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Pattern formation in a surface chemical reaction with global delayed feedback
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We consider effects of global delayed feedback on anharmonic oscillations in the reaction-diffusion model
of the CO oxidation reaction on a(B1L0) single-crystal surface. Depending on the feedback intensity and the
delay time, we find that various spatiotemporal patterns can be induced. These patterns are characterized using
a transformation to phase and amplitude variables designed for anharmonic oscillations. Typical feedback-
induced patterns represent traveling phase flips, asynchronous oscillations, and dynamical clustering. Three
different types of cluster patterns are identified: amplitude clusters, phase clusters, and cluster turbulence. For
phase clusters, two different front instabilities are possible. A pitchfork bifurcation leads to propagation of
cluster fronts. An instability of the state of phase balance results in spatial front oscillations.
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[. INTRODUCTION tion between the control signal and the oscillating pattern.
The related research was so far focused on the normal form
Spatiotemporal pattern formation in spatially extendedapproach{17,31—-33 that is valid close to the soft onset of
systems has been extensively studied during the last two dé@scillations.
cadeg1-3]. Currently, there is a growing interest in control-  In this paper we apply this kind of delayed global feed-
ling and engineering pattern formation in such high_back to a realistic model describing the catalytic chemical
dimensional nonequilibrium systems. The main objectiveg@action of carbon monoxide oxidation on a platinum single-
are the control of spatiotemporal chaos and the induction angfystal surface. This system is not close to a supercritical
stabilization of regular patterns. To achieve these goals, diftiopf bifurcation and the oscillations are not harmonic. We
ferent approaches have been proposed. also present a technique developed for the analysis of
Various complex reaction-diffusion patterns can be in-reaction-diffusion patterns with anharmonic oscillation dy-

duced and turbulence can be suppressed by means of pefi@mics. The objective is to extend the amplitude and phase
odic external forcind4—8]. Pattern formation in such sys- description used in the normal form approach to problems
tems can also be controlled by feedbacks, where the forcintjvolving anharmonic oscillation dynamics.
signal is not fixed, but adjusted to the current state of the The paper is organized as follows: The considered system
medium. Feedback techniques were Origina”y designed foand the feedback method are introduced in Sec. Il. In Sec. Ill
the control of dynamical systems with only a few degrees oft transformation of chemical concentrations into amplitude
freedom[9-11], but later extended for the application to @nd phase variables is described. Simulation results for one-
high-dimensional systems governed by partial differentiadimensional media are presented in Sec. IV, with an empha-
equationd12—21,5Q . Some of the proposed techniques re-Sis on the analysis of different front instabilities of cluster
quire Spat|a||y resolved access to the medium under Contropatterns. In Sec. V results of numerical simulations in two
because the feedback is applied locally or the signal variatiodimensions are reported. The paper ends with a discussion of
is continuous in space. In contrast to such spatially resolvete obtained results.
feedback methods, the controls based on a global feedback
act on a single parameter that affects the dynamics of the Il. FORMULATION OF THE PROBLEM

entire medium. Global feedbacks previously were employed 1o development of spatially resolving techniques such as

to suppress turbulent states in flui2], p_Iasma[23], and photoemission electron microscopyEEM) [34] has made
semiconductorg24], and recently used to induce cluster pat-giface chemical reactions a convenient system to probe
terns in chemical systeni25,2§. Other studies were de- 5165 aspects of nonequilibrium spatiotemporal pattern for-
voted to the global control of spiral waves in excitable maiion. Among surface chemical reactions, the catalytic oxi-
chemical medid27,28, and to the stabilization of traveling dation of carbon monoxide at platinum single-crystal sur-
spots by g!obal feedba;ﬂ@g,sq. . faces has been studied most extensively and is best
For oscillatory reaction-diffusion systems, a form of de-nqerstood. The observed nonequilibrium phenomena in-
layed global feedback useful both for the effective suppresg)ge rate oscillations and spatiotemporal patterns, such as
sion of turbulence and fqr the generation of new Spat'_Otemfotating spiral waves, target patterns, standing waves, and
poral patterns has previously been propoged). In this 1 lence[35,36. The phenomena are similar to those ob-

method the forcing signql is directly proportional to the pas_tserved in the Belousov-Zhabotinsky reactif8v], but the
integral state of the medium. The feedback loop can be easily5ction mechanism is comparatively simple and involves

implemented experimentally without the knowledge of theonly a few species. The reaction follows the Langmuir-
governing equations and, in the case of unstable Condition%inshelwood(LH) scheme

it automatically adjusts to a parameter drift of the system.

The delay can be used to effectively modify the phase rela- * +CO=COyy,
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TABLE |. Parameters of the model.

kq 3.14x10° s ! mbar ! Impingement rate of CO

K, 10.21 st CO desorption rate

ks 283.8s? Reaction rate

K, 5.860< 10° s ! mbar ! Impingement rate of ©

K 1.610 st Phase transition rate

Sco 1.0 CO sticking coefficient

So,1x1 0.6 Oxygen sticking coefficient
on the 1x1 phase

So.1x2 0.4 Oxygen sticking coefficient
on the 1x2 phase

Ug, éu 0.35,0.05 Parameters for the

structural phase transition

D 40um?st CO diffusion coefficient

Po, 9.00x 10”5 mbar QG partial pressure

Pco 4.15x 10 > mbar CO partial pressure

perimentally was shown to lead to phenomena such as syn-
chronous oscillation§38] and standing waves5,39.

The first detailed mathematical model of the CO oxidation
reaction on Ril10 has been developed by Krischer,
Here, * denotes a free adsorption site on the catalytic surEiswirth, and Ertl[40]. Later a modified version of this
face. Due to a high energy barrier in the gas phase, CO amhodel that included diffusion was used to study pattern for-
oxygen molecules have falissociatively adsorb before the mation for bistable, excitable, and oscillatory kinetics. These
reaction. Produced carbon dioxide almost immediately desstudies demonstrated very good qualitative, sometimes even
orbs into the gas phase leaving again free space for adsorguantitative agreement with the experimental observations
tion. The system is maintained far from thermodynamic[41,42. Experiments with oxygen island conversion could
equilibrium by constant supply of fresh reactants and rebe quantitatively reproduced when a subsurface oxygen spe-
moval of the product. Experiments performed in an UHV cies was included in the modgt3]. Other studies that con-
chamber under isothermal low-pressure conditions ( centrated on pattern formation under global coupling re-
<10 2 mbap have shown an asymmetric inhibition of ad- vealed a variety of structures including cluster patterns and
sorption: preadsorbed CO molecules inhibit oxygen adsorpstanding wave$39,44—48.
tion but not vice versa. The LH mechanism in combination In the present study a three-variable form of this model is
with the asymmetric inhibition of adsorption leads to a bista-used. The variables andv denote the surface coverage of
bility between the mainly oxygen-covered, reactive state and¢arbon monoxide and oxygen, respectively. The variakie
the nonreactive CO-covered state. related to the local structural state of the surface and denotes

Temporal rate oscillations in the CO oxidation require anthe local fraction of the surface area found in the nonrecon-
additional mechanism. On a (R10 single-crystal surface structed X1 structure. All three properties can vary in the
the mechanism for rate oscillations and related oscillations oiihnterval from 0 to 1. The equations are
the CO and oxygen coverage is provided by an adsorbate-
driven structural phase transition in the top substrate layer. u 3 9
The clean RL10) surface reconstructs into axi2 “missing 1 ~ KiScoPeo(1—u%) —ku—ksuv +DV7u, (1)
row” structure. The reconstruction can be reversibly lifted
by adsorbed CO molecules. Oxygen adsorption is stronger g,
on the nonreconstructedXll phase and therefore the phase E=k4 poz[ So W+ soylxz(l—w)](l—u—v)z—ksuv,
transition can cause periodic switching between the two @)
states with different catalytic activity.

Spatial coupling in the system is provided by two differ-

2%+ 0,—2 Oy,

CO,t+ Opg—2* + CO,.

ent mechanisms. Surface diffusion of adsorbed CO mol- ﬁ_W:ks ;—w ] 3
ecules gives rise to local coupling between neighbored sites. ot 14 ex Up—u
Spatial coupling via the gas phase acts as a consequence of Su

the mass balance in the reaction. Since the mean free path in

the gas phase is typically large in comparison to the chambédfor explanation of the parameters see Table I. Equations
dimensions, local partial pressure variations that result fronf1)—(3) take into account the reaction, asymmetric inhibition
the consumption of the educts by the reaction quickly extenaf adsorption, desorption of CO, the phase transition of the
to the whole system. Therefore, the gas-phase coupling iglatinum surface and surface diffusion of adsorbed CO mol-
global. The interplay between local and global coupling ex-ecules. Oxygen desorption and diffusion are negligible at the
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considered temperaturd €545 K). For simplicity, surface two-dimensional simulations. Long integration times

roughening, faceting, and formation of subsurface oxygern>5000 s ensure that transients have decayed at the end of

are not taken into account in the present study. each calculation. The model parametéfrable |) are chosen
The aim of our study is to show that pattern formation inin such a way that the system performs anharmonic limit-

the CO oxidation reaction can be effectively controlled andcycle oscillations that are stable in absence of feedback. In

various additional patterns can be induced by employing desur numerical study we keep constant all parameters, except

layed global feedback control. Experiments employing suctihe feedback intensity and the delay- that will be system-

a feedback loop are currently in progress. The suggesteatically varied.

setup is the following: A feedback loop is artificially applied

to the reaction by means of continuous computer-controlled

variation of one of the partial pressures in the chamber. The IIl. PATTERN CHARACTERIZATION

external pressure variations globally affect the dynamics on 5 powerful theoretical approach to understand spatiotem-
the entire catalytip surface. A qutially resolving techniquepora| pattern formation is provided by the normal form
such as PEEM, is used to monitor the coverage patteMeory. The derivation of an amplitude equation leads to a
forming in the active surface area. For the generation of thejmpiified description of the universal properties of a system
control signal the spatial average of the measured PEEM|qse 1o a bifurcation poirit,47] . The amplitude equation
intensity is simultaneously computed. The continuous signaks 5 field of diffusively coupled Hopf oscillators valid near
that is the difference between the average and a referengge onset of oscillations is the complex Ginzburg-Landau
intensity, multiplied by a factor determining the feedbaCkequation(CGLE). The CGLE describes harmonic oscilla-
int_ensit_y, is applied back to the reaction with a certain arti-ions in terms of their amplitude modulus and phase. The
ficially introduced delay. The delay can be adjusted to congggijjations observed in real experimental situations are usu-
trol the phase relation between the oscillating pattern and thgny anharmonic, so that the system is not close to a Hopf
feedback signal. The idea is that different patterns can bgjfrcation. Nonetheless, the normal form theory is often ap-
induced simply by variation of the two computer-controlled yjiaq 1o interpret the experimental data even in such cases.

feedback parameters, the feedback intensity and the de'%deed, the predictions of the CGLE may remain qualita-

time. i tively correct in a larger neighborhood of the bifurcation.
As already noted, the reaction consumes reactants from |+"\would be convenient to have the amplitude and the

the gas phase and therefore an intrinsic global gas-phase cQyjase variable also defined for anharmonic oscillations, in
pling is always additionally presefgome of its effects have ¢ ,cp g way that they correspond to the amplitude and the
previously been investigatgd4—46). In our investigations, hhase of quasiharmonic oscillations in the normal form
the intrinsic gas-phase coupling will be neglected because fheory. It should be noted that the local phases of general
is weak as compared with the typical feedback intensity 1evynnarmonic oscillations were first introduced by Kuramoto
els that can be achieved by modulating the gas supply rate ]in his analysis of phase dynamics. However, only small

To approximately model the suggested global feedbacknpiitude deviations from the nonperturbed limit cycle were
experiment, we assume in this paper that the CO partial prespen considered.

surepco in Eq. 1 is not constant but varies as A recent approach to such a variable transformation was
. undertaken by employing a frequency demodulation tech-
pco(t)=p?;o—,u [U(t—7)— U, (4) nique to filter relevant information from numerical and ex-

perimental datd8]. This technique uses a finite width fre-

quency filter to extract the behavior of a certain mode in the
patterns. The complex Fourier coefficients of this mode are
computed from the time series at various locations in the

feedback intensityr is the delay, ang2, is the CO partial . : .
pressure for vanighing feedbaqizoqbl—?gnce the COppartiaI patterns to prowdg a Ioca! phase gnd a_mphtgqle characteriza-
T tion of the dynamics. This technique is efficient when the

pressure in Eq. 1 is adjusted according to the difference berhajority of the dynamical power is concentrated in a single

tween the integral delayed CO coverage—7) and its ref-  54e but it is also limited to this case. The time-resolved

erence valual. The reference value is chosen as the COqgescription of oscillatory behavior requires extensive data
coverage in the unstable steady state in absence of feedba‘ﬁfocessing and is only achievable for sufficiently slow pat-

In the limit of a small delayr the feedback acts towards tern evolutions.

stabilization of the target state= u,;. The variable transformation we present in this paper fol-
In both one- and two-dimensional numerical simulationslows a different idea. It is an empirical method to transform
of model(1)—(4), a second-order finite difference scheme isa pair of model variables into an amplitude and a phase after
used for the approximation of the Laplacian operator with acomputational modeling. We cannot ensure that this transfor-
grid resolutionAx=4 um. The resulting set of ordinary dif- mation is generally applicable. However, when certain con-
ferential equations is solved using an explicit Euler schemelitions on the spatiotemporal dynamics of the pattern under
with a fixed time stepAt=0.001. The boundary conditions analysis are fulfilled, the method turns out to be a useful tool
are either no-fluXNeumanmn or periodic, and different initial  for the time-resolved characterization of patterns involving
conditions are employed. Unless stated otherwise, the systeamharmonic dynamics, as shown in the following sections.
size is 0.8 mm for one-dimensional and 8.8.8 mnt for When a system has periodic oscillatory dynamics in ab-

WhereU(t)=1/SfSu(x,t) dx denotes the spatial average of
the CO coverage at timet. The parametep specifies the
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.o — T T T T T T T the usual phase and amplitude variables. The coordinate ori-

i 1 gin O is best chosen as the unstable uniform steady state of
the system to guarantee that a local suppression of oscilla-
tions indeed corresponds to a vanishing amplitRde

Below we apply this empirical amplitude-phase descrip-
tion to qualitatively interpret spatiotemporal patterns ob-
tained in our numerical simulations of the CO oxidation re-
action with artifical global feedback. To obtain the reference
orbit we shall use the projection of uniform oscillations in
. the model on the plane with the variableandw, represent-
ing CO coverage and the fraction of the nonreconstructed
surface area.

It should be noted that when the feedback E4). is
present, it may significantly affect the shape of uniform os-
cillations. Therefore we employ different reference orbits for
different feedback parameters by generating a new reference
cycle following each fixed parameter simulation of the

FIG. 1. Definition of the amplitudeR=p /p,s and phased model Egs(1)—(4). This is done by an additional numerical
=277/ T, variables for anharmonic oscillations. simulation of the model Eq$1)—(3) in absence of diffusion
(D=0), where the feedback signal generated previously by
. . . o . . the full pattern forming system is applied as exterpah
sence of spatial coupling, visualization of two variables ISforcing. The projection of the resulting attractor is periodic

sufficient to capture the relevant dynamical features. In th%md directly used as reference when the global oscillations in

projection plane of these two variables, the limit cycle y'eld.sthe asymptotic state of the respective full system are peri-

a closed trajectory: We_choose the projec;ion varigbles dic. In the examples encountered when the full system gen-
such a way that this trajectory has no self-intersection. W%rated an aperiodic forcing signal the resulting attractor in

shall further assume that, when spatial coupling is eventuall}!he projection plane deviated only slightly from a periodic

mtroctjlucg:‘_?f, thet ]local tgscﬂla}[ﬂo?s in the rgetduf[? are_f NOtimit cycle. In those cases the reference limit cycle was cho-
greatly ditferent from those that correspond 1o the uniforMge, ., o5 e long-time average of the resulting projected tra-
limit cycle, except for relatively small localized areas wherejectory

strong deviations from the uniform attractor may still occur.
The projected uniform limit cycle can therefore be used as a

reference for the characterization of dynamics in a spatiotem- V. FEEDBACK-INDUCED PATTERNS IN ONE SPACE
poral pattern. DIMENSION

The employed variable transformation is illustrated in Fig. We have numerically examined feedback-induced pattern
1. Suppose that andw are the projection variables and the

f imi | iaction is the closed orbit sh -~ formation in the model described by Eq4)—(4). In this
Irff er(lan%\e} Imit Ctyf edprfpjec;uon IS i te (F:>OS$h or 'tds. og/vn Nsection we present the results of numerical simulations for
9. L. Ve want 1o define foany stater with coorainales 5, _gimensional systems. The model parameters are given in

(u,w) in the projection plane a pair of new variablesaand Table I, and the fixed feedback parameters %%:4_15

¢ that can be interpreted as an amplitude and a phase €Oz 10-5 mbar andu,.=0.4097. Note that the parameters are

o s h e oy enes vt e Ehosen Y Such 3y tht ufor oslaons are il
when the feedback intensity vanishes. Periodic boundary
. . . . NC€, aN¥%onditions have been used, unless a different condition is
point P is characterized by a radius vector of length OP.  ¢qified. The simulations were continued until an asymp-
We notice the point Q where this radider it extensio 444 stable regime was reached after a transient. Multiple
intersects with the chosen orbit. The lengif=0Q deter-  gimylations at different values of feedback intensityand
mines t_hg_ refere_nce radius for the poft Next_ we mafk delay timer have been performed.
some “initial” point Qo on the orbit and determine the timeé  The results of our numerical investigations of one-
T needed to reach poir® along the reference cycle. The dimensional systems are summarized in Fig. 2. This diagram
amplitude and the phase are then definedRasp /p,s and  shows the types of stable regimes reached after transients in
d=2mT/ T.ef» WhereT . is the period of the reference limit the considered system. The delay time is measured in mul-
cycle. tiples of the natural oscillation period in absence of feed-
Note that according to this definition, the amplitudeRis  back,To=3.33 s(note that when feedbacks are operating the
=1 as long as the system stays on the reference limit cycléctual period of uniform oscillations is feedback dependent
Moreover, for the motion corresponding to the referenceand will to some extent differ frori,). The feedback inten-
limit cycle, the phasep increases at a constant velocity with Sity in Fig. 2 is normalized to the equilibrium CO partial
time and changes by after each cycle period. When local pressurepoco in the reaction chamber in absence of feedback.
oscillations are nearly harmonical and the reference orbit is &lote that the ratiqu/ p?:o yields an estimate of the relative
circle with pointO in its center, the above definition yields variation of partial pressure caused by such a feedback.

0.8

0.6

04L . .

0.2 0.4 0.6
U
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0.20 ; ! (a') (b) (C)
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:' . . . ) o8 W 0.8 w ost W
0.15 4 :' desynchronization/ ) uniform oscillations s 0.6} 06 \_/\/\/ 0.6

0.4

0.2 0.2 0.2

0.10 7‘ clusters N O_OIU—J; O.OL—/\/\ O.OL/—L
[+ b Q 200 400 600 800 0 200 400 600 800 o] 200 400 600 800
I 1 x (4m) x () x (pm)
o.osJ'T . FIG. 3. Feedback-induced coverage pattetasphase flip,(b)
I [\ \ asynchronous oscillations, afg) a cluster pattern. For each pattern
N phase flips | ;’ the values of the parametersT, and u/ pgo are, respectively(a)
0.00 M S S 0.165, 0.012(b) 0.781, 0.012, andc) 0.045, 0.289.
0.0 0.5 1.0 1.5 2.0
T/ Ty row interfaces. Sucttluster patternsare also discussed
below.
FIG. 2. Existence regions of various feedback-induced patterns
in the one-dimensional system: uniform oscillatigmgite), asyn- A. Phase flips

chronous oscillationgdark gray, and cluster patterndight gray). ] ) )
Phase flips are observed in the hatched regions. The dashed lines AS We have already noted, in this paper we consider only

mark the borders of the hysteresis of uniform oscillations. the case when uniform oscillations are stable with respect to
spontaneous phase modulation in absence of feedback. De-
. . . [ n the choice of the initial and the boundary condi-
I_Dep_endlr_]g on the_ de_lay and_ mtensﬂy,_the feed_back ca gg(sj,m?rgveling waves(and spiral waves in theytwo-
maintain uniform oscillations or induce various spatiotempo-yimensional systemcan still be observed in this case.
ral patterns. Examining Fig. 2, we see that as the delay igiciently strong global delayed feedbacks suppress all
increased, the diagram is approximately repeated at integ@{,ch structures, so that only uniform oscillations are found
multiples of T, (this trend is continued at larger delays, notjnside the blank region in Fig. 2. After a transient, any initial
shown in Fig. 2. However, the stability regions of the pat- condition eventually leads to uniform oscillations here. The
terns other than uniform oscillations shrink at larger delaystime needed to reach uniform oscillations greatly increases
Uniform oscillations are found in a large region of the near the instability boundaries of uniform oscillations.
two-parameter plane. The uniform oscillations have strong At small feedback intensities corresponding to the
hysteresis(bold lines show the boundaries where uniform hatched areas in Fig. 2, either uniform oscillations or patterns
oscillations set on when increasing the feedback intensityof propagatingphase flipsare found in the simulations, de-
whereas dashed lines indicate the boundaries where such gsgending on the initial conditions. To produce a phase flip, a
cillations break down as the feedback intensity is decrgasedsimulation is started with a constant phase gradient of 2
In the hysteresis regions the final pattern depends on thgcross the system. The feedback tends to establish uniform
initial conditions because the uniform attractor coexists hergscillations, but, if it is relatively weak, it cannot achieve this
with the attractor of another pattern. in the whole medium. Thus, a narrow region with strong
For comparison, we also show by the dotted line in Fig. 2concentration gradients is formed, see Fig)3This region
the boundary where in absence of diffusion the unstabléravels through the medium.
steady state of the system becomes stabilized by the applied To analyze the properties of such traveling patterns, we
feedback(the stabilization takes place at small delayS,  use the variable transformation technique described in Sec.
<0.06 and large feedback intensiti;a$p°co> 0.11). In the Ill. After transformation to local phase and amplitude vari-
pattern forming system that includes diffusion the spatiallyables, the pattern of a phase flip takes the form displayed in
uniform suppression of oscillations on the entire surface is=ig. 4(@). We see that the oscillation phageundergoes a
however not observed. Instead, at small delays the systefall rotation of 27r inside the nonuniform region whereas the
evades the suppression of oscillations through the formatioamplitudeR displays only small modulations. The states of
of clusters. the medium on the left and right side of the phase flip differ
Figure 3 displays three typical examples of different non-by a phase shift of 2 only and hence are physically indis-
uniform feedback-induced patterns. In the pattern shown ininguishable.
Fig. 3(a) the medium is in the uniform state almost anywhere A phase portrait of the same structure is shown in Fig.
except for a narrow interval with strong spatial variation. As4(b). Here, the amplitudes and phases of all points along the
we shall later see, this pattern corresponds fohase flip  phase flip are displayed in polar coordinates. The pliasé
traveling across the medium. In contrast to this, the pattern ia point is represented by the polar angle and the ampli®ude
Fig. 3(b) is characterized by a gradual spatial variation ex-is the distance to the coordinate origin. The points accumu-
tending over the whole medium. We show below that sucHate in the state corresponding to the uniformly oscillating
patterns are found whetresynchronizatiothrough the feed- regions.
back is taking place. In Fig.(8) the pattern consists of large Phase flips were first reported for the periodically forced
regions with almost uniform distributions separated by nar-CGLE [4] (see also Ref.7]) and were systematically inves-
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2.0 j i 7 T T 2.5
/ C
(a) ; MR ()
1.5F ¢/7r‘n ] e 15
R ! mL\V’_
" \ ° * ) ost gfm i
v - F -t 1 -t P { _FTTTTT" N
,' o K . 0 200 400 600 800 ¢ 4] 200 400 600 800 0.00 260 460 5(;0 800
0.5F ! . o e g0’ x (psm) x (pum)  (pm)
) -1
0.0 : S ‘ . ‘ FIG. 6. Destruction of a phase flip by strong global feedback.
0 200 400 600 800 Y 0 1 The time interval between the subsequent snapdaptgc) show-
X (pm) ing oscillation phase&ashed linesand amplitudegsolid lines is
) ) o 3 seconds. The feedback parameters @€, =0.167 andu/p2s
FIG. 4. (a) Spatial dependence of the amplituBe(solid line)  —0.014. The initial phase flip was obtained using a slightly smaller

and the phase (dashed lingin a phase flip. The phase portréi  feedback intensity./p2y=0.012.
shows the same data in polar coordinates. The same parameters as

in Fig. 3a). ) )

On the other hand, phase flips become unstable in our
tigated for the CGLE in the presence of a global feedbacﬁimulations if the feedback_intensity exc_eeds a certain delay-
[31,33. Remarkably, the amplitude and phase plots obtainedePendent thresholsee Fig. 2 They dissappear through
by the variable transformation in our model with anharmonicthe formation of an amplitude defect if the feedback intensity
oscillations are very similar to the respective plots for theiS increased beyond the critical value. This process is ana-
CGLE with global feedbackcf. Fig. 4@ and Fig. 4 in Ref.  lyzed in Fig. 6 by means of our amplitude and phase char-
[33)). acterization. Before the amplitude defect occurs the phase

The previous analytical investigations of phase flips in thevariation is steepened, see Figa Then at some moment
CGLE with global feedback have revealg2il,33 that, de- the oscillation amplitude drops down to zero inside the phase
pending on the feedback parameters, a phase flip can stdlip. When this occurs the phase, which is not defined when
and reverse its direction of motion. Following RE81], a  the amplitude vanishes, makes a slip of at one side of the
phase flip is said to have positive velockyif the phase is defect, as illustrated in Fig.(6). After the phase slip, the
increased by z after its passage and the velocity is negativeamplitude slowly approaches unity and the phase variation
if the phase decreases byrdehind it. With this in mind, we  smears out, eventually giving rise to uniform oscillations.
have numerically examined the dependence of the propagarhis scenario is in perfect agreement with the disappearance
tion velocity of phase flips on the delay timein the cur-  of phase flips in the CGLE under increasing global feedback
re_zntly |nve_st|gz_ited model Wlth anharmonic oscnl_atlons. Asintensity[33] (the destruction of phase flips by strong exter-
displayed in Fig. 5, the velocity decreases for higher de- na| forcing in the CGLE has also been subsequently ob-
lays and changes its sign #fT,~0.155. Another prediction  seryed[7]).
of the study of the CGLE with global feedback is that, as the
feedback intensity: is decreased, the width of the phase flip
grows aséx~u~ 2 and in the limitu—0 the phase flip _ _ _ _ _
transforms into uniform oscillations in a finite system. We  Patterns with smooth spatial gradients of chemical vari-

have checked that this effect is also observed for phase-fligbles can be induced by the feedback in the desynchroniza-
patterns in the present'y considered model. tion region dISplayed n F|g 2. Below the dashed lines in this

region, asynchronous patterns develop starting from any ini-
tial condition. The duration of the desynchronization process
. | : : diverges for feedbacks of vanishing intensity. Applying the

B. Asynchronous oscillations

0.4% - transformation to local phase and amplitude variables,
— . ] asymptotic asynchronous patterns established in this regime
~ 02h- * . i can be analyzed. Spatial profiles®find ¢ in such a pattern
g i . . l are shown in Fig. (8). We note that only the local oscillation
~ 00 LI phaseg is varying in this pattern, whereas the amplitiRles
% . . ] almost constant. This means that all local oscillations corre-
'8 _oal ° . . spond to the same limit cycle. The phase profile shows
o | o smooth variation. When the size of the medium was varied in
> simulations, the pattern always adjusted to the size of the
=R . . . . ] medium, therefore lacking an intrinsic wavelength. In the
0.140 0.150 0.160 0.170 phase portrait representation of such a pattern all points are

T/ To distributed on the unit circle, see Figlb]. However, not all
possible phases are occupied, and the density of points in-
creases towards the ends of the structure that correspond to

FIG. 5. Dependence of the velocity of phase flips on the delaythe extrema of the phase profile. As time goes on, the struc-
time. The feedback intensity is constant,p2,=0.012. ture rotates in the plane with constant velocity.
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FIG. 7. (a) Spatial dependence of the phasished ling and
the amplitude(solid line) and the phase portraib) of a pattern of FIG. 9. () Phase and amplitude profiles of amplitude clusters.
asynchronous oscillations. A slightly perturbed uniform distribution The reference limit cycle for the variable transformation is chosen
was taken as initial condition. The same parameters as in Fbyy. 3 as the attractor of the cluster state with the higher amplitude. No-
flux boundary conditions are used. Frafi shows global oscilla-

- -, tions corresponding to the pattern in frart®. The feedback pa-
Under periodic boundary conditions, the total phase graz,meters ared T,=0.045 andu/ply=0.072.

dient along the pattern always adjusts to an integer multiple
of 27 given by the winding number of the initial phase dis- C. Cluster patterns

tribution. For a nonzero winding number, the asymptotic The third brincipal hani  feedback-induced
spatial profile of the phasé is linear, so that the temporal e third principal mechanism of feedback-induced pat-
tern formation involves clustering of oscillations. The cluster

shift between oscillations at different sites is proportional to ™ . . : o .
. ) ) o regimes include a variety of qualitatively different patterns.
their spatial distance. No-flux boundary conditions do no . :
conserve the winding number. In the latter case the final tot heir common feature is the presence of a small number of
9 : ynchronized domains, occupied by one of two possible os-

phase'gradlent does not exceed.2 i _ cillatory states. No intrinsic spatial wavelength of the do-
~An important consequence of the spatial desynchronizas,ins is observed. We divide different cluster solutions into
tion of oscillations is the accompanying breakdown of the,hjitude clusters, phase clusters, and cluster turbulence.
global oscillations that generate the feedback signal. As

shown in Fig. 8, the amplitude of the feedback signal de- 1. Amplitude clusters

creases as the desynchronization gradually develops in the
system. Thus, the global feedback effectively induces itsbu
own breakdown. It should be noted that thg feedback OSC.”' ions occupied by the two different states, as shown in Fig.
lations do not, howeygr, completely vgmsh in the asymptoti (a). Thus, uniform oscillations within two different clusters
state. A small remaining feedback signal that Compens"’_‘tecsorrespond to different coexisting limit cycles of equal pe-

th_e synchronizing te_ndency of diffusion is neede_d to mainsiog The phase shift between the oscillations in the two clus-
tain the desynchronized state. Such desynchronization ph

PNEs stategabout 0.887 in the example shownis constant,
BHut depends on the feedback parameters. At the interface
between two stationary cluster domains, the phAss mo-
notonously increased and the amplitudeundergoes small

In amplitude clusters, not only the oscillation phasggs
t also the oscillation amplitudd® are different in the re-

4.20[ ' ' ' ' ] variations. The total size ratio of the domains that belong to
i 1 each state is independent of the initial domain sizes and has
__418f . a characteristic value that changes with the feedback param-
3 L ] eters. The difference in the contributions to global oscilla-
'g atsl h tions coming from the two clusters results in period-doubled
o - 1 oscillations of the control signal, see Figlb® Amplitude
S clusters were previously seen in the simulations of the CGLE
“g 414 with global feedback33]. They were also investigated in the
s studies of the CO oxidation reaction under intrinsic gas-
412 phase coupling44] and similar properties were then found.
4.10 , . . ] 2. Phase clusters
40 60 80 100 120 140

Phase clusters are characterized by equal oscillation am-
plitudes and a constant phase shift between the cluster states.

FIG. 8. Breakdown of the feedback-induced CO pressure varial h€ oscillations in both cluster states correspond now to the
tions during the desynchronization of initially slightly perturbed Same limit cycle, but are of opposite phase. The phase fronts
uniform oscillations. The feedback parameters#r€,=0.781 and  that separate different cluster domains exhibit rich behavior,
wlp2o=0.048. as demonstrated below. At high feedback intensities, station-

time (s)
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FIG. 10. Phase clusters wifla) stationary(lsing) phase fronts
and (b) traveling (Bloch) phase fronts. Both diagrams display the  FIG. 11. Long-time average of the phase front velocity in cluster
oscillation phasep in a time interval of 50 s. The system size is 0.4 patterns as function of the feedback intensity. The data points were
mm. The values of the parametersT, and ,u/pgo are, respec- obtained numerically with a system size equal to 0.4 mm. The delay
tively, (a) 0.105, 0.241, andb) 0.120, 0.096. time is kept constant;/ Ty=0.105.

ary phase clusters prevail, see Fig.(d0 The asymptotic yranches that connect the two cluster states. Farther away
spatial formation of the domains in such a pattern dependg,n, the pifurcation point, the fronts between the cluster

on the initial conditions. However, the total fraction of the 5105 are mapped almost to a circle, as shown in Figp)12
medium occupied by the domains of each cluster is balancegy,o phasep undergoes a continuous rotation with a total of

a phenomenon, that, ,fOIIC_’Wing Reﬂ%,]' we .caII pha.sgibal-_ 7~ when traversing such a Bloch front, wheré&ashows only
ance When a simulation is started with a different initial size mall modulations. By application of the transformation to
ratio, the fronts between the cluster domains slowly drift an hase and amplitu.de variables. we have thus found that the

finally come to rest in the state of phase balance. As a co droperties of such Ising and Bloch fronts are close to those

sequence, the average that generates the feedback signa diind for the amplitude equation of oscillatory media under
periodic and resonantly oscillates with a frequency twiceg,arnal forcing 48].

larger than that of the periodic local oscillations inside the (b) Bifurcation to oscillating phase clusterBurthermore

cluster domains. _ _ we have observed another interesting phase front instability,
(a) Bifurcation to traveling pha;g cluster§tgt|onary a Hopf bifurcation of a front that separates two clusters. The
phase clusters can undergo a transition to traveling clustergyiqin of this bifurcation is an instability of the phase balance
an examp[e of which is shown in Fig. (). Penodp bound- hat gives rise to periodic oscillations of the cluster size ratio.
ary cond_ltlons are necessary for the observatlo_n of SUCRs o consequence, cluster fronts periodically change their
propagating patterns, because they preserve the size ratio bafﬁatial position, see Fig. 18. We define the front position
tween the clusters. This transition is related to a symmetryz ¢ ha Iocation, within the front where the amplituBeis

breaking bifurpation, known as the nonequilibril_Jm 'S_ing'minimal. The period of the front oscillations comprises sev-
Bloch bifurcation [48] that leads to fronts traveling with eral local oscillations

constant velocity. The two branches of' this p|tchfork bifur- Figure 14 shows the dependence of the amplitude of front
c%tlo? Correlsppnd t% Counte_r-prqpagaﬂng dfrontsd with eqfuaﬁscillations on the feedback intensity at a constant delay. The
absolute velocity and opposite sign. The dependence of thgq, cation from a stationary front to an oscillating cluster
absolute velocity of traveling phase clusters on the feedba ont occurs when the feedback intensity is decreased. The

intensity at a fixed delay is shown in Fig. 11. We see that g5 2 jic fit(solid line in Fig. 14 is in good agreement with
bifurcation from stationarylsing) fronts to traveling[Bloch) ap ( g-14 g g

fronts occurs when the feedback intensity is decreased.
It is interesting to compare the phase and amplitude prop- (a) (b)

erties of oscillations in stationary and traveling phase-cluster [ ™/ Tr

patterns. The phase portraits of such patterns are shown i o Pl

Fig. 12. In the stationary cluster pattern displayed in Fig. g

12(a), the two cluster states correspond to the ends of the °f LT or + °
S-shaped structure where the points accumulate. The othe . . /
points in this structure correspond to the front that separate: . :
the clusters. Note that the S-shaped structure goes throug™' [ 17"

the origin of the plane, i.e., there is a point inside the front - . : - : :

where the oscillation amplitud® vanishes. At this point the
phase¢ undergoes a jump byr. FIG. 12. Phase portraits of cluster patterns wiha stationary

At the transition to traveling Bloch fronts a topological Ising phase front antb) traveling Bloch phase fronts. The values of
bifurcation is observed in the phase portrait. When the bifurthe parameters/ T, and u/p2, are, respectively(a) 0.045, 0.289,
cation occurs, the S-shaped curve splits into two differentind(b) 0.120, 0.096.
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FIG. 13. (a) Space-time plot of front oscillations in a cluster ‘
pattern with no-flux boundaries. The oscillation amplitiRlis plot- 0 100 200. 300 400 50
ted using a linear gray-scale map, with white color corresponding to time (s)
the vanishing amplitudeb) The respective quasiperiodic temporal

variation of the feedback signal. The feedback parameters are FIG. 15. Space-time plots of the reproduction cascade in a tur-
7/ Ty=0.105 and,u/pco 0.096 bulent cluster pattern with no-flux boundari€a) Oscillation am-

plitude R and (b) phase¢ in a time interval of 500 s. The phase

distribution is displayed in a coordinate frame rotating with the
the numerical data close to the bifurcation point where frongeriod of the reference limit cycle. The corresponding chaotic feed-

oscillations are harmonic. Hence, this is a supercritical Hopback signal is shown in framé&). The feedback parameters are
bifurcation for the fronts. At larger distances from the bifur- 7/ T,=0.126 andu/p2,=0.193.

cation point, the front oscillations become strongly anhar-

monic and zigzag shaped, see Fig(al3The spatial ampli-  feedback oscillations. The change in the control signal pro-
tude profile of such an oscillating front is time dependent. Atyides a feedback on the phase front and hence is responsible
the turning points of the front the amplitudedrops down  for its turnaround. Note that the local oscillations in Fig.
and nearly vanishes. The control signal generated by tw@3(a) are also slightly quasiperiodic due to the quasiperiod-
oscillating clusters becomes quasiperiodic after the Hopf biicity of the driving feedback signal. Though here the local
furcation, see Fig. 18). The turning points of the phase amplitude differs slightly in the two oscillating cluster states,
front correspond to the points of maximal amplitude in thewe still classify them as phase clusters because they
smoothly originate from stationary phase clusters and their
phase and amplitude properties are similar.

=
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o =
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=
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3. Cluster turbulence

N
o

Starting from strongly anharmonic front oscillations, a
suitable change of feedback parameters leads to turbulent
phase front behavior. An example of such irregular front
- behavior is shown in Fig. 15, where a front separating two
mr-shifted clusters branches out in a cascade of reproductions.
The distribution of the oscillation amplitude is displayed in
L , , L1l Fig. 15a), and frame(b) shows the phase distribution in a
19 020 0.21 0.22 023  0.24 rotating coordinate frame. The correspondent chaotic global

#/pgo oscillations are shown in fram@). Such cluster turbulence
does not spontaneously develop from a completely uniform

FIG. 14. Oscillation amplitude of a cluster front as a function of 0scillating state, i.e., a sufficiently strong local perturbation
the feedback intensity. The data points are obtained numerically fol§ needed to initiate the cascade. The fronts not only repro-
a system size equal to 0.4 mm and no-flux boundary conditionsduce, but also can die out. Once initiated, the cluster turbu-
The solid line is a parabolic fit of the data points close to thelence can thus either spread over the whole medium, or die
bifurcation point. The delay time is kept constant,T,=0.105. after some time.

Amplitude (pm)

S o
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0.25[

0.20 |~

uniform

time

0.15

©/o% |

0.10

0.05

0.00L ‘ ‘ -~ NN FIG. 17. Space-time plots of the amplitude in different cluster
0:0 : - 0.26 patterns. Traveling phase clustées under no-flux boundary con-
ditions, the time interval is 500 s. Drifting breathing clustéysand
clusters with different behavior of the two fronts) in a system

FIG. 16. Existence regions of different cluster patterns at smallvith periodic boundary conditions, each within the time interval of
delay times. 200 s. The values of the parametefsT, and ,u/pgo are, respec-

tively, (a) 0.114, 0.072(b) 0.030, 0.193, andc) 0.039, 0.193.

The velocities of traveling fronts in this turbulent regime
are almost constant. A front travels for some time, until anof breathing traveling clusters—this pattern develops when a
amplitude defect with vanishing amplitugdevelops inside travellng clu_ster undergoes a secondary quf b_|furcat|on. As
it. As a result, the front may split or die out. Phase fronts alsgNoWn in Fig. 17c), even more complex situations, where
sometimes emerge from smaller heterogeneities in the ampIRn€ Of the fronts is steadily traveling and the other front is
tude and the phase without directly originating from an am_qscnlatmg while travellng,_are_ possible. The _glot_)al _os<:|lla-
plitude defect. The irregular front behavior leads to turbulent'®"S of all three patterns in Fig. 17 are quasiperiodic.
Qeviations from the cluster states. Hence, th(_a local oscilla~, FEEDBACK-INDUCED PATTERNS IN TWO SPACE
tions are synchronous only inside cluster regions that were DIMENSIONS
not visited by a front for several oscillation cycles.

To summarize our results on cluster patterns, we show in We have numerically explored feedback-induced pattern
Fig. 16 the existence regions of different cluster patterns aformation in Eqs(1)—(4) also in two space dimensions. For
small delays. We have found that the kind of the developinghe two-dimensional simulations we have chosen a slightly
cluster pattern strongly depends on the initial and boundarglifferent CO pressure at vanishing feedbagf,=4.19
conditions. The dashed line in Fig. 16 indicates the stabilityX 10~> mbar, in order to avoid a pressure drift into the re-
boundary of uniform oscillations with respect to small per-gime of diffusion-induced turbulence, which in two dimen-
turbations. On the right side from the dashed line both clustesions occurs belowco~4.15< 10 ° mbar. The other pa-
patterns and uniform oscillations are possible, depending orameters are as in the one-dimensional case, excepiJor
the initial conditions. Note that cluster turbulence always co-= 0.4484 that again corresponds to the unstable steady state.
exists with uniform oscillations. The boundary conditions areFor the two-dimensional simulations, the natural period is
important. For instance, in the region in the diagram wherel,=5.21 s.No-flux boundary conditions are imposed at all
amplitude clusters are present, they were typically found foboundaries.
no-flux boundary conditions. For periodic boundary condi- Figure 18 shows four examples of different two-
tions, special initial conditions were needed here to obtairdimensional patterns. In the upper and lower rows we dis-
amplitude clusters, and traveling phase clusters are usualfylay spatial distributions of the oscillation phase and ampli-
instead found. In the phase cluster region, for most parametéunde, respectively. In absence of feedback, uniform
values the front behavior strongly depends on both the initiabscillations are stable, but a rotating spiral wave can be pro-
and the boundary conditions. Stationary phase clusters aduced by an appropriate choice of the initial conditions, see
only found above the dotted line in the diagram. Fig. 18@). The oscillation amplitude vanishes in the spiral

As already mentioned, traveling clusters require periodicore and the phase changes continuously when traversing the
boundary conditions that maintain the phase balance. For thepiral arms. By application of feedback and variation of its
same parameter values, no-flux boundaries either lead to thErameters, the spiral wave can be suppressed and uniform
formation of stationary amplitude clusters as the asymptotioscillations recoverednot shown. Phase-flip wave$Fig.
state, or to the front behavior shown in Fig.(47 When the  18(b)], asynchronous oscillation patterfifig. 18c)], or
first front collides with the left boundary, further movement (quasij stationary cluster patterri&ig. 18d)] could also be
of the second front would lead to phase imbalance. Insteadhnduced by appropriate feedbacks. The properties of uniform
during a transient process, where in a part of the medium thescillations, phase flips, and desynchronized oscillations are
oscillations strongly deviate from the former cluster states, aimilar to those of their one-dimensional counterparts.
new cluster front is created. Again both clusters travel with The development of the asynchronous pattern in Fig.
constant velocity until the procedure repeats at the next front8(c) from slightly perturbed uniform initial conditions leads
collision with the boundary. Figure 1) shows an example to the breakdown of global oscillations. As in the one-
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(2) (b) (c) (d)

FIG. 18. Two-dimensional patternga) a spiral wave in the
absence of feedbacly) a phase flip(c) asynchronous oscillations,
and(d) a cluster pattern. The snapshots of the oscillation ptiage
row) and amplitudébottom row distributions are displayed in gray \
scale. The system size is ®.8 mnft for each pattern, except for

the pattern(b) where it is 1.6< 1.6 mnf. The values of the param-

eters7/ To and u/p2, are, respectively(a) 0, 0, (b) 0.192, 0.010, I_tF(IjG' 50& Snapsho(;s tofbthtf_e 0s¢ iIIatioln ahaﬁmt{ov‘b ar_l[(:] ?_m-
(c) 0.768, 0.024, andd) 0.067, 0.119. plitude (bottom row distribution in a cluster pattern with time-

dependent front profile. The time interval between the snapsapts

and(b) is half of the oscillation perlod in the clusters. The param-
dimensional case, the final asynchronous pattern is charagse, yales are/ To=0.067 andu/ply=0.072.

terized by a constant amplitude and slow phase gradients. In
the desychronization regime, the feedback cannot destr%.

. : : ig. 19b)—19d)], and later spreads out over the whole me-
zg:lrjetlilovr\:aves and they continue to represent a possible sta lum. This process is accompanied by the breakdown of the

The phase cluster pattern in Fig. (@8 consists of two global oscillations. As the spiral grows, the fraction of the
m-shifted phase states separated by an almost stational ed'“m occupied by the fronts with rapid phase variation
phase front. The clusters evolved from a nonuniform initial owly increases at the expense of the areas occupied by the

distribution. After the quick formation of the clusters, a slow :EWO unlfortm pr;asgbstatkes_. Evfnu%"’.‘"y ﬂ:?y bec_o;ng t;)ho srpall
drift of the front occurs, tending to minimize the front cur- 0 generate a feedback signal sutticient to maintain the cius-

vature while preserving the phase balance. The effect of thiers: Therefore, the nonequilibrium Ising-Bloch bifurcation

front curvature is the only essential difference compared t(growdes an additional scenario for the breakdown of the glo-
the corresponding one-dimensional stationary phase clust lal feedback. The final state is characterized by a spiral wave
pattern shown in Fig. 1@). Stationary amplitude clusters with continuous phase distribution and nearly vanishing glo-

were also observed in two-dimensional simulations and exbal_rcr)]scnlatttmns das :n at()jsenlc;e ofzglobal fetidba%k ith feed
hibited similar behavior as in the one-dimensional case. € pattern displayea in F1g. was obtained with reead-

After a bifurcation to traveling phase fronts, counter- back parameters corresponding to the case of cluster front

propagating front parts can develop in a two-dimensionapscnlatlons in one space dimension. A nonuniform phase and

: ; ; : litude distribution was taken as initial condition. The
pattern(as previously noticed in externally forced oscﬂlatory mp
media[48]). The pattern developing under such conditions is frames(a) and (b) show the phaséop row) and amplitude

shown in Fig. 19. The initial conditions in the upper and(bottom row distributions at time moments separated by half
lower half of.the.originally straight front were chosen to the oscillation period. Instead of front oscillations, which are

correspond to the two branches of the pitchfork bifurcation, seen in this case in the one-dimensional system and are ac-
see Fig. 183). Because the two ends of the front propagate in companled by quasiperiodic variations of the global control

ignal, a different kind of pattern is observed in two dimen-
opposite directions, a spiral wave develops in the central paﬁIons The area occupied by each of the clusters in Fig. 20 is

almost balanced and no significant oscillations of the fronts

(a) (b) (C) (d) take place. The global oscillations are almost periodic here.
The front separating the two clusters is broken into p@es
the bottom row in Fig. 2D As time goes on, the amplitudes
in different front parts periodically drop down at opposite
oscillation phases. On a large time scale of several hundred
oscillation periods, weak drift of the clusters and slow
gradual variation of their shapes are observed. The splitting

FIG. 19. Formation of a spiral wave from a cluster pattern with Of the front into different parts is a two-dimensional phenom-
counter-propagating front parts. Consecutive snapshots of the oscignon that is typically observed starting from nonuniform ini-
lation phaseg are shown at equal time intervals of 96 s. The pa-tial conditions. However, if a simulation is started with a
rameter values are/ To=0.067 andu/p2,=0.024 . straight front, it remains stable with respect to small pertur-
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(a) oxidation can be effectively controlled by implementation of
i a delayed global feedback. Even though the applied feedback
is global, it allows one to control spatial features by the
appropriate choice of the feedback parameters. In the case
under study, when uniform oscillations are stable in absence
of feedback, variation of the feedback intensity and the delay
time allows us to produce various structures, including phase
flips, asynchronous oscillations, and different kinds of cluster
patterns.

In addition to the model calculation results we have pre-
sented an empirical variable transformation technique that
makes possible a time-resolved phase and amplitude charac-
terization of anharmonically oscillating patterns. This tech-
nique also allows a direct comparison to previous studies of
delayed global feedback control based on the normal form
approach. The properties of the phase flips and the desyn-
chronization breakdown of the global oscillations observed
in our numerical observations are in good agreement with

FIG. 21. Turbulent cluster pattern. The two consecutive snapprevious studies of the globally coupled CG[#1,33. The
shots of the oscillation phaseop row) and amplitudgbottom row  gpserved amplitude clusters resemble the respective cluster
o!istributions are separated by a time interval of twg) oscillation peg|ytions in the frame of the amplitude equatiett]. Sta-
riods. The parameter values ar€To=0.067 andu/pco=0.024. tionary two-phase clusters are similar to those found for the

) o o ) hotosensitive Belousov-Zhabotinsky reactif®6] under
bations and shows periodic oscillations, as in the correspongyiopal feedback in absence of a time delay. Traveling and
ing one-dimensional case. o oscillating two-phase clusters represent, as far as we know,

When cluster fronts show irregular motion in one spacenew kinds of patterns induced through the action of global
dimension, the respective two-dimensional clusters also &Xpedback. We have also found cluster turbulence that repre-
hibit complex turbulent evolution. As an example, two sub-sents another interesting example of complex spatiotemporal
sequent snapshots of a turbulent cluster pattern are shown gghayior induced by global delayed feedbacks. The turbulent
Fig. 21 (top and bottom rows again correspond to the phasgyrmation of cluster spots is different from the birth of spots
and amplitude distributionsEach cluster consists of differ- hrough self-replication that was previously reported in
ent patches that continuously vary their shape while the sepajstaple systemg49].
rating fronts propagate through the medium. The front propa- Though our systematic study of feedback-induced pat-
gation occurs at an almost constant velocity in the planaferns has been conducted using a particular model of a sur-
front parts. Turbulence is maintained in this system throughsce chemical reaction, we expect that such phenomena are
repeated popping up of bubblelike domains with the oppositgypical for many reaction-diffusion systems in the presence
phase in the region occupied by any of the two phase clusyf gelayed global feedbacks. Indeed, some two-phase cluster
ters. These bubbles or spots grow for a few oscillation cyclegatterns have been recently observed in experiments with the
and eventually merge with the larger cluster patches. On thgynht-sensitive Belousov-Zhabotinsky reaction under global
other hand, cluster patches can also shrink and disappeagedback without time delaj25] and under external forcing

New cluster spots usually originate at the locations that wergg g The experiments with artificial global feedbacks in sur-
previously visited by the fronts, where amplitude and phasgace chemical reactions are in progress.

heterogeneities were left. Uniform oscillations are stable in

this parameter region and to initiate a turbulent cascade, suf-
ficiently strong local perturbations must be applied to the

uniform state.
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