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Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals
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Density-functional-theory calculations of the surface energies, surface relaxations, and work functions
for a number of low-index surfaces of the 4d transition metals from Y to Ag are presented. The calcula-
tions were done for seven-layer slabs using the full-potential linear-muffin-tin-orbital method. Agree-
ment with experimentally obtained results is very good for the cases where experimental data are avail-
able. Roughly parabolic behavior is found for the top-layer relaxation and the surface energy across the
series. The study of trends makes it possible to extract the relevance of different models and to interpret
the results within a simple physical picture. The trend in top-layer relaxation can be understood in a
model that combines the effects of the inward electrostatic force due to Smoluchowski smoothing with
the directed forces due to the localized d bonds. The calculated surface energies can be explained by a
bond-cutting model, but only if the change of the bond strength with coordination number is taken into
account. We find that popular models that relate the surface energy to quantities such as the cohesive
energy are flawed because their estimate of the surface energy erroneously includes contributions of the
free-atom spin polarization and orbital structure. Several predictions of the surface dependence of work
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functions, surface energies, and surface relaxations are given.

I. INTRODUCTION

The relaxation of metal surfaces has been studied by
means of low-energy electron diffraction (LEED) which,
if the measurements are analyzed by multiple-scattering
calculations, enables the determination of the atomic po-
sitions at the surface.! These studies have demonstrated
that the outermost atomic layer of most clean metal sur-
faces shows an inward relaxation; that is, that the spacing
between the top two layers is smaller than the bulk inter-
layer spacing. The top-layer relaxation is often accom-
panied by smaller shifts of the second and third layers,
which can be directed either inward or outward. As a
general rule, the magnitude of the relaxation is larger for
rough surfaces than for smooth ones, and in many cases a
reconstruction of the surface is also observed. On the
theoretical side, a number of models have been devised to
explain various features of the observed relaxations.
These models focus on different aspects, such as the gen-
eral tendency of the sp electrons to spread smoothly at
the surface, the different roles of localized d electrons and
delocalized sp electrons, and the way in which the elec-
tronic structure is influenced by the termination of a
crystal. The complete explanation for the experimentally
found relaxations will be a mixture of some or all of these
mechanisms, conceivably together with additional effects
which have not been considered yet. At the present time,
the relevance of the various models is not yet clear. A
similar situation exists for the surface energy: this quan-
tity is difficult to measure directly for solid metals, and
numerous models have been presented with the aim of
obtaining reliable estimates. A popular approach is to
use bond-cutting arguments to relate the surface energy
to quantities such as the cohesive energy, but the validity
of this assumption has not been tested. It is at this point
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that a useful contribution can be made by ab initio total-
energy calculations based on density-functional theory
(DFT) together with the local-density approximation
(LDA) for the exchange-correlation functional.>* This
approach has been shown to give reliable results for the
ground-state geometry of a wide variety of systems in the
bulk as well as for molecules; in the past few years, sur-
faces have also been considered. The single-particle wave
functions, the charge density, and different contributions
to the total energy are all accessible, so that it should be
possible to extract the dominant effects which influence
the surface relaxation and the surface energy. However,
previous ab initio calculations for metal surface relaxa-
tions* % have used a variety of different calculational
techniques and have focused on one or two systems at a
time, typically different surfaces of the same metal or two
metals which are neighbors in the periodic table. While
many useful results have been obtained, at the present
time no systematic trend studies using the local-density
technique have been performed to the author’s
knowledge, for metal surfaces.

To fill this gap, we present in this paper calculations
for various surfaces of the nine 4d transition metals from
Y to Ag. The series exemplifies the filling of the
bonding-antibonding d states, but also includes Ag for
which the d band is filled and lies about 3 eV below the
Fermi energy, so that the sp electrons are expected to
dominate. The series also includes the Pd(100) and
Rh(100) surfaces, for which exceptional outward relaxa-
tions of, respectively, 3.0%=+1.5% (Ref. 9) and
0.5%12% (Ref. 10) have been deduced from LEED. For
consistency, all nine metals were first assumed to be in
the fcc structure for which the (111), (100), and (110) sur-
faces were considered. We have chosen to approximate
the hep structure of Y, Zr, Tc, and Ru by the fcc struc-
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ture in order to facilitate a comparison across the series
for the same surfaces; computationally, there is no advan-
tage in this choice. For comparable fcc and hcp surfaces,
we expect similar behavior. For Nb and Mo, results for
the bee (110) and (100) surfaces are presented as well.
For each metal surface the results include the top-layer
relaxation, the surface energy, and the surface-resolved
work function. These quantities are discussed in view of
the existing models. Furthermore, our all-electron
method gives self-consistent core eigenvalues which can
be compared to measured surface core-level shifts. This
is planned to be presented in a future publication.

II. METHOD

The calculations presented here were done using the
full-potential linear-muffin-tin-orbital (FP-LMTO) meth-
od as described in Refs. 11 and 12, with some
modifications needed for an accurate description of sur-
faces. These concern the representation of the wave
function, charge density, and potential outside the crys-
tal. As in the well-known LMTO-ASA (atomic-sphere
approximation) method, the basis set consists of atom-
centered Hankel envelope functions which are augmented
inside atomic spheres by means of numerical solutions of
the radial Schrodinger equation. However, to obtain a
unique definition in all parts of space, and in distinction
to the LMTO-ASA method, the spheres are here taken as
nonoverlapping. In both the ASA and the FP ap-
proaches, the atomic spheres are needed to define the
LMTO basis set. In the ASA method, they have the ad-
ditional function of prescribing the way in which the po-
tential and charge density are approximated by a simpler,
more tractable form, namely spherically averaged inside
each sphere. The important improvement of the FP
method is to eliminate this shape approximation, which is
severe for low-symmetry systems such as surfaces. This
makes it necessary to represent the charge density and
potential accurately in the (now nonvanishing) interstitial
region and to evaluate three-center integrals for the inter-
stitial potential matrix elements. This is done in an
efficient way by approximating the relevant quantities in
the interstitial region as a linear combination of atom-
centered Hankel functions which reproduces the values
and slopes on the spheres. A further important (albeit
straightforward) improvement over the LMTO-ASA
method is that the nonspherical terms in the charge den-
sity and potential are retained inside the atomic spheres.
In total, the effective potential, the electron density, the
single-particle wave function, and the total energy are
evaluated without significant approximation. One possi-
ble difficulty should be mentioned, however. The tech-
nique gives accurate results as long as the spheres are
well packed in all those parts of space where the charge
density is non-negligible. For slab calculations, it is
therefore necessary to cover the surfaces with one or two
layers of empty spheres; we have found that it is adequate
to include all those spheres which are nearest neighbors
of a metal atom. To obtain an accurate representation of
the exponentially decaying density outside the surface,
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the empty-sphere angular-momentum cutoff for the expli-
cit part of the sphere density and for the augmentation of
the wave function was increased from the usual value of 4
to 6. The empty spheres are mainly a device for perform-
ing integrals over the interstitial region; they are not
needed to increase the size of the basis set. Therefore, the
basis consisted of LMTO’s centered on the metal atom
sites only. Due to the nonvanishing interstitial region it
is not enough to use the minimal basis of the LMTO-
ASA approach. A relatively large basis of 27 functions
per metal atom was used, consisting of s, p, and d func-
tions with kinetic energies of —«x’=—0.7, —1.0, and
—2.3 Ry; thus, the Hankel envelopes are exponentially
localized as e *". The classical choice of the LMTO-
ASA method, —x*=0, is not suitable for the surface
since the wave functions decay exponentially into the
vacuum with « at least the square root of the work func-
tion.

The method was applied to seven-layer slabs, separated
by approximately ten layers of vacuum. One layer of
empty spheres was used for all the surfaces except the
more corrugated (110) surface which required two empty
layers. The k-space integration was done with special
point meshes of 19, 15, 16, 20, and 15 irreducible points
in one plane, for the fcc (111), (100), (110), and bec (110)
and (100) surfaces, respectively, with a Gaussian broaden-
ing of 20 mRy. Sphere radii were chosen to be 3% small-
er than touching in the unrelaxed structure in most cases;
the exception is the fcc (110) surface, which shows
stronger relaxations and makes spheres 5% smaller than
touching necessary.

The calculated surface relaxations depend very sensi-
tively on the underlying lattice constant used for the slab.
A good estimate of this effect can be obtained by assum-
ing that the volume per atom will tend to be constant.
The lattice constant was determined by careful bulk cal-
culations, done with the same sphere radius and LMTO
basis and a comparable k mesh as in the slab. Hereby the
sphere radius was kept fixed as the volume was changed.
Using a different sphere radius or scaling the radius along
with the lattice constant leads to very small differences in
the equilibrium geometry, which nevertheless can
influence the relaxation noticeably. We have found it
necessary to include the 4p semicore electrons as full
band states through most of the series; this was done by
means of a “two-panel” calculation for the metals from
Y through Pd. All core states, including the low-lying
ones, were permitted to relax (“thawed core”). Our cal-
culation therefore distinguishes three types of states.
Valence states are the 5s5p4d electrons, calculated with
the FP-LMTO technique as described above. Semicore
states are the 4p elections. In the two-panel technique,
these are obtained by a second band-structure calcula-
tion, done with a basis of 5s, 4p, and 4d orbitals. All
lower states (down to the 1s electrons) are recalculated in
each iteration in the spheridized potential. The calcula-
tions were done nonrelativistically and the Ceperly-Alder
parametrization!> of the exchange-correlation potential
was used. Only the top-layer relaxation was considered
since it is in general weakly dependent on relaxation of
the lower layers for transition metals (see below). All
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metals were first assumed to have the fcc structure, in or-
der to facilitate the study of trends and to avoid mixing in
structural effects. While the fcc structure is a reasonable
approximation for the hcp metals near the beginning of
the series, it is artificial for the bcc metals Nb and Mo,
for which it leads to unusual relaxation behavior. There-
fore calculations were also done for the Nb and Mo bce
(110) and (100) surfaces.

To test our scheme, we compared our relaxation results
to those of previous full-potential linear augmented plane
wave (FLAPW) calculations where available. Feibelman
and Hamann’ have calculated the relaxation of the top
two layers of a seven-layer Rb(100) slab, obtaining a con-
traction of the outer-layer separation d,, by 5.1% and of
the second-to-third layer separation d,; by 0.5%. Our
method gives contractions of 3.4% and 1.3% for this sur-
face. Since Feibelman and Hamann used a scalar-
relativistic procedure, we have calculated the top-layer
relaxation of this surface both nonrelativistically and sca-
lar relativistically, letting only the top layer relax, giving
contractions of 3.5% and 3.7%, respectively. We con-
clude that scalar-relativistic effects influence the relaxa-
tion only slightly in the 4d series, even though the Rh
bulk lattice constant reduces from 7.20 to 7.12 a.u. by the
scalar-relativistic treatment. More significant is that our
Rh(100) surface contraction increases by about 1% if the
4p states are approximated by treating them as core
states; however, this result could be different for other
methods, depending on how they handle high-lying core
states which are not treated as band states. The most
sensitive feature of our technique is the interpolation pro-
cedure for the interstitial region. The accuracy can be
monitored by inspecting the change of the relaxation as
the localizations of the Hankel functions in the charge-
density basis are varied. The top-layer relaxation
changed by no more than 0.2% as the first Hankel energy
was varied from —0.5 to —4 Ry with the second energy
fixed at —3 Ry. We conclude that the interpolation
scheme is accurate for the systems considered here.

We have also calculated two-layer relaxations for the
bce W(100) surface (using the scalar-relativistic treatment
in this case) in order to compare to the results of Fu
et al.® Our relaxations of —8.3% and +1.8% for d,
and d,; agree reasonably well with their values of
—5.8% and +2.4%; both sets of results are well within
the scatter of different experimental values'* (ranging
from —7+1.5% to —8+1.5%). We speculate that the
discrepancy in the two sets of calculated results could be
due to the treatment of the quite extended W 5p states as
true core states in the FLAPW calculations, whereas we
treat them with the same accuracy as the valence states.

The results for the Rh(100) surface shows that the top-
layer relaxation changes by only a small amount when
the second layer is permitted to relax. For the two-layer
relaxations of the Pd(100) surface, we obtain contractions
of 0.4% for d,, and of 0.3% for d,;, to be compared to a
contraction of 0.6% for d,, when only the top layer is
permitted to move. This independence of the top-layer
relaxation from the positions of the lower layers for tran-
sition metals (but not for sp metals*) was previously found
for the W(100) surface.! Therefore, our trend study
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across the 4d series was restricted to top-layer relaxa-
tions.

Ho and Bohnen* have calculated the multilayer relaxa-
tions for the Ag surfaces using norm-conserving pseudo-
potentials and a mixed-basis scheme. The change in the
top-layer spacing was —0.4%, —1.3%, and —7.4% for
the (111), (100), and (110) surfaces. Because of the full Ag
d shell, we expect the “softer”” behavior typical for sp
metals and a larger dependence of the top-layer relaxa-
tion on the shifts of the lower layers. Therefore, the
agreement to our results (—1.4%, and —1.9%, and
—3.6%), which kept all lower layers fixed, is acceptable.
The fcc (110) surface is a special case because atoms in
the top and third layers are nearest neighbors. An in-
ward relaxation of the top layer moves these atoms
directly toward each other. The pseudopotential calcula-
tion obtained an increase of the second-to-third layer
spacing by 2% so that the disagreement in the top-layer
relaxation is probably the consequence of keeping the
lower layers fixed in our calculations.

III. RESULTS

The equilibrium Wigner-Seitz radii and bulk moduli
for the nine metals are compared to the measured
values'® and the Korringa-Kohn-Rostoker (KKR) results
of Moruzzi, Janak and Williams'® in Fig. 1. As explained
above, in the bulk calculations the spheres were kept at a
fixed size in order to treat the bulk in the same way as the
slab. The figure shows that there are only small changes
when the sphere size is reduced from —3% to —5% of
the touching muffin-tin radius.

Turning to the results for the surfaces of the Y to Ag
series, we first compare the calculated and measured
work functions in Fig. 2. Evidently there is good agree-
ment of our surface-resolved values to the measured poly-
crystalline work functions.!” Furthermore, the results for
Ag show that the calculation predicts the correct surface
dependence: the measured values are 4.74, 4.64, and 4.52
eV for the (111), (100), and (110) surfaces'® compared to
our calculated values of 4.67, 4.43, and 4.23 eV. The
top-layer relaxation changes the work function by less
than 0.1 eV even for those surfaces which exhibit a strong
relaxation. For Nb and Mo, we find that fcc and bcc sur-
faces with comparable smoothness have similar values for
the work function. The basis rising trend across the
series follows closely that of the first ionization potential
of the free atoms and is due to the highest occupied 4d
level moving to lower energies with increasing nuclear
charge. From Pd to Ag, part of the extra electron goes
into the sp band above the full d band, increasing the Fer-
mi energy and reducing the work function.

A. Surface energies

The surface energy o of a solid is one half of the energy
which is needed to cleave the crystal along some chosen
plane. Thus, it is the energy associated with the creation
of one surface. It depends on the choice of the plane and
can be expressed either as an energy per surface atom or
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FIG. 1. Calculated equilibrium Wigner-Seitz radii (left) and bulk moduli (right) when atomic spheres with fixed radius 3% and 5%
smaller than touching at the equilibrium lattice constant (LMTO-1 and LMTO-2, respectively) are used, as well as the results of

Moruzzi, Janak, and Williams (Ref. 16) and the experimental values (Ref. 15).

per unit surface area. The calculation gives o per surface
atom as

az(Eslab_7Ebulk)/2 s (1)

where E,, and E,, are the total energies per unit cell
of the seven-layer slab and the bulk crystal, respectively.
The results for the series Y to Ag are tabulated in Table I
and displayed in Fig. 3(a). Two features which are im-
mediately evident are, first, that the surface energy shows
the typical parabolic dependence on the d occupation
which is already well known from the cohesive ener-
gy,'®!® and, second, that the surface energy per surface
atom increases with the roughness of the surface. In this
section, we interpret the results within simple bond-
cutting models as well as within more sophisticated mod-
els which take the dependence of the bond strength on
the coordination number into account. It will be seen

v bee(110)
+ bec(100)

(a)

O fec(111)
30 O fcc(100)
A fee(110)

20

Surface energy (eV/surf.atom)
+
+

0.0 " "

that the latter description is needed to reproduce rela- — b O Cale.
tions between the surface energy and the cohesive energy g 30+ (b) o g;:i coh
which are known from experiment. Furthermore, we dis- S 4 9.2%coh
< © 0.134E'cop
= L i
"
T T Al T T \
>
O fec(111) v bee(110) o 20r ]
6.0 I g fec(100) + bee(100) o
| & fec(110) ) o " T
— & Expt. %
3 50t : o 10 1
S
c + 4 —
S a ‘
2 40t : Ir Mo Ru Pd
2 0.0 4 1 i i —
~ L E Y Nb Te Rh  Ag
—
o
= 30t 4 L
FIG. 3. (a) Calculated surface energies in eV per surface
L 1 atom. (b) Comparison of the calculated surface energies with
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: Y Nb Tc Rh Ag netic (E(,,) or magnetic (E,,,) free atom. Values are for the

FIG. 2. Calculated surface-resolved work functions in eV as
compared to the experimental polycrystalline values (Ref. 17).

fcc (111) surface except for Nb and Mo, for which the bec (110)
surface was used (full symbols). The structure near Tc in the
calculated surface energies is due to the change from bcc to fcc.
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cuss the role of the free-atom orbital structure which was
hitherto ignored.

The main features of the surface energy trends can be
explained in a simple bond-cutting model. The strength
of the nearest-neighbor d bonding is assumed to depend
parabolically on the number of d electrons. It is maximal
for a half-full band and small for an empty or completely
full d band. The surface energy is then estimated as the
energy cost for cutting the bonds to one nearest-neighbor
atom times the number of removed nearest-neighbor
atoms when the surface is created. In Fig. 3(a) one can
see that the surface energies for the three fcc surfaces of
each metal are roughly proportional to the number of re-
moved nearest neighbors, which are 3, 4, and 6 for the fcc
(111), (100), and (110) surfaces, respectively. For the bcc
structure, the situation is more complicated because the
eight nearest-neighbor (NN) distances are not much
shorter than the six next-nearest-neighbor (NNN) dis-
tances. The bcc (110) surface cuts two NN and two
NNN bonds, while the rougher bce (100) surface cuts
four NN and one NNN bond (in this discussion, we use
“bond” to denote the total bonding strength due to occu-
pied d orbitals between two atoms). If only the NN

TABLE I. Summary of calculated results:

M. METHFESSEL, D. HENNIG, AND M. SCHEFFLER 46

bonds are considered, the ratio of the (100) and (110) sur-
face energies should be 2.0, whereas the calculation gives
1.7 and 1.5 for Nb and Mo, respectively. These numbers
are less than 2.0 because the rougher (100) surface cuts a
smaller number of NNN bonds. All together, this simple
description seems to give a quite consistent picture which
can explain the basic parabolic trend and the surface
dependence of the surface energy.

In the past, the bond-cutting model has often been in-
voked in order to deduce a relation between the surface
energy and quantities such as the heat of sublima-
tion.” "2 These approaches try to explain the empirical
evidence?? that for many liquid metals o is approximately
one sixth of the heat of vaporization.z“'zs’20 Similarily, for
solid metals o is often close to one sixth of the heat of
sublimation; below we will reconsider this relation. As-
suming that the energy for cutting a single bond is a
well-defined quantity, then there should be a simple rela-
tion between the surface energy (the energy cost when
some bonds are cut) and the heat of sublimation (the cost
when all bonds are cut). The heat of sublimation is equal
to the cohesive energy within the accuracy of this
description and we use the terms interchangeably in the

top-layer relaxation in percent of the unrelaxed layer

spacing, work function, surface energy per surface atom, and surface energy per unit surface area. Sur-

face energies are for the relaxed surfaces.

Ady, Work function Surface energy Surface energy

Surface (%d \,) (eV) (eV/atom) (J/m?

Y fcc (11 —-3.3 3.46 0.73 1.15
fcc (100) —4.7 2.92 0.82 1.12

fce (110 —2.0 2.95 1.21 1.18

Zr fee (11n —2.5 4.38 0.91 1.75
fcc (100) —4.2 3.90 0.97 1.62

fec (110) —5.5 3.29 1.56 1.85

Nb fcc (111) 0.3 4.63 1.02 2.20
fce (100) —0.6 4.37 1.13 2.11

fcc (110) —9.4 3.82 1.70 2.26

bee (110 —3.7 4.66 1.08 2.36

bee (100 —9.3 3.68 1.86 2.86

Mo fee 11y —0.8 4.98 1.11 2.64
fce (100) —1.9 4.49 1.45 2.98

fec (110) —14.2 4.15 1.90 2.77

bee (110) -39 4.94 1.34 3.14

bce (100) —9.0 4.05 2.13 3.52

Tc fec (111) —4.9 5.15 1.04 2.63
fcc (100) —5.1 4.75 1.53 3.34

fcc (110) —13.0 4.54 1.94 3.00

Ru fcc (111) —3.9 5.33 1.16 2.99
fcc (100) —4.4 5.03 1.58 3.52

fee (110) —9.7 4.65 2.17 3.45

Rh fcc (111) —2.5 5.44 0.99 2.53
fce (100) —3.5 5.25 1.27 2.81

fcc (110) —17.5 4.94 1.84 2.88

Pd fce (111) —0.1 5.53 0.68 1.64
fce (100) —0.6 5.30 0.89 1.86

fcc (110) —5.3 5.13 1.33 1.97

Ag fec (111) —1.4 4.67 0.55 1.21
fcc (100) —1.9 4.43 0.63 1.21

fcc (110) —3.6 4.23 0.93 1.26
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following. If Cp is the coordination number in the bulk

and € is the energy of a single nearest-neighbor bond,

then the cohesive energy per bulk atom is E ,, =+Cpe.

A surface atom has a lower coordination number Cg so

that Cz — Cg bonds must be cut to make the two new sur-

faces. The desired proportionality is then given?® by
Cp—Cs

o= ————CB E ., -

()
The energy cost of cutting a nearest-neighbor bond is an
acceptable concept for strongly covalent materials such
as diamond, but it is not obvious that a similar approach
(also known as “‘quasichemical theory”?!) will work for
metals. Our calculation supplies both o and E_,, so that
the assumptions leading to Eq. (2) can be tested directly.

Before this can be done, the role of the energy gain due
to the magnetic ordering in the free atom should be
clarified. This spin-polarization energy is in the range of
0.1-0.2 eV for sp metals, but is larger for transition met-
als near the center of the series (i.e., 4 eV for Mo) and be-
comes comparable to the cohesive energy. We denote by
the spin-polarization energy the difference of the free-
atom total energies calculated using the local-spin-density
approximation (LSDA) and the local-density approxima-
tion (LDA). A correlation between different energies ac-
cording to the bond-cutting model can only be expected if
systems of the same type are compared. When the non-
magnetic crystal is ““vaporized” by cutting bonds, from a
theoretical viewpoint we can consider that first a non-
magnetic free atom results, and it is the energy cost of
this step (here denoted E_,) which can be expected to
correlate with the surface energy. In a second, conceptu-
ally unrelated step the free atom relaxes to its magnetic
ground state according to Hund’s rules. The experimen-
tal cohesive energy is the sum of both terms, so there
seems to be a basic flaw in the simple “quasichemical ap-
proach” [see Eq. (2)] to surface energies, which should be
of particular importance when applied to elements near
the middle of the transition-metal series.

Figure 3(b) presents the calculated data in a way which
should make visible a correlation between the surface and
cohesive energies. The smoothest surface for each struc-
ture, i.e., fcc (111) and bee (100), were taken for this ex-
ample. For both surfaces the simple bond-cutting model
predicts that o is equal to E /4 [this is Eq. (2) with
E ., replaced by E_ ;]. This estimate of the surface ener-
gy turns out to be considerably too large. If one insists
despite better knowledge on using the full (spin-polarized)
cohesive energy, the result is not much better. One sees
that E ., /4 is also too large, and in fact gives a less satis-
factory representation due to the atomic spin-
polarization-induced dip at Mo. This was anticipated in
the discussion of the free-atom energy above. The reason
for the failure of the simple quasichemical model is that
the variation of the bond strength with the coordination
number C was not taken into account. It is well known
that the bonds are stronger for an atom with a smaller
number of neighbors. Making a fcc (111) surface entails
cutting the twelfth, eleventh, and tenth bonds, which are
comparatively weak, whereas all 12 bonds must be cut to
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“vaporize” the crystal. Consequently, the straightfor-
ward bond-cutting model overestimates the surface ener-
gy. The coordination-number—bond-strength relation has
recently been calculated explicitly for Al by means of
total-energy calculations for a variety of structures with
C between 0 and 12 by Robertson, Payne, and Heine.”’
The energy per bond is found to be more than twice as
large for C=2 than for C=12. The effect can be
quantified using results of tight-binding theory. In the
second-moment approximation, the width of the local
density of states on an atom scales with C, leading to an
energy gain proportional to C'/2 due to the lowering of
the occupied states. Neglecting repulsive terms for now,
the energy per nearest neighbor is then proportional to
C'/2, By assuming that the crystal total energy is the
sum of contributions from the atoms, each of which is
proportional to the square root of its coordination num-
ber, it follows that the surface energy is given by
Clli /2 __ C.Sl‘ /2

o= —TE;oh - ©)
B

For the fcc (111) and bee (110) surfaces, the proportional-
ity factor is now 0.134 and thus about half of the previous
value. Figure 3(b) shows that this relation between the
surface and cohesive energies is in reasonable agreement
with the calculated results. Of course, this is a rather
oversimplified version of the tight-binding formalism,
which is not complete because repulsive forces are not
taken into account. The repulsive energy contributions
lead to an additional linear term in the total energy as
function of C.?” Using such an expression, with the linear
coefficient fixed at the typical value 0.1 eV, the estimated
surface energies decrease by 10-20 % which improves the
agreement some more.

Combining the effects of the bond-strength—
coordination-number relation and the free-atom spin po-
larization, the empirical result of 0.16 for o /E_,, (both
expressed as an energy per mole) for solids can be ex-
plained. To begin with, the calculated results (Table I)
show that the surface energy per surface atom depends
strongly on the choice of the surface; it is the surface en-
ergy per unit area which is relatively invariant. The con-
nection between the two quantities is given by the molar
surface area, which varies with the roughness of the sur-
face. The surface energy for polycrystalline solids is cus-
tomarily assumed to be close to that of the most dense
surface?’ since this minimizes the surface energy per unit
area. Similarily, it is assumed that the molar surface area
for liquid metals is related to the third root of the liquid
density by a similar factor. Therefore we again consider
the fcc (111) and bee (110) surfaces. For these, the sur-
face energy can be estimated by 0.134E_; [see Fig. 3(b)].
For sp metals and near the ends of each transition metal
series, the energy gain from the magnetic moment of the
free atom is small but in general not negligible, giving
values of E_, /E_, which vary between 1.0 (when the
atom is nonmagnetic) and about 1.20. The product of
0.134 with this factor then gives an estimate of o /E
which varies from 0.134 to 0.16. For metals near the
middle of the transition series, the ratio of surface to
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cohesive energy should be larger. It is interesting to see
whether this can be found in the experimental data. We
have therefore plotted the ratios of the surface energy to
the heat of vaporization for the liquid elemental metals
where the data is available (Fig. 4). We are conscious
that this presentation tends to emphasize the deviations
from the rule as opposed to plotting one quantity against
the other. Unexpectedly, the ratios for the elements at
the center of the transition series (e.g., Mo) are not no-
ticeably higher. This is in disagreement with our calcu-
lated results, for which the self-consistently calculated ra-
tio o /E ., of Mo is significantly above that of the other
metals. Overall the agreement to the experimental values
is good for the surface energy (see below) as well as for
the cohesive energy, so the discrepancy to the o' /E !
ratio is puzzling. Closer inspection traces the discrepan-
cy to the cohesive energy: while most of the metals are
overbound by about 15-20 % in the calculation, for Mo
the cohesive energy lies only 5% above the experimental
value. In fact, if the von Barth—Hedin exchange-
correlation potential is used, no overbinding at all is
found for Mo.? This unusual dependence on the choice
of the LDA potential is due to the different spin-
polarization energies for the 5s'4d> Mo free atom, which
are 4.07 and 4.44 eV for the Ceperly-Alder and von
Barth—Hedin potentials, respectively. These features
point to the inadequate treatment of the free atom in the
LDA as the source of the discrepancy in o /E ;. Itisin-
triguing that a better treatment than the LDA would
presumably put Mo back into line with the other metals,
despite the large magnetic moment and our previous ar-
guments; should this not be an accident, it would pin-
point an error of the local density approximation.

An unexpected feature of the o°*P'/ESP* values plotted
in Fig. (4) is that ratios as large as 0.3 appear for some sp
metals. These are consistently the group II (A and B) ele-
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FIG. 4. Ratio of the surface energy to the heat of vaporiza-
tion o*?/AH P! for a number of liquid metals where available
experimental data exists (Ref. 28).

ments, which were not included in earlier studies.?>3°

Our explanation is that for these metals, the free atoms
are especially stable due to the full s shell. This decreases
the cohesive energy relative to the surface energy. The
free-atom total energy is influenced by factors which do
not play a role for the bulk and the surface, in this case
the full shell of two s electrons which are redistributed
between s and p states in the crystal. Expressed in a
different way, it is the cohesive energy which shows
unusual variation across the periodic table, while the sur-
face energy is well behaved. In conclusion of this discus-
sion, the popular approach to relate the surface energy
with the cohesive energy erroneously includes the effect
of the orbital structure on the free-atom total energy.
This effect is largely quenched out in the solid bulk as
well as at the surface, making the straightforward ap-
proach highly problematic.

Returning briefly to the simple bond-cutting picture, in
view of the preceding discussion it would seem a contra-
diction that the dependence of the surface energy on the
surface plane could be reproduced without including the
variation of the bond strength with the coordination
number. The answer is that, in order to obtain the sur-
face energy proportional to the number of cut bonds, it is
sufficient to assume that the energy of an atom depends
on its coordination as E =Ce+ E, where E is some con-
stant. The linear relation is a good approximation when
C is larger than about 5. This defines an effective bond
strength suitable for comparing highly coordinated struc-
tures. We emphasize, however, that this is much smaller
than the bond strength which would be deduced from the
cohesive energy by the simple bond-cutting model.

As stated above, the surface energy of solids is difficult
to measure directly and few reliable results are available.
On the other hand, the surface energy in the liquid state
has been determined accurately for most elemental met-
als. Tyson and Miller’! have used this data to estimate
the solid metal surface energy for a closed-packed surface
as function of the temperature. A related procedure was
followed by Miedema.’? Alternatively, Mezey, and
Giber?® have estimated the solid surface energies for most
elemental metals from the heat of sublimation (denoted as
enthalpy of atomization in their work) along the lines de-
scribed above. Figure 5 compares these results to our
surface-averaged calculated values. The agreement to the
approaches of Tyson and Miller and Miedema is good.
Some deviations are found near the center of the series.
This is where we find the largest dependence on the sur-
face orientation, which suggests that there are relevant
structural effects which are outside the scope of the liquid
metal estimate anyway. The agreement to the estimates
from the atomization enthalpies (data marked by trian-
gles in Fig. 5) is somewhat poorer. Figure 5 also shows
that the uncorrected liquid metal surface energy is a rath-
er poor estimate, although it is sometimes compared
directly to theoretical results.*’

Next, we compare to the results of previous calcula-
tions of the surface energy. Table II shows results ob-
tained with the FLAPW method by various groups,
which agree well with our values. For Pd, the FLAPW
result of Ref. 34 is somewhat larger and in fact a bit
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closer to the experimentally derived surface energy of
Ref. 31. Also shown are the values obtained from simula-
tions using semiempirical Finnis-Sinclair potentials®® and
the embedded-atom method.*® These surface energies are
too small by 30-50 %. The Finnis-Sinclair potentials are
based on tight-binding theory in the second-moment ap-
proximation, and the embedded-atom method is similar
in practice although based on a different starting point.
Comparing with results of tight-binding calculations in
the moment representation,’”3 the underestimated sur-
face energies would seem to be a general property of the
second-moment methods. Finally, Smith and Banerjea®
have used a ‘“‘universal bonding relation” to obtain sur-
face energies for the three Ag surfaces. These show an
unrealistically large surface dependence which none of
the other calculations exhibit.

To mention another theoretical approach, we note that
the ratios of the energies of different solid surfaces are
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predicted by the “liquid drop model”® to be
0100/0111=1.06 and oo /0;;=1.20 for the fcc struc-
ture and 0 ¢y/010=1.14 for bcc. The model expresses
the total energy as a sum of volume, surface, and curva-
ture terms. Our calculated energies lead to ratios which
vary between 0.95 and 1.20 but which only partly group
around the predicted values. Possibly, the more localized
and directed d bonds result in more complicated behavior
than that of nearly-free-electron metals.

To close this section, we refer to a paper by Krotschek
and Kohn* which compares the local-density approxi-
mation to a variational theory based on minimization of
the Fermi hypernetted-chain approximation for the
ground-state energy. The aim is to study the validity of
the local-density approximation for surfaces. From the
application to jellium slabs, the authors conclude that the
local-density approximation leads to unacceptable errors
in the calculated surface energies for simple metals. They
do not discuss the case of transition metals; however, it is
noteworthy that our calculated surface energies are much
closer to the experimental estimates than their results
would lead us to expect. Specifically, we obtain good
agreement for Ag, for which a treatment as a simple met-
al should be reasonably valid. In agreement with earlier
publications (e.g., Ref. 41), we conclude that the neglect
of atomic structure is the most severe approximation in a
jellium-LDA approach when calculating surface energies.
If the atomic structure is taken into account, the DFT-
LDA theory gives quite accurate results.

B. Models for surface relaxations

Our aim is to compare the various models for metal
surface relaxation with the results of our realistic LDA
electronic-structure calculations. We briefly present
three models. The best-known model is that of Finnis
and Heine,*? which is based on the concept of Smolu-
chowski smoothing.** Starting from the perfect crystal,
an artificial surface is made by cutting along the boun-
daries of the Wigner-Seitz cells, without letting the
charge density relax. The electrostatic force on each nu-
cleus is then practically zero because of the symmetry

TABLE II. Comparison of present calculated surface energies in J/m? with results of full-potential
LAPW calculations, semiempirical simulations, and the values of Smith and Banerjea.

Smith and
Present FLAPW FLAPW Semiempirical Semiempirical Banerjea
result Ref. 34 Ref. 8 Ref. 35 Ref. 36 Ref. 38
Nb bcc  (110) 2.36 29 1.67
bec  (100) 2.86 3.1 1.96
Mo becc  (110) 3.14 1.83
bec  (100) 3.52 2.10
Rh fcc (100) 2.81 2.6
Pd fcc (111) 1.64 1.22
fcc (100) 1.86 2.3 1.37
fcc (110) 1.97 2.5 1.49
Ag fcc (111) 1.21 0.62 0.62 1.27
fee (100) 1.21 1.3 0.76 0.71 1.63
fee (110) 1.26 1.4 0.81 0.77 1.54
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and neutrality of each Wigner-Seitz cell; the only nonvan-
ishing force is due to high multipoles, i.e., [ >4 in struc-
tures with cubic symmetry. In a second step the electron
density is permitted to relax to the correct ground-state
distribution. Hereby the density becomes smoother (in
order to reduce electron kinetic energy). The difference
of the unrelaxed and relaxed densities causes an addition-
al electrostatic potential (see Fig. 6) which modifies the
surface dipole barrier and the work function, as was dis-
cussed in the original paper by Smoluchowski. Finnis
and Heine later pointed out that the charge redistribution
also gives rise to an inward electrostatic force on the
top-layer nuclei. Obviously this smoothing effect is more
pronounced for rougher surfaces. Thus, the Finnis-Heine
model explains two basic observed phenomena: the in-
ward relaxation and its dependence on the surface rough-
ness. Quantitative predictions have been obtained by as-
suming a perfectly planar boundary for the electron den-
sity;* however, the resulting relaxations are considerably
larger than the measured values. A modified point-ion
model has been devised which includes an extra
semiempirical term and can be adjusted to give better
agreement to experiment.*’

A second model focuses on transition metals and on
the contribution of the d electrons to the surface relaxa-
tion. According to Pettifor,*® the bulk lattice constant of
a transition metal balances the inward force of localized d
bonds against the homogeneous outward pressure of the
sp electrons. As discussed in Refs. 47 and 8, at the sur-
face the sp pressure can escape into the vacuum (“spill-
out”), while the d bonds between the first two layers are
essentially unchanged. These d electrons therefore exert
an inward force on the surface atoms, leading to an addi-
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FIG. 6. Schematic illustrations of Smoluchowski smoothing
(from Ref. 43). (a) shows the redistribution of the charge densi-
ty at the surface when the density relaxes; (b) shows the depen-
dence of the smoothing effect on the surface roughness.
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tional relaxation contribution specific to transition met-
als. The additional inward force is proportional to the
strength of the d bonds, and should therefore obey the
classical bonding-antibonding parabola as a function of
the d occupation. The largest inward force should be
found for a half-full d band, since in this case all the
bonding states and none of the antibonding states are
filled. The parabolic behavior is well known from the
cohesive energy and the lattice constant of the bulk tran-
sition metals (see Fig. 1). The situation is different for the
noble metals because for these the d shell is full, leading
to a repulsive force which now must be compensated by
an attractive term from the sp electrons. Consequently it
has been predicted that the top-layer relaxation should be
outward for the noble metals.*’

In addition to these effects, yet another contribution
comes from the bond strength —coordination number re-
lation, first formulated by Pauling,*® which was discussed
above in the context of surface energies. This states that
bonds are stronger on an atom with a smaller number of
neighbors. For a surface, this means that the d bonds on
the surface atoms should be stronger than those in the
bulk.

Finally, tight-binding models have been used to investi-
gate the way in which the wave function of the infinite
crystal is modified when a surface is introduced. Analyt-
ic expressions have been obtained for the exact solution
of the tight-binding Hamiltonian for a semi-infinite chain
of s orbitals.* The force on the surface atoms, as de-
duced by comparing the top-layer and bulk-bond orders,
leads to an outward relaxation for a nearly empty or a
nearly full band, and an inward relaxation for a half-full
band. The outward relaxation for the nearly empty band
arises as a consequence of the less perfect bonding char-
acter near the surface for the “in-phase” bonding states
near the bottom of the band. Occupation of such a state
strengthens all the bonds in the crystal, but those in the
bulk more than those at the surface. The outward relaxa-
tion for the almost-full band is understood in a comple-
mentary argument, as is usual for tight-binding models.
In view of the experimentally deduced outward relaxa-
tion for Pd and Rh, this model could have a bearing on
the realistic case.

We also mention that more approximate techniques
based on the tight-binding method have been introduced.
Allan and Lannoo have used the second-moment approx-
imation to derive explicit expressions for the total energy
of a semi-infinite crystal. The energy is the sum of a
bonding term which describes the lowering of occupied
states due to neighbor interactions, plus an empirical
pairwise-repulsive term. The bonding term is obtained by
fitting a Gaussian density of states to the zeroth, first, and
second moments. A success of the approach is that it ex-
plains the existence of oscillatory multilayer relaxations
in a simple way.’® The dependence of the surface relaxa-
tion on the d occupation in transition metals has also
been studied. In a first work, the relaxation was found to
be inward in the center of the series, outward near the
wings, and to change discontinuously to zero as the occu-
pation increases toward ten or decreases toward zero.”!
Later it was recognized that this model is in fact unstable
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for nearly full and nearly empty bands due to the inade-
quate treatment of charge transfer. By including local
charge neutrality in a modified tight-binding scheme, the
instability was removed.”? The surface relaxation then
turns out to be independent of the d occupation and al-
ways directed inward for the top layer, and to increase
with increasing surface roughness. The same results are
obtained in the non-self-consistent approach if a rec-
tangular shape for the local density of states is used in
place of the Gaussian shape.’’ These descriptions are
rather incompatible with one of our main conclusions,
namely that the competition between sp and d electrons
leads to a basically parabolic shape of the relaxation
trend (see below).

C. Surface relaxations

Our results for the top-layer relaxations are summa-
rized in Table I and Fig. 7, which displays the change
Ad |, of the first-to-second layer spacing d, for the fcc
(111), (100), and (110) surfaces, which have roughnesses
1.10, 1.27, and 1.80, respectively. (The roughness is
defined in Ref. 53 as the reciprocal of the surface packing
fraction when the crystal is packed with touching
spheres). Also included are the relaxations for Nb and
Mo bee (110) and (100) surfaces with roughnesses 1.20
and 1.70, respectively. The figure shows that Nb and Mo
in the fcc structure have anomalous relaxations close to
zero for the two smoother surfaces. We consider this
unusual behavior a consequence of the imposed artificial
fcc structure. More precisely, Fig. 8 shows that the den-
sity of states (DOS) for the top-layer atoms in the Nb fcc
(111) surface has a strong peak at the Fermi energy. It
consists of L-derived states which also cause the peak in
the bulk fcc DOS and which are partly the reason that
fcc Nb and Mo are not stable respective to bcc. The
lower part of the figure shows the change in the top-layer
DOS when the outermost atoms are moved outward.
One (expected) effect is that the d band becomes more
narrow; the energy associated with this change is in line
with the more general discussion below. A second effect
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is that the peak at the Fermi energy becomes wider and
shifts somewhat to lower energies. It is reasonable to as-
sume that this drives the anomalous outward relaxation.
Consequently, the following discussion is restricted to the
marked trends which connect fcc and bec surfaces of
similar roughness. The main features are as follows. (i)
There is basically a parabolic character, showing stronger
inward relaxation near the center of the series; this effect
dominates for the fcc (110) surface. (ii) While no outward
relaxations are found, Pd is a special case with Ad, close
to zero for the two smoother surfaces. (iii) From Pd to
Ag for the fcc (111) and (100) surfaces, the trend reverses
as Ag again shows a substantial inward relaxation. This
is contrary to the prediction of Ref. 47, which predicts an
outward relaxation for noble metals due to the repulsive
force of the full d shell. Below, we associate the reversal
of the trend with the increase of sp electrons from Pd to
Ag.

The most obvious feature is the parabolic character,
which is well known from the bulk lattice constant and
cohesive energy. As the d occupation increases across
the series, the strength of the localized bonds first in-
creases (as bonding d states are filled) and then decreases
(as the antibonding d states are filled). The localized d
bonds give rise to a force which tends to contract the
bulk material, compensated by the outward pressure of
the sp electrons. As suggested in Ref. 8, at the surface
the sp pressure spills out into the vacuum, resulting in a
net inward force from the d bonds. Given the depen-
dence of the d-bond strength on the occupation, this
model can explain the basic parabolic shape of the calcu-
lated relaxations. This reveals why the second-moment
tight-binding approach®*3” obtains a relaxation which is
independent of the d occupation, in disagreement with
the present ab initio results. Since the most important in-
gredient is the strength of the d bond relative to the sp
pressure, the parabolic shape cannot be obtained if the sp
electrons are not included in some way.

It is not yet clear why the whole parabola is deeper for
the rougher (110) surface. The shape of the curve sug-
gests an explanation based on the d electrons here also, as
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opposed to the smoothing argument normally associated
with the sp electrons. First, each cut d bond at the sur-
face eliminates a nearest-neighbor attractive force which
has an outward component on the top-layer atom. The
resulting inward force on the surface atom is larger for a
rough surface since more bonds are cut. Second, cutting
some of the bonds on an atom enhances the strength of
the remaining ones. This again leads to a larger inward
force for a rougher surface. The combination of these
effects governs the relaxation of the (110) surface. In this
explanation, the smoothing effect due to the sp electrons
is also present but the total relaxation is dominated by
the d electrons.

For the (111) and (100) fcc surfaces, which are smooth-
er, the effect of the d electrons is not as strong and an in-
terplay of different effects is seen. Specifically, the inward
relaxation due to sp-electron smoothing is not swamped
out. To model this, we consider a description which
combines the characteristic effects of the sp and d elec-
trons.

Ad12=_AQsp—B[l_(l—Qd/S)z] , (3)

where Q,, and Q, are the sp- and d-electron charges per
atom and A4,B >0 are constants. The first term describes
the inward relaxation due to Smoluchowski smoothing,
which for simplicity is assumed to be proportional to the
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sp charge. The second term is an inward relaxation
which depends parabolically on the amount of d charge.
To obtain the decomposition of the total valence charge
into angular momentum contributions [Fig. 9(a)], the lo-
calization of the LMTO basis functions was exploited to
make a Mulliken population analysis®* for the bulk.
These charges were substituted into the model expression
with 4 =3 and B =2 to obtain the curve in Fig. 9(b).
The main features of the calculated relaxations are repro-
duced. The basic parabolic behavior is thus due to the
variation of the d-bond strength with d occupation. The
parabola is not symmetric because Y already has more
than two d electrons. The kink in the trend at Pd, i.e.,
the inward relaxation of Ag compared to Pd, comes
about because Pd already has an almost-full d band
(Q;=9.4). Thus the extra electron when going from Pd
to Ag can only partly go into the d band; however, at the
antibonding end, each extra d electron decreases the in-
ward relaxation from the localized d bonds. On the other
hand, the large increase of the sp charge increases the in-
ward relaxation effect of the Smoluchowski smoothing.
These two factors work together for the step Pd to Ag,
whereas the sp and d terms tend to cancel for the rest of
the series.

We believe that the main effects are contained in the
above description which combines the effect of sp
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smoothing with localized d bonding. However, compar-
ing Fig. 9(b) with the calculated relaxations, one sees that
there is one feature which the model does not describe
correctly. The calculated result for the Pd(111) and (100)
surfaces is a top-layer relaxation close to zero, while the
model must give an inward relaxation of some percent if
the shape of the curve is to be reasonably reproduced.
The discrepancy is not unexpected, since the effect of
both the sp and the d electrons has been taken to be an in-
ward relaxation. This suggests that some effect is still
omitted. Furthermore, the calculated curves show a
deeper parabola than the model. The parabola of the
model can be made deeper by increasing the parameter B,
but this then makes the relaxations for Pd and Ag almost
equal. This discrepancy could be a consequence of
oversimplification (for example, from assuming a linear
dependence on the sp charge) but could also point to an
omitted effect. In a more speculative manner, one can
remedy the discrepancies by invoking the results from the
semi-infinite chain of tight-binding s orbitals. Formally,
this is not unreasonable because the terminated d metal is
equivalent to an ensemble of semi-infinite chains, each of
which has s-type symmetry along the sequence of layers.
Qualitatively this would lead to an extra energy term
which causes larger inward relaxations in the middle of
the series, and a larger outward relaxation in Pd due to
the nearly full d band.

To see if some features of this tight-binding description
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FIG. 10. Layer-resolved density of states for the Pd(100) slab.
D, is for the top layer, D, is for the center layer of the seven-
layer slab. The energy range is roughly divided into bonding,
nonbonding, and antibonding states.
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can be explicitly recovered from the calculated results,
we divided the energy interval of the Pd d band into three
ranges, corresponding roughly to bonding, nonbonding,
and antibonding states (Fig. 10). Figure 11 shows the
charge density of the Pd(100) surface for the three ranges
and the total density. To make a comparison between the
densities easier, each one was normalized to make the
charge on a bulk Pd atom equal to one. As a measure for
the bond strength, we consider the value of the charge
density in the center of a nearest-neighbor bond. The
density for the lowest energy range shows the expected
feature, namely that states at the bottom of the band
show stronger bonding inside the crystal than between
the top two layers. In the tight-binding description, a
state near the top of the band weakens all bonds, but
those inside the crystal by a larger amount. Therefore,
deoccupying such a state (from the inert completely full
case) strengthens the bulk bonds relative to those at the
surface and causes an outward surface relaxation. In
short, a state near the top of the band should be more
bonding near the surface than deep inside. There is only
a very small indication of this in the density of the third
energy range in Fig. 11. Of course, in a self-consistent
calculation the situation is obscured by the response of
the potential to charge redistribution, so that a direct
correspondence to the tight-binding model is not neces-
sarily to be expected. One consequence of self-
consistency is that the more narrow local DOS of the top
layer shifts upward in energy in order to maintain its po-
sition relative to the bulk Fermi level in order to achieve
local charge neutrality. This is visible in Fig. 10 and is a
well-known explanation for the core-level shifts in transi-
tion metals.>® Associated with this energy shift will be
some rearrangement of charge whose significance is not
obvious; conceivably, it could also have a direct conse-
quence for the surface relaxation.

IV. CONCLUSIONS

In conclusion, we have calculated surface energies, the
work functions, and the top-layer relaxation of the fcc
(111), (100), and (110) surfaces for the 4d transition met-
als Y to Ag and for the bce (110) and (100) of Nb and
Mo. Good agreement to the measured work functions is
found, for the average trend across the series as well as
for the surface dependence. However, for most of the
studied materials the surface dependence is a theoretical
prediction. The surface energy shows the parabolic
dependence of the d-band occupation, which is known
from the cohesive energy and is roughly proportional to
the number of nearest neighbors which are removed
when the surface is created. The results were discussed in
the context of popular models which relate the surface
energy to quantities such as the cohesive energy or the
heat of sublimation. It was shown that these models only
work if the change of the bond strength with the coordi-
nation number is taken into account. Furthermore, it
was found that the popular approach erroneously in-
cludes energy contributions due to the free-atom orbital
structure in the estimate for the surface energy, as can be
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1.9

Tot Pd (001)

FIG. 11. Charge densities for the Pd(100) surface for the three energy ranges indicated in Fig. 10 and the total density. The densi-
ties were normalized to one electron per bulk Pd atom by multiplying with 0.327, 0.276, 0.301 (partial densities), and 0.1 (total).

Units are 0.001 Bohr 3.

seen from the unexpectedly large values of o /E; for the
group-II metals. Good agreement was found to the
values of Tyson and Miller, who estimated the solid sur-
face energies from those of the liquid metals. The calcu-
lated trends of the top-layer relaxation, including the
dependence on the surface roughness, could be under-
stood as an interplay between sp smoothing and the effect
of localized d bonds. The results also suggest that an ad-
ditional effect, tending to an outward force near the end

of the series, could be present. While the calculations
give relaxations close to zero for the smoother surfaces of
Pd, the experimentally deduced outward relaxation for
the Pd(100) surface was not confirmed.
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