

Time-resolved in situ Studies on the Formation of Molybdenum Suboxides during Reduction of MoO₃

T. Ressler, R.E. Jentoft, J. Wienold, O. Timpe

Fritz-Haber-Institut der MPG, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany

Reduction of MoO₃ with hydrogen (5 - 100 vol-%) in the temperature range from 573 K to 823 K was studied by in situ X-ray diffraction and X-ray absorption spectroscopy (XAS). The experiments performed focused on elucidating phase composition and evolution with time under isothermal as well as temperature programmed reduction conditions. At reaction temperatures below 723 K the reduction of MoO₃ to MoO₂ is a one-step process. At reduction temperatures above 773 K and H₂ concentrations higher than 10 vol-%, Mo metal is the final product of the reduction of MoO₃. In addition, at temperatures higher than 723 K the formation of MoO₃ but is being formed in a parallel reaction from MoO₃ and MoO₂ at temperatures above 723 K. Quantitative XRD analysis revealed a sigmoidal shape of the evolution of MoO₃ and MoO₂ phases during reduction of MoO₃ and an increase in the crystallite size of the phases present. This Oswald ripening indicates a nucleation-growth kinetic to govern the reduction of MoO₃ under the conditions studied. The results presented in this work clearly demonstrate the potentials of a combined application of in situ XRD and XAS to reveal phase composition and kinetics of solid state reactions.