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Alkali-metal plasmons, pseudopotentials, and optical sum rules
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Starting from recent experimental and theoretical results on the optical absorption of lithium clusters, we
reexamine some effects of the angular-momentum dependence of the electron-ion interaction, a necessary
ingredient of accurate valence-only atoms. Our theoretical results are compared to a variety of optical data for
alkali-metal atoms, clusters, and bulk solids, and illustrate interesting aspects of the jellium approximation and
of optical sum rules, when based on first-principles pseudopoterj&{463-18207)06619-9

I. INTRODUCTION tivation for a closer look at some nontrivial properties ofnon-
local electron-ion interactions which are not peculiar to clus-
ters, and to put them together with a variety of optical data

In a recent series of papers Serra and co-wotkétsmve for alkali metals, and for Li in particular. The purpose is a
introduced a simple model for the optical properties ofdeeper understanding of the experiments on clusters but also,
alkali-metal clusters, the pseudojellium modRIM). In this  more generally, of the jellium approximation and of optical
model an angular-momentum-dependent electron-ion intersum rules when used in connection with first-principles non-
action is taken into account only through its spatial averagéocal pseudopotentials. One of the conclusions of this paper
over a sphere. In the first paperlocal pseudo-Hamiltoni&n s in fact that sum rules, often used for model metallic clus-
was adopted. As a result the main peak of the photoabsorpers(see, e.g., Refs. 2 and 3, and references therelmuld
tion cross section of Li clustef&nown as Mie resonance in be handled with some care whenever valence-only systems
a classical conteXt was found to be redshifted by about 1 are considered. In what follows, we will mostly deal with
eV with respect to the predictions of the conventional JMeither bulk (jellium) solids or isolated atoms, keeping in
(jellium modef). This model provided a qualitative explana- mind the existing results for clusters. In bulk Li a large shift
tion of the photoabsorption experiments of Brechigetial.  of the plasmon peak with respect to the jellium predictions
on Li clusters’ and at first sight even a fairly good quantita- was suggested by various measuremeetsctron-energy-
tive explanation. The redshift of the Mie resonance energy ifoss spectroscopt, (EELS) optical properties'!, but the
Li was then attributed to the angular-momentum dependencexact magnitude of this shift was not well established, rang-
of the electron-ion interaction, whose consequences surviviag from 0.9 to 1.3 eV. In the past this shift was generically
even after a spatial average. The result of the PIM for Lattributed?® to the particularly strong electron-ion interaction
clusters was understood in terms of a greatly enhanced ebf lithium, but the key role of its angular-momentum depen-
fective masqup to 50% near the center of all clusteesd  dence, or nonlocality, had never been recognized. Only re-
gave a modified sum rule for the oscillator strengths whichcently Serraet al! emphasized this role for clusters, and
also seemed to match the experimental findings. In two subshortly after Yabana and Bert$cspecified the amount of the
sequent papets the PIM was used in connection with non- nonlocal contribution using an empirically adjustable model
local pseudopotentials rather than pseudo-Hamiltonians fgpseudopotential. Here we see in detail how the average non-
the evaluation of bulk and cluster properties of alkali metalslocality [which survives in the PIJMRef. 1)] contributes to
This work, prompted by a model calculation by Yabana andhe red shift, and show that it can be accurately estimated
Bertsch® allowed a more accurate estimate of the nonlocafrom first-principles pseudopotentials. The physics behind
contribution, but confirmed the validity of the original quali- modified optical sum rules for valence electrons is also reex-
tative explanation of the redshift. Finally, recent self-amined. On this issue many ingredients were available in the
consistent calculations of the optical properties of very smalliterature: the Fano-Cooper theory on the core-valence trans-
lithium clusters, also based on nonlocal pseudopotentials, ader of oscillator strength? the relation between general non-
curately reproduced the experimental red shift but apparentliocal potentials and optical sum rul&sand the calculation
overlooked the simple physical interpretatigthe strong of a few oscillator strengths for selected valence-only
ionic nonlocality which makes the optical response of systems< but to our knowledge the connection among these
lithium clusters so different from jellium spheres and from three ingredients, and thus a consistent physical intepretation
the other alkali-metal clustePsThese results give us the mo- of the meaning and reliabil ity of modified sum rules ob-
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tained from first-principles pseudopotentials, was still lack- 0.01 —_— — .
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ol Rb
K
1. JELLIUM IONS AND PSEUDOIONS ~-0.01 } Na |
=2
Nonlocal pseudopotentials can always be split into a local &
- : “-0.02 } s
part with a long-range Coulomb tail and a short-range non- L
local part, whose spatial extent is of the order of the atomic '
core: -0.03 | ]
~ ps— ~ + ~ -0 _04 1 1 L i 1 1
V= vi0ct Av. @) 0.2 0 02040608 1 1.2
k/kf

The kernel ofAv, in the coordinate representation, is

FIG. 1. Fourier transform of the nonlocal correctifii(k) [Eq.

s(r—r") ‘max (5)] for alkali ions with pseudopotentials of Ref. 18, arig.=2.
Av(rt)=——= > > Y, (D Y% (T Av (1), The curves are aligned to a common zero.
rr /=0m=-/ i !
)
2
while the kernel of the _Iocal part is simply given by EEP:k_+fPP(k)’ (6)
S(r—r")v,.e(r). In a true Li crystal the potential felt by the 2

valence electrons is given by a sum of ionic pseudopotentials
centered at the bcc lattice sit&s in the PIJM a shapeless he sinal il _ hich obvious gifi
background, obtained as a spatial average, replaces the tr{@, th€ single-particle energies, which obviously modifies

discrete lattice of ions. Because of the Coulomb tail the locafl® effective mass. In the absence of nonlocal effects, in-
part averages to stead, the correction to the free-electron dispersion relation

would amount to ak-independent constant shift, which
does not alter the slope and curvatureepfand thus leaves
unchanged the effective maSsfP?(k) has been calculated

' for k ranging from O tokg for all alkali metals usings, p,

3) and d pseudopotential® i.e., using/ mau=2 in Eq. (5).

The results, after lining them up k=0, are shown in Fig. 1.

The curves are aligned to a common zero because we are

wherch is the volume of the unit 9e|| of the crystal and ultimately interested in effective masses. We see that
a is a constant; the divergent term is later balanced by thegpp(k) shows the strongest dependence for Li, which we

divergence of the electrostatic potential of the valence elec- ; ; :
. . : . immediately understand in terms of its much stronggy
trons (the Hartree term since the unit cell is electrically y

val. Th tial fth local k onlocality: compared to the other alkali-metal atoms, the
Zeu(rra:/.) ivgs Siﬁ%?n average o € nonlocal Kerney i ionic core containss electrons but ng electrons. The
v(r, . , . ~os ~
g splitting of vP® into a long-range local patt,,. and a short-

N range nonlocal correctiolo [Eq. (1)] is of course not
— v i N 43 oo unique, since, if consistently performed, it simply amounts

Av(r,r’)= lim vad RAv(r=R,"=R) to adding a short-ranges-independent correctiow(r)
to all the angular-momentum radial components
Av(r),/=0....o, of Egs.(2) and (5), and to subtrac-

; (4 ting the samew(r) from the local potential of Eqs(1)
and (3). However, we immediately see that the Fourier
components of the total potential, as well as thelepen-

A max w dence offP" are independent of the particular choice of
fPRk)=— >, (2/+ 1)J dr r2[j (kr)]2Av (1) the local potentiat® Even if, as usually done for practical
¢ £=0 0 reasons, the choice of the local potential is not fully consis-
(5) tent (the above sums do not include all the terfs 0.. 0,
but only up to /.9, the k dependence offPF, as we

is the Fourier transfornfid3rd3’e " "Avp(r,r')e*" "', cal-  numerically checked, is only marginally affected, provided

culated fork’ =k. It depends on the modullsbecause ions that /.« is sufficiently high and the choice of the local,

are spherically symmetric. The average nonlocal potentialong-range Coulomb part is physically sensibMhich is the
whose kernel isAv(r,r’), has full translational and rota- general rule for any solid-state or molecular application of
tional invariance, its eigenfunctions are plane wage& ", ionic nonlocal pseudopotentiglsSuch a small effect of the

and the corresponding eigenvalues evidently introduce an adruncation of the/ sums can also be understood from a

ditional k dependence simple power expansion arouta=0:

_ N .
Vo) = lim —f d°R vjo(r—R)=lim
Vv

{ 4 N
- 55 ~ o

V—oo

d3k . ,
:J (277) eIk-(r—r )fPP(k)



55 ALKALI-METAL PLASMONS, PSEUDOPOTENTIALS, AND . .. 13 837

c k2 TABLE I. Plasma frequencyin eV) of alkali metals in various
4—fPP( k)= f r2dr Avg(r)+ ?f rédr[Avq(r)—Avg(r)] models and from experiments: for the plain JM, using the electronic
m densities of Ref. 23, we show it “as it is” in the first column

K4 (hwp) and divided by the square root of the core polarizability
+ 4—5f rédr{—2[Av(r)—Avy(r)] (h'wp) in the second column. Experimental valugsird column
are taken from Refs. 10 and {lithium) and Ref. 24Na—-Cs3. The
K6 fourth and fifth column show the plasma energy divided by the
+[Av2(r)—Av1(r)]}+ 1575f rédr square root of the core polarizability for the PJM based on nonlocal
pseudopotentials and pseudo-Hamiltonians.
X{5[Av(r)—Avg(r)]—4[Av,(r) —Avy(r)] Elem. ﬁng ﬁ&')g)M hw® hagp hToEH
TLAvs(N)=Ava (N} +--r, Li 804 797 712 742 645
which shows that the absence of higheicomponents only Na 6.04 5.84 5.72 571 5.73
affects the higher powers ok in the expansion. A K 4.40 4.06 3.72 4.03 4.09
k-dependent correction to the single-particle eigenvalues igp 3.97 3.53 3.41 3.57 3.69
also obtained when, rather than pseudopotentials, thes 3.54 3.08 2.99 3.11 3.29

electron-ion  interaction is represented by ionic
pseudo-Hamiltonian but in this case the correction turns
out to be purely quadratic:

right qualitative explanation but too large an effect, as ini-
A b(r) tially pointed out by Yabana and BertSchnd later con-
h,=—3V.ar)Vv,+ 2—2—Lr2+v(r), firmed by Alasiaet al;* here we add that the main reason of
r such an overshooting is a mediocre transferability of first-
1 row pseudo-Hamiltoniar®. In summary, for bulk Li the
D A/+1)(2/+1) angular-momentum dependence of the electron-ion interac-
27 tion, when accurately described, is sufficient to explain only
. part of the shift of the plasmon peak with respect to the plain
Xf dr[j/(kr)]zb(r)} ) jellium model: even the smallest exper_imental estimate,
0 based on EEL% corresponds to an effective mass of 1.27,
which is larger than 1.15. For alkali metals other than Li,
instead, pseudopotentials agree with pseudo-Hamiltonians,
and both predict only a small correction to the jellium model.

1 1
EJ dr r?a(r)+ §j dr r?b(r)
. L N ) This also gives a reasonable agreement with experiments af-
which also implies that the pseudo-Hamiltonians will reasonyq, including a core-polarizability correctidan effect which

ably track the pseudopotentials only up to some finite,, e significant for “fat” cores but is very small for ), ias
k=" Now we can put together experiments and jelliumgpqyn by Tables | and II. The result obtained here with

theories for cluster and bulk metals. The random-phase aRjt-principles pseudopotentials matches the semiempirical
proximation predicts estimate by Yabana and Bertsttyho deduced the nonlocal

QC PH _kZJ 2
Ef (k)_? drrea(r)+

=K?

Amne? contribution to the effective mass from the comparison of the
wgz : experimental value of the optical effective mass and the the-
Mopt oretical effective mass based on local Li pseudopotentials. It

the key quantity for the energy location of the plasmon peal@lso agrees with the large-cluster lifénd bulk estimatés
is the optical effective mass, which, for an isotropic Fermiof Lipparini and co-workers. A lattice of local potentials
surface, is given by opens energy gaps at the Bragg planes, but, also, to a lesser
extent, it modifies the energy-versus-wave-vector dispersion
everywhere in the Brillouin zone, and thus it also makes a
contribution to the effective mass, which, unlike the nonlocal
contribution, does not survive in any jellium approximation.
Collective excitations of surfaces and clusters are then ~ In conclusion, both nonlocality and the discrete spatial ar-
rangement of ions affect the electronic effective mass; the
wWp= Wg \/EZ W\ \/gn

Wherews |S the frequency Of the Surface plasrr?arand the TABLE II. Optlcal effeCtiVe masses for the alkall meta|S in the
last equation should hold for jelliumlike models of very large PIM with pseudopotentials and pseudo-Hamiltonians.
clusters The PJM based on pseudo-Hamiltonidfsy. (7)]

1 afk -1
Mop™ | | gk

k=kg

gives, for bulk Li, an optical effective massij=1.53, Elem. Mop PIM Mpt PIM
which agrees with the corresponding results of Setral. 1.153 1.526
for large clusterd.On the other hand, usingnore accurate Na 1.049 1.040
nonlocal pseudopotentials we obtam}}=1.15, substan- g 1.014 0.983
tially smaller than 1.5, but still larger than the plain jellium rp 0.977 0.909
model (myy=1 for all the alkali metals This confirms that s 0.983 0.872

for Li clusters the use of pseudo-Hamiltonidngave the
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nonlocal contribution is particularly relevant for lithium, and ~ TABLE Ill. Modified f-sum rule: results obtained with nonlocal
norm-conserving pseudopotentials give an accurate firspseudopotentialsfirst column, and with pseudo-Hamiltonians
principle estimate theredf. (second column In the last two columns are instead shown the sum
of oscillator strengths restricted to the discrete spectrum for nonlo-
cal pseudopotentialghird column and experimentgfourth col-
umn, from Ref. 28

The nonlocality of the electron-ion interaction has another
consequence on the optical photoabsorption of an electronfelem. NP NPP Ng~ NG
system, namely, the_violation of thesum rule, which for : 0.97 0.93 0.70 0.75
condensed systems is the same as the Thomas-Reiche-Kuhn

Ill. SUM RULES AND PSEUDOIONS

; . . . 1.00 1.00 0.93 0.97
sum rule for atomic oscillator strengtfThe issue is of
: . o 1.03 1.04 1.00 1.01
interest because both experiméraad theory initially sug-
. . . . : Rb 1.10 1.10 1.08 1.09
gested a violation of this rule for Li clusters. As is known,
C 1.16 1.16 1.13 1.19

the optical sum rule relates the value of the integrated pho- S
toabsorption cross sectiarn(w) of an optically excited elec-
tronic system to the total number of electrons in the syste
N; in other words, the sum of the oscillator strengthgsfor
optical transitions from the initial state O to any allowed final
statek (hence the name f* sum”) adds up toN/2. In the
framework of first-order perturbation theory, with the elec-
tromagnetic field treated as a small perturbation applied to
system ofN interacting electrons, thE-sum rule reads:

Wifference between the potential “felt” by andp electrons,
modifies the sum rule with respect to the actual number of
valence electrons which is 1 for alkali-metal atoms. If, in-
stead, we choose pseudo-Hamiltonidns[Eq. (7)] to ap-
Qroximate the electron-ion interaction, thesum gives

NPH:1+fdr r2p(rfa(r)+ 2b(r)] (10)

f=fdwo(w):2f = (Ex—Eo)| (¥y|D | ¥ )2
S T | (FolD ¥l (p, the electron density, iR% for the atom and again, when

the pseudo-Hamiltonian reduces to an angular-momentum

:E' (8) independent Hamiltoniapa(r)=Db(r)=0], we recover the
2 standard sum rule. The results for the modiffedumsNPP
PH ; : :
the sum being extended over the whole energy spectrum G"dN " are shown for the alkali-metal atoms in the first two
columns of Table Ill. Pseudopotentials and pseudo-

the electronic excitations; hei2 is the dipole operator, the
many-electron quantum statdsl,) form a complete and
orthonormal set of eigenstates of the unperturbed Hami

tonian Ho, an_d E, are the corresponding energies. The sUMyi the actual number of valence electroNg=1, as it
over the excne_d state§) can be written as the ground- seems most natural to do, one finds a lack of oscillator
state expectatloAn vaAIuerf the double commutator bewW"‘egtrength in the absorption spectra of Li, and a surplus for the
the HamiltonianH,=T+V and the dipole operatd®. If we  other pseudoatoms. What is the meaning of such an “effec-
have a standard local potentil(i.e., simply multiplicativg,  tive number of electrons,” and, if any, is pseudopotential
Eq. (8) follows immediately. On the other hand, as soon asheory the appropriate tool to estimate it? As already pointed
an explicit dependence on the electronic angular momenturaut long ago by Fano and Coopérin a many-electron sys-
appears in the Hamiltonian, as with nonlocal pseudopotertem one cannot identify the sum partial sum of the oscillator
tials P (Eq. 1), or pseudo-Hamiltonians, [Eq. (7)], addi- ~ Strengths over a limited energy rar@eour case the valence
tional terms appear in the commutator, which result in aécitations onlywith the corresponding number of “active”
modified f sum?’ We have evaluated thé sum for each €lectrondin our case the valence electroneven when core
alkali-metalpseudatom (N=N,=1), and compared it with and valence excitations are well separated in energyf the
the corresponding valence-only sum for the true, full-coreSum over the allowed valence excitations is in general not
atom, obtained from available experimental data; this help§dual toN, /2, as a simple consequence of the Pauli prin-
us to understand whether the modification of the standar@iple. This effect, however, always yields a transfer of oscil-
f-sum rule introduced by pseudopotentials reflects som&tor strengthfrom the coreto the valence, in such a way
physical property of the valence electrons of true atoms, or i§hat, whenever applicable, it always increases thsums
an unwanted consequence of a mathematical trick to b@ith respect to the actual number of valence electrons. For
aware of; it will in particular shed some light on experimen- What interests us here, the Fano-Cooper effect applies to all
tal and theoreticalf sums for Li clusterd:! If we adopt alkali-metal atoms except Li, for which no dipole transition
s-p nonlocal potentials to describe the electron-ion interacEonNects the 4 core and the & valence states! The Fano-
tion [i.e., /max=1 in Eq. (2)], for NPP=2f we obtain Cooper picture suggests that theums predicted by pseudo-
potentials and pseudo-Hamiltonians for Na, K, Rb, and Cs
2 (NPPNPH=N_ =1), shown in the first two columns of Table
NPP=1+ §f dr r*Ri(N[Avp(r)—Avg()], (9 1l are physically plausible, while the lack of a few percent
of oscillator strength obtained for Li is not. The comparison
where R, is the one-electron radial wave function of the of the partial contributions to theé sums due to the discrete
ground-state pseudoatom; we see that nonlocality, i.e., thepectrum with the corresponding restricted experimental

Hamiltonians are here in good agreement. There is a clear
trend in thef-sum rule, which is<1 for Li, and=1 for all
the other alkali-metal atoms. If those results are compared
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Eys—— magnitude. The most important error of the local pseudopo-
1 B Q &b nomocal BHiS tential theory concerns the lowest excitations{2p, left
0.8f o; ...... ] ) . , 16" panej, but has important consequences also on the high-
0.6F ] n=3 energy continuum tail of the spectrum, because of the sum
o 4 -2 gy p _ _
0.4t ] e & ‘3 6 110 rule: for the local model the total oscillator strength is prac-
] i ", 1163 tically exhausted by the discrete spectrum, which adds up to
0.2 ] 10 . - . P
0.1 9 0.99, so that practically nothing is left to the high-energy
15 2 923 4 110 continuum (not shown in the figurg both the experiment
energy (eV) - . - and the nonlocal pseudopotential theory are instead charac-
35 4 45 5 55 terized by a non-negligible high-energy continuum tail which

energy (eV) contains approximately 25% of the total oscillator strength.

In other words the local model puts too much oscillator
strength in the low-lying excitations, and thus artificially
sucks down to lower energies practically all of the oscillator
strength of Li, while the nonlocal model approximately re-

recently adopted for lithium clustetempty squares, Ref. 29No- produpes the experimental spectroscopic behavior at these
tice that most of the total oscillator strength belongs to the firstenerg'e,s' In conclusion, an angular-mor_nentum_—d_ependgnt
2s-2p transition (left pane, while the subsequent 11 transitions PS€udoion is absolutely needed to explain the lithium dis-
(shown in the right panghre less strong by more than one order of Cr€te spectrum; also for the other alkali-metal atoms both
magnitude. To help the eye, solid lines connect experimental pointgseudo-Hamiltonians and pseudopotentials give-8%
with the theoretical results of nonlocal pseudopotentials, and dotte@greement between theory and experiments, which implies a
lines with those of a local pseudopotential. good transferability for both of them in the low-energy por-
tion of the spectrum+5 eV above the atomic ground-state
sums? help us understand the origin of this slightly un- As a consequence, even for Li, which unlike thg heavier
physical result for Li. If we only consider the discrete spec-2/kali-metal atoms has a lotabout 30% of oscillator
trum, as done in the last two columns of Table IlI, we find Stréngth in the medium- and high-energy tail of the spectrum
good agreement with the experimental values for all atométhe continuum pajt the total sum ruléwhich according to
including Li. The individual values and the trend show thatth® Fano-Cooper theory and the experiment should be 1
first-principles pseudoions adequately reproduce the transféeviates only, as we see in the first two columns, by 3% and
of oscillator strength from core to valence states, a physica{ 7 for pseudo-Hamiltonians and pseudopotentials, respec-
effect which occurs in the true, full-core iofsIt may be tively, whlch seems to be within th_e general accuracy of our
interesting to see that for Li the use of first-principles, PSeudoions. However, for the medium- and high-energy por-
angular-momentum-dependent pseudoions is in fact necelion of the excitation spectruntyhich for atoms is covered
sary to reproduce the correct oscillator strengths as a fund the continuumindividual transition energies and oscilla-
tion of energy: when, instead, a local pseudopotential is useff" Strengths will sooner or later depart from the true atomic
to approximate Li, as done by, e.g., Blundell and Guet for Ljbehavior, because of t_ransferablllty_pr_oblem_s intrinsic to the
clusters® the sum rule is certainly obeyed for purely math- fqll pseudotrqnsformatlon. The de_V|at|0ns_ will be Iarger for
ematical reasons, but the individual low-energy excitationd!igher energies and/or for chemical environments increas-
(energy position and oscillator strengtire in much worse N9l d|ffer<int from the isolated atorthe so-called “refer-
agreement with the optical data. This is shown in Fig. 2,€Nce state ®). From this point of view the jellium density
where the Li oscillator strengths, are plotted as a function and a first-row .pseudo—Hamlltom%in represent the worst
of energy for nonlocal pseudopotentidimpty circles ex- qombmaﬂon, which results, as seen, in an exaggerate effec-
periments (full circles), and a simple local pseudo- t|ve_ mass and, by the same toker_l,_ in an artificial loss of
potentiaf® (empty squaresLet us have a closer look at Fig. oscillator stren.gth.. Both transferability problems are much
2. If a local pseudopotential is uséempty squarg both the less severe if first-row nonlocal pseudopotentials are
energy position and the oscillator strength of the fggy ~ adopted.
transition (1= 2, left panel are considerably misplaced with
respect to the exp_erimental_ _val(l_kmll circle). In particular, IV. CONCLUSIONS
the experimental first transition is located at about 1.8—1.9
eV, and its oscillator strength is 0.75, while the local pseudo- The nonlocal character of the effective electron-ion inter-
potential predicts an energy around 2.4 eV and an oscillatoaction “felt” by valence electrons has measurable conse-
strength as high as 0.96. The nonlocal pseudopotentigluences on optical properties of alkali-metal atoms, clusters,
(empty circle falls much closer to the experimental value: it and bulk solids, which are greatest for Li. In the condensed
slightly undershoots it, with a transition energy of 1.7 eV andstate, more than half of the shift of its plasmon peak with
an oscillator strength of 0.65. The magnitude and energyespect to the predictions of the plain jellium model is due to
position of the tiny oscillator strengths for the subsequenthe strongs-p nonlocality. Such a strong angular-momentum
transitionsn=3. .. 12 (right panel; note the change in the dependence is due to the fact tlsavalence electrons must
scalg show a fair but uniform agreement between experi-remain orthogonal to aslcore, whilep valence electrons
ment (full circles) and nonlocal pseudopotential theory have no underlying core to be orthogonal to; this effect sur-
(empty circle$, while for the local pseudopotential all the vives in the pseudo jelium model of Serra and
oscillator strengths witm>4 are off by almost an order of co-workerst—3 The remaining part of the shift, however, is

FIG. 2. Oscillator strengths for the 12 lowest dipole excitations
of the lithium atom as a function of the excitation energy, as ob-
tained from experimentgfull circles, Ref. 28, from nonlocal
pseudopotentialempty circles, Ref. 18and from a local potential
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essentially due to the discrete spatial arrangement of Land theoretically for Li clusters. For the theory we
ions in the condensed state, and is wiped out by any jelliunhmave shown that the effect disappears using more accu-
approximation. Here we confirm that one can adequatelyate nonlocal pseudopotentials; the energy window and/or
estimate both contributions using first-principles pseudothe technique adopted to infer oscillator strengths from clus-
potentials’® rather than empirically adjusting the nonlocal ter fragments might be the origin of the experimental

part, as done by Yabana and Bertsch, who first pointed outgffect.”

the twofold origin of the plasmon shift.First-principles

nonlocal pseudopotentials also appear to be an adequate
tool to evaluate energy positions and oscillator strengths

for valence-only excitations: within a&5% accuracy they

reproduce the experimental individual excitations and
f-sum rules, including the transfer of oscillator strength
from core to valence states first pointed out by Fano an
Cooper** From this point of view our study does not con-
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