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Lattice relaxations, surface phonon spectra, surface en-
ergies, and work functions are calculated for Rh(100) and
Rh(110) surfaces using density-functional theory and the full-
potential linearized augmented plane wave method. Both,
the local-density approximation and the generalized gradi-
ent approximation to the exchange-correlation functional are
considered. The force constants are obtained from the di-
rectly calculated atomic forces, and the temperature depen-
dence of the surface relaxation is evaluated by minimizing the
free energy of the system. The anharmonicity of the atomic
vibrations is taken into account within the quasiharmonic ap-
proximation. The importance of contributions from different
phonons to the surface relaxation is analyzed.

68.35.Bs, 63.20.Ry, 75.30.Pd

I. INTRODUCTION

Experimentally, the structure of a solid surface can
be determined by LEED1, ion scattering2, X-ray diffrac-
tion3, and helium-atom scattering3. Surface phonons can
be measured by high-resolution electron energy-loss spec-
troscopy (EELS)4 and inelastic helium-atom scattering5.
It is well understood that the first interlayer separation
of metal surfaces is typically contracted at room temper-
ature6, and only few exceptions to this “rule” have been
discovered so far. Due to the anharmonicity of the inter-
atomic potentials, both the surface interlayer spacing and
the bulk lattice constant depend on temperature. Fur-
thermore, because of lower symmetry, the anharmonicity
at the surface is expected to be more significant than that
in the bulk.

First-principles calculations of lattice relaxations6–11

and surface phonons for metals12–15 typically employ
the density-functional theory (DFT)16. In most previ-
ous work, the equilibrium geometry was determined by
minimizing the total energy of the system (we will call
this the “static equilibrium”). We note that the surface
structure obtained in this way corresponds to T = 0 K
and neglects the effects of zero-point vibrations. With re-
spect to the latter we note that for example for the crys-
tal bulk zero-point vibrations give rise to an increase of
the lattice constant by about 0.2-0.5%, compared to the
geometry determined by the total-energy minimum17,18.
Starting from the “static equilibrium” geometry, surface
phonons were calculated either directly (using the su-
percell approach)12–14 or by applying density-functional
perturbation theory15,19.

At finite temperature, the equilibrium geometry is de-
termined by the minimum of the free energy, which, in
addition to the total energy, includes the contribution
from lattice vibrations. Typically this gives rise to a lat-
tice expansion, but it is also possible that contractions
occur18. Because anharmonicity is more pronounced at
the surface than in the bulk an increased interlayer spac-
ing of the top layer, d12, is to be expected20,21. Recently,
Narasimhan and Scheffler22 and Cho and Scheffler23 per-
formed a theoretical study of the thermal expansion of
Ag(111) and Rh(100). The free energy was calculated by
including the contribution of phonons in the quasihar-
monic approximation18,24. The temperature dependence
of d12 was obtained by minimizing the free energy of the
considered slab with respect to d12. In these studies22,23,
as a first approximation, only the top layer was allowed
to vibrate as a whole parallel and perpendicular to the
surface. The effective vibrational “modes” considered in
these works correspond to modes at the Brillouin zone
center for the top layer vibrating on a rigid substrate. No
information about the true surface phonon spectrum was
obtained, and thus, not even an attempt was made to dis-
cuss how a good-quality summation over the phonon Bril-
louin zone may affect the result. In fact a better treat-
ment is quite elaborate as it requires the diagonalization
of the dynamical matrix of the whole slab. In order to
improve on the previous calculations23, we present in this
paper a theoretical study of the structure and dynamics
of Rh(100) and Rh(110) surfaces by including vibrations
of the whole slab. The interplanar force constants are
obtained from the directly calculated atomic forces using
the full-potential linearized augmented plane wave (FP-
LAPW) method25,26. It has been shown12,13 that the
surface phonon modes for wave vectors at high-symmetry
points of the surface Brillouin zone (SBZ) can be deter-
mined from the knowledge of interplanar force constants.
In the present work, these force constants and the corre-
sponding surface phonons are calculated as a function of
the interlayer spacing at the surface. The temperature
dependence of surface relaxation is then determined by
minimizing the free energy within the quasiharmonic ap-
proximation. Contributions from different phonon modes
to the vibrational free energy will be examined. In Sec-
tion II, we will describe some details of the calculation
method. The results are presented in Section III.

II. METHOD OF CALCULATION
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A. General theory

We consider a crystal slab consisting of a finite number
of atomic layers perpendicular to the z direction, and
of infinite extension in the x and y directions. In the
quasiharmonic approximation, the free-energy function
of the considered system can be written as18

F ({dij}, T ) = Φ({dij}) + Fvib({dij}, T )

= Φ({dij}) + kBT
∑

q‖

3N
∑

p=1

ln

{

2 sinh

(

h̄ωp(q‖, {dij})

2kBT

)}

, (2.1)

where Φ is the static total energy which can be obtained
by first-principles calculations, kB and h̄ are the Boltz-
mann and the Planck constants, and {dij} is the set of
inter-layer distances, d12, d23, · · ·, between layers 1 and
2, 2 and 3, etc. The vibrational free energy is denoted as
Fvib, and ωp(q‖, {dij}) is the frequency of the p-th mode
for a given wave vector q‖, evaluated at the geometry
defined by {dij}; and N is the number of atoms in the
slab. Anharmonicity of the inter-atomic potentials is in-
cluded in this description because Φ and the vibrational
frequencies ωp depend on the inter-layer distances {dij}.
The free energy and the equilibrium distances {d0

ij} at
a given temperature are determined by the minimum of
F ({dij}, T ) with respect to {dij}.

In the present work, we have calculated the vibrational
frequencies and the corresponding free energy using the
slab model27 and density-functional theory. We expand
the static total energy, Φ, of the system in a Taylor series

Φ = Φ0 +
∑

l,α

φα(l)uα(l)

+
1

2

∑

l,α

∑

l′,β

φαβ(l, l′)uα(l)uβ(l′) + ... , (2.2)

where uα(l) is the α component (α = x, y, z) of the
displacement of the l-th atom from its mean position
R0(l) (taking the thermal expansion of the lattice into ac-
count). The instantaneous position of an atom is given
by r(l)=R0(l)+u(l). We consider here the monatomic
lattice, and the set of integers l=(l1, l2, l3), which specify
a particular atom, has the following meaning: l3 labels
the crystal planes lying parallel to the surface, and l1, l2
specify the points in the two-dimensional lattice which
spans a plane. In the quasiharmonic approximation the
equations of motion are

M
d2

dt2
uα(l) = −

∑

l′,β

φαβ(l, l′)uβ(l′) , (2.3)

where M is the atomic mass, φαβ(l, l′) is the force con-
stant which is defined by

φαβ(l, l′) =

(

∂2Φ

∂uα(l)∂uβ(l′)

)

0

. (2.4)

The subscript “0” in Eq.(2.4) indicates that the force
constants φαβ(l, l′) are to be evaluated at the mean po-
sitions of the atoms, rather than at the positions of the
static equilibrium. Due to the two-dimensional transla-
tional property of the slab, the normal mode solutions to
Eq.(2.3) have the form27

uα(l) = M−1/2Q0ζα(l3)exp{i[q‖ ·R0||(l‖)

+ q‖ ·R0||(l3) − ωt]} , (2.5)

where Q0 is the vibrational amplitude, ζα(l3) is a polar-
ization vector which will turn out to be the eigenvectors
of the dynamical matrix, and ω is the vibrational fre-
quency. Following the notation of Ref.27 , we have q‖ =
(qx, qy),R0|| = (x, y),R0||(l) = R0||(l‖) + R0||(l3), l‖ =
(l1, l2). Insertion of Eq. (2.5) into Eq. (2.3) leads to the
eigenvalue equation

∑

l′
3
,β

Dαβ(l3, l
′
3;q‖)ζβ(l′3;q‖) = ω2(q‖)ζβ(l3;q‖) , (2.6)

where the elements of the dynamical matrix are defined
by

Dαβ(l3, l
′
3;q‖) =

1

M

∑

l′
‖

φαβ(l3, l
′
3, l

′
‖ − l‖)

×exp{iq‖ · [R0||(l
′
‖ − l‖)

+ R0||(l
′
3) − R0||(l3)]} . (2.7)

Once the force constants are obtained, the frequencies
and polarization vectors for all modes in the slab for a
given q‖ can be obtained by diagonalization of a 3N×3N
matrix.

B. Density functional theory calculation

In the present paper, the considered systems Rh(100)
and Rh(110) are modeled by a periodic slab consisting
of 7 layers of Rh and a vacuum region with the same
thickness. We employ density-functional theory and
the FP-LAPW method25,26. The exchange-correlation
functional is treated by the local-density approximation
(LDA)28 as well as the generalized gradient approxima-
tion (GGA)29. We first calculate the lattice relaxations,
surface energies and work functions of Rh surfaces at
T = 0 K neglecting the influence of zero-point vibrations.
The geometry is optimized by a damped molecular dy-
namics allowing the top two layers on both sides of slab
to relax. The remaining atoms are kept at the bulk lat-
tice sites. The energy cut-off for the FP-LAPW basis
is taken to be 15 Ry and for the wave functions inside
the muffin-tin spheres angular momenta are taken into
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account up to lwf
max = 8. The cut-off energy for the po-

tential is taken as G2 = 100 Ry. For the k‖-sampling, we
use a uniform mesh of 15 points in the irreducible part
of SBZ of the (1 × 1) surface displaced from Γ.

In order to calculate phonon frequencies of the slab,
an extension of the “frozen phonon” method12 is used.
For a selected q‖ in the surface Brillouin zone, we can
calculate all the interplanar force constant matrices by
distorting the slab in an appropriate way. The obtained
force constants allow us to set up the dynamical matrix
and solve for the eigenvalues and eigenvectors of the sys-
tem. The interplanar force constants coupling planes l3
and l′3 are given by

φp
αβ(l3, l

′
3;q‖) =

∑

l′
‖

φαβ(l3, l
′
3, l

′
‖ − l‖)

exp [iq‖ ·R0||(l
′
‖ − l‖)] . (2.8)

In the harmonic or quasiharmonic approximation, the
interplanar force constants, φp

αβ(l3, l
′
3;q‖), are related to

the forces by

φp
αβ(l3, l

′
3;q‖) = −

∂Fα(l3,q‖)

∂uβ(l‖, l
′
3)

≈ −
∆Fα(l3,q‖)

uβ(l‖, l
′
3)

, (2.9)

where ∆Fα(l3,q‖) is the α component of the force dif-
ference at atomic layer l3 under a distortion of layer l′3
in accordance with q‖, uβ(l‖, l

′
3) is the β component of

atomic displacement at (l‖, l
′
3). The displacement for

other atoms in layer l′3 is given by

u(l′‖, l
′
3) = u(l‖, l

′
3) exp[iq‖ · R0||(l

′
‖ − l‖)] . (2.10)

The dynamical matrix of Eq.(2.7) can then be written as

Dαβ(l3, l
′
3;q‖) =

1

M
φp

αβ(l3, l
′
3;q‖)

exp {iq‖ · [R0||(l
′
3) − R0||(l3)]} . (2.11)

In order to calculate the thermal expansion, we need
to know the interplanar force constants as a function of
the interlayer distance. In most cases, the thermal ex-
pansion of the lattice at the surface along z direction is
expected to be more significant than the expansion of the
bulk lattice constant. The latter also defines the expan-
sion of interatomic distance in the x-y plane. We there-
fore calculate the surface interplanar force constants as
a function of d12. Furthermore, we calculate the inter-
planar force constants for the crystal bulk. From all the
interplanar force constants, the dynamical matrix (as a
function of d12) of a thick slab can be constructed. In
fact, for the phonon calculations it is important to use
a significantly thicker slab than for the electronic struc-
ture calculations, in order to obtain a reliable descrip-
tion of surface modes, surface resonances and the surface
phonon density of states12,27. We therefore calculate the
surface phonon spectra for Rh(100) and Rh(110) for a
201-layer thick slab. The surface relaxation d12(T ) is
then obtained by minimizing the free energy of this slab
for various temperatures.

III. RESULTS

For Rh bulk the theoretically obtained lattice con-
stant (neglecting the influence of zero-point vibrations) is
ath = 3.79 Å for DFT-LDA and ath = 3.83 Å for DFT-
GGA. The FP-LAPW parameters employed for these
calculations are the same as those for the surface cal-
culations listed in Section II B, except that for the bulk
study we use a mesh of 72 k-points in the irreducible
part of the fcc Brillouin zone. The experimental value is
aexp = 3.80Å30. The surface properties of Rh are calcu-
lated with the theoretical bulk lattice constant. In Table
I, we present the results of surface relaxations, work func-
tions and surface energies of Rh(100) and Rh(110) cal-
culated in the LDA and GGA neglecting the zero-point
vibration. Results from other calculations and the ex-
periments are also listed for comparison. The present
results are in good agreement with those of the previ-
ous calculations6,11,23,35. In the following calculations of
the surface dynamics, we will use the GGA. The surface
interplanar force constant will be calculated as a func-
tion of d12, while the interlayer spacing d23 is kept as the
static equilibrium value.

The calculated interplanar force constants coupling the
surface layer with other layers in Rh(100) slab are given
in Table II. Three high symmetry surface wave vectors
are considered (see Fig. 1): Γ, X and M. These results
are obtained by distorting the slab around the zero-force
geometry at T = 0 K, which is given in Table I. The cor-
responding results for the interior of the slab are given
as well. The interplanar force constant matrices for the
Rh(110) surface are given in Table III. Four wave vectors
at Γ, X, Y, and S points in the SBZ are considered (see
Fig. 1). It is not surprising to see in Table II and Table III
that the intralayer part of the force constants (φp

αβ(1, 1))
are most significantly changed at the surface compared
to that in the bulk because of the truncation of surface.
At the same time, the interlayer part of force constants
at surface (φp

αβ(1, l3), l3 = 2, 3) are also modified due to
the surface relaxations. For most of the matrix elements
in Table III, there is a trend for an enhancement in mag-
nitude for force constants coupling the surface layer to
its neighbors compared with the bulk force-constant ma-
trix elements. This is in agreement with the findings of
Al(110)12.

Anharmonicity is included in our studies by calculat-
ing the force constants as a function of the interlayer
distance d12. Figure 2 shows the variation of the surface
interplanar force constants at the X point for Rh(100). It
can be clearly seen that the interlayer force constants de-
crease monotonically as d12 changes from 9% contraction
to 3% expansion. This “softening” of the force constants
reflects the anharmonicity of the bond strength at this
surface. We also note that the intralayer force constants
of the second layer (φp

αβ(2, 2) ) are also significantly soft-

ened at the X and M points for Rh(100), and at the X, Y,
and S points for Rh(110), with the increase of d12. While
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at Γ, there are no intraplanar vibrations, the “softening”
of φp

αβ(2, 2) is already included in the surface interpla-

nar force constant φp
αβ(1, 2). In the present work, the

changes of the intraplanar force constants for the second
layer with d12 are taken into account.

Having obtained the force constants for different d12,
we calculate the phonon frequencies of the slab for each
d12. Then, using Eq. (2.1), the temperature dependent
top-layer relaxations for Rh(100) and Rh(110) are de-
termined by minimizing the free energy with respect to
d12. Figure 3 shows the variation of ∆d12/d0 for Rh(100)
with temperature in the case in which vibrations are cal-
culated from different wave vectors q‖ in the SBZ. The

results of Cho and Scheffler23 are also given for com-
parison. It can be seen that when only the Γ point vi-
bration is taken into account, the variation of ∆d12/d0

with temperature is in close agreement with the results
of Ref.23. The small difference is due to the fact that
only the top layer was allowed to vibrate in Ref.23, while
in the present work, vibrations of the whole 201-layers
thick slab are included. At low temperature (below 300
K), the vibrations from the Γ, X, and M points contribute
with similar importance to the surface expansion. The
differences between the contributions of the different q‖

vectors becomes significant at high temperature because
of the different frequency distributions between Γ, X and
M.

Using the “frozen” phonon method12,39,40, it is not
practicable to get the phonon frequency for an arbitrary
q‖ point in SBZ. For phonon, in contrast to electrons, it
is in fact acceptable to approximate the summation over
the whole SBZ by the contributions from only the high-
symmetry q‖ points. The weights of Γ, X, and M are
1
4
, 2

4
, and 1

4
, respectively. Thus, the vibrational free en-

ergy is given by Fvib = 1
4
Fvib(Γ)+ 2

4
Fvib(X)+ 1

4
Fvib(M).

The temperature dependence of the top-layer relaxation
for Rh(100) by including all the vibrational contributions
from X, M, and Γ is shown in Fig. 4 . The arrow marks
the result of the surface relaxation obtained when lat-
tice vibrations (also zero-point effects) are neglected. We
find that at low temperature the thermal expansion for
Rh(100) is close to the result of Ref.23. At 300 K, the top-
layer relaxation is −1.64%, the value of Ref.23 is −1.45%.
However, for higher temperature the thermal expansion
will be overestimated if only the vibrations at Γ point are
included. In general, our improved calculations confirm
the conclusion of Ref.23. The calculated surface ther-
mal expansion coefficient is αs = (d12)

−1(∂d12/∂T ) =
40.7 × 10−6K−1 at T=300 K, which is 5.0 times larger
than in the bulk (αb = 8.2 × 10−6K−141). Thus for
Rh(100) the thermal expansion is clearly increased at the
surface. The different contributions to the surface relax-
ation from vibrations parallel to the surface and perpen-
dicular to the surface are also shown in Fig. 4. All the
vibrational modes at X, Γ, and M are included. The re-
sults in Fig. 4 confirm that the parallel vibrations have
a significantly larger influence on the surface thermal ex-

pansion than the perpendicular vibrations (z-direction).
This is in agreement with the findings and conclusions of
Refs.22,23.

We now turn to the more open (110) surface. The
temperature dependence of the top-layer relaxation for
Rh(110) is shown in Fig. 5. The vibrational free energy
is calculated by summing over the wave vectors Γ, X, Y,
and S in the SBZ. These four points all have the same
weight, therefore the vibrational free energy is given by
Fvib = 1

4
[Fvib(Γ) + Fvib(X) + Fvib(Y) + Fvib(S)]. Similar

to Rh(100), the contribution to the thermal expansion
of d12 from in-plane vibrations is larger than that from
out-plane vibrations. At T=300 K we obtain the sur-
face thermal expansion coefficient αs = 59.4× 10−6K−1,
which is 7.2 times larger than the bulk thermal expansion
coefficient. Comparing the thermal expansion coefficient
of Rh(110) with that of Rh(100), we find that Rh(110) ex-
hibits more significant anharmonicity than Rh(100). The
top-layer relaxation is ∆d12/d0 = −7.4% at T=300 K
which is close to the result of a room temperature LEED
analysis36, which gave a value of ∆d12/d0 = −6.9%. The
surface relaxation obtained when just the total energy
is minimized is noticeably different, namely ∆d12/d0 =
−9.2%.

In Table IV, we present the calculated surface phonon
frequencies corresponding to the surface relaxation at
T=300 K. The local density of states are obtained from

Dq‖,α(ω) =
∑

p

δ(ω − ωp)|ζα(1,q‖, p)|2 (3.1)

where ζα(1,q‖, p) is the surface layer polarization vector
for the p-th normal mode of the slab with respect to wave
vector q‖, α denotes x, y and z. The calculated surface
phonon densities of states are shown in Fig. 6 and Fig. 7.
Different plots correspond to different polarizations. At
the M point for Rh(100) ( Fig. 6), results for y polariza-
tion are identical to those for the x polarization due to
symmetry. It can be seen that in all cases (Fig. 6 and
Fig. 7), the surface modes are strongly localized at sur-
face and are well separated from the bulk modes. Thus it
should be possible to identify them in EELS or He scat-
tering experiments. It is these localized surface phonons
that are most sensitive to the surface relaxations, and
hence govern the anharmonic thermal expansion at the
surface. It can be seen in Figs. 6 and 7 that there are
more localized surface phonon modes polarized in the x
and y directions than in the z direction. This is one of the
reasons why the parallel vibrations give a more important
contribution to the thermal expansion (see Figs. 4 and 5).

IV. SUMMARY

In conclusion, we have used full-potential FP-LAPW
method to investigate the surface structures and surface
phonon spectra of Rh(100) and Rh(110) surfaces. We
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studied the thermal expansion by taking anharmonic-
ity into account within the quasiharmonic approxima-
tion. It is found that different phonons give differ-
ent contributions to the surface relaxation in the range
of high temperature (higher than 300 K). The surface
thermal expansion coefficients calculated by including
all the high symmetry points in surface Brillouin zone
are 40.7×10−6K−1 for Rh(100) and 59.4×10−6K−1 for
Rh(110) at T=300 K, which are 5.0 and 7.2 times larger
than that of the bulk, respectively. The obtained surface
relaxations of Rh(100) and Rh(110) at T = 300 K are in
agreement with the experimental measurements at room
temperature. The calculated results confirm that the in-
plane vibrations give a more important contribution to
the surface thermal expansion than the out-of-plane vi-
brations.
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FIG. 1. Surface Brillouin zones for fcc (100) and (110) sur-

faces. High symmetry points are indicated.
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FIG. 2. Variation of the surface interplanar force constants

at X with ∆d12/d0 for Rh(100).
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FIG. 3. Top-layer relaxation of Rh(100) as a function of

temperature calculated in different approximations, i.e., in-
cluding different vibration modes. The results of Cho and
Scheffler23 are shown for comparison.
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FIG. 4. Top-layer relaxation of Rh(100) as a function of

temperature calculated by including the vibration modes at
Γ, X, and M. The contributions from vibration parallel and
perpendicular to the surface are are displayed. The arrow
points at the result obtained when vibrational contributions
to the free energy are neglected completely. The results of
Cho and Scheffler23 are shown for comparison.
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FIG. 5. Top-layer relaxation of Rh(110) as a function of

temperature calculated by including the vibrational modes at
Γ, X, Y, and S. The contributions from vibrations parallel
and perpendicular to the surface are displayed. The arrow
points at the result obtained when vibrational contributions
to the free energy are neglected completely.
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FIG. 6. Surface phonon density of states of Rh(100) for

the wave vectors at the X and M points in the surface Brillouin
zone.
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FIG. 7. Surface phonon density of states of Rh(110) for

the wave vectors at X , Y, and S points in the surface Brillouin
zone.

TABLE I. Surface relaxations ∆d12/d0 and ∆d23/d0, work
function φ (eV) and surface energies σ (eV/atom) for Rh(100)
and Rh(110) surfaces obtained by different calculations and
experiments. The results correspond to T = 0 K, and none of
the theoretical values includes the effect of zero-point vibra-
tions.

∆d12/d0 ∆d23/d0 φ σ

Rh(100) LDA6
−3.5% – 5.25 1.27

LDA11
−3.8% +0.7% – 1.44

LDA23
−3.0% −0.2% 5.26 1.29

GGA23
−2.8% −0.1% 4.92 1.04

this - LDA −3.3% −0.2% 5.30 1.23
this - GGA −3.0% −0.1% 4.91 0.99
experiment +0.5±1.0%31 0±1.5%31 4.6532 1.1233

experiment −1.16±1.6%34 0±1.6%34

Rh(110) LDA35
−10.2% +2.5% 4.99 1.92

LDA11
−9.8% +2.6% – 2.05

this - LDA −9.9% +2.0% 4.94 1.85
this - GGA −9.2% +2.1% 4.59 1.43
experiment −6.9±1.0%36 +1.9±1.0%36 4.9837 1.2738

TABLE II. Interplanar force constants of Rh(100) cou-
pling the surface layer to other layers for wave vectors at Γ,
X, and M at ∆d12/d0 = −3.0%, ∆d23/d0 = −0.1%. The
units are 104 dyn/cm. The corresponding interplanar force
constants for the interior layers of the slab are also shown for
comparison. The indices (αβ) and the arguments (l3, l

′
3) of

φp

αβ(l3, l
′
3) are combined as (l3α, l′3β). Matrix elements not

listed are zero by symmetry.

(l3α, l′3β) Surface Interior (l3α, l′3β) Surface Interior

q‖ = Γ
(1x, 2x) −4.89 −4.92 (1x, 3x) −0.03 −0.30
(1z, 2z) −8.34 −7.65 (1z, 3z) −1.45 −1.84

q‖ = X
(1x, 1x) 14.65 26.23 (1x, 3x) 0.53 0.39
(1y, 1y) 6.34 10.18 (1y, 3y) −0.08 0.03
(1z, 1z) 10.15 17.07 (1z, 3z) −0.57 −0.70
(1x, 2z) −6.42 −5.46 (1z, 2x) −5.41 −5.46

q‖ = M
(1x, 1x) 14.60 23.70 (1x, 3x) −0.50 −0.72
(1z, 1z) 15.01 18.49 (1z, 3z) −0.88 −0.59
(1x, 2y) -2.59 -2.73 (1y, 2x) −2.59 −2.73

TABLE III. Interplanar force constants for Rh(110) at Γ,
X, Y, and S at ∆d12/d0 = −9.2%, ∆d23/d0 = 2.1%. The
units are 104 dyn/cm. The corresponding interplanar force
constants for the interior layers of the slab are also shown for
comparison. The indices (αβ) and the arguments (l3, l

′
3) of

φp

αβ(l3, l
′
3) are combined as (l3α, l′3β). Matrix elements not

listed are zero by symmetry.

(l3α, l′3β) Surface Interior (l3α, l′3β) Surface Interior

q‖ = Γ
(1x, 2x) −5.13 −4.30 (1x, 3x) 0.31 −0.86
(1y, 2y) −7.88 −7.14 (1y, 3y) 0.15 −0.14
(1z, 2z) −3.95 −3.55 (1z, 3z) −6.87 −4.44

q‖ = X
(1x, 1x) 13.52 25.40 (1x, 3x) 0.71 0.62
(1y, 1y) 9.51 17.24 (1y, 3y) −0.07 −0.96
(1z, 1z) 13.68 16.56 (1z, 3z) −5.88 −3.61
(1x, 2z) −1.77 −3.09 (1z, 2x) −3.48 −3.09

q‖ = Y
(1x, 1x) 5.69 10.81 (1x, 3x) −0.49 0.11
(1y, 1y) 9.11 20.50 (1y, 3y) 1.74 1.08
(1z, 1z) 13.68 18.12 (1z, 3z) −5.78 −3.67
(1y, 2z) −5.52 −5.81 (1z, 2y) −5.52 −5.81

q‖ = S
(1x, 1x) 13.83 24.16 (1x, 3x) 1.74 0.94
(1y, 1y) 10.21 17.81 (1y, 3y) 0.76 0.25
(1z, 1z) 13.66 16.44 (1z, 3z) −6.20 −2.92
(1x, 2y) −6.12 −5.23 (1y, 2x) −4.23 −5.23
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TABLE IV. Calculated surface phonon frequencies ν for
Rh(100) and Rh(110) corresponding to surface relaxation at
T=300 K. Units are in THz.

Rh(100) Rh(110)

X M X Y S
ν mode ν mode ν mode ν mode ν mode

2.97 S1 4.44 S1 3.44 S1 2.50 S1 3.54 S1

3.36 S4 4.50 L1 3.54 S2 2.62 S2 3.66 S2

3.42 S2 5.13 S7 3.65 S3 3.78 S3

5.40 S6 4.52 S5 5.26 S7
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