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Pattern formation during the oscillatory oxidation of on Pt ring-electrodes in theH2
presence of electrosorbing ions was studied under potentiostatic control for three di†erent
positions of the reference electrode (RE). The position of the RE crucially a†ects the degree
of the global feedback which is imposed by the potentiostatic operation mode, and the
three conÐgurations selected corresponded to zero, maximum and intermediate global
coupling. In the absence of global coupling, “communicationÏ among di†erent positions
occurs exclusively through migration coupling (the electrochemical counterpart to
di†usion in reactionÈdi†usion systems). In this case, spatially inhomogeneous oscillations
that were attributed to a spatial bifurcation of the homogeneous limit cycle were observed
throughout. This implies that the system is BenjaminÈFeir unstable. For the strongest
global coupling adjustable, travelling pulses were found that emerged in a wave
bifurcation with n \ 1 from the homogeneous steady state. The pulses exhibited
modulations in velocity and width that most likely resulted from the interaction between
inhomogeneities of the catalytic surface and the nonlinear reaction dynamics. In the case
of an intermediate global coupling strength, a diversity of spatio-temporal motions was
observed. The dynamics ranged from pulses over target patterns and so-called asymmetric
target patterns to mixed states where two or three of these states alternate. For some
parameters these mixed states were in addition separated by bursts of the system to a
nearly homogeneous unreactive state.

1. Introduction
The vast majority of electrochemical systems undergo dynamic instabilities resulting, e.g., in sus-
tained temporal oscillations, bistability or spatio-temporal patterns (for recent review articles see
ref. 1È3). In general, these phenomena are caused by the interaction between nonlinear electrode
kinetics and electric properties of the entire system, most importantly the potential drop through
the electrolyte. This second property makes pattern formation in electrochemical systems
extremely sensitive to the relative arrangement of working electrode (WE), counter electrode (CE)
and reference electrode (RE). In particular, it facilitates experimental studies of pattern formation
in the presence of various spatial couplings.

To make this clear, let us review the mechanism of coupling among reacting sites in electro-
chemical systems. The central variable for pattern formation in electrode reactions is the potential
drop across the double layer, and di†erent locations of the electrode are coupled through the/DL ,
electric Ðeld in the electrolyte. Thus potential changes at some location of the WE are felt rapidly
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at other locations. The coupling is non-local because its e†ect is felt by a whole neighbouring
range (in some geometries by the whole electrode) but with decreasing strength for increasing
distance.

The electric Ðeld or, equivalently, the potential distribution in the electrolyte is determined
mainly by the potential of the WE and CE and the relative locations of these electrodes. Since the
CE constitutes an equipotential plane, a pattern in that establishes at the WE exists all over/DLthe electrolyte up to the CE, though the pattern smooths and its amplitude diminishes with
increasing distance from the WE. In the following, we only consider situations in which the WE
and the CE are parallel to each other. Then, the distance between the two electrodes determines
the range of the coupling. It is maximum if this distance is much larger than the lateral extension
of the working electrode and becomes more localised for smaller distances. This coupling through
the electric Ðeld is always e†ective in an electrochemical experiment, and is referred to as migra-
tion coupling. Thus, in electrochemical systems migration coupling takes the role of di†usion
coupling in reactionÈdi†usion systems.

In a potentiostatic experiment, the voltage between the WE and the RE is kept constant. In
general, the RE “sees Ï the potential at a certain location in the electrolyte. If this location is behind
the CE (see e.g. the external RE in Fig. 1), then it is located in an equipotential plane parallel to
the electrode, and the coupling remains una†ected by the RE. If, on the other hand, it is located
between the WE and the CE, e.g. to minimize the voltage drop through the electrolyte (see RE(2)
in Fig. 1), the potential at the position of the RE is altered by any local change of the double layer
potential (because the latter a†ects the potential distribution in the entire electrolyte up to the
CE). As a consequence, the actual voltage between the WE and the RE di†ers from the set voltage,
and the potentiostat changes the potential of the WE. In other words, charge is pumped into the
entire double layer. If the distance between every position of the WE and the RE is equal, the
potential at the position of the RE is a function of the average double layer potential, and the
feedback by the potentiostat imposes a global coupling on the system. The strength of the coup-

Fig. 1 Schematic view of the experimental set-up. WE: working electrode, a rotating Pt ring-electrode
embedded into a TeÑon body, RE: reference electrode. Two types of RE were used : (1) a elec-Hg/Hg2SO4trode in a separate compartment (external RE) and (2) a Ag/AgCl electrode (RE(2)) put on the axis of the ring
and close to the WE with the help of a glass (HaberÈLuggin) capillary. In one set of experiments the distance
between RE(2) and the plane of the WE was 3 mm, in another set it was 13 mm. CE: counter electrode, a Pt
ring. MP: potential micro-probe.
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ling is a function of the distance between the WE and the RE: The closer the WE and the RE are,
the stronger is the global coupling.

In summary, the distance between the WE and the CE determines the nonlocality of the migra-
tion coupling. The distance between the WE and the RE determines the strength of an additional
global coupling.

Global constraints exist in a variety of physical and chemical systems. Among them are cata-
lytic reactors, in which the external constraint stems from the electric control of the
temperature4h6 or in which the global coupling is due to fast mixing of the gas phase,7,8 gas-
discharge devices,9 semiconductor systems10 or ferromagnetic systems.11 Experimental and theo-
retical studies of these systems revealed a rich plethora of spatiotemporal patterns (see, e.g. ref. 6, 9
and 12È24).

Concerning electrochemical systems, there are some examples demonstrating the impact of
global coupling on pattern formation in the bistable and the oscillatory region. The pioneering
experiment goes back to Otterstedt et al. who observed pulses travelling around Co electrodes
during electrodissolution of the electrode.25 In later studies these authors also report more
complex motions in the same system.26,27 Stationary domains were found during the reduction of
persulfate28 and the electrooxidation of Standing waves formed during formic acid oxida-H2 .3,29
tion when a close reference electrode was used.30 In the bistable region of this reaction, fronts
could be remotely triggered,31 another peculiar manifestation of global coupling. The di†erence
between the impact of global coupling in electrochemical systems with an N- and an S-shaped
current potential curve is discussed in ref. 32.

In this contribution we extend these studies on the impact of global coupling on patterns in
electrochemical systems. The system under consideration is the oscillatory oxidation of on PtH2ring-electrodes. By adjusting three di†erent positions of the RE, the strength of the global coup-
ling is varied. In the Ðrst set of experiments the RE is located behind the CE. Thus, this system can
be viewed as a “reference systemÏ without global coupling. In the second set of experiments, the
RE is placed on the axis of the WE at approximately the closest distance that can be adjusted.
Finally, an intermediate distance between the WE and the RE, and hence also an intermediate
strength of the global coupling is realised. Besides some of the already known manifestations of
global coupling, other novel wave types are reported.

2. Experimental

A schematic view of the experimental set-up is shown in Fig. 1. A rotating Pt ring (outer diameter
30 mm, width 1 mm) embedded into a TeÑon cylinder served as the working electrode (WE). Two
di†erent conÐgurations were used for the reference electrode (RE). Either a Ag/AgCl electrode
(RE(2)) was put into a J-shaped glass capillary (HaberÈLuggin capillary) whose tip was located on
the axis of the WE and adjusted at two di†erent distances (namely 3 and 13 mm^ 0.2 mm) to the
plane of the WE, or a reference electrode in a separate compartment (external RE)Hg/Hg2SO4that was connected to the main compartment below the plane of the CE was used. The CE, a 1
mm thick Pt wire bent to a ring of 65 mm in diameter, was located parallel and at a distance of 45
mm to the WE.

To monitor the angular potential distribution in front of the WE, the tip of a second glass
capillary equipped with an Ag/AgCl electrode (the potential micro-probe, MP) was placed 1
mm^ 0.2 mm below the Pt ring (WE). During the experiments the WE was rotated at 20 Hz, and
the voltage between the MP and the WE was measured with an acquisition rate of 1 kHz (i.e. 50
points/rotation), which allowed us to construct a spatiotemporal picture of the potential in front
of the WE. As the resistance between the MP and the WE was negligible, the measured voltage
represents the local potential drop across the double layer (called double layer potential, /DL ,
below) to a good approximation. For further experimental details see ref. 29 and 33.

The chemicals, (5N, Linde), (p.a., Merck), HCl (p.a., Merck) and (p.a., Merck)H2 H2SO4 CuSO4were used as received and solutions were prepared from millipore water (suprapure system, Milli-
Q). The electrolyte used in all experiments consisted of 0.5 mM 0.1 mM HCl and 0.025H2SO4 ,
mM saturated with which was continuously bubbled through the cell during theCuSO4 H2 ,
experiments.
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Prior to each experiment the base electrolyte (0.5 mM was purged with in order toH2SO4) N2remove dissolved oxygen. Then, the Pt working electrode was electrochemically cleaned through
fast voltammetric scans for 1 h between the potentials at which hydrogen and oxygen evolution
set in. Afterwards, the electrolyte was saturated with and HCl and were added. TheH2 , CuSO4dynamic behavior was investigated under potentiostatic conditions, i.e. during one experiment the
voltage between the WE and the RE (either the external RE or RE(2), vide supra), U, was kept
constant by means of a potentiostat (FHI electronic laboratory).

Concomitant to the oxidation at the working electrode, Cu was deposited on the CE. Con-H2sequently, the Cu concentration changed slightly on the timescale of hours, being somewhat lower
at the end of the experiment than in the beginning. However, the change in Cu concentration was
slow compared to the characteristic time (e.g. the oscillation periods) of the phenomena studied.
Thus, in the time window in which a certain time series was recorded the parameters of the system
were constant to a very good approximation. The long-time drift in the Cu concentration resulted
in the same dynamic behavior being found at somewhat shifted values of the external potential U
when repeating the experiment after an hour. Also, on di†erent days, the quantitative values of U
at which a certain behavior was found varied somewhat, most likely due to slight di†erences in the
roughness of the surface. But the qualitative dynamics, i.e. the types and sequences of dynamical
states observed, were well reproducible.

3. Results
In the following we describe pattern formation during the oscillatory oxidation as a functionH2of the external potential for the three di†erent positions of the RE used. Firstly, the external RE
is considered, and thus the case without global coupling. Then, we investigate the behavior for
the closest distance between the WE and the RE, and thus the strongest coupling that can be
adjusted. Finally we look at the dynamics in the case of intermediate coupling strength.

3.1 External reference electrode

In Fig. 2 a currentÈvoltage (I/U) curve recorded during a potential scan in the positive direction is
displayed. The curve represents a rough picture of the global behavior that is also found under
stationary conditions. At low values of the applied potential a stable stationary Ðxed point exists
which undergoes an instability that gives way to large amplitude oscillations. Directly beyond the
bifurcation, the oscillations possess a very long period whereby the current remains quasi-
stationary close to the former Ðxed point for most of the oscillation period. From this quasi-
stationary state the trajectory spirals out exhibiting high frequency oscillations with small but
slowly increasing amplitude (cf. Fig. 3a) until the system undergoes a large excursion to high
values of the current density from where it returns back to the quasistationary state. This behavior
suggests that the oscillations are born in a homoclinic bifurcation. For increasing external voltage

Fig. 2 I/U potentiodynamic proÐle of a rotating Pt ring-electrode during the oxidation reaction in 0.5H2mM solution in the presence of 0.025 mM and 0.1 mM HCl ; rotation speed of the electrode :H2SO4 CuSO420 Hz; scan rate : 50 mV s~1. The external reference electrode was used, scan region : 0.33 to 2.23 V.
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Fig. 3 Spatio-temporal dynamics in the oscillatory region under potentiostatic conditions with the external
RE. External voltage U : 2.05 V vs. SHE, other conditions as in Fig. 2. (a) Time series of the global current. (b)
PositionÈtime plot of the local double layer potential as measured with the potential micro-probe In(UMP(x,t)).
the rainbow colour scale red denotes the highest potential value and blue the lowest one. (c) Plot of the
micro-probe potential as a function of time. (d) PositionÈtime plot of the inhomogeneously oscil-(UMP(x,t))
lating part of (b) obtained by subtraction of the homogeneous part from the micro-probe potential (UMP(x,t)

(e) Plot of the inhomogeneously oscillating part of the micro-probe potential as a function of[ SUMP(t)Tx
).

time.

the oscillation period becomes shorter, while the amplitude stays approximately constant up to
the high potential limit of the oscillations where the limit cycle disappears in a second hard
bifurcation and the behavior becomes stationary again.

A typical spaceÈtime measurement in the oscillatory region at a constant value of the external
potential U is displayed in Fig. 3. Fig. 3a shows the time series of the global current and Fig. 3b
the double layer potential as a function of space and time. At Ðrst glance, the oscillations appear
to be homogeneous. However, when investigating the plot more carefully, in the transition region
from high to low current a wavy structure of the double layer potential is clearly discernible. The
inhomogeneous character of the oscillations becomes much better visible when subtracting at each
instant in time the spatial average from the data (Fig. 3d). In this representation it is obvious that
both Ñanks of the relaxation-type global oscillation are accompanied by a spatial symmetry
breaking. The inhomogeneous part of the oscillation can be approximated as an oscillating sinus-
oidal structure of wavenumber one whereby the sign of the amplitude is di†erent on the two Ñanks
of the oscillation.

Fig. 3c and e show the time series of the micro-probe signal, (c) and the micro-probe signalUMPafter subtracting the spatial average, (e), i.e. the same data of Fig. 3b and d in aUMP[ SUMPTx
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di†erent representation. In these plots the absolute values of the double layer potential as well as
the amplitudes of the homogeneous and inhomogeneous oscillations can be easily read o†. The
homogeneous oscillation possesses an amplitude of about 600 mV, the inhomogeneous structure
having a maximal amplitude of about 300 mV.

Qualitatively the same spatio-temporal behavior was observed over the entire oscillatory
region ; an inhomogeneous structure, close to a sinusoidal mode with wavenumber one was always
excited on the Ñanks of the relaxation type oscillations of the total current.

3.2 Small distance between RE and WE

When minimizing the distance between the RE and the WE, i.e. when using a HaberÈLuggin
capillary (RE(2)) and adjusting a distance of 3 mm between the tip of the capillary and the plane of
the working electrode, the spatio-temporal dynamics was qualitatively di†erent. The total current
exhibited relatively harmonic oscillations of small amplitude (Fig. 4). At the low potential end, the
oscillations looked as if they were associated with a period-doubled limit cycle (Fig. 4aÈc). For
increasingly positive potential the di†erence between successive minima became smaller so that
the current eventually exhibited period-1 oscillations (Fig. 4dÈf ).

SpaceÈtime plots of the local double layer potential, (without subtraction of the spatialUMP(x,t)
average) corresponding to the time series of Fig. 4a and e are displayed in Fig. 5a and c. Obvi-
ously, this time we are dealing in the Ðrst place with a spatial symmetry breaking, namely a pulse
that propagates around the ring in a fairly uniform manner. The oscillations in the current density

Fig. 4 Global current oscillations under potentiostatic conditions with the reference electrode (RE(2)) placed
at a distance of 3 mm from the plane of the WE for di†erent values of the external voltage U : (a) 0.96, (b) 1.06,
(c) 1.16, (d) 1.26, (e) 1.36 and (f ) 1.46 V vs. SHE. Other conditions as in Fig. 2.
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Fig. 5 PositionÈtime plots of the local electrode potential in the laboratory coordinate system ((a) and(UMP)(c)) and in a coordinate system moving with the mean velocity of the pulse ((b) and (d)) for the time series
shown in Fig. 4(a) and (e).

arise as a result of changes in the width of the pulse during one rotation around the ring. This can
be seen more clearly in Fig. 5b and d where the spatio-temporal behavior that one would observe
in a coordinate system that moves with the mean velocity of the pulse is plotted. In the case of the
simple periodic time series (Fig. 5d) the resulting picture is a “zigzagÏ motion of the pulse, which
exhibits some minor variations of the width. The latter cause the oscillations seen in the total
current density (Fig. 4e), which possess the same period as the rotation period of the pulse, while
the zigzag pattern indicates that the velocity of the pulse changes during one rotation. Not only is
the back-and-forth motion of the pulse in the moving frame more pronounced in the Ðrst case
(Fig. 5b), but the width of the pulse also oscillates more strongly and with twice the rotation
period. In addition, a second active area is periodically excited at a certain position of the ring. (cf.
the light blue-greenish o†shoots in the upper part of the plot). This satellite pulse propagates
quickly toward the main pulse and merges with the latter soon after its birth.

At this close distance between working and reference electrode, we never observed homoge-
neous oscillations. Rather, one of the two types of pulses emerged whenever the system did not
attain a homogeneous stationary state. The mean pulse width and velocity increased with increas-
ing U, the mean velocity ranging from ca. 4 cm s~1 (Fig. 4a) to 6.2 cm s~1 (Fig. 4e). Only very
close to the end of the existence range of the pulses did the mean velocity decrease again slightly,
e.g. in the case of Fig. 4f it amounts to ca. 5.5 cm s~1.
3.3 Intermediate distance between RE and WE

The dynamics were by far richer for the intermediate distance between working and reference
electrodes. An overview of the behavior is displayed in Fig. 6 where spaceÈtime plots of the double
layer potential are shown together with the time series of the global current. The measurements in
Fig. 6aÈf were obtained for increasing values of the external voltage. At low values of the external
voltage the most complex spatio-temporal patterns were observed (Fig. 6a). A closer view suggests
that it is made up of a sequence of behaviors that appear “ isolatedÏ at larger values of U, which we
therefore describe Ðrst.
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Fig. 6 PositionÈtime plots of the local double layer potential and corresponding time series of the global
current under potentiostatic conditions with the reference electrode (RE(2)) placed at a distance of 13 mm from
the plane of the WE for di†erent values of the external voltage U : (a) 1.06, (b) 1.37, (c) 1.5, (d) 1.67, (e) 1.76 and
(f ) 1.86 V vs. SHE.

In Fig. 6e we recognize again a pulse travelling around the electrode with slightly changing
velocity, similar to that shown in Fig. 5c.

The next simplest behavior appears to be that displayed in Fig. 6c : Position 0¡ (or equivalently
360¡) seems to be a wave source which periodically sends out two pulses that travel in opposite
directions and meet in the center of the ring where they annihilate each other. From a phenom-
enological point of view, the pattern looks like the one-dimensional analogue of a “classical Ï two-
dimensional target pattern. Following Zhabotinsky et al.,34 who obtained similar dynamics in
simulations of a three-component reactionÈdi†usion system, we also refer to it as target pattern.
Note, however, that neither in those simulations nor in our experiments are the patterns linked to
a pacemaker or to an excitable medium.

The spatio-temporal plot shown in Fig. 6b resembles that of Fig. 6c in so far as there is also a
source point that periodically emits waves. However, in this case the “excitationÏ propagates only
in one direction. The pulse that is about to travel into the opposite direction soon comes to a halt.
The position at which the propagation of this second front is stopped remains in a more unre-
active “red state Ï until the propagating wave hits it. Upon this collision, both front and “point
excitationÏ are annihilated and the entire domain relaxes back to the “blue Ï ground state until the
cycle starts anew. In the following we call this behavior, which to our knowledge has not been
described in the literature, an asymmetric target pattern.

In Fig. 6d we come across a mixture of the last two discussed behaviors : The system seems to
switch back-and-forth between a more or less deformed variant of the target pattern, and the
asymmetric target pattern. The complex overall behavior is also reÑected in the time series of the
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total current density, which is apparently quasiperiodic. However, to determine whether we are
indeed dealing with a quasiperiodic state requires much longer time series than we have recorded
so far. The further characterization of the dynamics will be done in future work.

In Fig. 6a we meet a still higher degree of complexity. Four types of behavior take turns :
Slightly imperfect target patterns are followed Ðrstly by asymmetric target patterns, then by pulses
and Ðnally by the expansion of the less reactive portion of the pulse over the entire electrode
before the scenario starts again. In the time series of the total current the global deactivation
manifests itself in a large excursion toward smaller values. These large amplitude oscillations are
separated by apparently quasiperiodic sections of the time series with smaller amplitudes that
resemble the time series of Fig. 6d. Again, due to the complexity of the behavior which requires
much longer measurements, that we have not yet obtained for technical reasons, we are currently
not able to classify the behavior further, e.g. as periodic, quasi-periodic or chaotic. Note that the
point-oscillation at which the front is extinguished in the asymmetric target pattern appears each
time at a di†erent position. The same is true for the measurement of Fig. 6d. This makes it very
unlikely that structural defects of the electrode surface are responsible for the emergence of the
asymmetric target patterns.

At the highest value of the applied potential a behavior similar to an asymmetric target pattern
is observed (Fig. 6f ) : A front-like excitation travels once around the ring before it is extinguished
again at a certain position. However, unlike in Fig. 6b the behavior is no longer strictly periodic,
and once in a while the wave emerges at a di†erent position, survives the Ðrst rotation, and is
extinguished only when it approaches the “critical positionÏ for the second time. In Fig. 6f this is,
e.g., the case for the last pulse displayed.

4. Discussion
The patterns observed at large and small distance between the WE and the RE emerge in funda-
mentally di†erent spatial instabilities, which can be attributed to the fact that in the Ðrst case the
di†erent positions of the electrode are coupled exclusively by migration currents, while for a close
reference electrode, there is an additional global constraint present.

To make the di†erent bifurcations involved most transparent, consider eqn. (1) and (2). They
represent a general, dimensionless model for the spatio-temporal dynamics of an electrochemical
oscillator under potentiostatic control in the case where the RE is far away from the WE such that
we can exclude any global coupling.35,36

d/DL(x)

dt
\ f (/DL(x), c(x))[

p
b
Ad/(x)

dz
K
z/WE

] (U [ /DL(x))
B

(1)

dc(x)

dt
\ g(/DL(x), c(x)) (2)

U is the externally applied voltage, p the speciÐc conductivity of the electrolyte, which together
with the geometric factor b determines the uncompensated cell resistance per unit electrode area. x
and z are the coordinates parallel to the (one-dimensional) electrode and normal to the electrode,
respectively, / the potential in the electrolyte and z\ WE, a position at the working electrode.

The two variables and c are the potential drop across the double layer, the central variable/DLfor the description of electrode reactions, and the concentration (or coverage) of a chemical
species, respectively. The functions f and g deÐne the homogeneous dynamics of the system, which
is of the activatorÈinhibitor type, whereby takes on the role of the activator and c that of the/DLinhibitor. Spatial coupling due to di†usion of c is much smaller than migration coupling, and can
thus be neglected.

The second term on the right-hand side of eqn. (1) represents migration currents that are
induced by an inhomogeneous distribution of the double layer potential.2,37 Thus, it describes the
spatial coupling between di†erent locations of the electrode owing to an inhomogeneous potential
distribution, and it is the counterpart of di†usion in reactionÈdi†usion systems. Just as does di†u-
sion coupling, migration coupling acts in a synchronizing manner, i.e. in the absence of a reaction
term it smoothes any spatial inhomogeneities. Note that in order to solve eqn. (1) it is necessary to
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determine the electric Ðeld normal to the electrode, which requires the solution of LaplaceÏs equa-
tion */\ 0. This equation brings the directions parallel to the electrode into play, and it becomes
clear why eqn. (1), which does not explicitly contain a spatial operator that depends on x, is
capable of describing pattern formation along the electrode : the spatial coupling among di†erent
sites of the electrode is mediated through the bulk electrolyte. An inhomogeneous distribution of

changes the potential distribution, /(x, y, z), in the entire electrolyte, and thus also the/DL(x)
electric Ðeld at the WE, [d/(x)/dz] o

z/WE .
In Fig. 3, i.e. for a large distance between the WE and the RE, the dynamics is dominated by the

homogeneous mode which oscillates in time. Spatial structures pop up predominantly on the
Ñanks of the oscillations when the homogeneous mode changes quickly, the amplitude of the
inhomogeneous part of the oscillation being at most 50% of the amplitude of the uniform oscil-
lation. This is a strong hint that the oscillations also exist in an inÐnitely small, “point-like systemÏ.
In other words, we can view our system as being composed of (inÐnitely many) oscillatory ele-
ments coupled by migration currents.

It is apparent that the homogeneous oscillation is unstable with respect to large wavelength
perturbations. This observation allows us to deduce the qualitative run of the real part of the
largest Floquet multiplier m as a function of the wavenumber of a spatial perturbation, n (Fig. 7a).
The homogeneous limit cycle is stable with respect to homogeneous perturbations and neutrally
stable upon phase displacements. Thus, m\ 1 for n \ 0. In contrast, m lies outside the unit circle
for perturbations with a large wavelength, i.e. within an interval n ½ [0, (see also ref. 38). Fornc]our later discussion it is useful to recall how the growth rate of perturbations of the homogeneous
Ðxed point changes with the wavenumber of the perturbations (Fig. 7b). It is largest and positive
for n \ 0, and decreases monotonically with increasing n, reÑecting the oscillating nature of the
local elements and the synchronizing spatial coupling on the activator variable.

Pattern formation in oscillating media coupled by di†usion has been studied extensively.39h42
Many studies were performed with the complex GinzburgÈLandau equation (CGLE) which is
valid close to a Hopf bifurcation. The CGLE has the particular advantage that the stability of the
homogeneous oscillation that is born in the Hopf bifurcation can be directly read o† from the
coefficients entering the equation. It was shown that if the so-called “phase di†usion coefficient Ï is
negative, the homogeneous oscillation is unstable with respect to spatial perturbations. For large
systems, the long-term behavior is then typically an irregular turbulent motion. Such oscillating
media have been called BenjaminÈFeir unstable systems.41,43

According to the discussion in the second last paragraph, it appears obvious that the spatial
structure in Fig. 3 arises because of a negative phase di†usion coefficient. Thus, we can classify our
electrochemical oscillator as being BenjaminÈFeir unstable, as was also done by Christoph for
solutions of a reactionÈmigration system describing Ni dissolution.38 In contrast to most studies
of BenjaminÈFeir unstable systems, in our experiment the system length is of the same order of
magnitude as the characteristic length of the pattern, and instead of “electrochemical turbulence Ï,
regular limit cycle oscillations established. One should also keep in mind that (1) the oscillations
are relaxation-like and (2) that they are of the mixed mode type. The fact that the small amplitude

Fig. 7 (a) Schematic of the real part of the largest Floquet multiplier as a function of the wave-Re(mmax(n))
number n of a perturbation of the homogeneous limit cycle. (b) Dispersion relation displaying the growth rate

of perturbations of the homogeneous stationary state vs. their wavenumber n. (a) and (b) apply to theRe(jmax(n))
case of the limit cycle oscillations of Fig. 3. Note that the Floquet multiplier is real, i.e. Im for the(mmax(n))\ 0
interesting range of n, whereas the largest eigenvalue is complex forjmax(n) 0O n O nc .
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spiraling out of the trajectory is not accompanied by spatial structures (cf. Fig. 3) strongly suggests
that the mixed-mode character arises from an instability of the homogeneous system and not from
spatial instabilities. Hence, the proper description of the data of Fig. 3 requires a 3-component
reactionÈmigration system, and the oscillations are far from a supercritical Hopf bifurcation. Both
instances restrict further comparison of the experimental behavior with solutions of the CGLE
and call for additional theoretical studies that take into account these complications. We are
currently developing an extended ordinary di†erential equation (ODE) system in order to describe
the more complex temporal behavior. However, besides this realistic modeling, a more general,
“normal form-type Ï approach would also be desirable.

BenjaminÈFeir unstable states were observed in hydrodynamical systems.43h46 Numerical
studies found that most reactionÈdi†usion systems also possess a BenjaminÈFeir unstable region.
However, corresponding experimental examples in reactionÈdi†usion type systems are rare. Turb-
ulent states that might be associated with a negative e†ective phase di†usion coefficient were
reported for CO oxidation on Pt(110)47,48 and for the reaction on Pt(100),49 bothNO] NH3under low pressures. Further analysis of these turbulent states that would allow an unambiguous
assignment of the dynamical state of the system has not yet been reported.

Now, let us turn to a discussion of the dynamics found for the closest distance between the WE
and the RE. This geometry introduces a negative global coupling into the system which manifests
itself in an additional term in eqn. (1) that depends on the average double layer potential, S/DLTx

:

d/DL(x)

dt
\ f (/DL(x), c)] a(/DL(x)[ S/DLTx

) [
p
b
Ad/

dz
K
z/WE

] (U [ /DL(x))
B

(3)

where a [ 0 is a parameter that depends on the di†erence of the resistances between the WE and
the RE, on the one hand, and the WE and the CE, on the other. It determines the strength of the
global coupling.28 Qualitatively, the global coupling in eqn. (3) acts in a destabilizing manner : If
at a certain position is larger than the average double layer potential, the globalx1, /DL(x1)coupling term (the second term on the right-hand side in eqn. (3)) is positive and thus causes a
further increase of If, on the other hand, is smaller than the term is/DL(x1). /DL(x1) S/DLTx

,
negative and again the negative perturbation at is enhanced. Such type of global coupling hasx1been coined negative global coupling (because of the negative sign in front of A di†erentS/DLTx

).
sign in front of the global coupling term turns the action of the coupling into a synchronizing one,
which is also called a positive global coupling.

To recall the inÑuence of the global coupling on the stability of a stationary state, consider two
systems that possess identical homogeneous states, but one system experiences a global constraint,
the other one not. In the case of our electrochemical system, for example, we can prepare these
states by changing the position of the CE. If the CE is at the same height as the RE, a in eqn. (3) is
0 and the system is only coupled by migration coupling. If we put the CE further away than the
RE, the stationary states remain identical but global coupling comes into play. Since the global
coupling a†ects only the homogeneous mode (through the average double layer potential), the two
systems exhibit the same dependence of the largest eigenvalue of the linearized system on thejmax ,
wavenumber of the perturbation, n, for n [ 0. But the respective eigenvalues di†er for n \ 0. If the
average double layer potential enters into the activator equation with a negative sign, as in eqn.
(3), it is straightforward to deduce that the homogeneous mode is stabilized and the dispersion
relation possesses the qualitative shape shown in Fig. 8. In particular, for strong negative coupling
or large systems will be larger than This means that when starting from ajmax(n \ 1) jmax(n \ 0).
stable stationary state with only negative real parts of all eigenvalues and changing a parameter
such that the system is driven into an unstable region, the Ðrst eigenvalue to become unstable is
the one with n \ 1. If the eigenvalue is real, this bifurcation gives rise to stationary domains, as
were observed in nonisothermic catalytic reactions,4,50 during the electrochemical reduction of
peroxodisulfate28 or also during the oxidation of on Pt for di†erent electrolyte concentrationsH2and compositions than used here.3,29 For complex eigenvalues, a wave bifurcation occurs. Owing
to the rotational invariance of our 1-dimensional spatial domain, the eigenfunctions of the system
are Fourier modes whereby sine and cosine modes are degenerate, and become unstable simulta-
neously. Hence, for initial perturbations with predominantly even or odd symmetry, standing
waves with wavenumber one might develop (i.e. only the sine, or equivalently the cosine is
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Fig. 8 Schematic dispersion relation displaying the growth rate of perturbations of the homoge-Re(jmax(n))
neous stationary state vs. the wavenumber n of the perturbation in the case of negative (desynchronizing)
global coupling. This situation applies to the data shown in Fig. 5 and 6. Note that is complex forjmax(n)
0 O n O nc .

excited). Such waves were observed, e.g., during formic acid oxidation on a Pt ring-electrode when
the RE was put sufficiently close to the WE.30 For all other perturbations, in which sin(x) and
cos(x) are both excited sufficiently, travelling waves or phase pulses prevail.

We thus conclude that the pulses we observed for a close reference electrode (cf. Fig. 5) are
associated with a wave bifurcation of the stationary state with n \ 1. In contrast to the patterns
observed with the external RE, that arose due to a spatial instability of the homogeneous limit
cycle, here we are dealing with a non-trivial Hopf bifurcation of the homogeneous stationary state.

The experimental pulses were not at any time “perfect Ï in the sense that they possessed a strictly
constant shape or velocity (cf. Fig. 5). This can already be deduced from the time series shown in
Fig. 4, which is oscillatory with a period that corresponds to the time in which the pulse travels
once around the ring. A constant shape would result in a stationary current, a constant velocity in
addition in a stationary domain in the moving frame. Instead, in the moving frame the experimen-
tal pulses displayed a zigzag motion, reÑecting a variation in the speed of the pulse, superimposed
by a minor alteration of the width. This behavior might be the manifestation of secondary bifur-
cations of the pulse, such as an oscillatory instability that leads to variations in width.

However another interpretation appears to be more likely : An electrode surface, like any cata-
lytic surface, is never an ideally homogeneous medium. Rather, its reactivity is likely to di†er
somewhat from position to position, and it might also change with time. Thus, the pulse might
experience di†erent local properties while propagating around the electrode. These inhomoge-
neities will in general a†ect pulse width and velocity. The fact that the periods of the oscillations in
width in Fig. 5b or d coincide with the rotation period of the pulse supports this conjecture
(although a 1 : 1 locking of the two frequencies also cannot be excluded a priori).

Provided that the Ðne structure of the pulses stems from nonhomogeneities of the electrode
surface, the sequence of time series shown in Fig. 4 suggests that the interaction between the
intrinsic dynamics and the nonhomogeneous distribution of parameters is very intricate. This
points to a possible control of the dynamics by deliberately designing catalysts with spatially
modulating properties. In the electrochemical context, e.g., the poisoning of the electrode by the
reaction intermediate CO is the major problem in all oxidation reactions of small organic mol-
ecules. Their most important application is in fuel cells, such as the direct methanol fuel cell.51 All
these oxidation reactions exhibit oscillatory behavior and they belong to the same class of electro-
chemical oscillators as the system studied here. If it could be shown that the interaction between a
nonuniform activity of the electrode and the nonlinear reaction dynamics can prevent complete
poisoning of the catalytic surface at low overvoltage, this would be a major breakthrough in fuel
cell research. Progress along these lines will not be possible without theoretical foundations. Work
in this direction has begun,52h56 and much more is needed to reach the goal of controlling pat-
terns and overall reaction rates by the nonuniformity of active media.

In the case of intermediate distance between the WE and the RE, the strength of the global
coupling is smaller than in the case of the close RE which apparently enables more diverse pattern
formation.

Target patterns were found in simulations of an electrochemical oscillator with BenjaminÈFeir
stable homogeneous limit cycles and negative global coupling.38 Because of the similarity between
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target patterns and asymmetric target patterns we believe that the patterns observed in Fig. 6bÈf
emerge owing to the global constraint and do not require a BenjaminÈFeir unstable limit cycle.
On the other hand, the spatio-temporal behavior of Fig. 6a appears to be of a di†erent quality and
we speculate that the large amplitude bursts in Fig. 6a might be linked to the fact that the homo-
geneous oscillation without global coupling is BenjaminÈFeir unstable. Hence, in this case, the
spatio-temporal pattern would exist only in BenjaminÈFeir unstable systems that are subject to a
negative global coupling. To substantiate this conjecture, model calculations are required, that
extend those on pattern formation in the CGLE with global coupling,14,22,57,58 in which the
corresponding behavior has not been found. Furthermore, we have discussed that in the absence
of global coupling, the homogeneous dynamics can only be described by a set of three essential
variables (a three-component system). As long as the dynamics of Fig. 6a (and also 6d) is not
further characterized, we cannot exclude that these complex motions are the result of the inter-
action of three variables.

5. Conclusions
We presented experiments on an electrochemical oscillator subject to global, desynchronizing
coupling with varying strength. The experiments revealed several novel aspects that broaden our
view on pattern formation in the presence of nonlocal constraints, and they point to directions in
which further theoretical foundations are needed. Among them are (1) Pattern formation in
BenjaminÈFeir unstable systems : (a) in which the system size and characteristic size of the pat-
terns are of the same order of magnitude, (b) close to a subcritical or homoclinic bifurcation, (c) in
three-component reactionÈtransport models and (d) with an additional desynchronizing global
constraint. (2) A more detailed understanding of how the strength of the global coupling a†ects
possible bifurcation scenarios and the diversity of dynamical states. (3) Pattern formation in
systems with distributed parameters, in particular with emphasis on tailoring inhomogeneous
active media to obtain catalytic surfaces with improved performance.
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