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Pattern formation in a surface chemical reaction with global delayed feedback

M. Bertram and A. S. Mikhailov
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

~Received 8 December 2000; published 14 May 2001!

We consider effects of global delayed feedback on anharmonic oscillations in the reaction-diffusion model
of the CO oxidation reaction on a Pt~110! single-crystal surface. Depending on the feedback intensity and the
delay time, we find that various spatiotemporal patterns can be induced. These patterns are characterized using
a transformation to phase and amplitude variables designed for anharmonic oscillations. Typical feedback-
induced patterns represent traveling phase flips, asynchronous oscillations, and dynamical clustering. Three
different types of cluster patterns are identified: amplitude clusters, phase clusters, and cluster turbulence. For
phase clusters, two different front instabilities are possible. A pitchfork bifurcation leads to propagation of
cluster fronts. An instability of the state of phase balance results in spatial front oscillations.
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I. INTRODUCTION

Spatiotemporal pattern formation in spatially extend
systems has been extensively studied during the last two
cades@1–3#. Currently, there is a growing interest in contro
ling and engineering pattern formation in such hig
dimensional nonequilibrium systems. The main objectiv
are the control of spatiotemporal chaos and the induction
stabilization of regular patterns. To achieve these goals,
ferent approaches have been proposed.

Various complex reaction-diffusion patterns can be
duced and turbulence can be suppressed by means of
odic external forcing@4–8#. Pattern formation in such sys
tems can also be controlled by feedbacks, where the for
signal is not fixed, but adjusted to the current state of
medium. Feedback techniques were originally designed
the control of dynamical systems with only a few degrees
freedom @9–11#, but later extended for the application
high-dimensional systems governed by partial differen
equations@12–21,50# . Some of the proposed techniques r
quire spatially resolved access to the medium under con
because the feedback is applied locally or the signal varia
is continuous in space. In contrast to such spatially resol
feedback methods, the controls based on a global feed
act on a single parameter that affects the dynamics of
entire medium. Global feedbacks previously were emplo
to suppress turbulent states in fluids@22#, plasma@23#, and
semiconductors@24#, and recently used to induce cluster pa
terns in chemical systems@25,26#. Other studies were de
voted to the global control of spiral waves in excitab
chemical media@27,28#, and to the stabilization of traveling
spots by global feedback@29,30#.

For oscillatory reaction-diffusion systems, a form of d
layed global feedback useful both for the effective suppr
sion of turbulence and for the generation of new spatiote
poral patterns has previously been proposed@17#. In this
method the forcing signal is directly proportional to the p
integral state of the medium. The feedback loop can be ea
implemented experimentally without the knowledge of t
governing equations and, in the case of unstable conditi
it automatically adjusts to a parameter drift of the syste
The delay can be used to effectively modify the phase r
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tion between the control signal and the oscillating patte
The related research was so far focused on the normal f
approach@17,31–33# that is valid close to the soft onset o
oscillations.

In this paper we apply this kind of delayed global fee
back to a realistic model describing the catalytic chemi
reaction of carbon monoxide oxidation on a platinum sing
crystal surface. This system is not close to a supercrit
Hopf bifurcation and the oscillations are not harmonic. W
also present a technique developed for the analysis
reaction-diffusion patterns with anharmonic oscillation d
namics. The objective is to extend the amplitude and ph
description used in the normal form approach to proble
involving anharmonic oscillation dynamics.

The paper is organized as follows: The considered sys
and the feedback method are introduced in Sec. II. In Sec
a transformation of chemical concentrations into amplitu
and phase variables is described. Simulation results for o
dimensional media are presented in Sec. IV, with an emp
sis on the analysis of different front instabilities of clust
patterns. In Sec. V results of numerical simulations in t
dimensions are reported. The paper ends with a discussio
the obtained results.

II. FORMULATION OF THE PROBLEM

The development of spatially resolving techniques such
photoemission electron microscopy~PEEM! @34# has made
surface chemical reactions a convenient system to pr
various aspects of nonequilibrium spatiotemporal pattern
mation. Among surface chemical reactions, the catalytic o
dation of carbon monoxide at platinum single-crystal s
faces has been studied most extensively and is
understood. The observed nonequilibrium phenomena
clude rate oscillations and spatiotemporal patterns, suc
rotating spiral waves, target patterns, standing waves,
turbulence@35,36#. The phenomena are similar to those o
served in the Belousov-Zhabotinsky reaction@37#, but the
reaction mechanism is comparatively simple and involv
only a few species. The reaction follows the Langmu
Hinshelwood~LH! scheme

* 1CO
COad,
©2001 The American Physical Society02-1
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TABLE I. Parameters of the model.

k1 3.143105 s21 mbar21 Impingement rate of CO
k2 10.21 s21 CO desorption rate
k3 283.8 s21 Reaction rate
k4 5.8603105 s21 mbar21 Impingement rate of O2
k5 1.610 s21 Phase transition rate
sCO 1.0 CO sticking coefficient
sO,1x1 0.6 Oxygen sticking coefficient

on the 1x1 phase
sO,1x2 0.4 Oxygen sticking coefficient

on the 1x2 phase
u0 , du 0.35, 0.05 Parameters for the

structural phase transition
D 40mm2 s21 CO diffusion coefficient
pO2

9.0031025 mbar O2 partial pressure
pCO 4.1531025 mbar CO partial pressure
u
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2* 1 O2→2 Oad,

COad1Oad→2* 1 CO2.

Here, * denotes a free adsorption site on the catalytic s
face. Due to a high energy barrier in the gas phase, CO
oxygen molecules have to~dissociatively! adsorb before the
reaction. Produced carbon dioxide almost immediately d
orbs into the gas phase leaving again free space for ads
tion. The system is maintained far from thermodynam
equilibrium by constant supply of fresh reactants and
moval of the product. Experiments performed in an UH
chamber under isothermal low-pressure conditionsp
,1023 mbar! have shown an asymmetric inhibition of a
sorption: preadsorbed CO molecules inhibit oxygen adso
tion but not vice versa. The LH mechanism in combinati
with the asymmetric inhibition of adsorption leads to a bis
bility between the mainly oxygen-covered, reactive state
the nonreactive CO-covered state.

Temporal rate oscillations in the CO oxidation require
additional mechanism. On a Pt~110! single-crystal surface
the mechanism for rate oscillations and related oscillation
the CO and oxygen coverage is provided by an adsorb
driven structural phase transition in the top substrate la
The clean Pt~110! surface reconstructs into a 132 ‘‘missing
row’’ structure. The reconstruction can be reversibly lift
by adsorbed CO molecules. Oxygen adsorption is stron
on the nonreconstructed 131 phase and therefore the pha
transition can cause periodic switching between the
states with different catalytic activity.

Spatial coupling in the system is provided by two diffe
ent mechanisms. Surface diffusion of adsorbed CO m
ecules gives rise to local coupling between neighbored s
Spatial coupling via the gas phase acts as a consequen
the mass balance in the reaction. Since the mean free pa
the gas phase is typically large in comparison to the cham
dimensions, local partial pressure variations that result fr
the consumption of the educts by the reaction quickly ext
to the whole system. Therefore, the gas-phase couplin
global. The interplay between local and global coupling e
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perimentally was shown to lead to phenomena such as
chronous oscillations@38# and standing waves@35,39#.

The first detailed mathematical model of the CO oxidati
reaction on Pt~110! has been developed by Krische
Eiswirth, and Ertl @40#. Later a modified version of this
model that included diffusion was used to study pattern f
mation for bistable, excitable, and oscillatory kinetics. The
studies demonstrated very good qualitative, sometimes e
quantitative agreement with the experimental observati
@41,42#. Experiments with oxygen island conversion cou
be quantitatively reproduced when a subsurface oxygen
cies was included in the model@43#. Other studies that con
centrated on pattern formation under global coupling
vealed a variety of structures including cluster patterns
standing waves@39,44–46#.

In the present study a three-variable form of this mode
used. The variablesu andv denote the surface coverage
carbon monoxide and oxygen, respectively. The variablew is
related to the local structural state of the surface and den
the local fraction of the surface area found in the nonrec
structed 131 structure. All three properties can vary in th
interval from 0 to 1. The equations are

]u

]t
5k1sCOpCO~12u3!2k2u2k3uv1D¹2u, ~1!

]v
]t

5k4 pO2
@ sO,1x1w1sO,1x2~12w!#~12u2v !22k3uv,

~2!

]w

]t
5k5 S 1

11expS u02u

du D 2w D . ~3!

For explanation of the parameters see Table I. Equati
~1!–~3! take into account the reaction, asymmetric inhibiti
of adsorption, desorption of CO, the phase transition of
platinum surface and surface diffusion of adsorbed CO m
ecules. Oxygen desorption and diffusion are negligible at
2-2
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PATTERN FORMATION IN A SURFACE CHEMICAL . . . PHYSICAL REVIEW E 63 066102
considered temperature (T5545 K!. For simplicity, surface
roughening, faceting, and formation of subsurface oxyg
are not taken into account in the present study.

The aim of our study is to show that pattern formation
the CO oxidation reaction can be effectively controlled a
various additional patterns can be induced by employing
layed global feedback control. Experiments employing su
a feedback loop are currently in progress. The sugge
setup is the following: A feedback loop is artificially applie
to the reaction by means of continuous computer-contro
variation of one of the partial pressures in the chamber.
external pressure variations globally affect the dynamics
the entire catalytic surface. A spatially resolving techniq
such as PEEM, is used to monitor the coverage patte
forming in the active surface area. For the generation of
control signal the spatial average of the measured PE
intensity is simultaneously computed. The continuous sig
that is the difference between the average and a refer
intensity, multiplied by a factor determining the feedba
intensity, is applied back to the reaction with a certain a
ficially introduced delay. The delay can be adjusted to c
trol the phase relation between the oscillating pattern and
feedback signal. The idea is that different patterns can
induced simply by variation of the two computer-controll
feedback parameters, the feedback intensity and the d
time.

As already noted, the reaction consumes reactants f
the gas phase and therefore an intrinsic global gas-phase
pling is always additionally present~some of its effects have
previously been investigated@44–46#!. In our investigations,
the intrinsic gas-phase coupling will be neglected becaus
is weak as compared with the typical feedback intensity l
els that can be achieved by modulating the gas supply ra

To approximately model the suggested global feedb
experiment, we assume in this paper that the CO partial p
surepCO in Eq. 1 is not constant but varies as

pCO~ t !5pCO
0 2m @ ū~ t2t!2uref#, ~4!

where ū(t)51/S*Su(x,t) dx denotes the spatial average
the CO coverageu at time t. The parameterm specifies the
feedback intensity,t is the delay, andpCO

0 is the CO partial
pressure for vanishing feedback,m50. Hence the CO partia
pressure in Eq. 1 is adjusted according to the difference
tween the integral delayed CO coverageū(t2t) and its ref-
erence valueuref . The reference value is chosen as the C
coverage in the unstable steady state in absence of feed
In the limit of a small delayt the feedback acts toward
stabilization of the target stateū5uref .

In both one- and two-dimensional numerical simulatio
of model ~1!–~4!, a second-order finite difference scheme
used for the approximation of the Laplacian operator wit
grid resolutionDx54 mm. The resulting set of ordinary dif
ferential equations is solved using an explicit Euler sche
with a fixed time stepDt50.001. The boundary condition
are either no-flux~Neumann! or periodic, and different initial
conditions are employed. Unless stated otherwise, the sy
size is 0.8 mm for one-dimensional and 0.830.8 mm2 for
06610
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two-dimensional simulations. Long integration time
t.5000 s ensure that transients have decayed at the en
each calculation. The model parameters~Table I! are chosen
in such a way that the system performs anharmonic lim
cycle oscillations that are stable in absence of feedback
our numerical study we keep constant all parameters, ex
the feedback intensitym and the delayt that will be system-
atically varied.

III. PATTERN CHARACTERIZATION

A powerful theoretical approach to understand spatiote
poral pattern formation is provided by the normal for
theory. The derivation of an amplitude equation leads t
simplified description of the universal properties of a syst
close to a bifurcation point@1,47# . The amplitude equation
of a field of diffusively coupled Hopf oscillators valid nea
the onset of oscillations is the complex Ginzburg-Land
equation ~CGLE!. The CGLE describes harmonic oscilla
tions in terms of their amplitude modulus and phase. T
oscillations observed in real experimental situations are u
ally anharmonic, so that the system is not close to a H
bifurcation. Nonetheless, the normal form theory is often
plied to interpret the experimental data even in such ca
Indeed, the predictions of the CGLE may remain quali
tively correct in a larger neighborhood of the bifurcation.

It would be convenient to have the amplitude and t
phase variable also defined for anharmonic oscillations
such a way that they correspond to the amplitude and
phase of quasiharmonic oscillations in the normal fo
theory. It should be noted that the local phases of gen
anharmonic oscillations were first introduced by Kuramo
@1# in his analysis of phase dynamics. However, only sm
amplitude deviations from the nonperturbed limit cycle we
then considered.

A recent approach to such a variable transformation w
undertaken by employing a frequency demodulation te
nique to filter relevant information from numerical and e
perimental data@8#. This technique uses a finite width fre
quency filter to extract the behavior of a certain mode in
patterns. The complex Fourier coefficients of this mode
computed from the time series at various locations in
patterns to provide a local phase and amplitude characte
tion of the dynamics. This technique is efficient when t
majority of the dynamical power is concentrated in a sin
mode, but it is also limited to this case. The time-resolv
description of oscillatory behavior requires extensive d
processing and is only achievable for sufficiently slow p
tern evolutions.

The variable transformation we present in this paper f
lows a different idea. It is an empirical method to transfo
a pair of model variables into an amplitude and a phase a
computational modeling. We cannot ensure that this trans
mation is generally applicable. However, when certain c
ditions on the spatiotemporal dynamics of the pattern un
analysis are fulfilled, the method turns out to be a useful t
for the time-resolved characterization of patterns involvi
anharmonic dynamics, as shown in the following section

When a system has periodic oscillatory dynamics in
2-3
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 63 066102
sence of spatial coupling, visualization of two variables
sufficient to capture the relevant dynamical features. In
projection plane of these two variables, the limit cycle yie
a closed trajectory. We choose the projection variables
such a way that this trajectory has no self-intersection.
shall further assume that, when spatial coupling is eventu
introduced, the local oscillations in the medium are n
greatly different from those that correspond to the unifo
limit cycle, except for relatively small localized areas whe
strong deviations from the uniform attractor may still occ
The projected uniform limit cycle can therefore be used a
reference for the characterization of dynamics in a spatiot
poral pattern.

The employed variable transformation is illustrated in F
1. Suppose thatu andw are the projection variables and th
reference limit cycle projection is the closed orbit shown
Fig. 1. We want to define forany stateP with coordinates
(u,w) in the projection plane a pair of new variablesR and
f that can be interpreted as an amplitude and a phase
responding to this local state of the system. To do this,
first choose some pointO inside the reference orbit and tak
it as the coordinate origin in the projection plane. Hence,
point P is characterized by a radius vector of lengthr5OP.
We notice the point Q where this radius~or it extension!
intersects with the chosen orbit. The lengthr ref5OQ deter-
mines the reference radius for the pointP. Next we mark
some ‘‘initial’’ point Q0 on the orbit and determine the tim
T̃ needed to reach pointQ along the reference cycle. Th
amplitude and the phase are then defined asR5r /r ref and
f52pT̃/ Tref , whereTref is the period of the reference lim
cycle.

Note that according to this definition, the amplitude isR
51 as long as the system stays on the reference limit cy
Moreover, for the motion corresponding to the referen
limit cycle, the phasef increases at a constant velocity wi
time and changes by 2p after each cycle period. When loca
oscillations are nearly harmonical and the reference orbit
circle with pointO in its center, the above definition yield

FIG. 1. Definition of the amplitudeR5r /r ref and phasef

52pT̃/ Tref variables for anharmonic oscillations.
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the usual phase and amplitude variables. The coordinate
gin O is best chosen as the unstable uniform steady stat
the system to guarantee that a local suppression of osc
tions indeed corresponds to a vanishing amplitudeR.

Below we apply this empirical amplitude-phase descr
tion to qualitatively interpret spatiotemporal patterns o
tained in our numerical simulations of the CO oxidation r
action with artifical global feedback. To obtain the referen
orbit we shall use the projection of uniform oscillations
the model on the plane with the variablesu andw, represent-
ing CO coverage and the fraction of the nonreconstruc
surface area.

It should be noted that when the feedback Eq.~4! is
present, it may significantly affect the shape of uniform o
cillations. Therefore we employ different reference orbits
different feedback parameters by generating a new refere
cycle following each fixed parameter simulation of th
model Eqs.~1!–~4!. This is done by an additional numerica
simulation of the model Eqs.~1!–~3! in absence of diffusion
(D50), where the feedback signal generated previously
the full pattern forming system is applied as externalpCO
forcing. The projection of the resulting attractor is period
and directly used as reference when the global oscillation
the asymptotic state of the respective full system are p
odic. In the examples encountered when the full system g
erated an aperiodic forcing signal the resulting attractor
the projection plane deviated only slightly from a period
limit cycle. In those cases the reference limit cycle was c
sen as the long-time average of the resulting projected
jectory.

IV. FEEDBACK-INDUCED PATTERNS IN ONE SPACE
DIMENSION

We have numerically examined feedback-induced patt
formation in the model described by Eqs.~1!–~4!. In this
section we present the results of numerical simulations
one-dimensional systems. The model parameters are give
Table I, and the fixed feedback parameters arepCO

0 54.15
31025 mbar anduref50.4097. Note that the parameters a
chosen in such a way that uniform oscillations are sta
when the feedback intensity vanishes. Periodic bound
conditions have been used, unless a different condition
specified. The simulations were continued until an asym
totical stable regime was reached after a transient. Mult
simulations at different values of feedback intensitym and
delay timet have been performed.

The results of our numerical investigations of on
dimensional systems are summarized in Fig. 2. This diag
shows the types of stable regimes reached after transien
the considered system. The delay time is measured in m
tiples of the natural oscillation period in absence of fee
back,T053.33 s~note that when feedbacks are operating
actual period of uniform oscillations is feedback depend
and will to some extent differ fromT0). The feedback inten-
sity in Fig. 2 is normalized to the equilibrium CO partia
pressurepCO

0 in the reaction chamber in absence of feedba
Note that the ratiom/pCO

0 yields an estimate of the relativ
variation of partial pressure caused by such a feedback.
2-4
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PATTERN FORMATION IN A SURFACE CHEMICAL . . . PHYSICAL REVIEW E 63 066102
Depending on the delay and intensity, the feedback
maintain uniform oscillations or induce various spatiotemp
ral patterns. Examining Fig. 2, we see that as the dela
increased, the diagram is approximately repeated at int
multiples ofT0 ~this trend is continued at larger delays, n
shown in Fig. 2!. However, the stability regions of the pa
terns other than uniform oscillations shrink at larger dela

Uniform oscillations are found in a large region of th
two-parameter plane. The uniform oscillations have stro
hysteresis~bold lines show the boundaries where unifor
oscillations set on when increasing the feedback intens
whereas dashed lines indicate the boundaries where suc
cillations break down as the feedback intensity is decreas!.
In the hysteresis regions the final pattern depends on
initial conditions because the uniform attractor coexists h
with the attractor of another pattern.

For comparison, we also show by the dotted line in Fig
the boundary where in absence of diffusion the unsta
steady state of the system becomes stabilized by the ap
feedback~the stabilization takes place at small delayst/ T0

,0.06 and large feedback intensitiesm/pCO
0 .0.11). In the

pattern forming system that includes diffusion the spatia
uniform suppression of oscillations on the entire surface
however not observed. Instead, at small delays the sys
evades the suppression of oscillations through the forma
of clusters.

Figure 3 displays three typical examples of different no
uniform feedback-induced patterns. In the pattern shown
Fig. 3~a! the medium is in the uniform state almost anywhe
except for a narrow interval with strong spatial variation.
we shall later see, this pattern corresponds to aphase flip
traveling across the medium. In contrast to this, the patter
Fig. 3~b! is characterized by a gradual spatial variation e
tending over the whole medium. We show below that su
patterns are found whendesynchronizationthrough the feed-
back is taking place. In Fig. 3~c! the pattern consists of larg
regions with almost uniform distributions separated by n

FIG. 2. Existence regions of various feedback-induced patte
in the one-dimensional system: uniform oscillations~white!, asyn-
chronous oscillations~dark gray!, and cluster patterns~light gray!.
Phase flips are observed in the hatched regions. The dashed
mark the borders of the hysteresis of uniform oscillations.
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row interfaces. Suchcluster patternsare also discussed
below.

A. Phase flips

As we have already noted, in this paper we consider o
the case when uniform oscillations are stable with respec
spontaneous phase modulation in absence of feedback.
pending on the choice of the initial and the boundary con
tions, traveling waves~and spiral waves in the two
dimensional system! can still be observed in this case
Sufficiently strong global delayed feedbacks suppress
such structures, so that only uniform oscillations are fou
inside the blank region in Fig. 2. After a transient, any init
condition eventually leads to uniform oscillations here. T
time needed to reach uniform oscillations greatly increa
near the instability boundaries of uniform oscillations.

At small feedback intensities corresponding to t
hatched areas in Fig. 2, either uniform oscillations or patte
of propagatingphase flipsare found in the simulations, de
pending on the initial conditions. To produce a phase flip
simulation is started with a constant phase gradient ofp
across the system. The feedback tends to establish uni
oscillations, but, if it is relatively weak, it cannot achieve th
in the whole medium. Thus, a narrow region with stro
concentration gradients is formed, see Fig. 3~a!. This region
travels through the medium.

To analyze the properties of such traveling patterns,
use the variable transformation technique described in S
III. After transformation to local phase and amplitude va
ables, the pattern of a phase flip takes the form displaye
Fig. 4~a!. We see that the oscillation phasef undergoes a
full rotation of 2p inside the nonuniform region whereas th
amplitudeR displays only small modulations. The states
the medium on the left and right side of the phase flip dif
by a phase shift of 2p only and hence are physically indis
tinguishable.

A phase portrait of the same structure is shown in F
4~b!. Here, the amplitudes and phases of all points along
phase flip are displayed in polar coordinates. The phasef of
a point is represented by the polar angle and the amplitudR
is the distance to the coordinate origin. The points accum
late in the state corresponding to the uniformly oscillati
regions.

Phase flips were first reported for the periodically forc
CGLE @4# ~see also Ref.@7#! and were systematically inves

s

nes

FIG. 3. Feedback-induced coverage patterns:~a! phase flip,~b!
asynchronous oscillations, and~c! a cluster pattern. For each patte
the values of the parameterst/ T0 andm/pCO

0 are, respectively,~a!
0.165, 0.012,~b! 0.781, 0.012, and~c! 0.045, 0.289.
2-5
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 63 066102
tigated for the CGLE in the presence of a global feedb
@31,33#. Remarkably, the amplitude and phase plots obtai
by the variable transformation in our model with anharmo
oscillations are very similar to the respective plots for t
CGLE with global feedback~cf. Fig. 4~a! and Fig. 4 in Ref.
@33#!.

The previous analytical investigations of phase flips in
CGLE with global feedback have revealed@31,33# that, de-
pending on the feedback parameters, a phase flip can
and reverse its direction of motion. Following Ref.@31#, a
phase flip is said to have positive velocityV if the phase is
increased by 2p after its passage and the velocity is negat
if the phase decreases by 2p behind it. With this in mind, we
have numerically examined the dependence of the prop
tion velocity of phase flips on the delay timet in the cur-
rently investigated model with anharmonic oscillations.
displayed in Fig. 5, the velocityV decreases for higher de
lays and changes its sign att/T0'0.155. Another prediction
of the study of the CGLE with global feedback is that, as
feedback intensitym is decreased, the width of the phase fl
grows asdx;m21/2 and in the limit m→0 the phase flip
transforms into uniform oscillations in a finite system. W
have checked that this effect is also observed for phase
patterns in the presently considered model.

FIG. 4. ~a! Spatial dependence of the amplitudeR ~solid line!
and the phasef ~dashed line! in a phase flip. The phase portrait~b!
shows the same data in polar coordinates. The same paramet
in Fig. 3~a!.

FIG. 5. Dependence of the velocity of phase flips on the de
time. The feedback intensity is constant,m/pCO

0 50.012.
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On the other hand, phase flips become unstable in
simulations if the feedback intensity exceeds a certain de
dependent threshold~see Fig. 2!. They dissappear throug
the formation of an amplitude defect if the feedback intens
is increased beyond the critical value. This process is a
lyzed in Fig. 6 by means of our amplitude and phase ch
acterization. Before the amplitude defect occurs the ph
variation is steepened, see Fig. 6~a!. Then at some momen
the oscillation amplitude drops down to zero inside the ph
flip. When this occurs the phase, which is not defined wh
the amplitude vanishes, makes a slip of 2p at one side of the
defect, as illustrated in Fig. 6~b!. After the phase slip, the
amplitude slowly approaches unity and the phase varia
smears out, eventually giving rise to uniform oscillation
This scenario is in perfect agreement with the disappeara
of phase flips in the CGLE under increasing global feedb
intensity@33# ~the destruction of phase flips by strong exte
nal forcing in the CGLE has also been subsequently
served@7#!.

B. Asynchronous oscillations

Patterns with smooth spatial gradients of chemical va
ables can be induced by the feedback in the desynchron
tion region displayed in Fig. 2. Below the dashed lines in t
region, asynchronous patterns develop starting from any
tial condition. The duration of the desynchronization proce
diverges for feedbacks of vanishing intensity. Applying t
transformation to local phase and amplitude variabl
asymptotic asynchronous patterns established in this reg
can be analyzed. Spatial profiles ofR andf in such a pattern
are shown in Fig. 7~a!. We note that only the local oscillation
phasef is varying in this pattern, whereas the amplitudeR is
almost constant. This means that all local oscillations co
spond to the same limit cycle. The phase profile sho
smooth variation. When the size of the medium was varied
simulations, the pattern always adjusted to the size of
medium, therefore lacking an intrinsic wavelength. In t
phase portrait representation of such a pattern all points
distributed on the unit circle, see Fig. 7~b!. However, not all
possible phases are occupied, and the density of points
creases towards the ends of the structure that correspon
the extrema of the phase profile. As time goes on, the st
ture rotates in the plane with constant velocity.

s as

y

FIG. 6. Destruction of a phase flip by strong global feedba
The time interval between the subsequent snapshots~a!–~c! show-
ing oscillation phases~dashed lines! and amplitudes~solid lines! is
3 seconds. The feedback parameters aret/ T050.167 andm/pCO

0

50.014. The initial phase flip was obtained using a slightly sma
feedback intensitym/pCO

0 50.012.
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PATTERN FORMATION IN A SURFACE CHEMICAL . . . PHYSICAL REVIEW E 63 066102
Under periodic boundary conditions, the total phase g
dient along the pattern always adjusts to an integer mult
of 2p given by the winding number of the initial phase di
tribution. For a nonzero winding number, the asympto
spatial profile of the phasef is linear, so that the tempora
shift between oscillations at different sites is proportional
their spatial distance. No-flux boundary conditions do n
conserve the winding number. In the latter case the final t
phase gradient does not exceed 2p.

An important consequence of the spatial desynchron
tion of oscillations is the accompanying breakdown of t
global oscillations that generate the feedback signal.
shown in Fig. 8, the amplitude of the feedback signal
creases as the desynchronization gradually develops in
system. Thus, the global feedback effectively induces
own breakdown. It should be noted that the feedback os
lations do not, however, completely vanish in the asympto
state. A small remaining feedback signal that compens
the synchronizing tendency of diffusion is needed to ma
tain the desynchronized state. Such desynchronization
nomena have previously been found in numerical invest
tions of the CGLE with global feedback@31#.

FIG. 7. ~a! Spatial dependence of the phase~dashed line! and
the amplitude~solid line! and the phase portrait~b! of a pattern of
asynchronous oscillations. A slightly perturbed uniform distributi
was taken as initial condition. The same parameters as in Fig. 3~b!.

FIG. 8. Breakdown of the feedback-induced CO pressure va
tions during the desynchronization of initially slightly perturbe
uniform oscillations. The feedback parameters aret/ T050.781 and
m/pCO

0 50.048.
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C. Cluster patterns

The third principal mechanism of feedback-induced p
tern formation involves clustering of oscillations. The clus
regimes include a variety of qualitatively different pattern
Their common feature is the presence of a small numbe
synchronized domains, occupied by one of two possible
cillatory states. No intrinsic spatial wavelength of the d
mains is observed. We divide different cluster solutions in
amplitude clusters, phase clusters, and cluster turbulenc

1. Amplitude clusters

In amplitude clusters, not only the oscillation phasesf,
but also the oscillation amplitudesR are different in the re-
gions occupied by the two different states, as shown in F
9~a!. Thus, uniform oscillations within two different cluster
correspond to different coexisting limit cycles of equal p
riod. The phase shift between the oscillations in the two cl
ter states~about 0.88p in the example shown! is constant,
but depends on the feedback parameters. At the inter
between two stationary cluster domains, the phasef is mo-
notonously increased and the amplitudeR undergoes smal
variations. The total size ratio of the domains that belong
each state is independent of the initial domain sizes and
a characteristic value that changes with the feedback par
eters. The difference in the contributions to global oscil
tions coming from the two clusters results in period-doub
oscillations of the control signal, see Fig. 9~b!. Amplitude
clusters were previously seen in the simulations of the CG
with global feedback@33#. They were also investigated in th
studies of the CO oxidation reaction under intrinsic ga
phase coupling@44# and similar properties were then foun

2. Phase clusters

Phase clusters are characterized by equal oscillation
plitudes and a constant phase shift between the cluster st
The oscillations in both cluster states correspond now to
same limit cycle, but are of opposite phase. The phase fr
that separate different cluster domains exhibit rich behav
as demonstrated below. At high feedback intensities, stat

a-

FIG. 9. ~a! Phase and amplitude profiles of amplitude cluste
The reference limit cycle for the variable transformation is chos
as the attractor of the cluster state with the higher amplitude.
flux boundary conditions are used. Frame~b! shows global oscilla-
tions corresponding to the pattern in frame~a!. The feedback pa-
rameters aret/ T050.045 andm/p CO

0 50.072.
2-7
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 63 066102
ary phase clusters prevail, see Fig. 10~a!. The asymptotic
spatial formation of the domains in such a pattern depe
on the initial conditions. However, the total fraction of th
medium occupied by the domains of each cluster is balan
a phenomenon that, following Ref.@26#, we call phase bal-
ance. When a simulation is started with a different initial siz
ratio, the fronts between the cluster domains slowly drift a
finally come to rest in the state of phase balance. As a c
sequence, the average that generates the feedback sig
periodic and resonantly oscillates with a frequency tw
larger than that of the periodic local oscillations inside t
cluster domains.

(a) Bifurcation to traveling phase clusters.Stationary
phase clusters can undergo a transition to traveling clus
an example of which is shown in Fig. 10~b!. Periodic bound-
ary conditions are necessary for the observation of s
propagating patterns, because they preserve the size rati
tween the clusters. This transition is related to a symme
breaking bifurcation, known as the nonequilibrium Isin
Bloch bifurcation @48# that leads to fronts traveling with
constant velocity. The two branches of this pitchfork bifu
cation correspond to counter-propagating fronts with eq
absolute velocity and opposite sign. The dependence of
absolute velocity of traveling phase clusters on the feedb
intensity at a fixed delay is shown in Fig. 11. We see tha
bifurcation from stationary~Ising! fronts to traveling~Bloch!
fronts occurs when the feedback intensity is decreased.

It is interesting to compare the phase and amplitude pr
erties of oscillations in stationary and traveling phase-clu
patterns. The phase portraits of such patterns are show
Fig. 12. In the stationary cluster pattern displayed in F
12~a!, the two cluster states correspond to the ends of
S-shaped structure where the points accumulate. The o
points in this structure correspond to the front that separ
the clusters. Note that the S-shaped structure goes thro
the origin of the plane, i.e., there is a point inside the fro
where the oscillation amplitudeR vanishes. At this point the
phasef undergoes a jump byp.

At the transition to traveling Bloch fronts a topologic
bifurcation is observed in the phase portrait. When the bif
cation occurs, the S-shaped curve splits into two differ

FIG. 10. Phase clusters with~a! stationary~Ising! phase fronts
and ~b! traveling ~Bloch! phase fronts. Both diagrams display th
oscillation phasef in a time interval of 50 s. The system size is 0
mm. The values of the parameterst/ T0 and m/pCO

0 are, respec-
tively, ~a! 0.105, 0.241, and~b! 0.120, 0.096.
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branches that connect the two cluster states. Farther a
from the bifurcation point, the fronts between the clus
states are mapped almost to a circle, as shown in Fig. 12~b!.
The phasef undergoes a continuous rotation with a total
p when traversing such a Bloch front, whereasR shows only
small modulations. By application of the transformation
phase and amplitude variables, we have thus found that
properties of such Ising and Bloch fronts are close to th
found for the amplitude equation of oscillatory media und
external forcing@48#.

(b) Bifurcation to oscillating phase clusters.Furthermore,
we have observed another interesting phase front instab
a Hopf bifurcation of a front that separates two clusters. T
origin of this bifurcation is an instability of the phase balan
that gives rise to periodic oscillations of the cluster size ra
As a consequence, cluster fronts periodically change t
spatial position, see Fig. 13~a!. We define the front position
as the location within the front where the amplitudeR is
minimal. The period of the front oscillations comprises se
eral local oscillations.

Figure 14 shows the dependence of the amplitude of fr
oscillations on the feedback intensity at a constant delay.
bifurcation from a stationary front to an oscillating clust
front occurs when the feedback intensity is decreased.
parabolic fit~solid line in Fig. 14! is in good agreement with

FIG. 11. Long-time average of the phase front velocity in clus
patterns as function of the feedback intensity. The data points w
obtained numerically with a system size equal to 0.4 mm. The de
time is kept constant,t/ T050.105.

FIG. 12. Phase portraits of cluster patterns with~a! a stationary
Ising phase front and~b! traveling Bloch phase fronts. The values
the parameterst/ T0 andm/pCO

0 are, respectively,~a! 0.045, 0.289,
and ~b! 0.120, 0.096.
2-8
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PATTERN FORMATION IN A SURFACE CHEMICAL . . . PHYSICAL REVIEW E 63 066102
the numerical data close to the bifurcation point where fr
oscillations are harmonic. Hence, this is a supercritical H
bifurcation for the fronts. At larger distances from the bifu
cation point, the front oscillations become strongly anh
monic and zigzag shaped, see Fig. 13~a!. The spatial ampli-
tude profile of such an oscillating front is time dependent.
the turning points of the front the amplitudeR drops down
and nearly vanishes. The control signal generated by
oscillating clusters becomes quasiperiodic after the Hopf
furcation, see Fig. 13~b!. The turning points of the phas
front correspond to the points of maximal amplitude in t

FIG. 13. ~a! Space-time plot of front oscillations in a cluste
pattern with no-flux boundaries. The oscillation amplitudeR is plot-
ted using a linear gray-scale map, with white color correspondin
the vanishing amplitude.~b! The respective quasiperiodic tempor
variation of the feedback signal. The feedback parameters
t/ T050.105 andm/pCO

0 50.096.

FIG. 14. Oscillation amplitude of a cluster front as a function
the feedback intensity. The data points are obtained numerically
a system size equal to 0.4 mm and no-flux boundary conditio
The solid line is a parabolic fit of the data points close to
bifurcation point. The delay time is kept constant,t/ T050.105.
06610
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feedback oscillations. The change in the control signal p
vides a feedback on the phase front and hence is respon
for its turnaround. Note that the local oscillations in Fi
13~a! are also slightly quasiperiodic due to the quasiperio
icity of the driving feedback signal. Though here the loc
amplitude differs slightly in the two oscillating cluster state
we still classify them as phase clusters because t
smoothly originate from stationary phase clusters and th
phase and amplitude properties are similar.

3. Cluster turbulence

Starting from strongly anharmonic front oscillations,
suitable change of feedback parameters leads to turbu
phase front behavior. An example of such irregular fro
behavior is shown in Fig. 15, where a front separating t
p-shifted clusters branches out in a cascade of reproducti
The distribution of the oscillation amplitude is displayed
Fig. 15~a!, and frame~b! shows the phase distribution in
rotating coordinate frame. The correspondent chaotic glo
oscillations are shown in frame~c!. Such cluster turbulence
does not spontaneously develop from a completely unifo
oscillating state, i.e., a sufficiently strong local perturbati
is needed to initiate the cascade. The fronts not only rep
duce, but also can die out. Once initiated, the cluster tur
lence can thus either spread over the whole medium, or
after some time.

to

re

f
or
s.

FIG. 15. Space-time plots of the reproduction cascade in a
bulent cluster pattern with no-flux boundaries.~a! Oscillation am-
plitude R and ~b! phasef in a time interval of 500 s. The phas
distribution is displayed in a coordinate frame rotating with t
period of the reference limit cycle. The corresponding chaotic fe
back signal is shown in frame~c!. The feedback parameters a
t/ T050.126 andm/pCO

0 50.193.
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 63 066102
The velocities of traveling fronts in this turbulent regim
are almost constant. A front travels for some time, until
amplitude defect with vanishing amplitudeR develops inside
it. As a result, the front may split or die out. Phase fronts a
sometimes emerge from smaller heterogeneities in the am
tude and the phase without directly originating from an a
plitude defect. The irregular front behavior leads to turbul
deviations from the cluster states. Hence, the local osc
tions are synchronous only inside cluster regions that w
not visited by a front for several oscillation cycles.

To summarize our results on cluster patterns, we show
Fig. 16 the existence regions of different cluster pattern
small delays. We have found that the kind of the develop
cluster pattern strongly depends on the initial and bound
conditions. The dashed line in Fig. 16 indicates the stab
boundary of uniform oscillations with respect to small pe
turbations. On the right side from the dashed line both clu
patterns and uniform oscillations are possible, depending
the initial conditions. Note that cluster turbulence always
exists with uniform oscillations. The boundary conditions a
important. For instance, in the region in the diagram wh
amplitude clusters are present, they were typically found
no-flux boundary conditions. For periodic boundary con
tions, special initial conditions were needed here to obt
amplitude clusters, and traveling phase clusters are usu
instead found. In the phase cluster region, for most param
values the front behavior strongly depends on both the in
and the boundary conditions. Stationary phase clusters
only found above the dotted line in the diagram.

As already mentioned, traveling clusters require perio
boundary conditions that maintain the phase balance. Fo
same parameter values, no-flux boundaries either lead to
formation of stationary amplitude clusters as the asympt
state, or to the front behavior shown in Fig. 17~a!. When the
first front collides with the left boundary, further moveme
of the second front would lead to phase imbalance. Inste
during a transient process, where in a part of the medium
oscillations strongly deviate from the former cluster state
new cluster front is created. Again both clusters travel w
constant velocity until the procedure repeats at the next f
collision with the boundary. Figure 17~b! shows an example

FIG. 16. Existence regions of different cluster patterns at sm
delay times.
06610
n

o
li-
-
t
-

re

in
at
g
ry
y
-
er
n
-

e
e
r

-
in
lly
ter
l
re

c
he
he
ic

d,
e
a
h
nt

of breathing traveling clusters—this pattern develops whe
traveling cluster undergoes a secondary Hopf bifurcation.
shown in Fig. 17~c!, even more complex situations, whe
one of the fronts is steadily traveling and the other front
oscillating while traveling, are possible. The global oscil
tions of all three patterns in Fig. 17 are quasiperiodic.

V. FEEDBACK-INDUCED PATTERNS IN TWO SPACE
DIMENSIONS

We have numerically explored feedback-induced patt
formation in Eqs.~1!–~4! also in two space dimensions. Fo
the two-dimensional simulations we have chosen a sligh
different CO pressure at vanishing feedback,pCO

0 54.19
31025 mbar, in order to avoid a pressure drift into the r
gime of diffusion-induced turbulence, which in two dime
sions occurs belowpCO'4.1531025 mbar. The other pa-
rameters are as in the one-dimensional case, except foruref
50.4484 that again corresponds to the unstable steady s
For the two-dimensional simulations, the natural period
T055.21 s.No-flux boundary conditions are imposed at a
boundaries.

Figure 18 shows four examples of different tw
dimensional patterns. In the upper and lower rows we d
play spatial distributions of the oscillation phase and am
tude, respectively. In absence of feedback, unifo
oscillations are stable, but a rotating spiral wave can be p
duced by an appropriate choice of the initial conditions, s
Fig. 18~a!. The oscillation amplitude vanishes in the spir
core and the phase changes continuously when traversin
spiral arms. By application of feedback and variation of
parameters, the spiral wave can be suppressed and uni
oscillations recovered~not shown!. Phase-flip waves@Fig.
18~b!#, asynchronous oscillation patterns@Fig. 18~c!#, or
~quasi-! stationary cluster patterns@Fig. 18~d!# could also be
induced by appropriate feedbacks. The properties of unifo
oscillations, phase flips, and desynchronized oscillations
similar to those of their one-dimensional counterparts.

The development of the asynchronous pattern in F
18~c! from slightly perturbed uniform initial conditions lead
to the breakdown of global oscillations. As in the on

ll

FIG. 17. Space-time plots of the amplitude in different clus
patterns. Traveling phase clusters~a! under no-flux boundary con
ditions, the time interval is 500 s. Drifting breathing clusters~b! and
clusters with different behavior of the two fronts~c! in a system
with periodic boundary conditions, each within the time interval
200 s. The values of the parameterst/ T0 and m/pCO

0 are, respec-
tively, ~a! 0.114, 0.072,~b! 0.030, 0.193, and~c! 0.039, 0.193.
2-10
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PATTERN FORMATION IN A SURFACE CHEMICAL . . . PHYSICAL REVIEW E 63 066102
dimensional case, the final asynchronous pattern is cha
terized by a constant amplitude and slow phase gradient
the desychronization regime, the feedback cannot des
spiral waves and they continue to represent a possible s
solution.

The phase cluster pattern in Fig. 18~d! consists of two
p-shifted phase states separated by an almost statio
phase front. The clusters evolved from a nonuniform init
distribution. After the quick formation of the clusters, a slo
drift of the front occurs, tending to minimize the front cu
vature while preserving the phase balance. The effect of
front curvature is the only essential difference compared
the corresponding one-dimensional stationary phase clu
pattern shown in Fig. 10~a!. Stationary amplitude cluster
were also observed in two-dimensional simulations and
hibited similar behavior as in the one-dimensional case.

After a bifurcation to traveling phase fronts, counte
propagating front parts can develop in a two-dimensio
pattern~as previously noticed in externally forced oscillato
media@48#!. The pattern developing under such conditions
shown in Fig. 19. The initial conditions in the upper a
lower half of the originally straight front were chosen
correspond to the two branches of the pitchfork bifurcati
see Fig. 19~a!. Because the two ends of the front propagate
opposite directions, a spiral wave develops in the central

FIG. 18. Two-dimensional patterns:~a! a spiral wave in the
absence of feedback,~b! a phase flip,~c! asynchronous oscillations
and~d! a cluster pattern. The snapshots of the oscillation phase~top
row! and amplitude~bottom row! distributions are displayed in gra
scale. The system size is 0.830.8 mm2 for each pattern, except fo
the pattern~b! where it is 1.631.6 mm2. The values of the param
eterst/ T0 andm/pCO

0 are, respectively,~a! 0, 0, ~b! 0.192, 0.010,
~c! 0.768, 0.024, and~d! 0.067, 0.119.

FIG. 19. Formation of a spiral wave from a cluster pattern w
counter-propagating front parts. Consecutive snapshots of the o
lation phasef are shown at equal time intervals of 96 s. The p
rameter values aret/ T050.067 andm/pCO

0 50.024 .
06610
c-
In

oy
ble

ry
l

e
o
ter

x-

l

s

,
n
rt

@Fig. 19~b!–19~d!#, and later spreads out over the whole m
dium. This process is accompanied by the breakdown of
global oscillations. As the spiral grows, the fraction of t
medium occupied by the fronts with rapid phase variat
slowly increases at the expense of the areas occupied by
two uniform phase states. Eventually they become too sm
to generate a feedback signal sufficient to maintain the c
ters. Therefore, the nonequilibrium Ising-Bloch bifurcatio
provides an additional scenario for the breakdown of the g
bal feedback. The final state is characterized by a spiral w
with continuous phase distribution and nearly vanishing g
bal oscillations, as in absence of global feedback.

The pattern displayed in Fig. 20 was obtained with fee
back parameters corresponding to the case of cluster f
oscillations in one space dimension. A nonuniform phase
amplitude distribution was taken as initial condition. Th
frames~a! and ~b! show the phase~top row! and amplitude
~bottom row! distributions at time moments separated by h
the oscillation period. Instead of front oscillations, which a
seen in this case in the one-dimensional system and are
companied by quasiperiodic variations of the global cont
signal, a different kind of pattern is observed in two dime
sions. The area occupied by each of the clusters in Fig. 2
almost balanced and no significant oscillations of the fro
take place. The global oscillations are almost periodic he
The front separating the two clusters is broken into parts~see
the bottom row in Fig. 20!. As time goes on, the amplitude
in different front parts periodically drop down at opposi
oscillation phases. On a large time scale of several hund
oscillation periods, weak drift of the clusters and slo
gradual variation of their shapes are observed. The split
of the front into different parts is a two-dimensional pheno
enon that is typically observed starting from nonuniform in
tial conditions. However, if a simulation is started with
straight front, it remains stable with respect to small pert

il-
-

FIG. 20. Snapshots of the oscillation phase~top row! and am-
plitude ~bottom row! distribution in a cluster pattern with time
dependent front profile. The time interval between the snapshot~a!
and ~b! is half of the oscillation period in the clusters. The para
eter values aret/ T050.067 andm/pCO

0 50.072.
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 63 066102
bations and shows periodic oscillations, as in the correspo
ing one-dimensional case.

When cluster fronts show irregular motion in one spa
dimension, the respective two-dimensional clusters also
hibit complex turbulent evolution. As an example, two su
sequent snapshots of a turbulent cluster pattern are show
Fig. 21 ~top and bottom rows again correspond to the ph
and amplitude distributions!. Each cluster consists of differ
ent patches that continuously vary their shape while the s
rating fronts propagate through the medium. The front pro
gation occurs at an almost constant velocity in the pla
front parts. Turbulence is maintained in this system throu
repeated popping up of bubblelike domains with the oppo
phase in the region occupied by any of the two phase c
ters. These bubbles or spots grow for a few oscillation cyc
and eventually merge with the larger cluster patches. On
other hand, cluster patches can also shrink and disapp
New cluster spots usually originate at the locations that w
previously visited by the fronts, where amplitude and ph
heterogeneities were left. Uniform oscillations are stable
this parameter region and to initiate a turbulent cascade,
ficiently strong local perturbations must be applied to
uniform state.

VI. DISCUSSION

We have shown by means of numerical simulations o
realistic model that pattern formation in the catalytic C

FIG. 21. Turbulent cluster pattern. The two consecutive sn
shots of the oscillation phase~top row! and amplitude~bottom row!
distributions are separated by a time interval of two oscillation
riods. The parameter values aret/ T050.067 andm/pCO

0 50.024.
ce
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oxidation can be effectively controlled by implementation
a delayed global feedback. Even though the applied feedb
is global, it allows one to control spatial features by t
appropriate choice of the feedback parameters. In the c
under study, when uniform oscillations are stable in abse
of feedback, variation of the feedback intensity and the de
time allows us to produce various structures, including ph
flips, asynchronous oscillations, and different kinds of clus
patterns.

In addition to the model calculation results we have p
sented an empirical variable transformation technique
makes possible a time-resolved phase and amplitude cha
terization of anharmonically oscillating patterns. This tec
nique also allows a direct comparison to previous studies
delayed global feedback control based on the normal fo
approach. The properties of the phase flips and the de
chronization breakdown of the global oscillations observ
in our numerical observations are in good agreement w
previous studies of the globally coupled CGLE@31,33#. The
observed amplitude clusters resemble the respective clu
solutions in the frame of the amplitude equation@45#. Sta-
tionary two-phase clusters are similar to those found for
photosensitive Belousov-Zhabotinsky reaction@26# under
global feedback in absence of a time delay. Traveling a
oscillating two-phase clusters represent, as far as we kn
new kinds of patterns induced through the action of glo
feedback. We have also found cluster turbulence that re
sents another interesting example of complex spatiotemp
behavior induced by global delayed feedbacks. The turbu
formation of cluster spots is different from the birth of spo
through self-replication that was previously reported
bistable systems@49#.

Though our systematic study of feedback-induced p
terns has been conducted using a particular model of a
face chemical reaction, we expect that such phenomena
typical for many reaction-diffusion systems in the presen
of delayed global feedbacks. Indeed, some two-phase clu
patterns have been recently observed in experiments with
light-sensitive Belousov-Zhabotinsky reaction under glo
feedback without time delay@25# and under external forcing
@6,8#. The experiments with artificial global feedbacks in su
face chemical reactions are in progress.
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