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Specific matrix elements of exchange and correlation kernels in time-dependent density-functio
theory are computed. The knowledge of these matrix elements not only constrains approximate ti
dependent functionals. It also allows one to link different practical approaches to excited states, ba
either on density-functional theory or on many-body perturbation theory, despite the approximatio
that have been performed to derive them. [S0031-9007(99)09245-5]
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Density-functional theory (DFT), as proposed by Ho
henberg, Kohn, and Sham [1], has been highly succe
ful in the analysis of interacting-particleground states.
Many efforts [2–11] have also been devoted to DFT
based schemes forexcitedstates. The computation of ex-
citation energies from DFT total-energy differences [2
a procedure known asDSCF, is formally restricted to
transitions between the lowest states of different symm
tries. The ensemble-density-functional theory [3], a mo
general path towards excitation energies, has not be
used for actual calculations, to our knowledge. Recent
the feasibility of excitation-energy computations relyin
on two other, widely applicable, DFT-based formalism
has been demonstrated for atoms and small molecu
The first [4–9] starts from the extension of DFT to
time-dependent (TD) phenomena [12–14] (TDDFT). Th
second [10,11,15], due to Görling and Levy, builds a pe
turbation theory (GLPT) in the difference between th
many-body and the second-quantized Kohn-Sham (K
Hamiltonians, where the parameter of the perturbation
the coupling constant of the particle interaction, in such
way that, at each order, the exact density is recovered.

As an alternative to these DFT-based efforts, one m
start from many-body perturbation theory and perform
partial resummations of diagrams such as to build
screened interaction between dressed particles (quasip
ticles) [16]. At the lowest order in the screened inte
action, one obtains Hedin’sGW approximation [17] to
quasiparticle energies (one particle is added or subtrac
to the system), while the energy of excited states f
which the number of particles is conserved can be d
duced, in a subsequent step, from a Bethe-Salpeter (B
equation describing the interaction between quasipartic
(e.g., electron-hole pairs). The application of these tec
niques to real materials is very demanding [18].

In the present Letter, we explore the relationships b
tween excitation energies derived from time-depende
density-functional theory, the Görling-Levy perturbatio
theory, and the screened-interaction many-body perturb
tion theory. If excitation energies were derived withou
approximations, in the three formalisms, the results shou
0031-9007y99y82(22)y4416(4)$15.00
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be identical. Because of the specific theoretical devel
ments, the most obvious simplifications are different,
that the practical schemes derived from these formalis
also differ. We find that some approximations used f
practical calculations leave a connection between the
proaches, at variance with the usual adiabatic local-den
approximation (ALDA) in TDDFT [4–6], that leads to a
different physical picture.

The expressions from different approaches are link
thanks to a new technique for computing selected e
ments of TD functional kernels at resonance, that is,
the frequencies corresponding to differences in KS eig
values, for which the independent-particle susceptibility
the KS system is resonant. It is first applied to theex-
act exchange kernel, whose matrix elements appear i
simplified TDDFT treatment of excitation energies bas
on a Laurent expansion, and are foundidentical to the
first-order corrections to KS eigenvalues differences,
the GLPT. The knowledge of these matrix elements i
poses a new constraint on approximate functionals. T
same technique is then applied to an explicit exchan
correlation (XC) functional that includes an approxima
correlation contribution. It is shown that the correspon
ing Laurent-expansion TDDFT excitation energies can
split according to powers of the screened interaction, as
theGW-BS approach, and that they contain theGW quasi-
particle eigenvalue shifts.

For the sake of simplicity, we will consider system
made of spinless particles (or equivalently, fully spi
polarized systems) and focus on finite systems for wh
the energy levels of interest are nondegenerate (KS w
functions are real). The introduction of spin dependen
and complex wave functions is technically straightfo
ward, and does not modify the conclusions reached h
We use Hartree atomic units throughout. For integrals
the form

R
g1sr1dfsr1, r2dg2sr2d dr1 dr2, in which g1 and

g2 are not wave functions, but densities or products
wave functions, we will use the notationhg1jfjg2j.

In TDDFT, the lowest-order Laurent expansion of th
XC kernel and KS susceptibility, in the difference be
tween the actual excitation frequency,V, and the energy
© 1999 The American Physical Society



VOLUME 82, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 31 MAY 1999

-
ic

,
ch
as
S

e
ue
e
tly
s
r

difference between corresponding KS eigenenergie
vKS

n ­ e
KS
j 2 e

KS
k , allows one to deduce approximate

excitation energies as [5]

V ø vKS
n 1 hFnjVCjFnj 1 hFnj fXCsvKS

n djFnj . (1)

The double indexn ­ s j, kd labels a single-particle tran-
sition from the occupied levelk to the unoccupied level
j, Fnsrd is the product of KS wave functionsfksrdfjsrd,
VC is the Coulomb interaction kernel (1

jr12r2j
), and

fXCsr1, r2; vd is the frequency-dependent XC kernel.
In Eq. (1), the diagonal matrix elements of the Coulom

and XC kernel for the transition between occupied and u
occupied states correct the difference in KS eigenvalu
The Coulomb kernel gives an exchangelike interactio
between the KS electron and hole [fksr1dfjsr1d 1

jr12r2j
3

fksr2dfjsr2d]. The XC kernel is easy to evaluate in the
s,

b
n-
es.
n

ALDA (that ignore the functional dependence of the XC
potentialVXC on densities at different times as well as dif
ferent locations): It induces only a local, attractive, stat
electron-hole interaction [fksr1dfjsr1ddsr1 2 r2d 3
dVXC

dn sr1dfksr2dfjsr2d]. Then, as detailed by Cassida [4]
quasiparticle energies (i.e., excitation energies, to whi
quasiparticle interactions make no contribution, such
ionization energies) are identified with unmodified K
energies [19].

Unlike the ALDA, we evaluate exactly the exchang
contribution. Since we will use later the same techniq
for the correlation contribution, we treat them now on th
same footing. The Keldysh formalism, as applied recen
to the TDDFT case by van Leeuwen [13] (we follow hi
notations), leads to the following explicit expression fo
the TD kernel, second derivative of the actionAXC, in the
temporal (pseudotime) domain:
equency
fXCsr1t1; r2t2d ­
Z Z

C
dt3 dr3 dt4 dr4

dusr3t3d
dnsr1t1d

dusr4t4d
dnsr2t2d

3

"
d2AXC

dusr3t3ddusr4t4d
2

Z
C

dt5 dr5 uXCsr5t5d
d2nsr5t5d

dusr3t3ddusr4t4d

#
. (2)

In this equationu anduXC, respectively, denote the time-domain KS potential and the XC potential.
This general expression can be specialized to the TD linear response of an otherwise static system, in the fr

domain, and inserted in the integral needed in Eq. (1):

hFnjfXCsvd jFnj ­ hFnjx21
0 s2vd

"
d2AXCsv ­ 0d

dyss2vddyssvd
2

Z
dr5 yXCsr5d

d2nsr5; v ­ 0d
dyss2vddyssvd

#
x21

0 svd jFnj . (3)
of
t

3)
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Note the appearance of the (static) XC potentialyXCsrd.
dyssr; vd is a change of KS potential in the frequency do
main,x0sr1, r2; vd is the independent-particle susceptibil
ity of the KS system, andx21

0 is the effective inverse ofx0,
defined on a restricted space excluding constant functio
[8]. The spatial dependence of potentials and susceptib
ties is implicit in Eq. (3), as well as most integrals ove
spatial arguments.AXCsv ­ 0d andnsr; v ­ 0d are the
time-independent part of the action integrand and the de
sity, respectively [20].

When evaluated atv ­ vKS
n , Eq. (3) gives the XC ker-

nel contribution toV in Eq. (1). This requires the inver-
sion of x0 around the frequencyvKS

n , and its subsequent
application toFnsrd. The explicit expression ofx0 is well
known [see Eq. (14) of Ref. [8]] and exhibits a resonanc
at that frequency. The corresponding pole can be singl
out before performing the inversion:x0sr1, r2; vd ­
Fnsr1dFnsr2d

v2vKS
n

1 xnsr1, r2; vd, where the nonresonant con-
tribution xn is implicitly defined by this equation. The
Sherman-Morrison formula [21] allows the analytical in
version of such a decomposition. The application ofx

21
0

to Fn , denotedyn , gives

ynsvd ­ x21
0 svd jFnj

­ sv 2 vKS
n d

x21
n svd jFnj

sv 2 vKS
n d 2 hFnjx21

n svdjFnj
.

(4)
-
-
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A similar expression involving alsov 2 vKS
n can be

derived in the case ofyns2vd. The presence of the
factorsv 2 vKS

n d emphasizes the antiresonant behavior
x

21
0 . This characteristic of Eq. (4) allows one to extrac

the leading order of the frequency expansion of Eq. (
around vKS

n , for XC actions whose explicit expression
is known as a function of the KS potential through K
wave functions. Indeed, after technically straightforwa
calculations within perturbation theory (up to second-ord
wave functions), one finds

hyns2vd j
d2nsr; v ­ 0d

dyss2vddyssvd
jynsvdj

­ fjsrdfjsrd 2 fksrdfksrd 1 O sv 2 vKS
n d ,

(5)
and, using the explicit exchange action of Ref. [13],

hyns2vd j
d2Axsv ­ 0d

dyss2vddyssvd
jynsvdj

­ kfjjŷ
HF
x jfjl 2 kfkjŷ

HF
x jfkl 2 hnkjVCjnjj

1 O sv 2 vKS
n d , (6)

whereŷHF
x is the Fock nonlocal operator evaluated wit

KS wave functions, andnksrd is the square of KS wave
function fksrd. Combining Eqs. (3), (5), and (6), we
derive the following matrix element of the exchange kern
at resonance (in the limit ofv ! vKS

n ), valid for all pairs
s j, kd of unoccupied and occupied levels associated with
4417



VOLUME 82, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 31 MAY 1999

x

is
he
ed
gh
1)]

ed

d
d
n-
-

ed

he

f
ing
on

ed
to
of

he

to
composite indexn:
hFnjfxsvKS

n d jFnj ­ kfjjŷ
HF
x 2 yxjfjl

2 kfkjŷ
HF
x 2 yxjfkl

2 hnkjVCjnjj . (7)
This explicit expression for selected matrix elements

the TD exchange kernel provides, as such, a new co
straint on approximate TD exchange functionals. Note
the drastic simplification from the general matrix elemen
of the TD exchange kernel derived by Görling [8]. Th
combination of Eqs. (1) and (7), neglecting the correlatio
contribution, gives
V ø vKS

n 1 kfjjŷ
HF
x 2 yx jfjl 2 kfkjŷ

HF
x 2 yxjfkl

1 hFnjVCjFnj 2 hnkjVCjnjj . (8)
This expression isidentical to the one obtained in the
first-order GLPT [see Eq. (A3) of Ref. [11], and als
Ref. [10] ]: Excitation energies from the TDDFT with
exact treatment of the exchange kernel, in the Laure
approximation, and from first-order GLPT are equal[22].

The KS eigenenergieseKS
j ande

KS
k are expectation val-

ues of the KS Hamiltonian that includes the exchange p
tential. Hence, the two expectation values of the differen
between the Fock operator and the exchange potentia
Eq. (8) induce a shift of KS energiese

KS
j ande

KS
k , present

in vKS
n , in the direction of the Hartree-Fock quasiparticl

energies. So,unlike in the ALDA approach, the quasi
particle energies from TDDFT with exact treatment of th
exchange kernel are shifted from the KS eigenenergi
The fifth term in Eq. (8) describes an unscreened Coulom
electron-hole attraction,to be contrastedwith the effective
interaction present in ALDA. However, the fourth term
in Eq. (8) is the sameexchangelike interaction as in the
ALDA case, present in Eq. (1).

The dynamical treatment of correlation is more difficu
than that of exchange. We will not pursue the investigati
of GLPT that would involve higher-order terms. How
ever, we will establish a link between TDDFT and th
screened-interaction many-body perturbation theory.
variance with the decoupling betweenGW and BS pro-
cedures, TDDFT computes the excitation energies in o
operation. This might be a crucial advantage for practic
applications. Our aim will be to show, at the adequate a
proximation levels, that TDDFTcontainsthe ingredients
characteristic of theGW approach, and to point out how it
accounts for the additional BS terms.

The GW quasiparticle shift, evaluated in a non-sel
consistent, diagonal approximation, based on KS eigen
ergy and eigenfunctions, leads to the following excitatio
energies:

V ø vKS
n 1 kfjjS

GW seKS
j d 2 yXCjfjl

2 kfkjS
GW seKS

k d 2 yXCjfkl . (9)
SGW is the self-energy operator in theGW approximation:

SGW sr1, r2; ed ­
Z de0

2p
e2ide0

iGsr1, r2; e 2 e0d

3 Wsr1, r2; e0d ,
4418
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where the Green’s functionG is built from KS wave
functions, andW is the dynamically screened Coulomb
interaction (W ­ ´

21
RPAVC, with ´RPA ­ 1 2 VCx0 being

the RPA dielectric screening). Thee0 integral can be
further transformed to a contour integral in the comple
plane.

In Eq. (9), the difference between KS eigenenergies
shifted by expectation values of the difference between t
self-energy operator and the XC potential. The neglect
BS corrections would make quasiparticles interact throu
an unscreened exchangelike term [compare with Eq. (
as well as through ascreenedCoulomb interaction. Exci-
tonic effects would be described at that level. The screen
Coulomb interaction is to be contrasted with theeffective,
local, electron-hole interaction of ALDA-TDDFT, and the
unscreenedCoulomb interaction of first-order GLPT.

A formally exact correlation functional can be obtaine
by the combination of the adiabatic connection metho
(based on a coupling constant integral) and the fluctuatio
dissipation theorem [23]. In the context of the DFT com
putation of van der Waals energy, Dobson [23] propos
a simplified expression,

EC ­
Z 1

0
dl

Z `

0

du
2p

TrhVCfx0siud 2 xRPA,lsiudgj ,

(10)
in which the true susceptibility present in the exactEC

expression is replaced by the RPA one, although t
integral over the coupling constantl is retained.

The RPA susceptibility is a simple functional ofx0
[xRPA,l ­ x0s1 2 lVCx0d21]. This latter quantity is
a functional of the KS potential, itself a functional o
the density. We can thus compute the correspond
correlation potential and kernel. Thanks to an integrati
by parts, we obtain that the correlation potential doesnot
exhibit the integration over the coupling constantl:

yCsr1d ­
dEC

dnsr1d
­

Z
dr2 x21

0 sr1, r2; v ­ 0d
Z `

0

du
2p

3 Tr

(
fVC 2 Wsiudg

dx0siud
dyssr2d

)
, (11)

where the same screened interactionW as in theGW
approximation appears. For the computation of excit
states, we generalize the correlation functional Eq. (10)
a TD action, and, neglecting a term in the second power
the screened interaction, derive

d2ACsv ­ 0d
dyssr1; 2vddyssr2; vd

ø
Z `

0

du
2p

3 Tr

(
fVC2Wsiudg

d2x0siud
dyssr1; 2vddyssr2; vd

)
.

(12)
For comparison with theGW approximation, it is crucial
that the coupling constant is absent, as in Eq. (11). T
second derivative ofx0 with respect to TD changes of
potential can also be evaluated (perturbation theory up
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third-order wave functions), close to the resonance:

hyns2vdj
d2x0sr1, r2; iud

dyss2vddyssvd
jyns2vdj ­ fjsr1d2 RefGsr1, r2; eKS

j 1 iudgfjsr2d

2 fksr1d2 RefGsr1, r2; e
KS
k 1 iudgfksr2d 1 O sv 2 vKS

n d , (13)
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where the same Green’s functionG as in theGW ap-
proximation appears. The combination of Eqs. (12) a
(13), needed in Eq. (3), gives the difference between
unscreenedGVC term and aGW term. We introduce this
result in Eq. (1), and find that the main contribution of th
first term (GVC) cancels the unscreened Fock operator th
shifts the KS eigenvalues in Eq. (8).

We can now discuss the link betweenGW -BS exci-
tation energies and TDDFT excitation energies obtain
from an exact exchange kernel and an approximate c
relation kernel: (i) As expected, the crucialGW terms
are contained in Eq. (1); (ii) the inclusion of correlatio
in TDDFT transforms theunscreenedsingle-orbital ma-
trix elements of Eq. (8) todynamically screenedmatrix
elements, as in Eq. (9); (iii) the subtraction of the sam
matrix elements ofyXC appear in both schemes, compar
Eqs. (3)–(5) to Eq. (9); (iv) however, the contour integr
deduced from Eq. (12) is shifted from the contour integr
in theGW approximation, and includes contributions from
additional poles; (v) a term in the second power of th
screened interaction has been neglected from Eq. (10
Eq. (12); (vi) the RPA susceptibility was used in Eq. (10
Points (iv)–(vi) connect to BS as well asO sWnd (with
n $ 2) corrections to Eq. (9). Understanding point (iv
also requires a careful analysis of our TD correlation a
tion (especially the contour integral to be used with th
fluctuation-dissipation theorem). A more detailed discu
sion of these aspects will be left for a future publication

In this paper, we have examined the time-dependent k
nels deduced from the exact exchange functional and
approximate correlation functional, at resonance. Lin
between approximate expressions for excitation energ
from time-dependent DFT, the Görling-Levy perturbatio
theory, and Hedin’sGW approximation have been found
The difference between Kohn-Sham eigenvalues is c
rected by one-particle shifts, followed by (unscreened
screened) interaction effects. We also noted that in t
adiabatic local-density approximation to time-depende
DFT, no one-particle shift is present, and the link with th
two other techniques is lost.
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