

Originally published as:

"Platinum Black by XPS"

Z. Paál, M. Muhler and R. Schlögl

Surface Science Spectra, Vol. 4, No. 2 (1997)

doi: 10.1116/1.1247817

Platinum Black by XPS

Zoltan Paál

Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, Budapest, H-1525 Hungary

M. Muhler and R. Schlögl

Fritz-Haber-Institut der MPG, D-14195 Berlin Faradayweg 4-6, Germany

XPS spectra of Pt black in the as received state showed O and C impurities along with Pt. An *in situ* treatment by O₂ and H₂ increased Pt intensity and removed a part of oxygen and carbon impurities. The quasihomogeneous model was used for quantitative evaluation applying atomic sensitivity factors published in the literature (Ref. 1). Decomposition of the O 1*s* region indicated the presence of adsorbed O, OH, and H₂O as well as C—O and C==O species, whereas the C 1*s* region could be decomposed to give Pt–C, graphite, C_xH_y polymer, and oxidized C entities. © *1997 American Vacuum Society.* [S1055-5269(96)00202-2]

Keywords: platinum; Pt black; Pt catalyst; XPS PACS: 82.80.Pv, 82.65.Jv

SPECIMEN DESCRIPTION (Accession #00280)

Host Material: Pt black

CAS Registry #: 7440-06-4

Host Material Characteristics: homogeneous; polycrystalline; conductor; metal; powder

Chemical Name: platinum

Source: Platinum black was prepared by boiling the solution of H_2PtCl_6 with hydrazine and stored in air (Ref. 2).

Host Composition: Pt

Form: powder

Structure: fcc polycrystalline

- **History & Significance:** Pt catalysts are extensively used for naphtha reforming (Ref. 3). Platinum black represents a polycrystalline unsupported catalyst with a relatively high surface area and it is a good model of supported metals of practical importance (Refs. 2 and 4) and its study by electron spectroscopy is not hampered by any electric insulator support. The state of Pt in the as received state and after regeneration may well simulate those present in practical platinum catalysts which thus contain oxygen and carbon impurities when they first meet the hydrocarbon reactant (Ref. 5).
- As Received Condition: sample reduced from H_2PtCl_6 by hydrazine

Analyzed Region: same as host material

Ex Situ **Preparation/Mounting:** Pt powder was dry loaded into the cavity of a stainless steel sample holder to form a flat surface.

In Situ Preparation: None

Charge Control: None

Temp. During Analysis: 300 K

Pressure During Analysis: $<1 \times 10^{-7}$ Pa

SPECIMEN DESCRIPTION (Accession #00281) -

Host Material: Pt black, treated

CAS Registry #: 7440-06-4

Host Material Characteristics: homogeneous; polycrystalline; conductor; metal; powder

Accession #s 00280, 00281 Technique: XPS Host Material: #00280: Pt black; #00281: Pt black, treated Instrument: Leybold, LHS 12 SCD EA II Major Elements in Spectrum: Pt, O, C Minor Elements in Spectrum: none Printed Spectra: 7 Spectra in Electronic Record: 36 Spectral Category: technical Original Submission: 4/05/95 Accepted for Publication: 6/19/97

Chemical Name: platinum

Source: Platinum black was prepared by boiling the solution of H_2PtCl_6 with hydrazine and stored in air (Ref. 2).

Host Composition: Pt

Form: powder

Structure: fcc polycrystalline

- **History & Significance:** Pt catalysts are extensively used for naphtha reforming (Ref. 3). Platinum black represents a polycrystalline unsupported catalyst with a relatively high surface area and it is a good model of supported metals of practical importance (Refs. 2 and 4) and its study by electron spectroscopy is not hampered by any electric insulator support. The state of Pt in the as received state and after regeneration may well simulate those present in practical platinum catalysts which thus contain oxygen and carbon impurities when they first meet the hydrocarbon reactant (Ref. 5).
- **As Received Condition:** sample reduced from H₂PtCl₆ by hydrazine

Analyzed Region: same as host material

- *Ex Situ* **Preparation/Mounting:** Pt powder was dry loaded into the cavity of a stainless steel sample holder to form a flat surface.
- *In Situ* Preparation: 20 kPa O₂ for 3 min, evacuation for 5 min, and 200 kPa H₂ for 10 min at 603 K (regenerated sample)
- **Pre-Analysis Beam Exposure:** A survey spectrum of the as received sample (Accession #00280) was taken first, without preanalysis beam exposure, followed by high-resolution region spectra. Then the regeneration was performed (see *In Situ* Preparation) prior to survey and high-resolution region spectra for the regenerated sample.

Charge Control: None

Temp. During Analysis: 300 K

Pressure During Analysis: $<1 \times 10^{-7}$ Pa

Surface Science Spectra, Vol. 4, No. 2

1055-5269/96-97/4(2)/119/6/\$10.00

SPECTROMETER DESCRIPTION	DATA ANALYSIS METHOD
Manufacturer and Model: Leybold, LHS 12 SCD EA II	
Analyzer Type: spherical sector	Peak Shape and Background Method: SCIPLOT software (share-
Detector: dynode multiplier	Ware, Version 4.01, Copyright M. Wesemann, Berlin, Fritz- Haber-Institut) was used for data processing, including x-ray
INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA	satellite subtraction, and Shirley background subtraction and integration. Line decomposition of O 1 <i>s</i> and C 1 <i>s</i> regions was done by using the mixture of Gaussian and Lorentzian curves
Spectrometer	(G/L ratio 0.5 for O 1s, and 0.4 for C 1s).
Analyzer Mode: constant pass energy	
Throughput ($T = E^N$): $N = -1$	Quantitation Method: Atomic sensitivity factors used are listed in
Excitation Source: Mg K_{α}	Ref. 1.
Excitation Source Window: $2 \ \mu m$ Al	
Source Energy: 1253.6 eV	REFERENCES
Source Strength: 240 W	1. D. Briggs and M. P. Seah, in <i>Practical Surface Analysis</i> , 2nd ed. (Wiley, Chichester, 1990), Vol. 1, Appendix 6, p. 635.
■ Geometry	2. Z. Paál, Z. Zhan, E. Fülöp, and B. Tesche, J. Catal. 156, 19
Incident Angle: 75°	(1995).
Source to Analyzer Angle: 75°	3. Z. Paál, in <i>Catalytic Naphtha Reforming</i> , edited by G. M. Antos,
Emission Angle: 0°	A. M. Altani, and J. M. Parera (Marcel Dekker, New York, 1995), p. 19.
Specimen Azimuthal Angle: 0°	 Z. Paál, R. Schlögl, and G. Ertl, J. Chem. Soc. Faraday Trans. 88, 1179 (1992).
Ion Gun	5. Z. Paál and R. Schlögl, Surf. Interf. Anal. 19, 524 (1992).
Manufacturer and Model: Leybold IQE 10135	6. Z. Paál and Z. Zhan, Langmuir 13, 3752 (1997).

	SPECTRAL FEATURES TABLE						
Spectrum ID #	Element/ Transition	Peak Energy (eV)	Peak Width FWHM (eV)	Peak Area (cts/s)	Sensitivity Factor	Concen- tration (at. %)	Peak Assignment
00280-01	O 1 <i>s</i>	531	2.7	250	0.66	30.1	
00280-02	C 1 <i>s</i>	285	2.5	100	0.25	27.8	
00280-03	Pt $4f_{7/2}$	71.15	1.6	1700	4.40	42.1	

ANALYZER CALIBRATION TABLE							
Spectrum ID #	Element/ Transition	Peak Energy ^ª (eV)	Peak Width FWHM (eV)	Peak Area (cts/s)	Sensitivity Factor	Concen- tration (at. %)	Peak Assignment
	Pt E_F	0.0					
	Au 4f _{7/2}	84.0	1.3				

^a Energy calibration only.

Accession #	00281-01
Host Material	Pt black, treated
Technique	XPS
Spectral Region	survey
Instrument	Leybold, LHS 12 SCD EA II
Excitation Source	Mg K_{α}
Source Energy	1253.6 eV
Source Strength	240 W
Source Size	not specified
Analyzer Type	spherical sector
Incident Angle	75°
Emission Angle	0°
Analyzer Retard Ratio	4
Analyzer Resolution	0.25%
Total Signal Accumulation Time	not specified
Total Elapsed Time	252.3 s
Number of Scans	15
Comment	Survey spectrum of sample regenerated by O_2 and subsequent H_2 treatment at 600 K

■ Accession #: 00280-02 ■ Host Material: Pt black Technique: XPS ■ Spectral Region: C1s Instrument: Leybold, LHS 12 SCD EA II Excitation Source: Mg K_{α} Source Energy: 1253.6 eV Source Strength: 240 W Source Size: not specified Incident Angle: 75° Analyzer Type: spherical sector Analyzer Pass Energy: 50 eV Analyzer Resolution: 1.0 eV Emission Angle: 0° Total Signal Accumulation Time: not specified Total Elapsed Time: 9600 s Number of Scans: 1000 Comment: C1s line of the as received sample

