Electron beam induced changes in transition metal oxides

D.S. Su

Department of Inorganic Chemistry, Fritz Haber Institute of MPG, Faradayweg 4-6, D-14195 Berlin, Germany

Abstract

Electron beam induced changes in maximum valence transition metal oxides V₂O₅, MoO₂ and TiO₂ (anatase) were studied by means of electron energy-loss spectroscopy and electron diffraction in a transmission electron microscope. For V₂O₅, the observed chemical shifts of the *L*-edge reveal the reduction of V⁵⁺ to V²⁺, while its structure changes from orthorhombic V₂O₅ to cubic VO. The orthorhombic MoO₃ can be reduced to a phase with an oxidation state lower than that in MoO₂. This phase has a cubic or tetragonal structure with a = c = 0.408 nm. For TiO₂ (anatase), no noticeable changes in the intensity of the O *K*-edge can be observed. The main structure symmetry prevails during the electron irradiation.