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Abstract

The reconstruction mechanism of (001) fcc transition metal surfaces is inves-

tigated using a full-potential all-electron electronic structure method together

with density-functional theory. Total-energy calculations confirm the exper-

imental finding that a close-packed quasi-hexagonal overlayer reconstruction

is possible for the late 5d-metals Ir, Pt, and Au, while it is disfavoured in the

isovalent 4d metals (Rh, Pd, Ag). The reconstructive behaviour is driven by

the tensile surface stress of the unreconstructed surfaces; the stress is signifi-

cantly larger in the 5d metals than in 4d ones, and only in the former case it

overcomes the substrate resistance to the required geometric rearrangement.

It is shown that the surface stress for these systems is due to d charge deple-

tion from the surface layer, and that the cause of the 4th-to-5th row stress

difference is the importance of relativistic effects in the 5d series.
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The (001) surfaces of some fcc transition and noble metals are known to reconstruct

to a close-packed quasi-hexagonal (hex) overlayer arrangement, periodically matching the

(001) square substrate [1]. Due to the different symmetries of overlayer and substrate,

commensurate hex geometries have rather long periodicities, typical observed surface cells

being 5×1 and 20×5. The phenomenon presents a number of interesting aspects. First, the

reconstruction is seen only at the end of the 5d transition series, for the metals Ir, Pt, and Au,

while their 4d isoelectronic upper neighbours Rh, Pd, and Ag do not reconstruct. Second,

the observed reconstructions of Ir, Pt, and Au, though not identical, are qualitatively very

similar; in view of the differences in the electronic structures of those materials, this strongly

suggests that surface electronic-structure details are not of primary importance. Third, it

is known [1] that the (001) surfaces of late 5d metals can be rather easily forced to switch

between the unreconstructed and the reconstructed phase by deposition or removal of small

amounts of adsorbates, which indicates that the energy difference between the two phases

is small.

The aim of this Letter is to study this class of reconstructions by a density-functional-

theory treatment [2–4], and to understand the underlying physical mechanism establishing a

simple model picture of the energetics of the phenomenon. In the following, we first present

a direct calculation of the heat of reconstruction of the 1×1 to 5×1 reconstructive transition

for the (001) surfaces of the isoelectronic pair Pd and Pt, showing that reconstruction is dis-

favoured in the former (4d) and permitted in the latter (5d), in accordance with experiment.

To clarify the reconstruction mechanism, we calculate the surface energy and stress for the

relevant unreconstructed surfaces, showing that they are subjected to a large tensile stress –

that is, they tend to prefer a smaller in-plane lattice constant and a higher in-plane atomic

density. While indeed achieving close-packing of the surface layer, the quasi-hexagonal re-

construction also causes a modification of the surface-substrate bonding topology, effectively

reducing the average atomic coordination; we demonstrate that (a) the reconstruction is de-

termined by the balance between the energy gain associated with the increase in atomic

density at the surface, and the energy lost upon reconstruction due to the disruption or
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stretching of bonds between mismatched top and subsurface layers, and that (b) only in 5d

metals the surface energy gain due to surface density increase is large enough as to overweigh

the mismatch energy loss, thus making the reconstruction favourable in those elements only.

This is due to the fact that the surfaces of end-of-series 5d-metals (Ir, Pt, Au) are subiect to

twice as large a tensile stress than those of the isovalent 4d metals (Rh, Pd, Ag), and thus

gain much more energy upon close-packing. We then discuss the origin of surface stress,

which is due to depletion of d charge from the surface, and the relativistic effects responsible

for the enhancement of this mechanism in the 5th row.

Technical matters – The calculations were performed using density functional theory

(DFT) together with the local density approximation (LDA) [2] and the all-electron full-

potential LMTO method [3]. The unreconstructed 1×1 surface is simulated by 7-layer slabs,

separated by about 10 layers of vacuum, the k-point summations being done on a 15-point

mesh in the irreducible part of the surface Brillouin zone (ISBZ) of the 1×1 surfae cell.

For the 5 × 1 surface, the summation was performed on a somewhat denser grid (32-points

in the 5×1 ISBZ), and a 5-layer slab was used. Details on the method and on its previous

applications to surfaces can be found in Ref. [4], while a full report of the present calculations

will be given elsewhere [5].

Part of the calculations described in the following are basically concerned with the elas-

tic response of the surface. The appropriate reference system is therefore the stress-free

crystal at theoretical equilibrium. It is worth pointing out a general problem of DFT-LDA

calculations for transition metals. Scalar relativistic calculations give excellent results for

the equilibrium properties of bulk 5d metals, and such treatment appears indeed to be

vital for a proper description of these systems; in 4d metals, on the other hand, the rela-

tivistic treatment gives lattice constants about 2–2.5% too small, and as a consequence it

produces considerable errors in the theoretical bulk moduli (about 30 to 40% too large),

while non-relativistic calculations give excellent equilibrium crystal properties (in 3d met-

als the scalar-relativistic treatment gives even worse results). Although these errors may

be considered acceptable (they are at the commonly accepted limit of LDA-standard ac-
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curacy), one is nevertheless confronted with the fact that, for the elements in question, a

relativistic treatment may induce spurious effects in the elastic response, deriving from the

incorrect equilibrium crystal ground state it produces. We therefore chose to present here

non-relativistic results for the 4d metals. Accurate tests, to be discussed elsewhere [5], show

indeed that the picture presented here remains unaltered if a scalar relativistic treatment is

adopted for the 4d metals.

5×1 reconstruction – For the computational study of this prototypical hex-overlayer

system, we assumed the structure inferred from LEED data [6], in which 6 surface atoms

are packed together on top of each 5 substrate atoms in a (11) direction on the (001) surface,

as sketched in Fig.1. To obtain a safer comparison, we also calculated the unreconstructed

5×1 surface (i.e., a 1×1 cell repeated 5 times) with the same technical ingredients, obtaining

a surface energy within 2% of that calculated using the 1×1 surface cell. Since the recon-

structed geometry was not relaxed, in view of typical energy changes upon relaxation [4],

we estimate the overall error bar of the calculation to be in the order of 0.05 eV per 1 × 1

area (or 6 meV/Å2 for Pd and Pt).

The heat of reconstruction Er is defined to be the difference of the total energies of the

unreconstructed slab plus two bulk atoms and of the reconstructed slab, divided by ten to

refer the energy to the area of the 1×1 (001) surface cell. A positive value thus indicates

the reconstruction to be energetically favoured. The numerical result is Er = −0.21 eV in

Pd and Er = −0.03 eV in Pt, indicating that Pd will not reconstruct, whereas in Pt the

reconstructed and unreconstructed phases have equal energies within the accuracy of the

calculation. This result agrees with the fact that both phases are observed for Pt depending

on the experimental conditions, while the reconstruction has not been observed in Pd.

Since the reconstruction increases the surface atomic density, atoms have to be added to

the surface layer. In equilibrium conditions, it can be assumed that the additional atoms

come from the bulk, which actually means that they come from kink sites at surface steps.

Indeed, the atom chemical potential in thermal equilibrium equals the the crystal cohesive

energy. We note in passing that if the surface were coupled, in non-equilibrium conditions,
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to a reservoir with a lower chemical potential [7], the energy cost per additional atom would

be lower, and the heat of reconstruction would increase (i.e. the reconstruction would be

more favoured).

Surface stress vs. surface-substrate mismatch – To gain insight into the mechanism

driving the reconstruction, we calculated the surface energies, stresses and relaxations for

the unreconstructed (001) surfaces of the relevant fcc metals. From calculated total energies

of slabs and bulk at various in-plane lattice constants, we obtain the strain derivative of

the surface energy, τ = d σ/d ǫ. Due to the fourfold symmetry of the system, τ is isotropic

and can be expressed as the derivative τ = d σ/d a with respect to the area a = A/A0

normalized to the equilibrium area A0 of the unreconstructed 1×1 surface cell. We name τ

the excess surface stress, as it gives a quantitative measures of the change in surface energy,

σ(A) − σ(A0) = τ δa, which would result from a relative area variation δa = (A − A0)/A0.

We note that, in a related context, use has been made in the past of the total surface stress

[8] of the unreconstructed surface, which is the sum of τ and of the surface energy σ at zero

strain. Though, the relevant quantity here is indeed the excess part of the stress, since,

while σ itself is a fixed cost of formation for the unreconstructed surface at the in-plane

lattice constant determined by the underlying bulk, the value and sign of τ indicate the

tendency to reduce the surface energy by changing the surface atomic density. In particular,

a positive (or tensile) excess stress indicates that the surface tends to contract and to attain

a higher atomic density. Of course, as discussed below, the bonds to the substrate will

strongly counteract the surface layer tendency to change its in-plane lattice constant A

further energy cost originates, as seen above, from the need to increase the atomic density

of the surface layer.

Our results are presented in Table I. The excess surface stress is tensile in all cases, and

it increases considerably going from the 4th to the 5th row. We now show that the large

tensile excess surface stress is the driving force of the quasi-hexagonal reconstruction of the

Ir, Pt, and Au (001) surfaces. To attain close-packing, the surface layer has to rearrange to

a different geometry and must thereby overcome the energy cost of bond rearrangement; we
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estimate this cost by ideally splitting the heat of reconstruction into a “gain” and a “loss”;

the latter, the bond rearrangement contribution ∆Eb to the heat of reconstruction Er, is

obtained by subtracting from Er the stress-related surface energy gain δσ = −τ δa obtained

by a reduction of the surface area per atom to the value of the (111) surface (i.e. about 14%;

the sign of δσ is chosen consistently with our convention for the heat of reconstruction).

The values for the 4th and 5th row are rather close: ∆Eb = −0.36 eV for Pd, and

∆Eb = −0.41 eV for Pt, referred to 1×1 area. We conclude that the favourable balance

for the reconstruction in 5d metals as opposed to 4d metals is indeed determined by an

exceptionally large stress-related energy gain in the former case, driving the reconstruction

against a bond rearranging cost which is about the same in both series. Inspection of the

reconstructed geometry reveals a reduction in number of bonds between surface and first

substrate layer. Thus, the bond rearrangement cost is mostly due to the average coordination

of subsurface and surface atoms being decreased, despite the increase of in-plane coordination

in the reconstructed top layer.

It is worth noticing that the balance between surface contraction and surface-substrate

mismatch is favourable in 5d metals and unfavourable in 4d metals because of the magnitude

of the surface excess stress; the mere sign of the latter is in itself not sufficient to decide

whether or not the reconstruction will actually take place. Further, we emphasize that even

the magnitude of the stress is meaningful as a reconstruction predictor only when related

to the substrate bonding resistance to the reconstruction. This is expecially relevant when

considering systems in different positions in the transition series: for instance, Rh (001) has

a larger stress than Au (001), but the d bonding to the substrate is very much stronger in

the former case, so that indeed Rh (001) is not able to reconstruct, while Au is.

Origin of surface stress enhancement – For d metals, an explanation of the surface

stress and of its magnitude can be found in the competition between sp and d bonding,

and how the balance is modified at the surface. The accepted description of bonding for a

transition-metal series [9] is that as the d occupation nd increases from 0 to 10, bonding,

non-bonding, antibonding states are successively filled. Neglecting sp electrons, this leads
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to a parabolic bond strength as function of nd, with a maximum around nd ≃ 5. Including

sp electrons in the picture, it is found that throughout most of the series the d electrons

form localized bonds which tend to contract the crystal, while the more diffuse sp electrons

exert an outwards pressure [10]. This balance is reversed when the d band is nearly full; the

sp electrons now bind the crystal, while the full d shell tends to resist lattice contraction.

As an indication of how the balance in the bulk is perturbed bu the surface, we inspect

the sp and d charges at the surface and in the bulk. A Mulliken population analysis [11]

shows that the total charge QS at the surface is smaller than the charge QB in the bulk,

i.e. δQ = QS − QB < 0. More specifically, this depletion is mostly of d character (δQd =

Qd
S −Qd

B < 0), while the sp charge has slight net increase (δQsp = Qsp
S −Qsp

B ≥ 0). The total

layer charge as a function of position into the slab shows first a depletion (mostly d), then an

enhancement in the first sublayer (mostly d), and finally it rapidly saturates into the bulk. As

seen from Table I, the magnitude of the stress correlates with the amount of charge depletion

from the surface layer. Since the depleted charge is predominantly of d character, the tensile

surface stress in the late transition metals (nd > 5) can be explained as a consequence of de-

occupying antibonding d states at the high-energy end of the surface density of states (DOS).

Thereby, the bond strength between surface atoms is increased. Direct inspection of the

charge density shows that dxy orbitals are indeed depleted with respect to bulk occupation;

the depletion takes place by partial charge transfer to other sp-hybridized d states [5]. The

mechanism giving rise to surface stress is an “internal conversion” in the d shell assisted and

enhanced by hybridization with sp orbitals [5], and is thus quite different from that causing

the stress of nearly-free-electron metal surfaces [8]. In particular, due to the key role of d

states, jellium-based descriptions might be inapplicable to the present cases.

Given the above findings, the sizably larger surface stress in the 5th-row metals is easy

to understand: the origin are the strong relativistic effects in these systems. It is known

that the lattice constants of Ir, Pt and Au are about the same as those of Rh, Pd, and Ag

despite the much larger atomic size of the 5d elements, and the 5d bulk moduli are larger

than those of the 4d’s by a factor of about 1.5–2. This is a consequence of the enhanced
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bonding in 5th-row metals as compared to 4d metals, due to relativistic effects [12]. The

6s and 6p electrons contract and lower their energy due to the mass-velocity term, so that

sp occupation is increased. As a consequence antibonding d states are emptied, thus the

bonding is overall enhanced. In terms of the DOS, this increased bonding sp-d hybridization

in a 5d metal corresponds to a longer sp tail, and to a d-band complex which is wider and

closer in energy to the Fermi level than in a 4d one. Hence in 5d metals the narrowing

and upward shift of the DOS at the surface will produce a larger d depletion (partly in

favour of sp charge). A direct demonstration of the effect is provided by a non-relativistic

calculation for Pt. The lattice constant is 5% larger than experimentally observed, and the

bulk modulus is only 60 % of its actual value, i.e. close to that of Pd. Most importantly,

the surface stress is indeed found to decrease by a factor of 2 and the surface energy by 30%,

while the bulk-to-surface charge differences are also significantly smaller: overall the surface

quantities for non-relativistic Pt resemble rather closely those of Pd [5]. The strength of

relativistic effects thus appears to be the relevant difference between 4th and 5th-row metals

in this context, and it may be identified as the ultimate cause for the reconstruction of

5th-row fcc (001) surfaces.

Summary – We have calculated the quasi-hexagonal reconstruction of the (001) surfaces

of representative fcc transition metals, finding it to be favoured for the late 5d metals

and not for 4d metals, in accordance with experiment. A correlation has been established

between reconstruction and magnitude of the surface stress calculated ab initio for the

unreconstructed surfaces: the reconstruction results from a delicate balance between surface-

substrate mismatch and stress-related energy gain. Only in the case of 5d metals is the latter

gain large enough to actually drive the reconstruction against the substrate resistance to

misregistry, which is comparable for isoelectronic systems (e.g. Pd and Pt). The origin of the

surface stress is the d charge depletion at the surface, caused by enhanced sp hybridization;

the remarkable stress enhancement in 5d metals is due to the major relativistic effects on

the 6s and 6p shells.
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TABLES

σ τ ∆d12 W δQ δQsp δQd

Rh 1.26 1.94 –4.5 5.24 –0.30 0.08 –0.38

Pd 0.91 1.05 –0.8 5.30 –0.19 –0.08 –0.11

Ag 0.59 0.88 –1.9 4.43 –0.11 0.02 –0.13

Ir 1.73 2.94 –3.0 5.92 –0.42 0.24 –0.66

Pt 1.21 2.69 0.0 6.11 –0.36 0.15 –0.51

Au 0.75 1.62 –1.0 5.61 –0.20 0.10 –0.30

TABLE I. Surface energy and stress (in eV/(1×1) cell area), top-layer relaxation (percentage

of interlayer spacing), and work function (eV) of the (001) surfaces of 4d and 5d fcc transition

and noble metals. The variation of total, sp and d charge between bulk and surface (electrons)

obtained by Mulliken analysis is given.
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FIGURES

FIG. 1. Side and top view of the 5×1 reconstruction.
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