
PHYSICAL REVIEW B 15 JANUARY 1998-IIVOLUME 57, NUMBER 4
Errors in Hellmann-Feynman forces due to occupation-number broadening
and how they can be corrected

F. Wagner, Th. Laloyaux,* and M. Scheffler
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany

~Received 4 August 1997!

In ab initio calculations of electronic structures, total energies, and forces, it is convenient and often even
necessary to employ a broadening of the occupation numbers. If done carefully, this improves the accuracy of
the calculated electron densities and total energies and stabilizes the convergence of the iterative approach
towards self-consistency. However, such a broadening may lead to an error in the calculation of the forces.
Accurate forces are needed for an efficient geometry optimization of polyatomic systems and forab initio
molecular dynamics~MD! calculations. The relevance of this error and possible ways to correct it will be
discussed in this paper. The first approach is computationally very simple and in fact exact for small MD time
steps. This is demonstrated for the example of the vibration of a carbon dimer and for the relaxation of the top
layer of the~111! surfaces of aluminum and platinum. The second, more general, scheme employs linear-
response theory and is applied to the calculation of the surface relaxation of Al~111!. We will show that the
quadratic dependence of the forces on the broadening width enables an efficient extrapolation to the correct
result. Finally the results of these correction methods will be compared to the forces obtained by using the
smearing scheme, which has been proposed by Methfessel and Paxton.@S0163-1829~97!04647-X#
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In ab initio electronic structure and total-energy calcu
tions the integrals over the Brillouin zone are common
replaced by the sum over a mesh ofk points.1,2 This ap-
proach is very efficient for insulators, but for metallic sy
tems convergence with respect to the number ofk points
becomes slow. Here the introduction of fractional occupat
numbers is a convenient way to improve thek-space integra-
tion and in addition to stabilize the convergence in the ite
tive approach to self-consistency. In these broaden
schemes the eigenstates are occupied according to a sm
function, e.g., a Gaussian3 or the Fermi function4,5,7,8 at a
finite temperature.

When a broadening scheme is employed in a den
functional theory calculation, the computed electron den
of the ground staten0(r ) does not minimize the functional o
the total energyE but the functional of the free energyA:

A@Tel ;n#5E@Tel ;n#2TelS@Tel ;n#, ~1!

whereS denotes the entropy associated with the occupa
numbers of the Kohn-Sham orbitals andTel is the broadening
parameter. In the case of Fermi broadening6 we get

S52kB(
i

@ f i lnf i1~12 f i !ln~12 f i !#. ~2!

Since the temperatures commonly used for the broade
are much higher than the physical ones~it is convenient to
usekBTel;0.1 eV), neither the total energies nor the fr
energies@Eq. ~1!# are directly meaningful.

One way to obtain the ground-state energy at zero t
perature is based on the well-known fact6 that for the free-
electron gas, the quantitiesA andE depend quadratically on
Tel . Therefore one can write:
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A~Tel!5Ezero2
1

2
g2Tel

2 1O~Tel
3 !, ~3!

E~Tel!5Ezero1
1

2
g2Tel

2 1O~Tel
3 !. ~4!

As pointed out by Gillan,7 it follows from Eqs.~1!, ~3!, and
~4! that the extrapolation of the total energy towards t
Tel50 result is

Ezero5E~Tel→0!5A~Tel→0!'E~Tel!2 1
2 TelS~Tel!.

~5!

ObtainingEzero using Eqs.~5! and~2! is straightforward and
gives very satisfactory results.8 This is shown in Fig. 1~a! for
a slab consisting of four layers of aluminum. Here the e
trapolation ~filled circles! matches perfectly the zero
temperature energy, even for quite large broadening temp
tures. For a systems like platinum, which was chosen as
example for a non-free-electron-like system, Fig. 1~b! shows
that this extrapolation is indeed an approximation. But if t
broadening parameter is chosen carefully~typically used
broadenig parameters are about 0.1 eV or lower! the extrapo-
lation still gives acceptable results.

Calculating the forces, however, is more complicated. T
forces on atoms are defined as the derivative of the t
energyEzero with respect to the atomic positions:

Fzero52
]Ezero

]R
, ~6!

Fzero52
]A

]R
2

1

2
Tel

]S

]R
. ~7!

While the quantity
2102 © 1998 The American Physical Society
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FHF~Tel!52
]A

]R
~8!

is easily evaluated, the evaluation of]S/]R is somewhat
more elaborate. Neglecting the entropy term in Eq.~7! im-
plies that the forces are not in agreement with the gradien
the total energy of Eq.~5!. As a consequence, when tho
forces are used to relax the atoms towards their equilibr
positions, the obtained geometry is likely to be differe
from that which minimizesEzero. Figure 2 presents result
for a four-layer aluminum~111! slab, with fully separable
norm-conserving pseudopotentials,9,10 a plane-wave basis se
(Ecut58 Ry), and 18k points11 to sample the surface Bril
louin zone. An untypically high broadening of 0.5 eV w
used to show the effect and it is clearly visible that t
Hellmann-Feynmann forceFHF(Tel) acting on the surface
layer vanishes for the position minimizing the free energy
it should according to Eq.~8!. But the minimum of the total
energy is at a different position.

Even at this untypically high broadening temperatu
which was chosen to illustrate the effect, the error in
equilibrium position is only 1023 nm, which is less than 1%
of the interlayer distance. This indicates that the error in
forces due to occupation number broadening may be ne
gible in the case of relaxations if the temperature is cho

FIG. 1. Total energyE(kBTel) ~open diamonds, dash-dotte
line! and energy extrapolated tokBTel50 eV, Ezero ~filled circles,
solid line! as a function ofkBT using a Fermi broadening and tot
energyEtot ~open squares, dashed line! using the Methfessel-Paxo
smearing of first order for a slab of four layers of aluminum~a! and
platinum ~b!. Dots present computed values, lines are fits to gu
the eye.
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not unreasonably high, but unfortunally this has to
checked for each particular system.

The situation is less clear and the needs are more dem
ing when it comes to molecular dynamics~MD! simulations.
When the noncorrected forces@Eq. ~8!# are used to perform
MD, the sum of potential kinetic energies of the atoms is n
a conserved quantity. An illustration of this is shown in F
3~a! for a MD simulation of the vibration of a carbon dime
The graph shows the total energy~open circles! and the free
energy~closed circles! of the systems as a function of th
interatomic distance. The trajectory was integrated over
proximately two periods using the Verlet algorithm and
thermostat had been employed. Using the noncorrec
forces produces a motion in which the total energy is
conserved but oscillates with the frequency of the moti
Figure 3~a! clearly shows that at the turning points, whe
the kinetic energy vanishes, the potential energies are dif
ent, which is obviously unphysical. In fact, the free energi
given by Eq.~1!, at the turning points are equal.

Plotting the eigenvalues as a function of the intermole
lar distance@Fig. 4~b!# shows a crossing of the 2sg level and
the twofold degenerate 1pu levels near the equilibrium dis
tanced0. Since in the ground state, the 2sg level is empty
@lowest unoccupied molecular orbital~LUMO!#, while the
1pu levels are fully occupied@highest occupied molecula
orbital ~HOMO!#, the introduction of a broadening functio
causes a noticeable change in the occupation number
these orbitals@Fig. ~4~a!# during the vibration. This leads to
non-negligible correction toF(Tel) according to Eq.~7!. We

e

FIG. 2. ~a! Zero-temperature energyEzero and~b! free energyA
of a four-layer Al~111! slab as a function of the heightZ of the first
atomic layer. To demonstrate the effect, a Fermi-Dirac broaden
with an untypically high broadening pararmeterkBTel50.5 eV has
been used.~c! Force acting on the first atomic layer~open dots are
noncorrected and full dots are corrected forces!. Dots present com-
puted values, lines are fits to guide the eye.
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will now describe how this entropy contribution to the forc
can be evaluated. From Eq.~2!, one obtains the expressio
for Tel]S/]R:

Tel

]S

]R
522kBTel(

i

] f i

]R
ln

f i

12 f i
, ~9!

which, in the case of a Fermi distribution for the occupati
numbers, reduces to

Tel

]S

]R
52(

i

] f i

]R
e i . ~10!

Thee i denote the energies of the Kohn-Sham orbitals. Us
a Fermi distribution for thef i , we find that in the case of th
vibrating dimer on the relevant length scales the occupa
numbers change linearly withR @see Fig. 4~a!#, i.e., ] f i /]R
is nearly a constant. Figure 3~b! illustrates the symmetric an
total energy-conserving vibrations obtained when the for
are corrected according to Eqs.~7! and ~10! using the linear
treatment, which is well satisfied for the small time steps t
are typically used in a MD simulation. We expect that f
manyab initio MD calculations a good estimate of] f i /]R
can be obtained from the past atomic geometries. Thi
particularly true because due to the small time steps (Dt'
1
20 of the period of the vibration! the difference between ad
jacent geometries in a MD calculation is typically ve
small, i.e., only about 1024 nm.

FIG. 3. Free energyEzero ~filled circles! and total energyE
~open circles! as a function of interatomic distance during the v
bration of a carbon dimer. The points are taken at different tim
during the vibration. The border points at the outer left and right
the turning points of the motion, thus the range of distances cov
in each figure correspond to the amplitude of the vibration.~a!
Noncorrected forces have been used for the molecular dynam
Obviously the potential energy at the two turning points is ve
different. ~b! Corrected forces have been used for the molecu
dynamics. The potential energy at the two turning points is ne
the same.
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To complete our analysis, we also applied a more gen
method for calculating] f i /]R. We will use again the Al slab
as an example. At constant temperature and number of e
trons, the occupation numbersf i depend on the one-electro
energiese i and on the chemical potentialm. Thus,

] f i

]R
5

] f i

]e i
S ]e i

]R
2

]m

]RD , ~11!

in which the chemical potential is obtained from the co
straint that thef i sum up to the number of electrons. Becau
a given atomic displacement will result in an increase
some eigenvalues and a decrease of the other ones, th
rivative of the chemical potential is smaller than those of
eigenvalues. It is nevertheless not negligible: in the case
the relaxation of Al~111!, we find that the contribution of the
derivative of the chemical potential is about 0.2 times that
the derivative of the eigenvalues.

Linear-response theory12–14 enables us to calculate th
quantities ]e i /]R, which are the expectation values o
]H/]R for the eigenstatesuc i&:

]e i

]R
5 K c iU ]H

]R Uc i L . ~12!

Other methods would be more time consuming and thus
adequate for the purpose of geometry optimization or M
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FIG. 4. ~a! Occupation numbers of the highest occupied mole
lar orbital 1sg ~HOMO, twofold degenerate! and the lowest unoc-
cupied molecular orbital~LUMO! 2pu as a function of the inter-
atomic distance during the vibration of a carbon dimer, us
kBTel50.5 eV.~b! Energy levels of a carbon dimer as a function
the interatomic distance.d0 marks the equilibrium distance.
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where the forces must be calculated for many differ
atomic configurations and sometimes for systems of 100
oms and more. The dielectric matrix, for example, wou
require the calculation of many bands and the inversion
large matrices. The explicit dependence ofH on R is only in
Vext, butVH andVxc depend on the atomic positions throug
the electron density. For that reason, an evaluation of
forces not using the values of thee i of previous atomic po-
sitions requires a self-consistent calculation of the deri
tives ]e i /]R. Neglecting the dependence ofVH andVxc on
R to avoid the use of an iterative computation would resul
unacceptable errors: in the example of the Al slab, we
countered cases where non-self-consistent forces were
large by an order of magnitude. The derivative of the el
tron density is given by

]n~r !

]R
52(

i
H ] f i

]R
uc i~r !u212 f iReFc i* ~r !

]c i~r !

]R G J ,

~13!

where the first term accounts for the redistribution of t
electrons among the orbitals due to the variation of thee i and
the second term comes from the modification of the wa
functions. From the current approximation of]e i /]R, Eq.
~11! is used to calculate the first term. The second term
quires the resolution of

~H2e i !U]c i

]R L 52S ]H
]R

2
]e i

]RD uc i&. ~14!

Equation ~14! is ill conditioned, because the operat
(H2e i) of the left-hand side has in general eigenvalues
either sign, some of them having small absolute values. L
in this paper@Eqs.~17! and~18!#, we are going to explain an
iterative resolution method instrumental for positive-defin
operators and that converges better if the eigenvalues of
operator are large. In order to make that method applicab
our problem, we separate the Hilbert space into two s
spaces: the first one is spanned by the computed eigens
and the second one is its complementary subspace~spanned
by unoccupied states!. In practical calculations, only thei max
lowest-energy levels, including all occupied states and so
unoccupied states, are computed and the occupation num
are fractional only for the levels with energies6kBTel
around the Fermi level. LetP be the projector on the secon
subspace (i . i max) and u]c̃ i /]R& be Pu]c i /]R&. Now, we
can rewrite Eq.~13! as

]n~r !

]R
52(

i 51

i max H ] f i

]R
uc i~r !u212 (

j 5 i 11

i max f i2 f j

e i2e j
ReF K c iU]H

]R Uc j L
3c i~r !c j~r !* G12 f iReFc i~r !

]c̃ i~r !*

]R G J . ~15!

Some of the differences (e i2e j ) appearing in the denomina
tor of the second term in Eq.~15! are small but, in that case
the difference between the occupation numbers in the
merator is small as well, so the whole fraction has a fin
value.

The quantitiesu]c̃ i /]R& are the solutions of
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~H2e i !U]c̃ i

]R L 52P
]H
]R

uc i&. ~16!

Since Eq.~16! is only for the subspacei . i max, the operator
(H2e i) is positive-definite. Moreover, an approximationD
to(H2e i) can be obtained by neglecting its off-diagonal m
trix elements. In the plane-wave basis set we use in the
amples, this amounts to including the kinetic part of t
Hamiltonian and the average value of the effective potent
The algorithm introduced by Williams and Soler15 can be
generalized to solve Eq.~16! iteratively. An initial guess is
given by

U]c̃ i
~0!

]R L 52D21P
]H
]R

uc i& ~17!

and the sequence of approximations is obtained using

U]c̃ i
~n11!

]R L 5U]c̃ i
~n!

]R L 1PD21~12e2DD!F ~e i2H!U]c̃ i
~n!

]R L
2P

]H
]R

uc i&G . ~18!

In order to make the convergence as fast as possible,
largest value keeping the algorithm stable is chosen for
constantD. The operatorsD21 and e2DD are easily com-
puted, becauseD is diagonal. The operator]H/]R is differ-
ent at each iteration, because the value of]n(r )/]R on
which it depends is updated each time, in order to make
charge redistribution converge to self-consistence. This
analogous to the method used for the total-ene
minimization,16 where the convergence towards the se
consistent charge density and the diagonalization of
Hamiltonian are performed simultaneously.

The method explained above was applied to the Al sl
The corrected force is plotted in Fig. 2~c! and it indeed van-
ishes for the geometry that minimizes the zero-tempera
total energy.

As expected from Eqs.~8! and~3!, the dependence of th
noncorrected force onTel is quadratic. Therefore it should b
possible to extrapolate the force to the value at zero temp
ture from two points at finite temperature. Figure 1~a! shows
the result for the Al~111! slab, using 48k points in the irre-
ducible part of the Brillouin zone. Using the formula

Fzero5
dA~T1!/dR2~T1 /T2!2dA~T2!/dR

~T1 /T2!221
~19!

we obtain a value that matches quite well the nearly cons
value, obtained for the entropy-corrected force and by
linear treatment. This extrapolation scheme even works
metals that are not free-electron-like, as shown in Fig. 1~b!
for the case of platinum. In the case we used 69k points in
the irreducible part of the Brillouin zone. As for a transitio
metal no broadening temperature above 0.1–0.2 eV sh
be used to retain the properties of the Fermi surface, in m
cases there might be no need to correct the forces at all.
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calculating the forces at two different temperatures and
trapolating toTel50 may lead to some additional improve
ment.

Methfessel and Paxton17 proposed an improved smearin
scheme in which the orbitals are occupied according t
smooth approximation of the step function. The compu
quantities~energy, forces, etc.! converge towards their zero
temperature values when the order of the approximatio
increased. Unfortunately higher-order approximations
come more and more wiggly and therefore require lar
k-point sets. In practical calculations therefore only the fir
order approximation is used. In Fig. 1 the differences of
calculated energies for finite temperatures to the energ
zero temperature for the Al-111~a! and the Pt-111~b! slab is
plotted as a function of the broadening parameter. For b
systems the deviation of the energies obtained by using
first-order Methefessel-Paxton scheme~full circles! is com-

FIG. 5. Noncorrected force acting on the first layer of a fo
layer ~111! slab of aluminum~a! and platinum~b! as a function of
the broadening energykBTel using a Fermi smearing~closed circles!
and the Methfessel-Paxton scheme of first order~closed squares!.
Parabolic fit ~dotted line! and forces extrapolated toT50 ~open
markers!. Dashed line corresponds to the minimum of t
parabola.
e
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parable to that of the extrapolated energies~open squares!
using the finite-temperature approach~open diamonds!.

Figure 5 shows that for both systems the error in
forces that are obtained when the Methefessel-Pax
scheme is used is also comparable to the error in the fo
obtained by the quadratic extrapolation. But Fig. 5 a
shows that the forces obtained by using the MP scheme
wigglier, especially for the Al-111 slab, where only 48k
points have been used.

In conclusion, we have shown how the entropy arisi
from the broadening of the occupation numbers can be
cluded in the calculation of the forces. For small distortio
the dependences of the occupation numbers are linear
good approximation. Thus, information from the history
the MD run can be used to determine] f i /]R. For the gen-
eral case, e.g. when the needed information is not availa
from the history, we developed an iterative method based
the linear-response theory. The forces obtained in this w
are the exact derivatives of the extrapolated zero-tempera
energy. Neglecting the contribution ofVH and Vxc to
]e i /]R, in other words stopping the calculation after the fi
iteration would result in unacceptably errors. Ifk-point con-
vergence is fulfilled, the corrected force is nearly indepe
dent of the broadening temperature in a wide tempera
range. In that case, extrapolation to zero temperature f
the results at two finite temperatures also gives good res

Among the three methods presented in this paper, line
response theory is the most general one: it is valid for a
dependence of the one-electron energies on the atomic p
tions. On the other hand, this method is computationally v
expensive, which limits its usefulness in practical calcu
tions. The extrapolation method requires the calculation
the forces for two different temperatures, which in gene
does not double the number of iterations, since the numbe
iterations needed is much smaller starting from a s
consistent charge density at a different temperature. Th
fore extrapolation from two different temperatures is mo
practical, especially if the number of degrees of freedom
large.

While the error in the forces is small compared to t
usual accurancy in atomic relaxations, and therefore m
be neglected if the broadening temperature is chosen c
fully, the correction is especially important for consistency
a molecular dynamics simulation, where the quantity to
conserved should be the ground-state energy of the e
tronic system and not the unphysical free energy of the e
tronic system, which is excited due to the broadening.

Using the scheme proposed by Methfessel and Paxto
its first-order approximation leads to energies that are co
parable to the energies obtained by extrapolating the fi
temperature energies toTel50. The calculated forces are th
derivatives of these energies and need no further correc

-
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