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Statistics of extinction and survival in Lotka-Volterra systems
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We analyze purely competitive many-species Lotka-Volterra systems with random interaction matrices,
focusing the attention on statistical properties of their asymptotic states. Generic features of the evolution are
outlined from a semiquantitative analysis of the phase-space structure and extensive numerical simulations are
performed to study the statistics of the extinctions. We find that the number of surviving species depends
strongly on the statistical properties of the interaction matrix and that the probability of survival is weakly
correlated to specific initial conditions.@S1063-651X~98!03204-8#

PACS number~s!: 87.10.1e, 82.20.Mj, 02.40.Vh
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I. INTRODUCTION

Systems of interacting biological species evolve throu
the long, slow, and intricate process of natural selection@1#.
Usually, the result of this process is so complex that
dynamics of such webs of coevolving species can be s
cessfully represented, within relatively short time scales,
means of a dynamical system with stochastic elements@2#. A
standard mathematical model for the joint evolution ofM
biological species with spatially homogeneous densi
ni(t) ( i 51,2, . . . ,M ) is the generalized Lotka-Volterra sys
tem @3#

ṅi~ t !5ni~ t !F r i2(
j 51

M

k i j nj~ t !G ~ i 51,2, . . . ,M !. ~1!

For large values ofM , it is reasonable, as a phenomenolo
cal approach, to choose the parametersr i andk i j at random
from given probability distributions. Within this type of rep
resentation, the dynamics of coevolving species can be c
acterized by statistical properties over different realizatio
of parameter sets.

There are two biological systems that can potentially
volve a large number of coevolving populations. The fi
one is an ecological system in which each population co
sponds to a different biological species, as usually in
preted in the theory of population dynamics@4,5#. The other
situation is a system in which each population represen
genotype accessible to a given species@6#. In this situation,
the number of populations can be sensibly larger than in
case of interacting species. Although in both cases coev
tion is presumably well described by Eq.~1!, the probability
distributions to be assigned to the random parametersk i j ,
which represent the interaction between populations, are
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necessarily similar. In fact, in an ecological system of seve
coevolving species, mutual interactions can be of differ
types~competition, symbiosis, or parasitism!. Within a given
species, instead, it is expected that the interaction is ma
competitive, as in logistic models@5#.

It is well known that, in a system where many individua
compete for a resource, the dynamics leads to the extinc
of some of them and to the survival of others. This is inde
a basic fact of evolution in the Darwinian sense. Though
generalized Lotka-Volterra model~1! has been explored in
detail @3,7#, it seems that a full characterization, either det
ministic or statistical, of the conditions under which a pop
lation becomes extinguished or survives in the competit
process has not been achieved. In this paper we aim at
lyzing this particular problem from a statistical viewpoint.

We consider a large number of coevolving species
genotypes, each of them consisting of a population of id
tical individuals with densityni(t). These populations are
supposed to evolve according to the Lotka-Volterra mo
~1!, subject to purely competitive interactions, i.e., wi
k i j >0 for any pairi , j . Since we aim at analyzing the stati
tical properties of the dynamics, these coefficients will
drawn at random from a given distribution and will rema
quenched from the initial time.

For simplicity, we taker i51 ; i @2#, indicating that in
the absence of competition the dynamics of all the popu
tions are identical. We are thus implicitly identifying thes
populations with the genotypes accessible to a given spe
Within this condition, that it is not essential to our intere
and could in fact be easily relaxed, Eq.~1! reduces to

ṅi~ t !5ni~ t !F12(
j 51

M

k i j nj~ t !G ~ i 51,2, . . . ,M !. ~2!

All the coefficientsk i j will be chosen at random from th
same distributionp(k), such thatp(k)50 for k,0.

In the next section we outline the behavior of the dynam
cal system~2! in phase space, showing that its evolutio
proceeds along a series of ‘‘pseudoextinctions,’’ in whi
some of the densitiesni(t) can attain very low levels during
long periods but, eventually, they recover significative v

es
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57 4573STATISTICS OF EXTINCTION AND SURVIVAL IN . . .
ues. A threshold for these pseudoextinctions, which beco
consequently true extinctions, is suggested by the biolog
context of the problem. This threshold is introduced in o
numerical study of Eq.~2! in Sec. III, where we focus the
attention on the statistics of extinct and surviving genoty
and try to characterize their long-time behavior in terms
their inital conditions. Our results are discussed in Sec. I

II. PHASE-SPACE STRUCTURE

The evolution of the dynamical system~2! can be de-
scribed in terms of a semiquantitative analysis of the co
sponding phase-space topology, which is determined by
fixed points of Eq.~2! and the associated invariant man
folds. The equation for the fix-point coordinatesni* reads

ni* S 12(
j

k i j nj* D 50 ~ i 51,2, . . . ,M ! ~3!

and has, generically, 2M solutions. In fact, each solution t
this equation can be characterized by the numberM 8 of non-
zero coordinates (M 850, . . . ,M ); let us call such a solution
anM 8 equilibrium. For a given choice of the coefficientsk i j
the number of different M 8 equilibria is C(M ,M 8)
5M !/ M 8!( M2M 8)!. Therefore, disregarding pathologic
choices of k i j , the total number of fixed points i
(M8C(M ,M 8)52M.

Since ni* stands for a density, meaningful equilibr
among the 2M fixed points are those with non-negative c
ordinates. In the Appendix it is proved that, for randomk i j ,
the probability that all the nonzero coordinates of anM 8
equilibrium (M 8Þ0) are positive is

P~M 8!5212M8. ~4!

We stress that it is essential to this result thatk i j .0 ; i , j ,
i.e., that the system is purely competitive. For largeM , the
number of equilibrium points with non-negative coordina
will therefore be approximately given by

(
M8Þ0

212M8C~M ,M 8!'2S 3

2D M

. ~5!

It is interesting to note that, ifk i j .kmin ; i , j , all the non-
negative equilibria will be confined to a certain volumeV in
phase space since( ini* ,1/kmin . This volume shrinks rap-
idly for growing M , asV5kmin

2M/M!, and the density of equi-
librium points, most of which are situated on the surface
V, where some of the coordinates vanish, grows correspo
ingly.

The stability properties of the fixed points of system~2!
can be fully analyzed in some very special cases only.
instance, as could be expected for this logisticlike dynam
system, the 0 equilibrium (ni* 50 ; i ) can be proved to be
always unstable. Moreover, for a random choice of posit
k i j , 1 equilibria are stable with probability equal toM 21.
Finally, theM equilibrium (ni* Þ0 ; i ) is stable ifk i j is a
symmetric matrix.

Though we cannot give a detailed characterization of
stability of all of theM 8 equilibria, it can be argued that, fo
a random system and for largeM 8 andM , the eigenvalues o
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the linearized problem should follow a semicircular distrib
tion @8#. A typical equilibrium point is thus linearly unstabl
and it has approximately the same number of positive
negative eigenvalues. Correspondingly, the number of
stable and stable invariant manifolds for each equilibrium
more or less the same. Since the mathematical structur
system ~2! prevents both the divergence of orbits a
changes of sign in the densitiesni(t), the invariant manifolds
of positive equilibria are necessarily bounded and mutua
connected, defining homoclinic and heteroclinic orbits. M
of these orbits lie on the surface of the volume that conta
the positive equilibria, where some of the densities are
actly equal to zero.

In summary, the portion of theM -dimensional phase
space of system~2! meaningful to our problem is populate
by a large set of fixed points, of the order of (3/2)M in
number, most of them having positive and negative eigen
ues, i.e., being unstable. They are confined to a volume
order 1/M ! and typically are found on the surface of suc
volume. These equilibria are highly interconnected throu
invariant manifolds that lie also on that surface and conn
stable and unstable eigenvectors. The number of those m
folds should be of orderM (3/2)M.

With these elements in hand, the evolution along a typi
phase-space trajectory of the dynamical system~2! can be
outlined as follows. From a generic initial condition, the o
bit should soon approach one of the stable manifolds and
system will be driven towards the corresponding equil
rium. It will spend some time in the vicinity of this equilib
rium, but if this fixed point is not stable~i.e., if it has at least
one unstable manifold, which, as we have argued, is the t
cal case! the orbit will finally leave that neighborhood, just t
be drawn along one of the unstable manifolds of this fi
equilibrium point towards another equilibrium, which is e
pected to have in turn some stable and some unstable m
folds. The whole process will repeat itself and the syst
will wander in phase space, typically visiting the neighbo
hoods of a large number of unstable fixed points, unti
eventually finds a stable equilibrium. This is reminiscent
the complex behavior of Boolean evolution models on ra
dom landscapes@9#, which, in contrast to Lotka-Volterra
models, are discrete~in space and time! and stochastic.

We stress that, in wandering from one equilibrium to a
other, the orbit is expected to approach more and more
successive invariant manifolds that drive the dynamics of
system@10#. This implies, in particular, that the system wi
spend longer and longer periods in the immediate vicinity
those equilibria. Since typically the equilibria have some n
coordinates, the corresponding densities will approach a v
ishing state but, as the system escapes from each uns
equilibrium point, they can eventually recover apprecia
values. As the evolution proceeds, a given density can th
fore practically vanish during a rather long time, but can th
increase and become again significant in the whole dyn
ics. We shall return to these pseudoextinctions in the follo
ing section to discuss their relevance in the numerical st
of the system and its biological interpretation.

Finally, it is worthwhile to remark that the existence of
stable equilibrium point, able to definitively attract an orb
is in principle not guaranteed. Moreover, even if one or s
eral stable points do exist, it is not ensured that their bas



he
pe

tio
n-
in

lts

al
t

ns
va

i

or
o

si

a
rv
e
n
liz
s
f
d
s

hic

va
of

.
ary

le
i-
ust
lso

eci-
d
, in

he
all
a
a

h a
ui-
an
ble

s
na-

ics.

by
out
p-

ons

this
a-
qui-
x-

la
a
be
th

m
th a
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of attraction cover the whole space of initial conditions. T
system could thus perform a chaotic orbit or become trap
in a limit cycle @10,11#.

III. NUMERICAL ANALYSIS

We have performed an extensive numerical investiga
of system~2!. Each realization consists of the numerical i
tegration of the equations, after a random choice of the
teraction matrix and the initial conditions. In all the resu
presented here, the interaction coefficientsk i j have been ran-
domly chosen from a uniform distribution in the interv
@k02Dk,k01Dk#, with Dk<k0, but we have tested tha
other probability distributions, always defined fork.0, pro-
duce essentially the same results. Similarly, the initial de
ties have been uniformly distributed at random in the inter
@0,nmax#. A proper rescaling of densities and time makes
possible to fix, without generality loss,k051 andnmax51.
The only parameter to vary in these distributions is theref
Dk. In the following we describe the dynamical behavior
Eq. ~2! as drawn from our numerical calculations.

A. Pseudoextinctions and density threshold

In Fig. 1 we show the evolution of several typical den
ties in a system ofM520 genotypes forDk50.5. Note that,
to ease the appreciation of certain details, both the time
the density axes are logarithmic. In the inset the same cu
are shown in a semilogarithmic plot, with a logarithmic tim
axis. The phenomenon of pseudoextinctions is clearly see
some of the curves. We have checked that, in some rea
tions, one or more densities can temporarily attain value
small asn;10216 and then grow to levels of the order o
their initial values. The verification that pseudoextinctions
occur, as predicted, in Sec. II, from our analysis of the pha
space structure, points the attention to another factor, w
is not present in the model as described by Eq.~2!, but has to
be necessarily taken into account in a system where the
ables are actually discrete. In fact, the population density

FIG. 1. Time evolution of the density of some selected popu
tions, from a system consisting of 20 populations. Both axes
logarithmic to emphasize how some of the populations, after
coming almost extinct, grow again to significative values. Inset:
same curves in a log-linear plot.
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species or a genotype confined to certain spatial domainV of
volumeVV cannot be smaller thanVV

21 , unless it vanishes
In a description in terms of densities, it is therefore necess
to fix a threshold@12#, below which the only value accessib
to the density is effectively zero. In addition to this biolog
cal argument for introducing a density threshold, we m
stress that in our numerical calculations this element is a
necessary to avoid spurious effects of finite computer pr
sion on the results. A thresholdn0 thus has been introduce
as an additional parameter in the numerical calculations
such a way that if a density attains a value lower thann0 it is
automatically set to zero.

From the analytical viewpoint, it can be argued that t
introduction of a threshold changes the stability of almost
the M 8 equilibria. Roughly speaking, whereas without
threshold an orbit could approach an equilibrium following
stable manifold just to leave it along an unstable one, wit
threshold the system can instead be ‘‘captured’’ by the eq
librium point if the orbit crosses the threshold. What was
unstable equilibrium becomes, in effective terms, a sta
one.

In order to illustrate the different behavior of system
with and without density threshold, we have chosen to a
lyze the evolution of the total density

N~ t !5(
i 51

M

ni~ t ! ~6!

as a global characterization of the phase-space dynam
Figure 2 displays the evolution ofN(t) for two systems of
100 species. In both cases the interaction is defined
Dk51. One of the curves corresponds to the system with
a threshold~in addition to that imposed by the smallest re
resentable number in the computer!. The other one corre-
sponds to the same system, with the same initial conditi
and interaction matrix, with a thresholdn051026. Note that
the time scale is again logarithmic. It can be seen that, in
realization, the orbit of the first system follows the qualit
tive behavior described in Sec. II. It passes near some e
libria, whereN(t) remains practically constant, spending e

-
re
-

e

FIG. 2. Time evolution of the total density. Full line, the syste
without a density threshold; dashed line, the same system wi
density threshold. Note the logarithmic scale in the time axis.
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ponentially longer and longer times in their neighborhoo
When a threshold is present, the system is always attracte
one of the new ‘‘stable’’ equilibria. In the case of Fig. 2, th
system is captured att'100 by an equilibrium point that
although being unstable in the first case, acts now as a s
fixed point for this orbit.

B. Statistics of survivals

According to our simulations, the main feature in t
long-time dynamics of system~2!, with or without a thresh-
old, is that it evolves to a situation in which most of th
densities vanish, at finite times ifn0Þ0 or asymptotically if
n050. This behavior can be identified with the extinction
the corresponding genotypes. In any case, for a large sys
a variable number of surviving populations is found at lo
times. In Fig. 3 we show the distribution of the number
surviving populations for different values ofDk. Each curve
was constructed from the results of 2000 realizations i
system withM5100 andn051026. The final time in each
realization was chosen so that a stationary state had
reached, which was checked to be a solution to Eq.~3!.

The distribution of the number of surviving populations
generally a bell-shaped curve, its width and maximum
pending on the probability distributionp(k). It can be seen
in Fig. 3 that forDk small enough the curve is relativel
broad and that wider interactions reduce the overall stab
of the system, leading to a shift of the curve towards a s
ation where fewer species survive. The correlation betw
the maximum of the distribution of survivors and the wid
of p(k) is shown in the inset, in a log-log plot. Observe th
for the smallest valueDk50.02 the maximum of the distri
bution coincides with the total number of species in the s
tem.

It is worthwhile to note that the probability of having
non-negativeM 8 equilibrium P(M 8)5212M8C(M ,M 8) ~cf.
Sec. II! is also a bell-shaped curve as a function ofM 8. This
fact, however, should be considered only as indicative of

FIG. 3. Distribution of the number of survivorsP(s). Each
curve corresponds to 2000 realizations of systems withDk as
shown in the legend. Inset: the position of the maximum of
distribution S as a function of the widthDk of the distribution
p(k).
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profile of the curves in Fig. 3. In fact, the probability that a
initial condition approaches anyM 8 equilibrium depends no
only on their number for a givenM 8 but also on the size o
their basins of attraction, about which our phase-space an
sis provides no information.

C. Characterization of survivors

A very natural question arises now, yet not easy to
swer: Which populations survive? Are they characterized
some particular initial condition, by some peculiarity in th
interaction with the remaining populations? In the study o
real ecological system, it would be desirable to give an
swer to these questions in terms of quantities accessible f
observations. It is thus reasonable to consider, since they
probably the easiest to measure, the initial densities and t
initial time derivatives. In addition to being accessible, the
quantities characterize the initial interactive scenario: A
cording to Eq.~2!, the density measures the effects of ea
population on itself, while its first time derivative accoun
for the influence of the remaining species.

We have found that an answer based on deterministic
guments cannot be given to such questions. According to
statistics collected from the simulations, we conclude t
only a weak correlation exists between survival and the
tial conditions. This correlation can be evidenced by cal
lating the distribution of final densities as a function of t
initial one, thus providing a probabilistic answer to tho
questions. In Figs. 4 and 5 we show~full lines! the distribu-
tion of survivors as functions of initial values, for gener
asymmetric systems (k i j Þk j i ). Figure 4 shows that the
probability of survival is almost uniform in the whole rang
of initial densities, with a slighty higher probability of sur
vival for the largest ones. In Fig. 5 an associated distribut
is shown: the number of survivors as a function of the init
derivative of the density. Here an enhancement of the pr
ability of surviving is seen around a relatively large~and
negative! value of the initial time derivative.

We have also found that this correlation between the fi
state and the initial condition is stronger in symmetric s

e

FIG. 4. Probability of survival of a single speciesPs as a func-
tion of its initial densityn0. The two curves correspond to 200
realizations of a symmetric and an asymmetric system.
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tems (k i j 5k j i ). In Figs. 4 and 5 the same functions a
shown as dashed lines for symmetric systems. In this c
there is an enhancement in the probability of survival
those species that start with a higher initial population.
though considering a purely symmetric interaction matrix
irrelevant from a biological point of view, these results su
gest that the statistical correlation between initial and fi
states and, in particular, between initial conditions and s
vival probability can depend in a rather strong manner
additional constraints in the interaction matrix.

IV. CONCLUSIONS

We have analyzed a dynamical system that represents
evolution of many species coupled by Lotka-Volterra int
actions. The study has been restricted to systems where
interaction is purely competitive. This dynamical system d
scribes, in principle, two different biological systems. T
first is an idealized ecological system of interacting spec
To represent more realistic ecological systems, the con
tivity of the model should be built correspondingly, typ
cally, with several levels of preys and predators.

On the other hand, the model can also describe the sys
of genotypes present in, or accessible to, a single specie
population. Within a single species, the number of comp
ing genotypes can be much larger than the number of c
peting species in an ecological niche. Of course, not al
them strive. The surviving genotypes are finally expresse
the living population. This is precisely the problem we ha
addressed in this paper.

We have found that the evolution of the system follo
complicated orbits in phase space. These orbits drive
system from the neighborhood of one of the many equilib
to another, regardless of their stability. Systems with a fin
population threshold, which may represent more accura
real biological systems, eventually fall into a stable equil
rium situation. As time elapses, a variable number of po
lations become extinct through the interaction with the o
ers. In general, more than one species survive, in con
with the ‘‘principle of competitive exclusion’’@5# ~which is

FIG. 5. Probability of survivalPs as a function of the initial
derivative of the densitydn/dtu t50. The two curves correspond t
2000 realizations of a symmetric and an asymmetric system.
se
r
-
s
-
l

r-
n

he
-
the
-

s.
c-

m
or

t-
-
f

in

e
a
e
ly
-
-
-
st

known to be of limited validity!. The number of surviving
species, those that finally reach equilibrium, is characteri
by a bell-shaped distribution whose width and maximum
pend on the distribution of interactions.

In addition to competition, a population of genotypes
also subject to changes that arise from random mutations
recombination during the reproduction of the organisms@13#.
The description of such a system would require a modifi
tion of the model, whose behavior cannot be predicteda
priori . Mutations can be easily taken into account by allo
ing a different interaction, namely, random transitions b
tween the genotypes@14#. The analysis of this system is th
subject of work in progress.
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APPENDIX

Theorem. Let $k i j % be anM3M random matrix, whose
coefficients are drawn from the same probability distributi
p(k), with p(k)50 for k<0. Then the probability that the
solution to the set of linear equations

(
j 51

M

k i j nj51, ~ i 51,2, . . . ,M ! ~A1!

has positive componentsni.0 ; i 51,2, . . . ,M is
P5212M.

Proof. For M51, n151/k11, which is always positive
(P51). ForM52, the system can be explicity solved and
particular we get

n1

n2
5

k222k12

k112k21
. ~A2!

The symmetry of this expression with respect to the coe
cientsk i j makes it clear thatn1 /n2.0 with probability 1/2,
irrespectively of the form ofp(k). Now, sincek i j .0 ; i , j ,
if n1 and n2 have the same sign and satisfy Eq.~A1! with
M52, they must be positive. Therefore,P51/2.

For M.2, we take any pair of equations from Eq.~A1!,
say, thekth and thel th, and rewrite them as

kkknk1kklnl512 (
j Þk,l

kk jnj ,

k lknk1k l l nl512 (
j Þk,l

k l j nj . ~A3!

This can also be put in the form

kkk8 nk1kkl8 nl51,

k lk8 nk1k l l8nl51, ~A4!
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with kkk8 5kkk /(12( j Þk,lkk jnj ) and analogous expression
for kkl8 , k lk8 , andk l l8 .

Note that for fixed, arbitrary values ofnj ( j Þk,l ), the
functional form of the primed coefficents in terms of th
original ones is the same. The probability distributions
kkk8 , kkl8 , k lk8 , and k l l8 are therefore identical. Hence, as
consequence of the previous result forM52, the probability
thatnk /nl is positive equals 1/2. This holds irrespectively
the distribution for the primed coefficients, i.e., irrespective
of the values ofnj ( j Þk,l ). The relative sign of any two
-

s

r

componentsnk and nl of the solution to Eq.~A1! is then
statistically independent of the values of the other com
nents.

To ensure the positivity of all the components it is suf
cient to considerM21 ratiosnk /nl , for instance,n1 /nl with
l 52,3, . . . ,M . According to the above results, the probab
ity that all these ratios are positive is (1/2)M21. Now, since
k i j .0 ; i , j , if all the ni have the same sign and satisfy E
~A1!, they must be positive. Therefore,P5(1/2)M21

5212M.
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