass filter. The feedback was up-
dated at 2 s intervals. Bromide ions were locally produced
in a photochemical cycle, and, as a result, the local ex-
citability was appropriately modified by the feedback sig-
nal [11].

The intensity I�r, t� of the projected illumination field
was computed as

I�r, t� �
Imax

2
�1 2 tanh�xV �r��� , (1)

where Imax (approximately 80 mW�cm2) is the maximum
light intensity, the parameter x characterizes the width of
the interface in which I increases from zero to Imax, and
V �r� �

P
w�r 2 r0�y�r0� represents the coarse grained

effective nonlocal potential, which depends linearly on the
concentration of the oxidized catalyst, y, in the neighbor-
hood of point r. The summation over r0 extends over the
entire array of square cells [12]. The kernel w�r� repre-
sents an “effective binary potential” (cf. [13]) for the oxi-
dized catalyst. Here, we choose
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with r1 . r2, i.e., w�r� is positive for short distances r and
negative for larger distances. If the characteristic radii r1
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and r2 are chosen sufficiently larger than the spiral
wavelength, a labyrinthine pattern of domains containing
spiral waves is exhibited on a stationary background,
for both excitable [Figs. 1(a) and 1(b)] and oscillatory
[Figs. 1(c) and 1(d)] conditions. After an initial transient,
the boundaries of the spiral domains remain stationary,
as can be seen by comparing panels 1(a) and 1(b) or
1(c) and 1(d). Note that the domains containing spi-
ral waves and the domains with a stationary catalyst
concentration become larger as the characteristic radii
r1 and r2 are increased. As the radii are decreased
and the characteristic size of the spiral domains be-
comes comparable to the spiral wavelength, wave propa-
gation is completely suppressed for excitable conditions.
Under oscillatory conditions, however, we find complex
behavior with traveling wave fragments that interact and
split as they reach a critical size [see Figs. 1(e) and 1(f)].

Wave propagation in the light-sensitive ruthenium-
catalyzed BZ reaction can be simulated with a modified
two-variable Oregonator model [14] that includes a term
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FIG. 1. (a)–(d): Formation of spiral domain patterns on a sta-
tionary background in the BZ reaction with light-induced non-
local feedback given by Eq. (1). Snapshots (a) and (b) show
behavior in an excitable medium (in the absence of feedback),
with (b) recorded 30 min after (a), while (c) and (d) corre-
spond to an oscillatory medium (in the absence of feedback),
with (d) recorded 30 min after (c). The gray level is propor-
tional to the concentration of Ru�bpy�31

3 , increasing from black
to white. The recorded image was divided into an array of
100 3 128 square cells, with r1 � 28, r2 � 14 pixels in (a), (b)
and r1 � 14, r2 � 7 pixels in (c), (d). The composition of the
catalyst-free BZ reaction mixture was: 0.28M BrO2

3 , 0.175M
malonic acid, 0.15M bromomalonic acid, and 0.4M H2SO4 in
(a) and (b), and 0.5M BrO2

3 , 0.125M malonic acid, 0.125M bro-
momalonic acid, and 0.25M H2SO4 in (c) and (d). The behavior
with the coupling length scale comparable to the spiral wave-
length (r1 � 4, r2 � 2 pixels) is shown in (e) and (f), with (f)
recorded 8 s after (e) and all other parameters as in (c) and (d).
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f � f�r, t� to account for the photochemically produced
bromide during external illumination of the system [15]:

≠u
≠t

� =2u 1
1
´

Ω
u 2 u2 2 � fy 1 f�r, t��

u 2 q
u 1 q

æ
,

≠y

≠t
� u 2 y , (3)

where the variables u and y correspond to the concentra-
tions of the autocatalytic species HBrO2 and the oxidized
catalyst Ru�bpy�31

3 , respectively; ´ and q are scaling pa-
rameters and f is an adjustable stoichiometry parameter.
The rate of bromide production from irradiation f is pro-
portional to the light intensity I�r, t�, as given by Eq. (1)
(with the proportionality factor K�Imax) . In most of the
simulations we used V�r� �

R
w�r 2 r0�y�r0� dr0 instead

of the coarse grained version described above. Note that
f�r, t� ! KH�2V �r, t�� as x ! `, where H�z� � 1 for
z $ 0 and H�z� � 0 for z , 0.

In the infinite system, the stationary uniform states of
Eqs. (3) satisfy u � y � u0, where u0 is obtained as a so-
lution of the cubic equation u3 2 �1 2 q 2 f�u2 2 �q 1

qf 2 K�2�u 2 qK�2 � 0. If f is sufficiently large,
this equation has a single solution. It can be either
stable or unstable with respect to uniform perturbations.
Moreover, the stability of the uniform stationary state
can be tested in the one-dimensional system by adding
small spatially periodic perturbations with wave number
k and linearizing Eqs. (3). The elements of the cor-
responding Jacobian are given by J11�k� � ´21�1 2

2u0 2 2q� fu0 1 K�2���u0 1 q�2� 2 k2, J12�k� �
2´21�u0 2 q� � f 1 Kx�exp�2r2

1k2�4� 2 exp�2r2
2 k2�

4���2���u0 1 q�, J21�k� � 1, and J22�k� � 21. The
eigenvalues g

6
k are given by 2g

6
k � �J11�k� 2 1� 6

��J11�k� 2 1�2 1 4�J11�k� 1 J12�k���1�2. It can be read-
ily shown that unstable modes with nonzero wave numbers
always have real growth rates. Hence, the instability is
analogous to the classic Turing bifurcation in activator-
inhibitor systems [1]: The dispersion Re�g1

k � has a single
maximum at a wave number k0, which changes its sign
at the instability. Here, the conditions determining k0
and the instability boundaries correspond to the equations
Bk � J11�k� 1 J12�k� � 0 and ≠Bk�≠k2 � 0, which
can be satisfied if r1 . r2 and x is sufficiently large.
We note that this type of instability can also be found
if f�r, t� depends linearly on V . In this case, however,
the proportionality factor K must be unrealistically high
(typically larger than 1).

Typical dispersion relations Re�g1
k � in the vicinity of the

symmetry breaking instability are shown in Fig. 2(a): The
dispersion exhibits a single maximum for x � 550, but all
growth rates are negative. The maximum of g

1
k changes

sign at the critical value x � 590, and, for x � 630, per-
turbations grow for a wide interval of wave numbers.

Figure 2(b) shows the stability boundaries of the ho-
mogeneous stationary state in the parameter plane (f, x)
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FIG. 2. (a) Dispersion relations Re�g1
k � vs k for the reduced

uniform stationary state in model (3). Parameters are ´ � 0.05,
f � 1.9, q � 0.005, r1 � 4, r2 � 2, K � 0.02, and x � 550
(dashed line), x � 590 (solid line), and x � 630 (dot-dashed
line). (b) Bifurcation diagram for uniform stationary states in the
parameter plane (f , x) for ´ � 0.05, q � 0.005, r1 � 4, r2 �
2, and K � 0.1. The solid and dot-dashed lines mark the sym-
metry breaking instability and Hopf bifurcation of the oxidized
stationary state, respectively. The dashed line corresponds to the
symmetry breaking instability of the reduced stationary state.
The black circle denotes the codimension-2 point (see text).

for K � 0.1. For all values of f, a homogeneous steady
state solution of Eqs. (3) exists with a low concentration y

(the reduced steady state), which is always stable with re-
spect to homogeneous perturbations. For f , 0.592, this
state coexists with another uniform stationary state with
a relatively high concentration of y (the oxidized steady
state). The latter undergoes a subcritical Hopf bifurca-
tion at f � 0.435 (dot-dashed line) and is stable with re-
spect to uniform perturbations for f , 0.435. A spatial
symmetry breaking instability occurs as x reaches thresh-
old values for both the reduced (dashed line) and oxidized
(solid line) stationary states. The Hopf bifurcation and the
Turing-like instability of the oxidized stationary state meet
in a codimension-2 point (shown by the black dot). This
situation is similar to the classical Turing-Hopf bifurcation
that has been analyzed in reaction-diffusion systems (e.g.,
in [16]). In the case of Fig. 2(b), however, both the tem-
poral and spatial bifurcations are subcritical.

We have carried out numerical simulations with Eqs. (3)
in the parameter regions corresponding to the experiments
shown in Fig. 1. For sufficiently large values of the charac-
teristic interaction radii, spiral domains [Figs. 3(a)–3(f)]
are formed. The boundaries of these domains do not sig-
nificantly change in the course of the simulations. The
behavior depends on the rate at which the nonlocal term
f in Eq. (1) is updated. When f is updated at short
time intervals, wave fragments are periodically generated
at the spiral domain boundaries. These waves, which have
a much larger wavelength than the spiral waves within
the domains, travel into the predominantly reduced re-
gions until they are annihilated, typically by collisions with
the boundaries of nearby spiral domains [Figs. 3(a)–3(c)].
When f is updated at larger time intervals (but still smaller
than the spiral period TS 	 3.15), these traveling wave
fragments are suppressed [Figs. 3(d)–3(f)], i.e., the spi-
ral domains form on a stationary background as in the
088303-3
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FIG. 3. Two-dimensional evolution of the oxidized catalyst
concentration, y�x, y� (increasing from black to white), in
Eqs. (3) for large f . The temporal evolution in the one-
dimensional cross sections indicated by the dashed white lines
in (a), (d), and (g) is shown in (c), (f), and (i) during time T ;
successive snapshots are separated by Dt, and the nonlocal term
[f in Eq. (1)] is updated at intervals of tup. The parameters,
q � 0.005, ´ � 0.05, f � 1.9, x � 22 000, and K � 0.1,
and no-flux boundary conditions were used for u and y � 0
outside the medium. Other parameters are as follows. (a)– (c):
r1 � 50, r2 � 25, system size L � 256, Dt � T � 31.3,
and tup � 0.03125. (d)–(f ): r1 � 50, r2 � 25, L � 256,
Dt � T � 31.3, and tup � 0.625. (g)– (i): r1 � 4, r2 � 2,
L � 50, Dt � T � 62.5, and tup � 0.0016. The lattice
spacing was dx � 0.25 and the time step dt � 1.6 3 1024; V
was calculated on a coarse grained lattice with spacing 4dx.

experiments [Figs. 1(a)–1(d)]. Note that here the spiral
domains form preferably at the boundaries of the medium
as a consequence of the Dirichlet boundary conditions for
y [12]. The fact that we do not find mixed patterns as
shown in Figs. 3(a)–3(c) in our experiments suggests that
the minimal experimental time between updates of 2 s is
already too large for these patterns to exist.

If the characteristic radii of the feedback are smaller than
the spiral wavelength and the medium is oscillatory, we
find complex dynamics of wave fragments that collide or
split [Figs. 3(g)–3(i)], as in the experiments for oscillatory
conditions [cf. Figs. 1(e) and 1(f)]. In the excitable regime
for small interaction radii, stationary structures with ex-
tremely small amplitudes are formed. Such structures
would be difficult to detect experimentally, which is con-
sistent with our observation of a seemingly homogeneous
stationary state for these conditions in the experiments.

Simulations with Eqs. (3) were also carried out in the
parameter region that lies to the left of the codimension-2
point shown in Fig. 2(b). There, the reduced and oxidized
stationary states coexist and the system is excitable with
respect to the oxidized stationary state in the absence of
illumination. For small radii, we find the formation of sta-
tionary spatially periodic structures with significant am-
plitudes [Figs. 4(a)–4(c)] or oscillating domain patterns
[Figs. 4(d)–4(f)]. Figures 4(g)–4(i) show a simulation for
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FIG. 4. The two-dimensional evolution of the oxidized cata-
lyst concentration, y�x, y�, in Eqs. (3) for small f , q � 0.005,
´ � 0.05, and K � 0.1. Notations and numerical parameters
are the same as in Fig. 3, with the following other parameters.
(a)– (c): f � 0.25, r1 � 4, r2 � 2, x � 2500, L � 50, Dt �
305, tup � 1.6 3 1024 , and T � 101.6. (d)– (f): r1 � 4, r2 �
2, x � 2000, f � 0.37, L � 50, Dt � 62.5, tup � 0.0016, and
T � 62.5. (g)–(i): f � 0.37, r1 � 25, r2 � 12.5, x � 2400,
L � 200, Dt � 62.5, tup � 0.0016, and T � 31.3.

large radii under such conditions. We now observe the
formation of spiral domains on a stationary background
corresponding to the oxidized stationary state (gray area).
Inside the domains, spirals with an increased concentration
of oxidized catalyst form on a background with predomi-
nantly reduced catalyst (black shaded regions). Future ex-
perimental studies will examine this parameter regime in
order to search for the types of behavior shown in Fig. 4
[17]. We note that the patterns shown in Figs. 3 and 4 are
generally observed in the Turing-unstable region as long
as the intensity of the feedback K is high enough. For
smaller values of K, however, codimension-2 points can
also be found for the reduced stationary state [17].

In summary, we have shown that nonlocal feedback in an
active system gives rise to the emergence of new patterns
characterized by multiple length scales which result from
the interaction of a symmetry breaking instability with
excitable or oscillatory local kinetics. We note that this
mechanism for the formation of complex domain patterns
might play a role in biological systems, such as neural
tissues with nonlocal coupling. We also point out that the
evolution equation (3) with an effective binary potential
similar to Eq. (2) can be derived as a limiting case of a
four-variable reaction-diffusion system [17].
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