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Errors in Hellmann-Feynman forces due to occupation-number broadening
and how they can be corrected
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In ab initio calculations of electronic structures, total energies, and forces, it is convenient and often even
necessary to employ a broadening of the occupation numbers. If done carefully, this improves the accuracy of
the calculated electron densities and total energies and stabilizes the convergence of the iterative approach
towards self-consistency. However, such a broadening may lead to an error in the calculation of the forces.
Accurate forces are needed for an efficient geometry optimization of polyatomic systems atd ifdtio
molecular dynamic§MD) calculations. The relevance of this error and possible ways to correct it will be
discussed in this paper. The first approach is computationally very simple and in fact exact for small MD time
steps. This is demonstrated for the example of the vibration of a carbon dimer and for the relaxation of the top
layer of the(111) surfaces of aluminum and platinum. The second, more general, scheme employs linear-
response theory and is applied to the calculation of the surface relaxatiorildfIAIWe will show that the
guadratic dependence of the forces on the broadening width enables an efficient extrapolation to the correct
result. Finally the results of these correction methods will be compared to the forces obtained by using the
smearing scheme, which has been proposed by Methfessel and H&an63-182007)04647-X

In ab initio electronic structure and total-energy calcula- 1
tions the integrals over the Brillouin zone are commonly A(Te|):Ezer°_572T§|+O(Tg|), ()
replaced by the sum over a mesh lofpoints? This ap-
proach is very efficient for insulators, but for metallic sys- 1
tems convergence with 'respect _to the numbetk gboints ' E(T) =E?"°+ —72T§|+O(T2|). ()
becomes slow. Here the introduction of fractional occupation 2
numbers is a convenient way to improve #space integra-
tion and in addition to stabilize the convergence in the itera
tive approach to self-consistency. In these broadenin
schemes the eigenstates are occupied according to a smoot# ™
function, e.g., a Gaussidror the Fermi functioh®’® at a Jero .
finite temperature. E*= E(Te|4> 0)= A(Te|*>0) ~ E(Tel) - ETeIS(TeI)-
When a broadening scheme is employed in a density ®)
functional theory calculation, the computed electron densit)bbtainngzero using Egs(5) and(2) is straightforward and

of the ground statay(r) does not minimize the functional of gives very satisfactory resulfsThis is shown in Fig. @a) for

As pointed out by Gillar,it follows from Egs.(1), (3), and
4) that the extrapolation of the total energy towards the
0 result is

the total energyE but the functional of the free enerdy. a slab consisting of four layers of aluminum. Here the ex-
trapolation (filled circles matches perfectly the zero-
AlTein]=E[Te;n] =TS Teiin], (1)  temperature energy, even for quite large broadening tempera-

tures. For a systems like platinum, which was chosen as an

whereS denotes the entropy associated with the occupatiof*@mple for a non-free-electron-like system, Figh) shows

numbers of the Kohn-Sham orbitals afig is the broadening that this extrapolation is indeed an approximation. But if the
parameter. In the case of Fermi broadefing get broadening parameter is chosen carefullypically used
broadenig parameters are about 0.1 eV or IQwles extrapo-

lation still gives acceptable results.

Calculating the forces, however, is more complicated. The
forces on atoms are defined as the derivative of the total
energyE**" with respect to the atomic positions:

S=—kg>, [fiInfi+(1—f)In(1—f)]. 2)

Since the temperatures commonly used for the broadening

zero
are much higher than the physical or(@sis convenient to Fzero— _ JE , (6)
usekgTo~0.1 eV), neither the total energies nor the free IR
energied Eq. (1)] are directly meaningful.
One way to obtain the ground-state energy at zero tem- oo, OA 1_ 39S
perature is based on the well-known fathat for the free- F=- IR ETelﬁ' @

electron gas, the quantitidsandE depend quadratically on
T - Therefore one can write: While the quantity
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ksT, (eV) of a four-layer A(111) slab as a function of the heigBtof the first

) atomic layer. To demonstrate the effect, a Fermi-Dirac broadening
~ FIG. 1. Total energyE(kgT,) (open diamonds, dash-dotted with an untypically high broadening pararmeteyT,=0.5 eV has
line) and energy extrapolated tgT,=0 eV, E**° (filled circles,  peen used(c) Force acting on the first atomic layéspen dots are

solid line) as a function okgT using a Fermi broadening and total noncorrected and full dots are corrected fojc&ots present com-
energyE'™ (open squares, dashed ljngsing the Methfessel-Paxon puted values, lines are fits to guide the eye.

smearing of first order for a slab of four layers of alumin(anand

platinum (b). Dots present computed values, lines are fits to guidenot unreasonably high, but unfortunally this has to be

the eye. checked for each particular system.
The situation is less clear and the needs are more demand-
HE A ing when it comes to molecular dynami@dD) simulations.
F ' (Te) =~ 1 (8 when the noncorrected forcg&q. (8)] are used to perform
MD, the sum of potential kinetic energies of the atoms is not
a conserved quantity. An illustration of this is shown in Fig.
is easily evaluated, the evaluation 68/9R is somewhat 3(a) for a MD simulation of the vibration of a carbon dimer.
more elaborate. Neglecting the entropy term in Ef.im-  The graph shows the total enerpen circley and the free
plies that the forces are not in agreement with the gradient ofnergy(closed circles of the systems as a function of the
the total energy of Eq(5). As a consequence, when those interatomic distance. The trajectory was integrated over ap-
forces are used to relax the atoms towards their equilibriunproximately two periods using the Verlet algorithm and no
positions, the obtained geometry is likely to be differentthermostat had been employed. Using the noncorrected
from that which minimizesE**"°. Figure 2 presents results forces produces a motion in which the total energy is not
for a four-layer aluminun(111) slab, with fully separable, conserved but oscillates with the frequency of the motion.
norm-conserving pseudopotentiaf$ a plane-wave basis set Figure 3a) clearly shows that at the turning points, where
(E®'=8 Ry), and 18k points! to sample the surface Bril- the kinetic energy vanishes, the potential energies are differ-
louin zone. An untypically high broadening of 0.5 eV was ent, which is obviously unphysical. In fact, the free energies,
used to show the effect and it is clearly visible that thegiven by Eq.(1), at the turning points are equal.
Hellmann-Feynmann forc&™"(T,) acting on the surface Plotting the eigenvalues as a function of the intermolecu-
layer vanishes for the position minimizing the free energy, adar distancgFig. 4(b)] shows a crossing of thed? level and
it should according to Eq8). But the minimum of the total the twofold degenerated, levels near the equilibrium dis-
energy is at a different position. tanced,. Since in the ground state, therg level is empty
Even at this untypically high broadening temperature[lowest unoccupied molecular orbitdLUMO)], while the
which was chosen to illustrate the effect, the error in thelw, levels are fully occupiedhighest occupied molecular
equilibrium position is only 10% nm, which is less than 1% orbital (HOMO)], the introduction of a broadening function
of the interlayer distance. This indicates that the error in theeauses a noticeable change in the occupation numbers of
forces due to occupation number broadening may be neglihese orbital§Fig. (4(a)] during the vibration. This leads to a
gible in the case of relaxations if the temperature is chosenon-negligible correction t&(T,) according to Eq(7). We
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bration of a carbon dimer. The points are taken at different times '10'8.124 0126 0.128  0.130  0.132
during the vibration. The border points at the outer left and right are C-C distance [nm]

the turning points of the motion, thus the range of distances covered FIG. 4. () Occupation numbers of the highest occupied molecu-

in each figure correspond to the amplitude of the vibrati@. lar orbital 1o, (HOMO, twofold degeneraleand the lowest unoc-
Noncorrected forces have been used for the molecular dynamics, 9

. . . L Cupied molecular orbitalLUMO) 27, as a function of the inter-
Obviously the potential energy at the two turning points is very o . S . .
. atomic distance during the vibration of a carbon dimer, using
different. (b) Corrected forces have been used for the molecular = . .
. : . L kgT¢=0.5 eV.(b) Energy levels of a carbon dimer as a function of
dynamics. The potential energy at the two turning points is nearl

Mhe interatomic distancel, marks the equilibrium distance.
the same.

To complete our analysis, we also applied a more general
method for calculatingf; /dR. We will use again the Al slab
as an example. At constant temperature and number of elec-
trons, the occupation numbefsdepend on the one-electron
energiess; and on the chemical potential. Thus,

will now describe how this entropy contribution to the forces
can be evaluated. From E(), one obtains the expression
for TdS/OR:
S of, 1
Tep ="~ 2kBTeI2i “R lanfi' ©)
which, in the case of a Fermi distribution for the occupation

of; &fi(&ei (9,&)
numbers, reduces to

R deldR R (D
IS af, in which the chemical potential is obtained from the con-

Telﬁ = 22 SR (10 straint that the; sum up to the number of electrons. Because

' a given atomic displacement will result in an increase of

The €; denote the energies of the Kohn-Sham orbitals. Usingome eigenvalues and a decrease of the other ones, the de-
a Fermi distribution for the; , we find that in the case of the rivative of the chemical potential is smaller than those of the
vibrating dimer on the relevant length scales the occupatiogigenvalues. It is nevertheless not negligible: in the case of
numbers change linearly witR [see Fig. 4a)], i.e.,df;/dR  the relaxation of Al111), we find that the contribution of the
is nearly a constant. Figurél§ illustrates the symmetric and derivative of the chemical potential is about 0.2 times that of
total energy-conserving vibrations obtained when the forceshe derivative of the eigenvalues.
are corrected according to Ed¥) and(10) using the linear Linear-response thedly * enables us to calculate the
treatment, which is well satisfied for the small time steps thatjuantities d¢; /R, which are the expectation values of
are typically used in a MD simulation. We expect that for 97¢/9R for the eigenstatels); ):
many ab initio MD calculations a good estimate éf;/JR
can be obtained from the past atomic geometries. This is J€ IH
particularly true because due to the small time stejs<( R < i ﬁ‘ l//i>- (12)
% of the period of the vibrationthe difference between ad-
jacent geometries in a MD calculation is typically very Other methods would be more time consuming and thus in-
small, i.e., only about 10* nm. adequate for the purpose of geometry optimization or MD,
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where the forces must be calculated for many different a@_ OH
atomic configurations and sometimes for systems of 100 at- (H—¢) —R' = —P—R|l/li>. (16)
oms and more. The dielectric matrix, for example, would J J

require the calculation of many bands and the inversion OfS' Eq(16) i v for th b o h
large matrices. The explicit dependencerobnR is only in Ince Q'( ) |_s_on(3j/ ?r.t el\s/lu SPACE>1 may, the ‘?per?‘g
Vext» bUtVy andV,. depend on the atomic positions through (H-e) is postl)twe-b e'mltjeb ore<|)ve_r, an apf[?rgxlman |

the electron density. For that reason, an evaluation of thEO,(H_ €i) can be obtained by neg ecting its off-diagonal ma-
forces not using the values of tkeg of previous atomic po- trix elemen}s. In the plane'-wave. basis set we use in the ex-
sitions requires a self-consistent calculation of the derivagmpl_es’ _th|s amounts to including the klnetlc_part of the
tives de; /aR. Neglecting the dependence \df, andV,, on Hamiltonian and the average value of the effective potential.

R to avoid the use of an iterative computation would result inThe algorithm introduced by Williams and Sofécan be

unacceptable errors: in the example of the Al slab, we engeneralized to solve Eq16) iteratively. An initial guess is
: ' iven by

countered cases where non-self-consistent forces were t&9
large by an order of magnitude. The derivative of the elec-

tron density is given by o . IH
=)=~ D Pl (17
an(r) af; e{ awi(r)}
=2 —|i(r)|?+2f,Re ¥ (r
IR 2.: &R'w'( ) iR 4 (1) IR |}’ and the sequence of approximations is obtained using
(13

where the first term accounts for the redistribution of the |J%{" " B " PP (1) (e — 1) Jy"
electrons among the orbitals due to the variation ofehend JR | R € JR
the second term comes from the modification of the wave
functions. From the current approximation &§;/JR, Eq. H
(11) is used to calculate the first term. The second term re- _Pﬁhm : (18)

quires the resolution of

In order to make the convergence as fast as possible, the
api\ (IR Je largest value keeping the algorithm stable is chosen for the
(H—e) JR/ \9R IR [4)- (14 constantA. The operatorsD™ ! and e 2P are easily com-
puted, becaus® is diagonal. The operatarH/JR is differ-
Equation (14) is ill conditioned, because the operator ent at each iteration, because the valuedo{r)/dR on
(H—€) of the left-hand side has in general eigenvalues ofyhich it depends is updated each time, in order to make the
either sign, some of them having small absolute values. Latetharge redistribution converge to self-consistence. This is
in this papef{Egs.(17) and(18)], we are going to explain an analogous to the method used for the total-energy
iterative resolution method instrumental for positive-definiteminimization!® where the convergence towards the self-
operators and that converges better if the eigenvalues of thabnsistent charge density and the diagonalization of the
operator are large. In order to make that method applicable tplamiltonian are performed simultaneously.
our problem, we separate the Hilbert space into two sub- The method explained above was applied to the Al slab.
spaces: the first one is spanned by the computed eigenstat@$ie corrected force is plotted in Fig(@ and it indeed van-
and the second one is its complementary subsfem@nned ishes for the geometry that minimizes the zero-temperature
by unoccupied statgsin practical calculations, only thg,.,  total energy.
lowest-energy levels, including all occupied states and some As expected from Eqg8) and(3), the dependence of the
unoccupied states, are computed and the occupation numbeisncorrected force ofi, is quadratic. Therefore it should be
are fractional only for the levels with energieskgT,  possible to extrapolate the force to the value at zero tempera-
around the Fermi level. L& be the projector on the second ture from two points at finite temperature. Figur@lshows

subspacei(ima) and|dy;/dR) be P|ay;/dR). Now, we the result for the AlL1D) slab, using 48& points in the irre-

can rewrite Eq(13) as ducible part of the Brillouin zone. Using the formula
an(r) imaX[afi lmax E{< ‘aH > dA(T,)/dR— (T4 /T,)2dA(T,)/dR
=2> = |(n|?+2 'Re ( vi|—= | ¥ prero= 1 L2 2 19
R =22 | aRlnMIPr2 2 o= | HaR | Tl (19
X g (1) (1) +2fiRe{ wi(r)awi(r)*} . (15  We obtain a value that matches quite well the nearly constant
! IR value, obtained for the entropy-corrected force and by the

_ o . linear treatment. This extrapolation scheme even works for
Some of the differencese(—¢;) appearing in the denomina- metals that are not free-electron-like, as shown in Fig) 1
tor of the second term in EG15) are small but, in that case, for the case of platinum. In the case we usedkgSoints in
the difference between the occupation numbers in the Nuhe irreducible part of the Brillouin zone. As for a transition
merator is small as well, so the whole fraction has a finitemetal no broadening temperature above 0.1-0.2 eV should
value. _ be used to retain the properties of the Fermi surface, in many
The quantities?; /dR) are the solutions of cases there might be no need to correct the forces at all. But
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ocalo @ pa_rable to.that of the extrapolated energ@gpen squargs
[ — quadratic fit using the finite-temperature approacpen diamonds
= 0 extrapolated 1 Figure 5 shows that for both systems the error in the
c —==- force at T=0 o forces that are obtained when the Methefessel-Paxton
S " MP scheme is used is also comparable to the error in the forces
Q obtained by the quadratic extrapolation. But Fig. 5 also
© 10l . T ] shows that the forces obtained by using the MP scheme are
O o .- « . - wigglier, especially for the Al-111 slab, where only 48
o om © points have been used.
L u " In conclusion, we have shown how the entropy arising
from the broadening of the occupation numbers can be in-
0.5 ’ ' ’ ’ ’ cluded in the calculation of the forces. For small distortions
ocalo. ' ' kb) the depende_nces of the occ.:upation. numbers are .Iinear to a
05 b ---em- quadratic fit | good approximation. Thus, information from the history of
O extrapolated the MD run can be used to determing /JR. For the gen-
€ T, e atT=0 & Y eral case, e.g. when the needed information is not available
§ 0o | e | from the history, we developed an iterative method based on
o the linear-response theory. The forces obtained in this way
8 _,,,——;‘ are the exact derjvatives of the 'extr'apolated zero-temperature
E P - s:" . . energy. Neglecting the contribution d¥}, and V. to_
' S o &—-—-—-0-—{ de; 1 IR, in other words stopping the calculation after the first
. ° . iteration would result in unacceptably errorskHpoint con-
vergence is fulfilled, the corrected force is nearly indepen-
1000 o 02 03 04 o5 dent of the broadening temperature in a wide temperature
ks T, (eV) range. In that case, extrapolation to zero temperature from

the results at two finite temperatures also gives good results.
FIG. 5. Noncorrected force acting on the first layer of a four-  Among the three methods presented in this paper, linear-

layer (111) slab of aluminum(@) and platinum(b) as a function of  response theory is the most general one: it is valid for any
the broadening enerdys T, using a Fermi smearinglosed circles  dependence of the one-electron energies on the atomic posi-
and the Methfessel-Paxton scheme of first or@dosed squares  tions. On the other hand, this method is computationally very
Parabolic fit(dotted ling and forces extrapolated ©=0 (open  expensive, which limits its usefulness in practical calcula-
marker$. Dashed line corresponds to the minimum of thetions. The extrapolation method requires the calculation of
parabola. the forces for two different temperatures, which in general

does not double the number of iterations, since the number of

iterations needed is much smaller starting from a self-
calculating the forces at two different temperatures and exconsistent charge density at a different temperature. There-
trapolating toT¢=0 may lead to some additional improve- fore extrapolation from two different temperatures is more
ment. practical, especially if the number of degrees of freedom is

Methfessel and Paxtdhproposed an improved smearing large.

scheme in which the orbitals are occupied according to a While the error in the forces is small compared to the
smooth approximation of the step function. The computedisual accurancy in atomic relaxations, and therefore might
quantities(energy, forces, etcconverge towards their zero- be neglected if the broadening temperature is chosen care-
temperature values when the order of the approximation ifully, the correction is especially important for consistency in
increased. Unfortunately higher-order approximations bea molecular dynamics simulation, where the quantity to be
come more and more wiggly and therefore require largeconserved should be the ground-state energy of the elec-
k-point sets. In practical calculations therefore only the first-tronic system and not the unphysical free energy of the elec-
order approximation is used. In Fig. 1 the differences of theronic system, which is excited due to the broadening.
calculated energies for finite temperatures to the energy at Using the scheme proposed by Methfessel and Paxton in
zero temperature for the Al-11(&) and the Pt-111b) slab is its first-order approximation leads to energies that are com-
plotted as a function of the broadening parameter. For botparable to the energies obtained by extrapolating the finite
systems the deviation of the energies obtained by using themperature energies Tg,=0. The calculated forces are the
first-order Methefessel-Paxton scheffiell circles) is com-  derivatives of these energies and need no further correction.
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