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Adsorption of polymers on a random surface
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We investigate the adsorption of a polymer on a planar, random surface. For this we use a generaliza-
tion of de Gennes’s boundary condition to a random one, and path-integral methods. For weak random-
ness, the chain size is reduced slightly from its value in the absence of randomness. But as one increases
the randomness or chain length, the chain size becomes ~ R, where R is the correlation length of the po-
tential. If the length or the randomness exceeds a certain critical value, the chain is found to collapse in
the direction perpendicular to the surface, to a thickness zero, so that it becomes a two-dimensional ob-

ject.

PACS number(s): 68.45.Ax, 05.40.+j, 82.65.Yh

The adsorption of polymers on surfaces has been a sub-
ject of extensive experimental and theoretical investiga-
tions. Most theoretical attempts except those of Ref. [1]
have focused on planar, uniform surfaces. In the follow-
ing, we introduce and analyze a model for adsorption on
a planar, but random surface. The randomness may be
caused by impurities on the surface or because the ad-
sorption is on the surface of an alloy, which has a random
distribution of its components on the surface. We inves-
tigate the problem using the Edwards Hamiltonian [2,3],
which has been extensively used in theoretical investiga-
tions of polymer problems.

We denote the coordinates of a point as r=(x,z), where
x stands for (x,y). The solid occupies the space z <0. de
Gennes [4] has investigated the adsorption of polymers
on a planar surface using the Schrodinger-like equation

_a___l_v2

aN 6 G (r,r'; N)=08(N)b(r—r1’) (1)

for the propagator G(r,r';N). The above equation is
solved in the region z >0, with the attractive interaction
with the wall being accounted for by the boundary condi-
tion

dln

—G (r,r';N)

3z =—Cq - (2)

This prescription can easily be converted into a path-
integral one, in which the paths are unconstrained and
not forbidden from entering the region z <0, which is
very convenient. G (r,r’; V) is thus given by

G(r,r';N)=8(r,r';N)+ S(Pr,r';N) , (3)
where Pr=(x, —z) and $(r,r’;N) is defined by
or,esN)= [V Dr(s)exp{ —Sy[r(s)]} /N, (@)

r(0)=r'
where

Syr(s)]1=So[r(s)]—(Icy /3) fONS(z(s))ds : (5)
with
2
Solx(s)) =7 [ "as | 422 ©)
and
N= [ dr fr(rz::ierr(S)exp{—Sﬁ[r(s)]} . (7)

The paths in Eq. (7) may enter the region z <0 too. We
model the adsorption on a planar, random surface by
modifying the boundary condition of Eq. (2) to

ain

32 G(r,r’;N)

=—[cotv(x)], (8)
z=0

where v (x) is a random function of x. We take it to be
Gaussian with mean zero and correlation function
(v(x)w(x'))=B(x—x'), where { ) denotes averaging
with respect to the random function. In the following,
we consider randomness with a correlation length R, and
take B (x)=V?exp[ —x2/R?]. G(r,r;N) is now a func-
tional of v (x) and is still given by Eq. (3) with

Q(r,r’;N)= fr(o)zrlDr(s)exp{—Smn[r(s)]]
XS(r(N)—r1)/ Ny - 9)
Here
= D - S(r(N)—
Noan fdrfr(o)zr’ 1(s) exp{ — S an[1(5)]}8(r(N)—r)
(10)
and
- _ L rw
S an[T(s)]=S5[r(s)] 3 fo v(x(s))8(z(s))ds . (11)
Formally, introducing » replicas, labeled with

a=1,2,...,n, one can write
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9,5 N)=lim [T [ _, Dralse) exp{—Senlralse) 1}8(r(N)—r) . (12)
n—0 ,=1 r,(0)=r

On performing the average over the random function
v (x), we get

(9(r,r';N)>= lim II fr (0)=I,Dra(sa)
a=1 a

n—0
X exp[ —S18(r{(N)—r) , (13)
where
S=255[ra(sa)]—sl (14)
with
|1 P N N
$i=5 |3 a,,?:lfo ds [ " dt B(xo(s)=xg(1))

X8(z,(2))8(zg(s)) . (15)

Our interest is only in adsorbed molecules, for which we
would like to calculate {[r(N)—r(0)]*). The integral in
Eq. (13) cannot be evaluated analytically. So we adopt
the variational method, with the trial action

Sr=3 S,[ry(sy)], (16)
a=1

where
N
S,[r(s)]=SO[r(s)]—(lc/3)fo 8(z(s))ds
2 N N _ 2
+(g*/12IN) [ Vds [ Tdi[x(9)—x(0] . (D)

¢ and g are trial parameters. Note that the action in Eq.
(17) has a ©&-function attractive part as well as a
harmonic-oscillator-like nonlocal part [last term in Eq.
(17)]. We prefer to use this nonlocal action rather than
the one used in Ref. [5], as this action is unchanged by
translations parallel to the surface, whereas the one in
Ref. [5] is not. With this trial action, all path integrals
that are needed for our purpose can be evaluated. For
example, consider the propagator for the trial action,
defined by

I(r,r’;N)

G,(r,t';N)=—F———"—, 18
(515N JdrI(r,r';N) 18)
with
I(r,r’;N)= f Dr(s)exp{—S,[r(s)]}8(r(N)—r) .
r(0)=r’
(19)
Following Ref. [6] it is possible to write the above as
dy [N =IDr(s)exp[ —S}]
G,(r,1';N)= Jav] L — ., @0
Jdr [dy [1)ZIDr(s)exp[ —S?]
where

S,Y[r(s)]=So[r(s)]—(lc/3)fONS(z(s))ds
2 N o2
+(q2/60) fo ds[x(s)—y]*. 1)

[
In the above, y=(y,,y,) is a two-dimensional vector.
The above identity is quite interesting in that the nonlo-
cal harmonic-oscillator-like part has been replaced by a
quadratic interaction with the point y, with subsequent
integration over y. As the x and z are not coupled in Egs.
(20) and (21), one gets

I,(r,r’;N)

G, (r,rN)=—— ",
(r,T';N) [drIyn,05M) (22)
with
I(r,r';N)=Gs(z,2";N) [ dy GY,(x,x;N) . (23)

Gs(z,z';N) is the propagator for Brownian motion in the
presence of a 8-function sink and obeys

2
—a——i—a——cﬁ(z)

aN 6 3.2 Gs(z,z";N)=8(N)b(z —z') .
z

(24)

GY.(x,x’;N) corresponds to Brownian motion in a plane,
with parabolic sink, having origin at y and satisfies

o _ 1

2
— VZ_Q 2
aN 6 gV

G, (x,x'; N)=8(N)8(x—x’) .

(25)

“ho” stands for harmonic oscillator. Explicit expressions
for both Gg(z,z’;N) and GY,(x,x";N) are available.
Hence G,(r,r’;N) is known. If ¢ >0, then the operator
—(1/6)3%?/3z%—c8(z) has one negative eigenvalue, given
by €,=—Ic?/6, with the associated eigenfunction
¥,(2)=V'c exp(—clz|). This corresponds to the adsorbed
state of the polymer. As the paths are not restricted to
the region with z >0, the normalization that we use is
f ® 4z ¢b(z)2= 1. In the limit where N becomes large,
the two propagators are dominated by the lowest possible
eigenfunctions, and hence one has

Gy(z,z";N)=c exp{—c(|z| +|z'|)—€,N} (26)
and
G, (x,x';N)= exp[ —q {(x—y)*+(x'—y)?} /(2])
—gN/3)q/(wl) . 27

Remembering that our parameters ¢ and ¢ have to be
determined so as to best suit the description of adsorbed
polymers, we make use of the Feynman variational pro-
cedure (see Refs. [S] and [7]), for their determination.
Thus, we expect the integral

n ra(N)=0
I(n)= I—11 fra(0)=o Dr,(s,) | exp[ —S] (28)

to behave like exp[ —nE (N)] for n—0 and large N. We
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estimate E,(N) variationally, in the limit »—0, and
choose ¢ and g so as to get the best approximation for it.

These parameters are then wused to calculate
([r(N)—1(0)]?). Thus
n r,(N)=0
I(n)= ar=Ix fra(0)=0 Dr.(s,) | exp[ —ST]
X(exp—(S—S7))r
>Z"exp{—(S—S:)) 7, 29)

where ( ) denotes averaging with respect to S; and

(i) S (g2/12IN) foNds fOth([xa(S)—xa(t)]z)T

a=1

- 9
= (q/2)aq

z,= fr:::izobr(s)exp{MS,[r(s)]}
_ r(N)=0 _Qy
Ny fa'y fr(O):o Dr(s)exp{ —S[r(s)]}
=Ny,G5(0,0;N) [ dy G},(0,0;N)
=N,G(0,0;N)/[2sinh(gN /6)]*, (30)

with No=g?N /(6m]). As our interest is in the descrip-
tion of the adsorbed state, we take only the correspond-
ing part from Gg(0,0;N), which is equal to
¥,(0)?exp[ —€,N]. In the limit of large N, one gets
Z,~q>N,(0)? exp(—gN /3—¢€,N)/(6x]). The integrals
that occur in (S —S; ) are

Dr (s,)

a a

exp[—S7]

=nq—§(;[lnsinh(qN/6)]=(nqN/6)coth(qN/6)znqN/6 in the gN /3>>1 limit .  (31)

(i) Sr_i{l(c—co) [58(z,(s))ds/3)y, which .can be
evaluated to be nl(c —cg)eN /3. (iii) 3 g=11 .5, Where

2
1 N N
Ip=% fo ds fo dt { B[x,(s)—x4(1)]

L
3

X 8(zg(1))8(z4(s))) . (32)

I,, can be evaluated analytically. I,z with a7 can be
found numerically. As the results are tedious to analyze,
we use the ground-state dominance approximation [5] to
get the following: I,,~(NVic/3)?/{2[1+21/(gR*)]}
and Iaﬁz(NVlc/3)2/{2[l+4l(qR2)]}. Combining the
above results, and introducing the dimensionless vari-
ables N=N/l,ce=cl,g=ql, R=R /1, Co=col, V=VI, we
get

Eo(N)/N=[c?—2cc,+u/R*—c*f(uw)]/6, (33)

where f(u)=pu/[(2+u)(4+u)], p=2NV?*/3, and
u =gR>2. In Eq. (33), ¢° represents the effect of entropy
(in quantum-mechanical parlance, kinetic energy), trying
to spread out the adsorbed chain, increasing its thickness,
—2€¢,, the lowering of energy resulting from adsorp-
tion, u /R? the price for localizing the chain to dimen-
sions of ¢ ! in directions parallel to the surface, and
—z? f (u), the effect of the randomness, which results in a
net attraction between the chains, as indicated by the
negative sign. Note that this term has —¢? because of
the lowering of energy caused by adsorption. The size of
the polymer chain in the adsorbed state can be estimated
using the trial action. In the z direction, the thickness of
the adsorbed layer is ¢ ~!. From the trial action, we find
{([x(N)—x(0)]*) =21*R?tanh[uN /(6R*)]/u, using
which the size of the chain parallel to the surface can be
estimated. We now find the best values of u and ¢, which
make Ey(N) a minimum. -

Case I: p<p’ Here, p®=[8+V32]. Finding the
value of ¢ such that E (N) is a minimum gives

[
c=¢,/[1—f(u)]. Note that if ¢ is negative, there is no
bound (adsorbed) state, which violates our basic assump-
tion in deriving Eq. (25). Therefore only ¢ >0 is accept-
able to us, and this is satisfied if p <p®. Using this value
of ¢, we get

6Eo(N)R*/N=—(c,R )*+u
—pu/[2+u)d+u)—pu], (34)

where p, =R’clp. One can now analyze (34) to find the
following results: If p, <p9, where p?=8, then E,(N)
has its minimum at ¥ =0. The size of the chain in the
parallel direction is { [x(N)—x(0)]*) =12N /3, indicating
that the chain is unaffected by the randomness. Strictly
speaking, this is an artifact of our ground-state domi-
nance approximation, which breaks down if u =0 (i.e.,
when ¢ =0). A more rigorous analysis shows that the
chain size is decreased in both parallel and perpendicular
directions by the randomness. If p,>p9 then the
minimum occurs at u >0. As p;— c, the minimum
tends to be at u=V8, so that (gx(N}_——x(O)]z)
=21?R*tanh[V'8N /(6R*)]/(V'8)—2I’R*/(V'8), indi-
cating that the chain occupies only regions of size =~R.

Case II: p >p° In this case, f (u) is greater than 1 for
a range of values of u (or equivalently g). E,(N) has its
minimum value for ¢ = o, thus indicating that the ad-
sorbed state is collapsed in the direction perpendicular to
the surface. The chain is now two dimensional. To get
its size, we make use of Eq. (33). If ¢— o then the im-
portant term in this equation is 2[1—f(u)]/6 and this
has its least value when u =V'8.
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