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Alkali-metal plasmons, pseudopotentials, and optical sum rules
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Starting from recent experimental and theoretical results on the optical absorption of lithium clusters, we
reexamine some effects of the angular-momentum dependence of the electron-ion interaction, a necessary
ingredient of accurate valence-only atoms. Our theoretical results are compared to a variety of optical data for
alkali-metal atoms, clusters, and bulk solids, and illustrate interesting aspects of the jellium approximation and
of optical sum rules, when based on first-principles pseudopotentials.@S0163-1829~97!06619-8#
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I. INTRODUCTION

In a recent series of papers Serra and co-workers1–3 have
introduced a simple model for the optical properties
alkali-metal clusters, the pseudojellium model~PJM!. In this
model an angular-momentum-dependent electron-ion in
action is taken into account only through its spatial aver
over a sphere. In the first paper1 a local pseudo-Hamiltonian4

was adopted. As a result the main peak of the photoabs
tion cross section of Li clusters~known as Mie resonance i
a classical context5! was found to be redshifted by about
eV with respect to the predictions of the conventional J
~jellium model6!. This model provided a qualitative explan
tion of the photoabsorption experiments of Brechignacet al.
on Li clusters,7 and at first sight even a fairly good quantit
tive explanation. The redshift of the Mie resonance energ
Li was then attributed to the angular-momentum depende
of the electron-ion interaction, whose consequences sur
even after a spatial average. The result of the PJM for
clusters was understood in terms of a greatly enhanced
fective mass~up to 50% near the center of all clusters! and
gave a modified sum rule for the oscillator strengths wh
also seemed to match the experimental findings. In two s
sequent papers2,3 the PJM was used in connection with no
local pseudopotentials rather than pseudo-Hamiltonians
the evaluation of bulk and cluster properties of alkali meta
This work, prompted by a model calculation by Yabana a
Bertsch,8 allowed a more accurate estimate of the nonlo
contribution, but confirmed the validity of the original qua
tative explanation of the redshift. Finally, recent se
consistent calculations of the optical properties of very sm
lithium clusters, also based on nonlocal pseudopotentials
curately reproduced the experimental red shift but appare
overlooked the simple physical interpretation~the strong
ionic nonlocality! which makes the optical response
lithium clusters so different from jellium spheres and fro
the other alkali-metal clusters.9 These results give us the mo
550163-1829/97/55~20!/13835~7!/$10.00
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tivation for a closer look at some nontrivial properties ofno
local electron-ion interactions which are not peculiar to clu
ters, and to put them together with a variety of optical d
for alkali metals, and for Li in particular. The purpose is
deeper understanding of the experiments on clusters but
more generally, of the jellium approximation and of optic
sum rules when used in connection with first-principles no
local pseudopotentials. One of the conclusions of this pa
is in fact that sum rules, often used for model metallic clu
ters ~see, e.g., Refs. 2 and 3, and references therein!, should
be handled with some care whenever valence-only syst
are considered. In what follows, we will mostly deal wi
either bulk ~jellium! solids or isolated atoms, keeping i
mind the existing results for clusters. In bulk Li a large sh
of the plasmon peak with respect to the jellium predictio
was suggested by various measurements~electron-energy-
loss spectroscopy,10 ~EELS! optical properties11,12!, but the
exact magnitude of this shift was not well established, ra
ing from 0.9 to 1.3 eV. In the past this shift was generica
attributed13 to the particularly strong electron-ion interactio
of lithium, but the key role of its angular-momentum depe
dence, or nonlocality, had never been recognized. Only
cently Serraet al.1 emphasized this role for clusters, an
shortly after Yabana and Bertsch8 specified the amount of the
nonlocal contribution using an empirically adjustable mod
pseudopotential. Here we see in detail how the average n
locality @which survives in the PJM~Ref. 1!# contributes to
the red shift, and show that it can be accurately estima
from first-principles pseudopotentials. The physics beh
modified optical sum rules for valence electrons is also re
amined. On this issue many ingredients were available in
literature: the Fano-Cooper theory on the core-valence tra
fer of oscillator strength,14 the relation between general non
local potentials and optical sum rules,15 and the calculation
of a few oscillator strengths for selected valence-o
systems;16 but to our knowledge the connection among the
three ingredients, and thus a consistent physical intepreta
of the meaning and reliabil ity of modified sum rules o
13 835 © 1997 The American Physical Society
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13 836 55ALIPPI, La ROCCA, AND BACHELET
tained from first-principles pseudopotentials, was still lac
ing.

II. JELLIUM IONS AND PSEUDOIONS

Nonlocal pseudopotentials can always be split into a lo
part with a long-range Coulomb tail and a short-range n
local part, whose spatial extent is of the order of the atom
core:

v̂ps5 v̂ loc1D v̂. ~1!

The kernel ofD v̂, in the coordinate representation, is

Dv~r ,r 8!5
d~r2r 8!

rr 8 (
l 50

l max

(
m52l

l

Yl m~ r̂ !Yl m* ~ r̂ 8!Dv l ~r !,

~2!

while the kernel of the local part is simply given b
d(r2r 8)v loc(r ). In a true Li crystal the potential felt by th
valence electrons is given by a sum of ionic pseudopoten
centered at the bcc lattice sitesR; in the PJM a shapeles
background, obtained as a spatial average, replaces the
discrete lattice of ions. Because of the Coulomb tail the lo
part averages to

v̄ loc~r !5 lim
V→`

N

VEVd3R v loc~r2R!5 lim
k→0

F2
4p

k2
1

Vc
1a G ,

~3!

whereVc is the volume of the unit cell of the crystal an
a is a constant; the divergent term is later balanced by
divergence of the electrostatic potential of the valence e
trons ~the Hartree term!, since the unit cell is electrically
neutral. The spatial average of the nonlocal ker
Dv(r ,r 8) gives, in turn,

D v̄~r ,r 8!5 lim
V→`

N

VEVd3R Dv~r2R,r 82R!

5E d3k

~2p!3
eik•~r2r8! f PP~k!; ~4!

f PP~k!5
4p

Vc
(
l 50

l max

~2l 11!E
0

`

dr r 2@ j l ~kr !#2Dv l ~r !

~5!

is the Fourier transform*d3rd3r 8e2 ik•rDv(r ,r 8)eik8•r8, cal-
culated fork85k. It depends on the modulusk because ions
are spherically symmetric. The average nonlocal poten
whose kernel isD v̄(r ,r 8), has full translational and rota
tional invariance, its eigenfunctions are plane wavese2 ik–r,
and the corresponding eigenvalues evidently introduce an
ditional k dependence
-

l
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ek
PP5

k2

2
1 f PP~k!, ~6!

to the single-particle energies, which obviously modifi
the effective mass. In the absence of nonlocal effects,
stead, the correction to the free-electron dispersion rela
would amount to ak-independent constant shift, whic
does not alter the slope and curvature ofek and thus leaves
unchanged the effective mass.17 f PP(k) has been calculated
for k ranging from 0 tokF for all alkali metals usings, p,
and d pseudopotentials,18 i.e., using l max52 in Eq. ~5!.
The results, after lining them up atk50, are shown in Fig. 1.
The curves are aligned to a common zero because we
ultimately interested in effective masses. We see t
fPP(k) shows the strongestk dependence for Li, which we
immediately understand in terms of its much strongers-p
nonlocality: compared to the other alkali-metal atoms,
Li ionic core containss electrons but nop electrons. The
splitting of v̂ps into a long-range local partv̂ loc and a short-
range nonlocal correctionD v̂ @Eq. ~1!# is of course not
unique, since, if consistently performed, it simply amoun
to adding a short-range,l -independent correctionw(r )
to all the angular-momentum radial componen
Dv l (r ),l 50. . . .`, of Eqs. ~2! and ~5!, and to subtrac-
ting the samew(r ) from the local potential of Eqs.~1!
and ~3!. However, we immediately see that the Four
components of the total potential, as well as thek depen-
dence of fPP, are independent of the particular choice
the local potential.19 Even if, as usually done for practica
reasons, the choice of the local potential is not fully cons
tent ~the above sums do not include all the termsl 50.. .̀ ,
but only up to l max), the k dependence off PP, as we
numerically checked, is only marginally affected, provid
that l max is sufficiently high and the choice of the loca
long-range Coulomb part is physically sensible~which is the
general rule for any solid-state or molecular application
ionic nonlocal pseudopotentials!. Such a small effect of the
truncation of thel sums can also be understood from
simple power expansion aroundk50:

FIG. 1. Fourier transform of the nonlocal correctionf PP(k) @Eq.
~5!# for alkali ions with pseudopotentials of Ref. 18, andl max52.
The curves are aligned to a common zero.
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Vc

4p
f PP~k!5E r 2dr Dv0~r !1

k2

3 E r 4dr@Dv1~r !2Dv0~r !#

1
k4

45E r 6dr$22@Dv1~r !2Dv0~r !#

1@Dv2~r !2Dv1~r !#%1
k6

1575E r 8dr

3$5@Dv1~r !2Dv0~r !#24@Dv2~r !2Dv1~r !#

1@Dv3~r !2Dv2~r !#%1•••,

which shows that the absence of higher-l components only
affects the higher powers ofk in the expansion. A
k-dependent correction to the single-particle eigenvalue
also obtained when, rather than pseudopotentials,
electron-ion interaction is represented by ion
pseudo-Hamiltonians,4 but in this case the correction turn
out to be purely quadratic:

ĥr52 1
2 ¹ ra~r !¹ r1

b~r !

2r 2
Lr
21v~r !,

Vc

4p
f PH~k!5

k2

2 E dr r 2a~r !1H 12(l l ~ l 11!~2l 11!

3E
0

`

dr@ j l ~kr !#2b~r !J ~7!

5k2F12E dr r 2a~r !1
1

3E dr r 2b~r !G ,
which also implies that the pseudo-Hamiltonians will reas
ably track the pseudopotentials only up to some fin
k.20,21 Now we can put together experiments and jelliu
theories for cluster and bulk metals. The random-phase
proximation predicts

vp
25

4pne2

mopt
;

the key quantity for the energy location of the plasmon pe
is the optical effective mass, which, for an isotropic Fer
surface, is given by

mopt5F1k ]ek
]k G

k5kF

21

.

Collective excitations of surfaces and clusters are then

vp5vsA25vMA3,

wherevs is the frequency of the surface plasmon,22 and the
last equation should hold for jelliumlike models of very lar
clusters.6 The PJM based on pseudo-Hamiltonians@Eq. ~7!#
gives, for bulk Li, an optical effective massmopt

PH51.53,
which agrees with the corresponding results of Serraet al.
for large clusters.1 On the other hand, using~more accurate!
nonlocal pseudopotentials we obtainmopt

PP51.15, substan-
tially smaller than 1.5, but still larger than the plain jelliu
model (mopt

JM51 for all the alkali metals!. This confirms that
for Li clusters the use of pseudo-Hamiltonians1 gave the
is
e

-
e

p-

k
i

right qualitative explanation but too large an effect, as i
tially pointed out by Yabana and Bertsch8 and later con-
firmed by Alasiaet al.;3 here we add that the main reason
such an overshooting is a mediocre transferability of fir
row pseudo-Hamiltonians.21 In summary, for bulk Li the
angular-momentum dependence of the electron-ion inte
tion, when accurately described, is sufficient to explain o
part of the shift of the plasmon peak with respect to the pl
jellium model: even the smallest experimental estima
based on EELS,10 corresponds to an effective mass of 1.2
which is larger than 1.15. For alkali metals other than
instead, pseudopotentials agree with pseudo-Hamiltoni
and both predict only a small correction to the jellium mod
This also gives a reasonable agreement with experiment
ter including a core-polarizability correction~an effect which
can be significant for ‘‘fat’’ cores but is very small for Li!, as
shown by Tables I and II. The result obtained here w
first-principles pseudopotentials matches the semiempir
estimate by Yabana and Bertsch,8 who deduced the nonloca
contribution to the effective mass from the comparison of
experimental value of the optical effective mass and the t
oretical effective mass based on local Li pseudopotential
also agrees with the large-cluster limit3 and bulk estimates2

of Lipparini and co-workers. A lattice of local potentia
opens energy gaps at the Bragg planes, but, also, to a le
extent, it modifies the energy-versus-wave-vector dispers
everywhere in the Brillouin zone, and thus it also make
contribution to the effective mass, which, unlike the nonlo
contribution, does not survive in any jellium approximatio
In conclusion, both nonlocality and the discrete spatial
rangement of ions affect the electronic effective mass;

TABLE I. Plasma frequency~in eV! of alkali metals in various
models and from experiments: for the plain JM, using the electro
densities of Ref. 23, we show it ‘‘as it is’’ in the first colum
(\vp) and divided by the square root of the core polarizabil
(\ṽp) in the second column. Experimental values~third column!
are taken from Refs. 10 and 11~lithium! and Ref. 24~Na–Cs!. The
fourth and fifth column show the plasma energy divided by
square root of the core polarizability for the PJM based on nonlo
pseudopotentials and pseudo-Hamiltonians.

Elem. \vp
JM \ṽp

JM \vp
exp \ṽp

PP \ṽp
PH

Li 8.04 7.97 7.12 7.42 6.45
Na 6.04 5.84 5.72 5.71 5.73
K 4.40 4.06 3.72 4.03 4.09
Rb 3.97 3.53 3.41 3.57 3.69
Cs 3.54 3.08 2.99 3.11 3.29

TABLE II. Optical effective masses for the alkali metals in th
PJM with pseudopotentials and pseudo-Hamiltonians.

Elem. mopt
PP PJM mopt

PH PJM

Li 1.153 1.526
Na 1.049 1.040
K 1.014 0.983
Rb 0.977 0.909
Cs 0.983 0.872
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13 838 55ALIPPI, La ROCCA, AND BACHELET
nonlocal contribution is particularly relevant for lithium, an
norm-conserving pseudopotentials give an accurate fi
principle estimate thereof.25

III. SUM RULES AND PSEUDOIONS

The nonlocality of the electron-ion interaction has anot
consequence on the optical photoabsorption of an electr
system, namely, the violation of thef -sum rule, which for
condensed systems is the same as the Thomas-Reiche-
sum rule for atomic oscillator strengths.26 The issue is of
interest because both experiments7 and theory1 initially sug-
gested a violation of this rule for Li clusters. As is know
the optical sum rule relates the value of the integrated p
toabsorption cross sections(v) of an optically excited elec-
tronic system to the total number of electrons in the sys
N; in other words, the sum of the oscillator strengthsf 0k for
optical transitions from the initial state 0 to any allowed fin
statek ~hence the name ‘‘f sum’’! adds up toN/2. In the
framework of first-order perturbation theory, with the ele
tromagnetic field treated as a small perturbation applied
system ofN interacting electrons, thef -sum rule reads:

f5E dv s~v!5(
k

f 0k5(
k

~Ek2E0!z ^C0uD uCk& z2

5
N

2
, ~8!

the sum being extended over the whole energy spectrum
the electronic excitations; hereD is the dipole operator, the
many-electron quantum statesuCk& form a complete and
orthonormal set of eigenstates of the unperturbed Ha
tonian Ĥ0, andEk are the corresponding energies. The s
over the excited statesuCk& can be written as the ground
state expectation value of the double commutator betw
the HamiltonianĤ05T̂1V̂ and the dipole operatorD. If we
have a standard local potentialV̂ ~i.e., simply multiplicative!,
Eq. ~8! follows immediately. On the other hand, as soon
an explicit dependence on the electronic angular momen
appears in the Hamiltonian, as with nonlocal pseudopo
tials v̂ps ~Eq. 1!, or pseudo-Hamiltoniansĥr @Eq. ~7!#, addi-
tional terms appear in the commutator, which result in
modified f sum.27 We have evaluated thef sum for each
alkali-metalpseudoatom (N5Nv51), and compared it with
the corresponding valence-only sum for the true, full-co
atom, obtained from available experimental data; this he
us to understand whether the modification of the stand
f -sum rule introduced by pseudopotentials reflects so
physical property of the valence electrons of true atoms, o
an unwanted consequence of a mathematical trick to
aware of; it will in particular shed some light on experime
tal and theoreticalf sums for Li clusters.7,1 If we adopt
s-p nonlocal potentials to describe the electron-ion inter
tion @i.e., l max51 in Eq. ~2!#, for NPP52 f we obtain

NPP511
2

3E dr r 4R1s
2 ~r !@Dvp~r !2Dvs~r !#, ~9!

whereR1s is the one-electron radial wave function of th
ground-state pseudoatom; we see that nonlocality, i.e.,
t-
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difference between the potential ‘‘felt’’ bys andp electrons,
modifies the sum rule with respect to the actual number
valence electrons which is 1 for alkali-metal atoms. If, i
stead, we choose pseudo-Hamiltoniansĥr @Eq. ~7!# to ap-
proximate the electron-ion interaction, thef sum gives

NPH511E dr r 2r~r !@a~r !1 2
3 b~r !# ~10!

(r, the electron density, isR1s
2 for the atom! and again, when

the pseudo-Hamiltonian reduces to an angular-momen
independent Hamiltonian@a(r )5b(r )50#, we recover the
standard sum rule. The results for the modifiedf sumsNPP

andNPH are shown for the alkali-metal atoms in the first tw
columns of Table III. Pseudopotentials and pseud
Hamiltonians are here in good agreement. There is a c
trend in thef -sum rule, which is&1 for Li, and>1 for all
the other alkali-metal atoms. If those results are compa
with the actual number of valence electronsNv51, as it
seems most natural to do, one finds a lack of oscilla
strength in the absorption spectra of Li, and a surplus for
other pseudoatoms. What is the meaning of such an ‘‘eff
tive number of electrons,’’ and, if any, is pseudopotent
theory the appropriate tool to estimate it? As already poin
out long ago by Fano and Cooper,14 in a many-electron sys
tem one cannot identify the sum partial sum of the oscilla
strengths over a limited energy range~in our case the valence
excitations only! with the corresponding number of ‘‘active’
electrons~in our case the valence electrons!: even when core
and valence excitations are well separated in energy, thf
sum over the allowed valence excitations is in general
equal toNv /2, as a simple consequence of the Pauli pr
ciple. This effect, however, always yields a transfer of osc
lator strengthfrom the coreto the valence, in such a wa
that, whenever applicable, it always increases thef sums
with respect to the actual number of valence electrons.
what interests us here, the Fano-Cooper effect applies to
alkali-metal atoms except Li, for which no dipole transitio
connects the 1s core and the 2s valence states.14 The Fano-
Cooper picture suggests that thef sums predicted by pseudo
potentials and pseudo-Hamiltonians for Na, K, Rb, and
(NPP,NPH >Nv51), shown in the first two columns of Tabl
III, are physically plausible, while the lack of a few perce
of oscillator strength obtained for Li is not. The comparis
of the partial contributions to thef sums due to the discret
spectrum with the corresponding restricted experimen

TABLE III. Modified f -sum rule: results obtained with nonloca
pseudopotentials~first column!, and with pseudo-Hamiltonians
~second column!. In the last two columns are instead shown the s
of oscillator strengths restricted to the discrete spectrum for no
cal pseudopotentials~third column! and experiments~fourth col-
umn, from Ref. 28!.

Elem. NPH NPP Nd
PP Nd

exp

Li 0.97 0.93 0.70 0.75
Na 1.00 1.00 0.93 0.97
K 1.03 1.04 1.00 1.01
Rb 1.10 1.10 1.08 1.09
Cs 1.16 1.16 1.13 1.19



n-
c
nd
m
a
s
ic

s
ce
n
se
L
h-
n

2

-
.

h

1.
do
at
nt
it
nd
rg
en
e
ri
ry
e
f

po-

igh-
um
c-
p to
gy

rac-
ch
th.
tor
ly
tor
e-
ese
dent
is-
oth

es a
r-

ier

um

1
and
ec-
ur
or-

-
ic

the
or
as-

t
ffec-
of
ch
are

er-
se-
ers,
ed
ith
to
m
t

ur-
d
is

n
ob

l

rs
s
o
in
tte
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sums,28 help us understand the origin of this slightly u
physical result for Li. If we only consider the discrete spe
trum, as done in the last two columns of Table III, we fi
good agreement with the experimental values for all ato
including Li. The individual values and the trend show th
first-principles pseudoions adequately reproduce the tran
of oscillator strength from core to valence states, a phys
effect which occurs in the true, full-core ions.14 It may be
interesting to see that for Li the use of first-principle
angular-momentum-dependent pseudoions is in fact ne
sary to reproduce the correct oscillator strengths as a fu
tion of energy: when, instead, a local pseudopotential is u
to approximate Li, as done by, e.g., Blundell and Guet for
clusters,29 the sum rule is certainly obeyed for purely mat
ematical reasons, but the individual low-energy excitatio
~energy position and oscillator strength! are in much worse
agreement with the optical data. This is shown in Fig.
where the Li oscillator strengthsf 0k are plotted as a function
of energy for nonlocal pseudopotentials~empty circles! ex-
periments ~full circles!, and a simple local pseudo
potential29 ~empty squares!. Let us have a closer look at Fig
2. If a local pseudopotential is used~empty square!, both the
energy position and the oscillator strength of the firsts-p
transition (n52, left panel! are considerably misplaced wit
respect to the experimental value~full circle!. In particular,
the experimental first transition is located at about 1.8–
eV, and its oscillator strength is 0.75, while the local pseu
potential predicts an energy around 2.4 eV and an oscill
strength as high as 0.96. The nonlocal pseudopote
~empty circle! falls much closer to the experimental value:
slightly undershoots it, with a transition energy of 1.7 eV a
an oscillator strength of 0.65. The magnitude and ene
position of the tiny oscillator strengths for the subsequ
transitionsn53 . . . 12 ~right panel; note the change in th
scale! show a fair but uniform agreement between expe
ment ~full circles! and nonlocal pseudopotential theo
~empty circles!, while for the local pseudopotential all th
oscillator strengths withn.4 are off by almost an order o

FIG. 2. Oscillator strengths for the 12 lowest dipole excitatio
of the lithium atom as a function of the excitation energy, as
tained from experiments~full circles, Ref. 28!, from nonlocal
pseudopotentials~empty circles, Ref. 18! and from a local potentia
recently adopted for lithium clusters~empty squares, Ref. 29!. No-
tice that most of the total oscillator strength belongs to the fi
2s-2p transition ~left panel!, while the subsequent 11 transition
~shown in the right panel! are less strong by more than one order
magnitude. To help the eye, solid lines connect experimental po
with the theoretical results of nonlocal pseudopotentials, and do
lines with those of a local pseudopotential.
-

s
t
fer
al

,
s-
c-
d
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s

,

9
-
or
ial

y
t

-

magnitude. The most important error of the local pseudo
tential theory concerns the lowest excitation (2s-2p, left
panel!, but has important consequences also on the h
energy continuum tail of the spectrum, because of the s
rule: for the local model the total oscillator strength is pra
tically exhausted by the discrete spectrum, which adds u
0.99, so that practically nothing is left to the high-ener
continuum ~not shown in the figure!; both the experiment
and the nonlocal pseudopotential theory are instead cha
terized by a non-negligible high-energy continuum tail whi
contains approximately 25% of the total oscillator streng
In other words the local model puts too much oscilla
strength in the low-lying excitations, and thus artificial
sucks down to lower energies practically all of the oscilla
strength of Li, while the nonlocal model approximately r
produces the experimental spectroscopic behavior at th
energies. In conclusion, an angular-momentum-depen
pseudoion is absolutely needed to explain the lithium d
crete spectrum; also for the other alkali-metal atoms b
pseudo-Hamiltonians and pseudopotentials give a;5%
agreement between theory and experiments, which impli
good transferability for both of them in the low-energy po
tion of the spectrum (;5 eV above the atomic ground-state!.
As a consequence, even for Li, which unlike the heav
alkali-metal atoms has a lot~about 30%! of oscillator
strength in the medium- and high-energy tail of the spectr
~the continuum part!, the total sum rule~which according to
the Fano-Cooper theory and the experiment should be!
deviates only, as we see in the first two columns, by 3%
7% for pseudo-Hamiltonians and pseudopotentials, resp
tively, which seems to be within the general accuracy of o
pseudoions. However, for the medium- and high-energy p
tion of the excitation spectrum,~which for atoms is covered
by the continuum! individual transition energies and oscilla
tor strengths will sooner or later depart from the true atom
behavior, because of transferability problems intrinsic to
full pseudotransformation. The deviations will be larger f
higher energies and/or for chemical environments incre
ingly different from the isolated atom~the so-called ‘‘refer-
ence state’’18!. From this point of view the jellium density
and a first-row pseudo-Hamiltonian21 represent the wors
combination, which results, as seen, in an exaggerate e
tive mass and, by the same token, in an artificial loss
oscillator strength. Both transferability problems are mu
less severe if first-row nonlocal pseudopotentials
adopted.

IV. CONCLUSIONS

The nonlocal character of the effective electron-ion int
action ‘‘felt’’ by valence electrons has measurable con
quences on optical properties of alkali-metal atoms, clust
and bulk solids, which are greatest for Li. In the condens
state, more than half of the shift of its plasmon peak w
respect to the predictions of the plain jellium model is due
the strongs-p nonlocality. Such a strong angular-momentu
dependence is due to the fact thats valence electrons mus
remain orthogonal to a 1s core, whilep valence electrons
have no underlying core to be orthogonal to; this effect s
vives in the pseudo jellium model of Serra an
co-workers.1–3 The remaining part of the shift, however,
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essentially due to the discrete spatial arrangement o
ions in the condensed state, and is wiped out by any jell
approximation. Here we confirm that one can adequa
estimate both contributions using first-principles pseu
potentials,2,3 rather than empirically adjusting the nonloc
part, as done by Yabana and Bertsch, who first pointed
the twofold origin of the plasmon shift.8 First-principles
nonlocal pseudopotentials also appear to be an adeq
tool to evaluate energy positions and oscillator streng
for valence-only excitations: within a.5% accuracy they
reproduce the experimental individual excitations a
f -sum rules, including the transfer of oscillator streng
from core to valence states first pointed out by Fano
Cooper.14 From this point of view our study does not co
firm the substantial (.25%) loss of oscillator strength
from the f -sum rule, initially reported both experimentally7
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and theoretically1 for Li clusters. For the theory we
have shown that the effect disappears using more a
rate nonlocal pseudopotentials; the energy window and
the technique adopted to infer oscillator strengths from cl
ter fragments might be the origin of the experimen
‘‘effect.’’
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