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Specific matrix elements of exchange and correlation kernels in time-dependent density-functional
theory are computed. The knowledge of these matrix elements not only constrains approximate time-
dependent functionals. It also allows one to link different practical approaches to excited states, based
either on density-functional theory or on many-body perturbation theory, despite the approximations
that have been performed to derive them. [S0031-9007(99)09245-5]

PACS numbers: 31.50.+w, 71.10.—-w, 71.35.-y

Density-functional theory (DFT), as proposed by Ho-be identical. Because of the specific theoretical develop-
henberg, Kohn, and Sham [1], has been highly successnents, the most obvious simplifications are different, so
ful in the analysis of interacting-particlground states that the practical schemes derived from these formalisms
Many efforts [2—11] have also been devoted to DFT-also differ. We find that some approximations used for
based schemes fexcitedstates. The computation of ex- practical calculations leave a connection between the ap-
citation energies from DFT total-energy differences [2],proaches, at variance with the usual adiabatic local-density
a procedure known adSCF, is formally restricted to approximation (ALDA) in TDDFT [4-6], that leads to a
transitions between the lowest states of different symmedifferent physical picture.
tries. The ensemble-density-functional theory [3], a more The expressions from different approaches are linked
general path towards excitation energies, has not bedhanks to a new technique for computing selected ele-
used for actual calculations, to our knowledge. Recentlyments of TD functional kernels at resonance, that is, at
the feasibility of excitation-energy computations relyingthe frequencies corresponding to differences in KS eigen-
on two other, widely applicable, DFT-based formalismsvalues, for which the independent-particle susceptibility of
has been demonstrated for atoms and small moleculethe KS system is resonant. It is first applied to the
The first [4—-9] starts from the extension of DFT to act exchange kernel, whose matrix elements appear in a
time-dependent (TD) phenomena [12—14] (TDDFT). Thesimplified TDDFT treatment of excitation energies based
second [10,11,15], due to Gorling and Levy, builds a peron a Laurent expansion, and are fouidéntical to the
turbation theory (GLPT) in the difference between thefirst-order corrections to KS eigenvalues differences, in
many-body and the second-quantized Kohn-Sham (KShe GLPT. The knowledge of these matrix elements im-
Hamiltonians, where the parameter of the perturbation iposes a new constraint on approximate functionals. The
the coupling constant of the particle interaction, in such aame technique is then applied to an explicit exchange-
way that, at each order, the exact density is recovered. correlation (XC) functional that includes an approximate

As an alternative to these DFT-based efforts, one magorrelation contribution. It is shown that the correspond-
start from many-body perturbation theory and performing Laurent-expansion TDDFT excitation energies can be
partial resummations of diagrams such as to build aplit according to powers of the screened interaction, as in
screened interaction between dressed particles (quasipahe GW-BS approach, and that they contain th& quasi-
ticles) [16]. At the lowest order in the screened inter-particle eigenvalue shifts.
action, one obtains Hedin'6W approximation [17] to For the sake of simplicity, we will consider systems
guasiparticle energies (one particle is added or subtractedade of spinless particles (or equivalently, fully spin-
to the system), while the energy of excited states fopolarized systems) and focus on finite systems for which
which the number of particles is conserved can be dethe energy levels of interest are nondegenerate (KS wave
duced, in a subsequent step, from a Bethe-Salpeter (B&)nctions are real). The introduction of spin dependence
equation describing the interaction between quasiparticlesnd complex wave functions is technically straightfor-
(e.g., electron-hole pairs). The application of these techward, and does not modify the conclusions reached here.
niques to real materials is very demanding [18]. We use Hartree atomic units throughout. For integrals of

In the present Letter, we explore the relationships bethe form [ gi(r;)f(ry,r2)g2(r2) dry dry, in which g; and
tween excitation energies derived from time-dependeng, are not wave functions, but densities or products of
density-functional theory, the Gorling-Levy perturbation wave functions, we will use the notatigg | f|g>}-
theory, and the screened-interaction many-body perturba- In TDDFT, the lowest-order Laurent expansion of the
tion theory. If excitation energies were derived withoutXC kernel and KS susceptibility, in the difference be-
approximations, in the three formalisms, the results shoultiveen the actual excitation frequendy, and the energy
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difference between corresponding KS eigenenergieALDA (that ignore the functional dependence of the XC

allows one to deduce approximate potentialVxc on densities at different times as well as dif-

excitation energies as [5] ferent locations): It induces only a local, attractive, static
electron-hole interaction dfx(r;)¢;(r;)d(r; — ry) X

dZ;‘C (r1)¢i(r2)¢;(ry)]. Then, as detailed by Cassida [4],
gquasiparticle energies (i.e., excitation energies, to which
quasiparticle interactions make no contribution, such as
ionization energies) are identified with unmodified KS

energies [19].

Q =~ oS +{®,|Vel®,} + {®, ] fxc(wkd)ID,}. (1)
The double index» = (j, k) labels a single-particle tran-
sition from the occupied levet to the unoccupied level

J» @,(r) is the product of KS wave functiong(r)¢;(r),

Ve is the Coulomb interaction kernelpf=7), and Unlike the ALDA, we evaluate exactly the exchange
fxc(ry,r; w) is the frequency-dependent XC kernel.  contribution. Since we will use later the same technique

In Eq. (1), the diagonal matrix elements of the Coulombfor the correlation contribution, we treat them now on the
and XC kernel for the transition between occupied and unsame footing. The Keldysh formalism, as applied recently
occupied states correct the difference in KS eigenvalueso the TDDFT case by van Leeuwen [13] (we follow his
The Coulomb kernel gives an exchangelike interactiomotations), leads to the following explicit expression for
between the KS electron and holgfr;)¢ ;(r;) ﬁ X the TD kernel, second derivative of the actidrc, in the
¢i(r2)¢j(ry)]. The XC kernel is easy to evaluate in th|e temporal (pseudotime) domain:

fxc(riTisram) = ffcdtgdr3dt4dr4

< |

In this equatioru anduxc, respectively, denote the time-domain KS potential and the XC potential.
This general expression can be specialized to the TD linear response of an otherwise static system, in the frequency
domain, and inserted in the integral needed in Eq. (1):

8%Axc(w = 0)
Svs(—w)dvs(w)

Note the appearance of the (static) XC potentig (r). | A similar expression involving alsa — XS can be
Sv,(r; ) is a change of KS potential in the frequency do-derived in the case of,(—w). The presence of the
main, yo(r, r2; @) is the independent-particle susceptibil- factor(w — «X%) emphasizes the antiresonant behavior of
ity of the KS system, angl, ' is the effective inverse ofy, Xo . This characteristic of Eq. (4) allows one to extract
defined on a restricted space excluding constant functiorthe leading order of the frequency expansion of Eq. (3)
[8]. The spatial dependence of potentials and susceptibiliaround w X5, for XC actions whose explicit expression
ties is implicit in Eqg. (3), as well as most integrals overis known as a function of the KS potential through KS
spatial argumentsAxc(w = 0) andn(r; @ = 0) are the  wave functions. Indeed, after technically straightforward
time-independent part of the action integrand and the derealculations within perturbation theory (up to second-order
sity, respectively [20]. wave functions), one finds
When evaluated ab = X5, Eq. (3) gives the XC ker- 82n(r;w = 0)
nel contribution toQ) in Eq. (1). This requires the inver- {v»(—w)]| 5y (_;))51] @)
sion of xo around the frequency XS, and its subsequent : *

5u(r37'3) 6“(1‘47’4)
dn(rimy) 6n(rym)

8%Axc
Su(rym3)du(ryty

8%n(rss)

Su(r3m3)u(ryry)

) fc dts drs uxc(rs7s) (2

8%n(rs;w = 0)
dvs(—w)dvs(w)

P, fxc(w) |P,} = {(I)V|Xol(—w)|: - / drs vxc(rs) i|Xol(w) |®,}.  (3)

vy (@)}

application to®,,(r). The explicit expression ofy is well

known [see Eg. (14) of Ref. [8]] and exhibits a resonance

= ¢;(0)p;(r) — dr(X)pr(r) + O(w — wk3),
(5)

at that frequency. The corresponding pole can be singlednd, using the explicit exchange action of Ref. [13],

out before performing the inversionyy(r;,r;; w) =

q"’gl)ifgﬁ“) + x,(ri,r; @), where the nonresonant con-

tribution y, is implicitly defined by this equation. The

Sherman-Morrison formula [21] allows the analytical in-

version of such a decomposition. The applicationf

to ®,, denotedv,,, gives

v, (0) = xo ' (0)|D,}

KS) X;l(a))l(by}

g (w - wVKS) - {(I)le\/;](w)lq)v}
(@)

=(w —w

8%A(w = 0)
5vs(—w)ovy(w) @V

= (P10 ;) — (PiloFF ) — {milVeln;}

+ 0w — %), (6)
where# HF is the Fock nonlocal operator evaluated with
KS wave functions, and,(r) is the square of KS wave
function ¢,(r). Combining Egs. (3), (5), and (6), we
derive the following matrix element of the exchange kernel
at resonance (in the limit ab — «X3), valid for all pairs
(7, k) of unoccupied and occupied levels associated with a
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composite index: where the Green'’s functio; is built from KS wave
(O, 1f (055 |D,} = (p;|01F — v,ile)) functions, andW islthe dynamically screened Coulomb
(G — bl interaction W = ngAVC, w!th ERPA = 1. — Vexo being
. * the RPA dielectric screening). The integral can be
— {mulVelny}. (7)  further transformed to a contour integral in the complex

This explicit expression for selected matrix elements oplane.
the TD exchange kernel provides, as such, a new con- In Eq. (9), the difference between KS eigenenergies is
straint on approximate TD exchange functionalblote  shifted by expectation values of the difference between the
the drastic simplification from the general matrix elementsself-energy operator and the XC potential. The neglected
of the TD exchange kernel derived by Gorling [8]. The BS corrections would make quasiparticles interact through
combination of Egs. (1) and (7), neglecting the correlatioran unscreened exchangelike term [compare with Eq. (1)]

contribution, gives as well as through acreenedCoulomb interaction. EXxci-
Q = 0¥ + (¢;|08F — v ld;) — (dil0FF — v,l¢y)  toniceffects would be described at that level. The screened
+{®,[Vel®,} — {mlVeln;}. @) Coulomb interaction is to be contrasted with #féective,

local, electron-hole interaction of ALDA-TDDFT, and the
unscreenecoulomb interaction of first-order GLPT.

A formally exact correlation functional can be obtained
y the combination of the adiabatic connection method
based on a coupling constant integral) and the fluctuation-
dissipation theorem [23]. In the context of the DFT com-

The KS e|genenerg|e§ ande; " are expectation val- putatlon of van der Waals energy, Dobson [23] proposed
ues of the KS Hamiltonian that includes the exchange po 2 S|mpl|f|ed expressmn

tential. Hence, the two expectation values of the difference

between the Fock operator and the exchange potential in g = [ d)‘f — Tr{Velxo(iu) — xrpan(in)l},

Eq. (8) induce a shift of KS energle§ andey”, present

in XS, in the direction of the Hartree-Fock quasiparticle (10)

energies. Sounlike in the ALDA approach, the quasi- in which the true susceptibility present in the exdgt

particle energies from TDDFT with exact treatment of theexpression is replaced by the RPA one, although the

exchange kernel are shifted from the KS eigenenergiegnategral over the coupling constantis retained.

The fifth term in Eq. (8) describes an unscreened Coulomb The RPA susceptibility is a simple functional gf

electron-hole attractiono be contrastedvith the effective  [yrpar = xo(l1 — AVexo)~!].  This latter quantity is

interaction present in ALDA. However, the fourth term a functional of the KS potential, itself a functional of

in Eqg. (8) isthe sameexchangelike interaction as in the the density. We can thus compute the corresponding

ALDA case, present in Eq. (1). correlation potential and kernel. Thanks to an integration
The dynamical treatment of correlation is more difficult by parts, we obtain that the correlation potential does

than that of exchange. We will not pursue the investigatiorexhibit the integration over the coupling constant

of GLPT that would involve higher-order terms. How- SE¢

ever, we will establish a link between TDDFT and the vc(ry) = = [ dray xg H(r1, 125 @ 0)[

screened-interaction many-body perturbation theory. At dn(r)

variance with the decoupling betwe€rv and BS pro- 8 yolit)

cedures, TDDFT computes the excitation energies in one X Tr‘[vc W (iu )] XD

operation. This might be a crucial advantage for practical Svy(r) |

applications. Our aim will be to show, at the adequate apwhere the same screened interactidhas in theGW

proximation levels, that TDDFTEontainsthe ingredients approximation appears. For the computation of excited

characteristic of th&W approach, and to point out how it states, we generalize the correlation functional Eg. (10) to

This expression isdentical to the one obtained in the
first-order GLPT [see Eq. (A3) of Ref. [11], and also
Ref. [10]]: Excitation energies from the TDDFT with
exact treatment of the exchange kernel, in the Lauren?
approximation, and from first-order GLPT are eqyaR].

(11)

accounts for the additional BS terms. a TD action, and, neglecting a term in the second power of
The GW quasiparticle shift, evaluated in a non-self- the screened interaction, derive
consistent, diagonal approximation, based on KS eigenen- 82Ac(w = 0) “ du
ergy and eigenfunctions, leads to the following excitation(S — - =~ -
- vs(ry; —w)dvs(r; w) 0o 2w
energies: 2 g
Q = ;% + (12N () — vxcld)) X Tr{[VC—W(iM)] ( -S_XO)(;‘M)( o)
— (DelZ (%) — vxclen). (9) Pl @ oT i @
3.9 is the self-energy operator in tii&% approximation: ) ) o (12_)
de For comparison with thGW_ approximation, it is crucial
SOW(r,r€) = / e TG(r,, 1€ — €) that the coupling constant is absent, as in Eq. (11). The
2m second derivative ofyy with respect to TD changes of
X W(r;,rp; €, potential can also be evaluated (perturbation theory up to
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third-order wave functions), close to the resonance:

{Uu(_w)l

82 xo(r1,12; in)
Svy(—w)dvy(w)

lv,(—w)} = ¢;(r)2REG(r),ry; €1 + iu)]p;(r2)

— dur)2REG(r| 125 € ° + iw)]hi(ra) + O(w — 0X5),  (13)
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