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Abstract

Thefull-potential linearized augmented-plane wave(FP-LAPW) method is well known to enable most accurate calculations
of the electronic structure and magnetic properties of crystals and surfaces. The implementation of atomic forces has greatly
increased its applicability, but it is still generally believed that FP-LAPW calculations require substantial higher computational
effort compared to the pseudopotential plane wave (PPW) based methods.

In the present paper we analyze the FP-LAPW method from a computational point of view. Starting from an existing
implementation (WIEN95 code), we identified the time consuming parts and show how some of them can be formulated more
efficiently. In this context also the hardware architecture plays a crucial role. The remaining computational effort is mainly
determined by the setup and diagonalization of the Hamiltonian matrix. For the latter, two different iterative schemes are
compared. The speed-up gained by these optimizations is compared to the runtime of the “original” version of the code, and the
PPW approach. We expect that the strategies described here, can also be used to speed up other computer codes, where similar
tasks must be performed. 2000 Elsevier Science B.V. All rights reserved.

PACS:02.60.Pn; 71.15.Mb; 71.15.Ap

PROGRAM SUMMARY

Title of program extension:wien-speedup

Catalogue identifier:ADLP

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADLP

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland (see application form in this issue)

Other version of the program: cat. no.:ABRE; title: WIEN;
ref. in CPC:59 (1990) 399

Licensing provisions:none

Computer, operating system, and installation:
IBM RS/6000; AIX; Fritz-Haber-Institut der Max-Planck-Gesell-
schaft; Berlin

Operating system:UNIX

Programming language:FORTRAN77

Unusual features of the program:
On IBM RS/6000 nodes part of the speedup was obtained by us-
ing an IBM specific mathematical library [1] (see Long Write-up,
Section 4.4.1)
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Floating point arithmetic: 64 bits

Memory required to execute with typical data:64 Mbyte (depends
on case)

No. of bytes in distributed program, including test data, etc.:
3 355 093 bytes

Distribution format: uuencoded compressed tar

No. of bits in a word:64

No. of processors used:one

Has the code been vectorized?no

Memory required for test run:64 MByte

Keywords:Density-functional theory, linearized augmented plane
wave method, LAPW, supercell, total energy, crystals, surfaces,
molecules

Nature of the physical problem
For ab-initio studies of the electronic and magnetic properties of
poly-atomic systems, such as molecules, crystals, and surfaces.

Method of solution
The full-potential linearized augmented plane wave (FP-LAPW)

method is well known to enable accurate calculations of the elec-
tronic structure and magnetic properties of crystals [2–12]. Within
the supercell approach it has also been used for studies of defects in
the bulk and for crystal surfaces.
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LONG WRITE-UP

1. Introduction

The augmented plane wave (APW) method [1,2,4–6] and in particular its linearized form, the LAPW method [7–
15], enables accurate calculations of electronic and magnetic properties of poly-atomic systems using density-
functional theory (DFT) [16,17]. One successful implementation of the full-potential LAPW (FP-LAPW) method
is the program packageWIEN, a code developed by Blaha, Schwarz and coworkers [14]. It has been successfully
applied to a wide range of problems such as electric field gradients [18,19] and systems such as high-temperature
superconductors [20], minerals [21], surfaces of transition metals [22], or anti-ferromagnetic oxides [23] and even
molecules [24]. Minimizing the total energy of a system by relaxing the atomic coordinates for complex systems
became possible by the implementation of atomic forces [24], and even molecular dynamics became feasible. Up
to now the main drawback of the FP-LAPW-method compared to the pseudopotential plane-wave (PPW) (e.g.,
Ref. [25] and references therein) approach has been its higher computational expense. This may be mainly due to a
discrepancy in optimization efforts spent on both methods, and therefore we have analyzed the FP-LAPW method
from a computational/numerical point of view. Starting from theWIEN95 implementation [26], we identified the
time consuming parts and will show how some of them can be formulated more efficiently. In this context also the
influence of the underlying hardware architecture will be discussed.
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The remainder of the paper is organized as follows. After introducing the principles of DFT and summarizing the
concepts of the FP-LAPW-method (Sections 2 and 3), we will report on our improvements made on theWIEN95
implementation of the FP-LAPW-method (Section 4). In Section 5 we will show, how these improvements make
the FP-LAPW-method a strong competitor to the popular PPW approach by comparing the run-times necessary to
converge a nine layer slab of (4× 2)-Cu(110) (i.e. 72 atoms and 792 valence electrons) using both methods.

2. Density-functional theory

The central statement of DFT is, that the problem of finding the ground-state energy of a many-particle system,
characterized by a many-particle wavefunctionΨ0, can be mapped on a physically equivalent problem of finding
the ground-state electron densityn0, i.e.

E[Ψ0] =E[n0] (1)

with

n0(r )=
〈
Ψ0

∣∣∣∣∣
N∑
α

δ(r − rα)

∣∣∣∣∣Ψ0

〉
, (2)

whererα is the coordinate of theαth electron. The central statement of the Hohenberg–Kohn theorem [16] is, that
for anN electron system the functionalE[n] is minimized by the ground-state electron density,n0.

E[n0] =MinE[n] (3)

with the constraint,∫
nd3r =N. (4)

In the Kohn–Sham formulation the functionalE[n] is split into the following terms:

E[n] = Ts[n] +U [n] +Exc[n], (5)

the kinetic energy functional of non-interacting particles,Ts[n], the functional of the electrostatic energy,U [n] and
the rest, called exchange-correlation energy,Exc[n]. With Eq. (5), i.e. with the introduction of the functionalTs[n],
the variational problem of Eqs. (3), (4) becomes equivalent to the problem of solving a system of single-particle
equations, called the Kohn–Sham equations [17],

Hϕi =
[
− h̄2

2me
∇2+ Veff

]
ϕi = εiϕi, (6)

n=
∑
i

fiϕ
∗
i ϕi . (7)

Here,− h̄2

2me
∇2 is the single-particle kinetic energy operator andVeff is the potential defined by the functional

derivative ofU [n] +Exc[n],
Veff = δ(U +Exc)

δn
. (8)

The electron density is obtained from Eq. (7), wherefi are the occupation numbers given by the Fermi distribution.
In practice Eqs. (6)–(8) are solved in a selfconsistent field (SCF)-cycle: i.e. starting with densityn1 one calculates
the potentialVeff, solves Eq. (6) and by evaluating Eq. (7) one obtains the new densityn2, which leads to the next
iteration cycle.
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3. The FP-LAPW-method

In the augmented plane-wave (APW) method space is divided into an interstitial region (IR) and non-overlapping
muffin-tin (MT) spheres centered at the atomic sites [1]. This allows an accurate description of both, the rapidly
changing (oscillating) wavefunctions, potential and electron density close to the nuclei as well as the smoother
part of these quantities in between the atoms. In the IR the basis set consists of plane waves exp(iK · r ). The
choice of a computationally efficient and accurate representation of the wavefunctions within the MT spheres has
been discussed by several authors, e.g., [4,7,8,10]. In the original APW formulation introduced by Slater [1,2],
the plane-waves are augmented to the exact solutions of the Schrödinger equation within the MT at the calculated
eigenvalues. This approach is computationally expensive because it leads to an explicit energy dependence of
the basis functions (and consequently of the Hamilton- and overlap-matrices) and thus to a non-linear eigenvalue
problem. Instead of performing a single diagonalization to solve the KS equation one repeatedly needs to evaluate
(for many trial energies) the determinant of the secular equation in order to find its zeros and thus the single
particle eigenvaluesεi . Going into the complex energy plane would have been one option but was not explored so
far, except in an other context (see, e.g., [3] and references therein).

In the linearized APW method (LAPW) the problem of the energy dependence of the basis set is removed by
using a fixed set of suitable MT radial functions [7,8,10]. Within Andersen’s approach, used also in theWIEN
code, inside each atomic sphereI and for azimuthal quantum numberl the radial solutionsuIl (ε

I
l , rI ) of the KS

equation at fixed energiesεIl and their energy derivativeṡuIl (ε
I
l , rI ) are used as basis functions. Basically, this

choice corresponds to a linearization of the energy dependence ofuIl (ε, r ) aroundεIl [10]. The concept implies
that the radial functionsuIl (εl) and u̇Il (εl) and the respective overlap and Hamilton matrix elements need to be
calculated only for a few energiesεIl . Moreover, all KS energiesεi are found, for eachk-point, by only one
diagonalization (for a detailed discussion see [15]).

The LAPW basis functionsφG(r ,k) which are used for the expansion of the KS wavefunctions

ψi(r ,k)=
∑

|k+G|6Gwf

ci(k +G)φG(r ,k) (9)

are defined as

φG(r ,k)=
Ω

−1/2 exp
(
i(k +G) · r), r ∈ IR,∑

I

∑
lm

[
aIlm(k +G) uIl (ε

I
l , rI )+ bIlm(k +G) u̇Il (ε

I
l , rI )

]
Ylm(r̂ I ), rI 6 sI .

(10)

Here,G denote the reciprocal lattice vectors andk a vector within the first Brillouin zone. The wave function
cutoffGwf limits the number of theG vectors and thus the size of the basis set. The symbols in Eq. (10) have the
following meaning:Ω is the unit cell volume,sI is the MT radius, andr I = r − RI is a vector within the MT
sphere of theI th atom. Note thatYlm(r̂ ) represents a complex spherical harmonic withYl−m(r̂ )= (−1)mY ∗lm(r̂ ).
The radial functionsul(εl, r) andu̇l(εl, r) are solutions of the equations

H sphul(εl, r)= εl ul(εl, r), (11)

H sphu̇l(εl, r)=
[
εlu̇l(εl, r)+ ul(εl, r)

]
, (12)

which are regular at the origin. The operatorH sph contains only the spherical average, i.e. thel = 0 component,
of the effective potential within the MT. Theεl should be chosen near the center of the energy band with the
correspondingl-character. The coefficientsalm(k +G) andblm(k+G) are determined by requiring that value and
slope of the basis functions are continuous at the surface of the MT sphere.



298 M. Petersen et al. / Computer Physics Communications 126 (2000) 294–309

The representation of the potential and electron density resembles the one employed for the wave functions, i.e.

neff(r )=


∑

I

∑
lm
neff
lm,I (rI )Ylm(r̂ I ), rI 6 sI ,∑

|G|6Gpot
neff

G exp(iG · r ), r ∈ IR.
(13)

Thus, no shape approximation is introduced and therefore such an approach is called a full-potential treatment. The
quality of this description is controlled by the cutoff parameterGpot for the lattice vectorsG and the number of the
(l,m)-terms included inside the MTs.

4. Improving the WIENcode

4.1. Optimization strategies

To achieve an optimal performance of a computer code on modern computers, it is essential that the used
algorithms match the underlying hardware architecture. On todays computers, often the memory bandwidth is
the limiting factor, i.e. the floating-point operation units are stalled, waiting for data. Then the performance is
not determined by the number of floating point operations per second, but by the necessary number of load/store
operations. Therefore a significant objective of optimizing a code is to reduce the communication between the
processor and the relatively slow memory, but to make optimum use of the fast cache. Thus the well known fact for
parallel computers, that an efficient use of communication is crucial for complex and time consuming calculations,
holds also on stand-alone workstations. The best way to improve the performance of a program on a wide range
of architectures without loosing portability, is to write the code in such a way that the bulk of the calculations
is performed by calls to the well knownbasic linear algebra subprograms(BLAS) [27,28]; efficiency can then
be obtained by using optimized implementations of these routines, specifically tailored to the hardware used.
While on vector machines, the so-called Level 2BLASroutines (matrix–vector-operations) lead to very satisfactory
results, this approach is often not well suited for architectures of modern high-performance workstations or shared
memory systems with a hierarchy of memory (registers, cache, local memory, swap space). For those architectures
it is preferable to partition the matrices into blocks and to perform the computation by matrix–matrix-operations
on these blocks. This leads to a full reuse of data already held in cache (or local memory) and reduces data
movement. While for Level 1 (vector–vector-operations) and Level 2 (vector–matrix-operations)BLASroutines
the number of load/store operations is proportional to the number of floating-point operations, the Level 3 (matrix–
matrix-operations) approach [29] gives a surface-to-volume effect, i.e. if the matrices are of ordern, the number of
floating-point operations is of ordern3, while the number of load/store operations is of ordern2. This minimizes
the influence of a limited memory bandwidth on the performance of the program. Therefore the goal in optimizing
the code must be to use Level 3BLASroutines as much as possible.

4.2. The structure of theWIEN-code

The SCF cycle of theWIENcode consist of five independent programs:
(1) LAPW0: generates the potential from a given charge density
(2) LAPW1: computes the eigenvalues and eigenvectors
(3) LAPW2: computes the valence charge density from the eigenvectors
(4) CORE: computes the core states and densities
(5) MIXER: mixes the densities generated byLAPW2andCOREwith the density of the previous iteration to

generate a new charge density
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From these programsLAPW1andLAPW2are the most time consuming, while the time needed to runCORE
and MIXER are basically negligible. Further inspection showed, that for example on IBM RS/6000 nodes the
performance ofLAPW2was far below the theoretical peak performance, which indicates a poor adaptation of the
code to this hardware architecture. The optimizations done onLAPW2are described in Section 4.3. The situation
was different in the case ofLAPW1. Due to the use of standard library routines the diagonalization of the matrix,
which is the most time consuming part, performs quite well on IBM RS/6000 nodes. However, on several other
hardware platforms with substantially slower memory bandwidth, the performance was not so good and those
routines were also modified to increase performance. Thus further improvement on IBM RS/6000 could only be
reached by implementing a new algorithm. Based on the fact that the matrix to be diagonalized changes only
little from iteration to iteration during the selfconsistency cycle, an iterative diagonalization scheme could be an
attractive alternative. We implemented two such schemes, which use the information from the previous step to
speed up the diagonalization. The details will be described in Section 4.4.

4.3. LAPW2: Generating the electron density

In LAPW2the eigenvalues and eigenvectors found byLAPW1are read in. Thek-space integration over the
Brillouin zone (BZ) is replaced by a finitek-summation, in which eachk-point contributes with a weight,Wj(k),
in which for convenience also the occupation factor of stateεj (i.e. the Fermi factor) is stored. First the Fermi
energy and then the expansion of the valence electron density is calculated for each of the occupied states at all
k-points in the irreducible part of the BZ. The valence electron density consists of two types of components: the
electron density inside each sphereI , nI (r ), represented in spherical harmonics on a radial grid and the interstitial
electron density,nIR(r ) expressed as Fourier series.

4.3.1. The electron density inside the MT-spheres
The valence electron density inside a sphere is given by the expression:

nI (r )=
∑
l′′m′′

neff
l′′m′′,I (rI ) YLM(r̂ I ) rI 6 sI (14)

=
∑
k,j

Wj (k)
∑
lm

∑
l′m′

∑
G,G′

{
c∗(j,k +G) aI∗lm(k +G) ul(r) c(j,k +G′) aIl′m′(k +G′) u′l(r)

+ c∗(j,k +G) bI∗lm(k +G)u̇l(r) c(j,k +G′) aIl′m′(k +G′) u′l(r)
+ c∗(j,k +G) aI∗lm(k +G) ul(r) c(j,k +G′) bIl′m′(k +G′)u̇′l(r)
+ c∗(j,k +G) bI∗lm(k +G)u̇l(r) c(j,k +G′) bIl′m′(k +G′)u̇′l (r)

}
Y ∗lm(r̂ )Yl′m′ (r̂). (15)

With the definition

AIlmj (k) :=
∑
G

c(j,k +G) aIlm(k +G), (16)

BIlmj (k) :=
∑
G

c(j,k +G) bIlm(k +G), (17)

the electron density reads:

nI (r )=
∑
k,j

Wj (k)
∑
lm

∑
l′m′

{
AI∗lmj (k)AIl′m′j (k)ul(r)ul′(r)

+BI∗lmj (k)AIl′m′j (k)u̇l(r)ul′(r)+AI∗lmj (k)BIl′m′j (k)ul(r)u̇l′(r)
+BI∗lmj (k)BIl′m′j (k)u̇l(r)u̇l′(r)

}
Y ∗lm(r̂)Yl′m′(r̂). (18)
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It is obvious that the calculation of the sums (16), (17) which run over allG-vectors for every combination of
(I, j, lm), will be the most time consuming part, and thus needs special care to implement it efficiently. The straight
forward implementation of the summation, as done in the originalWIENcode, results in a high ratio of load/store
operations per floating-point operation and a very poor performance. A closer look shows that these formulas can
be rewritten in the form of a matrix–matrix-multiplication:

AI,k(j, lm)=
∑
G

c(j,k +G) aI (k +G, lm), (19)

BI,k(j, lm)=
∑
G

c(j,k +G) bI (k +G, lm). (20)

In this way the matricesAI,k(j, lm) andBI,k(j, lm) can be calculated using optimized (BLAS-3) library-
routines, hereby reducing the number of load/store operations as well as minimizing the number of cache misses.

4.3.2. The interstitial electron density
The valence electron density in the interstitial region is given by:

nIR(r )=
∑

|K |6Kpot

neff
K (r )exp(iK · r ), r ∈ IR (21)

=
∑
k,j

∑
GG′

Wk(j)ck(j,G)c∗k(j,G
′)exp

(
i(G−G′) · r), (22)

where the sum over the occupied statesj can again be regarded as matrix–matrix-multiplication (see Fig. 1), in
which the matrixW consists ofj identical columnsWk(j):

ñk(G,G′) :=
∑
j

Wk(j)c
T
k (G, j)︸ ︷︷ ︸

c̃k (j,G)

c∗k(j,G
′) (23)

=
∑
j

c̃Tk (G, j)c
∗
k(j,G

′) (24)

n(r ) =
∑

k

∑
GG′

ñk(G,G′)exp
(
i(G−G′) · r). (25)

SinceWj(k) is real, the matrix̃n(G,G′) is Hermitian, i.e.ñ(G,G′)= ñ∗(G′,G). Therefore the calculation of
the matrix

ñk(G,G′)=
∑
j

cTk (G, j)c
∗
k(j,G

′) (26)

Fig. 1. The calculation of the interstitial electron-density ink-space can be regarded as matrix–matrix-multiplicationñ = CT WC∗, whereW
consists ofj identical vectorsWk(j).
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Fig. 2. The Hermitian matrix̃nk(G,G′) is divided into small blocks. Each of the blocks is calculated by a matrix–matrix-multiplication.

by a single matrix–matrix-multiplication would result in twice as much floating-point operations as necessary,
which would destroy the advantage of using optimized library routines.

To profit from both, the hermiticity of the matrix and the use of optimizedBLAS-3library routines, the matrix is
divided into small blocks (Fig. 2). Each block above the diagonal is evaluated by a single(BLAS-3)matrix–matrix-
multiplication according to Eq. (24) and the result is also used for the corresponding block below the diagonal. The
elements of the blocks along the diagonal are evaluated by a direct implementation of the summation:

ñk(G,G
′)= ñ∗k(G′,G)=

∑
j

cTk (G, j)c
∗
k(j,G

′), G6G′. (27)

The blocksize is a free parameter which has to be optimized according to the cache size of the specific platform.

4.4. LAPW1: Setup and diagonalization of the eigenvalue problem

4.4.1. Setup ofH andS
According to Eq. (9) the KS eigenstates are characterized by a set of expansion coefficientsci(k + G) {i =

1, . . . ,Ns}, whereNs are the number of eigenstates to be calculated. In the following, these expansion coefficients
are viewed as eigenvectors (of lengthNpw) of the generalized eigenvalue problem

(H − εiS)ci = 0, (28)

whereH is the Hamiltonian andS the overlap matrix. The elements ofH andS are given by

Hij =
〈
φi |H |φj

〉
, (29)

Sij =
〈
φi |φj

〉
, (30)

whereφj are the LAPW basis functions. As discussed earlier, one of the main ideas of the FP-LAPW method is
to construct sophisticated basis functionsϕ which provide a good approximation to the true wave functionψ , so
that the number of basis functionsNpw required to expandψ with reasonable accuracy, is kept small. The main
drawback of this approach is that the evaluation of Eqs. (29)–(30) is quite demanding. A simple way to reduce the
computational effort in setting-upH is to consider in the first half of the self-consistency cycle only the spherical
average of the potential (i.e. theLM = (0,0) component). Furthermore a considerable speedup on IBM RS/6000
nodes was obtained by using an IBM specific mathematical library [30] which allows a much faster evaluation of
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trigonometric functions that are required in Eqs. (29)–(30). These subroutines compute the trigonometric functions
for a vector of arguments, hereby minimizing the computational costs compared to the serial evaluation of all vector
elements.

A combination of these procedures can significantly speed up the generation ofH andS matrices.

4.4.2. Solving the eigenvalue problem
As noted before, the standard diagonalization routines could not be improved significantly on IBM RS/6000

nodes, since the modified LAPACK routines together with IBMt’s highly optimized scientific ESSL library yields
already almost optimal performance. On other hardware platforms (e.g., SGI Power Challenge, DEC-Alpha, Intel
PII) with slower memory bandwidth we could achieve a speedup of the diagonalization by more than a factor of
two by modifying the standard LAPACK routines using a hierarchical blocking scheme as described in [31].

4.4.3. Iterative diagonalization
In contrast to the LAPW method, the plane wave basis set used in the PPW method allows an easy evaluation of

Eqs. (29)–(30), but the number of expansion functions is much larger. For this reason the approach to an iterative
matrix diagonalization described below is somewhat different from the one usually adopted in the PPW method.

We implemented two schemes of iterative matrix diagonalization, namely the Block–Davidson and the Lanczos
algorithm. As both methods are fairly well known, here only general aspects will be discussed, as far as they
concern the FP-LAPW method. For a detailed discussion see, e.g., [32].

Since the KS equations must be solved self-consistently, the matrixC of the eigenvectorscj in Eq. (28) are
always available (with the exception of the first cycle) from a previous cycle,Cold. ThereforeCold can be used
to obtain an approximate solution to Eq. (28). IfH new (Snew) is the Hamiltonian (overlap) matrix of the present
iteration, then Eq. (28) can be transformed into the space spanned by the old eigenvectors. This would be no
approximation to Eq. (28) if one would include all eigenvectors, because the old and new eigenvectors span the
same space. In practice, however, the number of calculated states,Ns, is much smaller (by almost an order of
magnitude) than the matrix size,Npw. If one would chooseNs equal to the number of occupied states in the solid,
Nocc the new eigenvectors would not be improved at all, since the new eigenvectors,Cnew, would simply be a
linear combination of the old eigenvectors. Here, we takeNs= 2Nocc which was found to be a good compromise
between accuracy and numerical effort.

The old eigenvectors are now viewed as an unitary transformation

Cold†
Cold= S. (31)

In the caseS = E (no overlap,E unity matrix) Eq. (31) always holds. In the general case Eq. (31) is only
valid, if Snew' Sold. This aspect must be especially considered in the case of the LAPW method because the
basis functions are recalculated in each iteration. This problem can be overcome by transforming the generalized
eigenvalue problem to a regular one (i.e. by Cholesky decomposition). Here, we chose to treat the generalized
problem with the Block–Davidson scheme and the regular problem using the Lanczos algorithm. The reason for
this strategy is the following: The Lanczos algorithm has due to its simplicity a very low numerical cost and thus
can compensate for the extra cost of the Cholesky decomposition. Treating the overlap matrixS explicitly would
require to orthogonalize the setsHiBi−1 usingS as a metric tensor which would ruin the numerical effort saved
by not doing the decomposition.

The reduced eigenvalue problem is then given by

H̃ = εS̃C̃new with (32)

H̃ = Cold†
HCold, (33)

S̃ = Cold†
SCold and (34)

C̃new= SCold†
Cnew. (35)
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The process of iterating the solution of Eq. (32) consists of optimizing theNs basis functions initially given
by C̃new by addingNs− Nocc linear independent vectors to this set. In the subsequent discussion the setC̃new

consisting ofNs basisvectors will be namedB0 and the set ofNs basisvectors added in iterationi, Bi . The actual
iteration procedure then consists of using{B0, . . . ,Bi} in Eqs. (32)–(34), to constructBi+1 from {B0, . . . ,Bi} and
turn back to Eqs. (32)–(34). At the end of the iteration process the eigenvectors are obtained from Eq. (35). Here,
the set{B0, . . . ,Bi} is viewed at as a rectangular matrix of sizeNpw× (i + 1)Ns.

4.4.4. Lanczos scheme
As already mentioned above, we now takeS = E. The basic idea is to improveBi by theNs vectors obtained

from calculatingHBi−1 and orthogonalizing this set to the setBi−1 (e.g., by Graham–Schmidt orthogonalization).
In fact this is one of the easiest ways to increase the basis set, because in practiceHBi−1 had to be calculated
already in Eq. (33). To our knowledge, a strict mathematical proof that the seriesHB,H 2B, . . . ,HnB should
converge to the eigenvectors ofH does not exist, but experience has shown that this approach is fairly stable and
accurate.

4.4.5. Block–Davidson scheme
This scheme uses a more subtle way to expand the basisB. In iterationi one gets from Eqs. (32)–(35) a current

approximation to the true eigenvector|cj 〉, denoted as|cij 〉. The aim is to find a correction vector|δA〉 such that

|cj 〉 =
∣∣cij 〉+ |δA〉. (36)

This correction vector|δA〉 can be formally calculated by plugging Eq. (36) into Eq. (28).

(H − εjS)
∣∣cij 〉= (H − εjS)|δAj 〉 (37)

The left side of Eq. (37) is called residual vector,|Rj 〉. In principle the inversion of(H − εS) would yield the
correct|δA〉, but in practice this is never done because the computational cost of this inversion would already be
comparable to an exact diagonalization. Thus, one only retains the diagonal elements of(H − εS) to make the
inversion trivial. Eq. (37) is then expressed with help of the basisBi

|δAj 〉 =
∑
k

〈bik|Rj 〉
〈bik|H − εjS|bik〉

∣∣bik〉. (38)

The matrix containing the|δA1〉, . . . , |δANs〉 is then used to increase the basisBi toBi+1.

5. Examples

In the following we demonstrate the effect of our improvements on a huge example, namely a nine layer
slab of (4× 2)-Cu(110) (i.e. 72 atoms, 792 valence electrons). We will compare the CPU-time needed to reach
selfconsistency using our improved code with the original code. Additionally we will compare our LAPW code
with a most efficient implementation of the PPW-method [25]. The Cu(110) surface is modeled by a nine layer
slab repeated periodically in all three dimensions and separated by a vacuum zone equivalent to five substrate
layers. We use a lattice constant of 6.64 bohr, which corresponds to the theoretical LDA bulk value. Since both
methods scale almost linearly with the number ofk-points, only one point in the surface BZ has been used for
these benchmarks. The MT radii are chosen to be 2.20 bohr. The kinetic-energy cutoff for the plane wave basis
needed for the interstitial region is set to 13.22 Ry which leads to matrix-sizes of the Hamiltonian matrix of about
7000×7000. The partial wave(l,m) representation (inside the MTs) is taken up tolmax= 10. A plane-wave cutoff
energy of 81 Ry for the Fourier representation of the potential is used. The maximum angular momentum in the
(L,M) expansion of the potential inside the atomic spheres is set toLmax= 4. In the PPW calculations, plane
waves up to a kinetic energy of 70 Ry had to be used, to reach a comparable level of accuracy, but we also include
the CPU-time required for a PPW calculation at 40 Ry.
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Table 1
Distribution of CPU-time needed for the different parts of the generation of the new electron density (lapw2 ) comparing the original version
(“WIEN95”) with the new one (“optimized”). The column (“speed-up factor”) lists the speed-up reached

WIEN95 Optimized Speed-up factor

CPU-time % CPU-time %

Spheres 2 h 24 m 44 12 m 20 s 69 12

Interstitial 3 h 4 m 56 5 m 22 s 31 34

Total 5 h 28 m 17 m 42 s 18.5

5.1. LAPW2: Generating the electron density

The original codeWIEN95needed 19680 CPU-seconds (5 h 28 m) for the generation of the electron density on
an IBM RS/6000 node (Table 1). The calculation of the electron density inside the spheres took 8640 CPU-seconds
(2 h 24 m) (44%), while 11040 CPU-seconds (3 h 4 m) (56%) were needed for the interstitial electron density. On
this latter part our improvements led to a reduction of the necessary CPU-time to 322 CPU-seconds (5 m 22 s),
which is equivalent to a speed-up factor of 34. In the part generating the electron density inside the MT-spheres,
the improvement is not as big, but still a speed-up factor of 12 could be reached, reducing the CPU-time to 740
seconds (12 m). The relative weight of the two tasks is shifted by the optimization to 70% for the spheres and 30%
for the interstitial. With these improvement, the contribution ofLAPW2to the overall runtime becomes negligible,
and thus all further considerations should focus on the programLAPW1and its most time consuming part, the
diagonalization of the Hamilton-Matrix.

5.2. LAPW1

As a general result it was found that in order to obtain reasonable accuracy in total energies it is sufficient for
both methods, the Block–Davidson as well as the Lanczos scheme, to improve the expansion set only once, i.e.
using{B0,B1} to construct the new eigenvectors. Both iterative schemes worked well for the Cu(110) benchmark
system. The speed-up gained with respect to the full diagonalization was 1.45 in the case of the Lanczos scheme
and 3.12 in the case of the Block–Davidson scheme (Table 2). Fig. 3 illustrates the accuracy of both methods during
the SCF-cycle. In the upper panel the overall performance is illustrated: The left panel shows the deviation of the
total energies obtained by both methods with respect to the exact diagonalization result. Here, the largest deviation
is about 1 mRy, but when self-consistency is approached, the deviations are well below the convergence criterion
of 0.5 mRy. The right panel shows in an analogous way the deviations of the electron differences (the mean square
deviation ofnold− nnew inside the MT’s) during the SCF-cycle. This gives an idea about the overall quality of the
approximated eigenvectors. The deviation in the total energies are less than 0.3 mRy and thus show no essential
difference between the two schemes, but the electron difference indicates that the Block–Davidson method leads
to better eigenvectors especially during the first four cycles of the SCF-cycle. The quality of the eigenvectors is
illustrated in more detail in the lower panel of Fig. 3 for the valence electron densities only. In the left (right) panel
the mean square deviation betweennexact−niter is evaluated inside the MT’s (interstitial region), where “iter” stands
for either the Davidson or the Lanczos method. It can be clearly seen that the Davidson method leads to results that
are closer to the exact solution than the results obtained by the Lanczos-method, but again, when self-consistency
is reached, both methods give essentially the same results for the interstitial region as well as inside the MT.

5.3. Total speed-ups

Table 3 shows the distributions of CPU-time needed for the different parts of the LAPW-self-consistency cycle
for the original WIEN95 program as well as for our new, optimized code. The enormous speed-up factor close to 20



M. Petersen et al. / Computer Physics Communications 126 (2000) 294–309 305

Table 2
CPU-time in LAPW1 needed for the setup (spherical and non-spherical H and S matrix) and the diagonalization; for the original code the
standard diagonalization is used (“WIEN95”), while for the “optimized” version the timing for both, the Lanczos (“Lan”) and the Block–
Davidson (“Dav”) method are given and the non-spherical part of the Hamiltonian (which is ignored for the first half of the iterations towards
self-consistency) is the average over all iterations. The last column lists the corresponding speed-up factors

WIEN95 Optimized Speed-up factor

CPU-time CPU-time

Spherical(H,S) 43 m 17 s 16 m 29 s 2.62

Non-spherical(H) 37 m 13 s 18 m 36 s 2.00

Diagonalization 1 h 12 m 5 s Lan: 49 m 42 s 1.45

Diagonalization Dav: 23 m 07 s 3.12

Total 2 h 32 m 35 s Lan: 1 h 24 m 47 s 1.80

Dav: 57 m 12 s 2.67

Table 3
Distribution of CPU-time needed for the different parts of the LAPW-self-consistency cycle comparing the original version (“WIEN95”) with
the new one (“optimized”). The last column shows the speed-up factor reached

WIEN95 Optimized Speed-up factor

CPU-time % CPU-time %

lapw0 26 m 5 26 m 22 1.00

lapw1 2 h 33 m 30 57 m 61 2.67

lapw2 5 h 28 m 65 17 m 15 19.29

core 4 s 4 s

mixer 2 m 2 m 2

Total 8 h 29 m 1 h 46 m 4.80

for the programLAPW2indicates, that the original code, which was tuned for a vector machine, did not match the
needs of modern high performance workstations with fast but small cache and relatively slow main-memory access.
This extraordinary speed-up could not be gained for the programLAPW1. However, with the implementation of
the new iterative diagonalization algorithms and the omission of the non-spherical terms to the Hamilton-matrix
in the first half of the self-consistency run, the required CPU-time is cut down by a factor of 2.67. In total all our
modifications lead to a speed-up of 4.80.

5.4. Comparing the computationally costs of FP-LAPW and pseudopotentials plane waves (PPW) codes

In order to compare our improved FP-LAPW-code with the PPW-approach, we also calculated our test system
with the highly optimized PPW codefhi96md [25].

In this implementation of the PPW method, the Kohn–Sham-equations are solved by an iterative optimization of
a set of trial wave functions, combining self-consistency and iterative matrix diagonalization, where the iteration
of the wave functions is formulated in terms of equations of motion, as proposed by Car and Parinello [33]. In
the fhi96md code a second order equation is used, which had been suggested by Joannopoulos [34]. In this
scheme, each single step is computationally much cheaper than a single self-consistency cycle within the FP-
LAPW-method, but the number of iterations needed to reach self-consistency is usually much larger and crucially
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Fig. 3. Upper panel: Deviations of total energy (left panel) in mRy and electron distance (right panel) with respect to the exact diagonalization
for the Lanczos (filled boxes) and Block–Davidson (open circles) method during the SCF-cycle. Lower panel: Valence electron distance to the
exact solution (see text) for the MT-contributions (left panel) and plane wave contributions in interstitial region (right panel). At the start of
the SCF-cycle an exact diagonalization is performed (no deviation) to obtain the input wavefunctions for the Lanczos- and Davidson-method,
respectively.

depends on the quality of the initial guess for the wave functions. For this reason thefhi96md code employs a
mixed-basis-setinitialization, which gives starting wave functions of high quality. For details see Ref. [25].

Table 4 shows the CPU-time needed to converge our test system using both iterative matrix diagonalization
methods. The initialization in the FP-LAPW-method is just the time needed to construct a starting electron
density, whereas for the PPW-method the time reflects the set up of the starting wave functions within the mixed-
basis scheme. As already mentioned, the time needed for a single iteration is much smaller for thefhi96md
implementation of the PPW-approach than in the FP-LAPW-code, but this advantage is destroyed by the fact,
that about five times as many iterations are needed to reach self-consistency. It should be noted that the meaning of
“iteration” is in fact different in the FP-LAPW and the PPW method, as the PPW method [25] combines the iterative
diagonalization with the selfconsistent update of the electron density. While the originalWIENcode needed about
30% more CPU-time than the PPW-code to converge this system, our improved version is about three times faster.

It is important to note that Table 4 summarizes benchmark-calculations performed in summer 1997, and that
the system Cu(110) with a (4× 2) surface structure and 72 atoms per supercell was most favorable to identify
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Table 4
CPU-time needed on an IBM RS/6000 node to converge a nine layers slab, representing a 4×2 Cu(110) surface cell. Comparison of the original
WIEN95code (“original”), our improved code (“optimized”) and the fhi96md pseudopotential plane wave program (“PPW”) with two different
plane wave cutoffs (“70 Ry” and “40 Ry”)

FP-LAPW PPW

Original Optimized 70 Ry 40 Ry

Tinitialization 30 m 30 m 18 h 40 m 8 h 45 m

Titeration 8 h 24 m 1 h 46 m 1 h 7 m 30 m

#iterations 20 20 100 100

Ttotal 168 h 34 m 35 h 50 m 130 h 20 m 58 h 45 m

the advantages of the new FP-LAPW code, and at the same time it was least favorable for the plane-wave
pseudopotential code fhi96md. In the meantime several improvements are being introduced in the pseudopotential
code, as, for example, a real-space projector method [35] to evaluate the pseudopotential matrix-elements (which
brings a speed up between a factor of 2 and 3), and ultra-soft pseudopotentials [36] (which brings a speed
up by another factor of 2). Altogether, for the chosen benchmark system the new version of the plane-wave
pseudopotential code, fhi99md, is about a factor of 20 faster, without loss in accuracy [37]. But we also note
that for other systems the difference in CPU-time required for the new, fhi99md, and the older, fhi96md, code is
much less pronounced.

Other plane-wave pseudopotential codes [38,39] also employ the mentioned improvements and behave similar
to the fhi99md code. This discussion shows that comparisons between different methods (e.g., FP-LAPW versus
plane-wave pseudopotentials) is indeed helpful to identify and optimize time critical algorithms and routines. With
ever increasing system size program developments are getting more and more important. Although FP-LAPW
was ahead the pseudopotential code (with respect to lower CPU-time consumption) for some systems in 1997 and
1998, recent improvements by introducing new concepts at the plane-wave pseudopotentials front make this again
a more efficient code. We are convinced, however, that new concepts and techniques will also bring a speed up to
FP-LAPW. Clearly FP-LAPW remains the most accurate tool and does not suffer from problems as linearization of
core-valence exchange-correlation (which can bepartially corrected in pseudopotential calculations), or the lack
of core polarization (which may be important, e.g., for some magnetic systems). However, besides accuracy low
CPU-time requirements are clearly very important. A fast (i.e. efficiently) working electronic structure code is
crucial for present days problems, in particular to be able to test all relevant numerical approximations with the
required care. We note that in many density-functional theory calculations performed for low symmetry and/or
many-atom systems the main approximations are (often) not at the level of exchange-correlation functional but at
the level of numerical approximations.

Although our test system may be a special case and other systems or a different computer architecture may lead
to slight modifications, the fair estimate of the relative speed between FP-LAPW and PPW should remain valid.

6. Summary

The present work demonstrates that a continuous adaption of algorithms to the existing hardware architecture
is indeed very important for efficient and accurate electronic structure calculations of many-atom systems. While
theWIEN95 implementation of the FP-LAPW-method was optimized for a vector computer and performs well on
those platforms, it is not well suited for modern cache-based processors. Our improvements led to a significant
speed-up on those hardware achitectures and makes the FP-LAPW method a strong competition to the popular
PPW approach. Especially for transition metal systems, the FP-LAPW method has a significant advantage. In
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addition the FP-LAPW method gives as an all-electron method additional information about the system, which is
out of reach for any pseudopotential method because of the frozen core approximation.

The significant improvements discussed here have been implemented in the new version WIEN97 of the FP-
LAPW code [40] and the successful strategy adopted here may be useful for other software developers too.
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