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The total energy of the 3d transition metals is calculated as a function of volume in each of six
different crystal structures. The calculations employ the local-density-functional scheme and the
full-potential linear muffin-tin orbitals method. Both self-consistent and non-self-consistent Harris-
Foulkes calculations are shown and the connection is made between these and simpler tight-binding
and classical models of interatomic forces. The energy-volume relations may serve as a database in

the construction of such empirical schemes.

I. INTRODUCTION

In this paper, we show calculated energy-volume (E-V)
curves for the first-row transition metals from Sc to Cu.
We not only compare the energies of the cubic (fcc) and
hexagonal (hcp) close-packed and body-centered-cubic
(bce) phases, but also investigate the stability of mythical
structures with coordination numbers between 4 and 8.
The purpose of the exercise is threefold. (1) By showing
E-V curves calculated using a state-of-the-art
Hohenberg-Kohn density-functional approach in the
Kohn-Sham local-density approximation'? we are able to
provide benchmark calculations against which to com-
pare empirically obtained interatomic force potentials
used in materials simulation. (2) The benchmark curves
are used here as a test of the recently developed and
much-discussed Harris-Foulkes approximation®~> to the
self-consistent Hohenberg-Kohn energy functional. (3)
We are able to confirm the predictions of relative stability
of the close-packed and bcc phases from canonical d-
band theory6 and tight-binding models, discuss the con-
nection between the Harris-Foulkes approximation and
the tight-binding bond model,”~° and use our results to
assess the possible transferability of tight-binding param-
eters for transition metals into undercoordinated defect
environments.

Approximate descriptions of the bonding in transition
metals have existed (to varying degrees of complexity) in
the literature for some 30 years (see, for example, Refs.
10, 9, and 11). It is now known that while pair potentials
have proved enormously useful in understanding phe-
nomena ranging from radiation damage'? to the structure
of extended defects,'>!* a proper treatment of the prob-
lem must go beyond this to include the important effect
of d-band filling which dominates the trends in properties
across the transition series; we also know that the sim-
plest d-band tight-binding model is itself in error due to
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neglect of the effects of the sp band. An additional com-
plication is the magnetic ground state of transition metals
near the end of the row. In a spin-polarized description,
the fcc and hep density of states (DOS) in Ni and Co are
split because their Fermi level falls in a large maximum
and the Stoner parameter is large; bcc Fe is stabilized by
a large splitting of the DOS so that the Fermi level for
one of the spins falls in the minimum separating the
bonding and antibonding states characteristic of the bcc
DOS, while the opposite spins occupy an almost full d
band. It is not clear whether even the local-spin-density-
functional theory can correctly predict the bce structure
of a-Fe (Ref. 15) or the complicated spin and crystal
structures of Cr and Mn. Furthermore, no simple model
can include magnetic effects easily, so we have chosen to
make our calculations non-spin-polarized. Naturally, an
empirical potential for Fe, say, must produce a bcc
ground state; however it is worthwhile emphasizing that
in the local-density approximation, its structure is hcp.

For calculating the structures of extended defects such
as surfaces, grain boundaries, dislocations, and cracks, as
well as problems of point defect formation and migration
energies, it is important that an empirical description of
bonding should not fail in situations where atoms are un-
dercoordinated. This has always been a drawback in
tight-binding or classical potentials for semiconductors,
and it is not clear whether a tight-binding description for
transition metals would not also fail. As a rough estimate
of how the energy might change with undercoordination,
we have looked at the simple hexagonal, simple cubic,
and diamond cubic structures in which atoms have, re-
spectively, eight, six, and four neighbors.

The organization of the paper is as follows. In Sec. II,
we briefly outline the method we have used to solve the
Schrodinger equation self-consistently, discuss the
sources of error, and estimate the accuracy of the present
calculations. We show results for the close-packed
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phases in Sec. III which we compare with previous local-
density and tight-binding predictions and give a brief dis-
cussion of the effects of d-band magnetism. The E-V
curves are presented in Sec. IV, and results using the
Harris-Foulkes approximation in Sec. V. The axial ratio
of the hcp metals is discussed in Sec. VI. We make con-
tact again with tight-binding theory in Sec. VII, where all
the E-V data points are scaled to the Rose equation of
state and the analysis of Spanjaard and Desjonqueres is
used to assess the transferability of tight-binding parame-
ters. Discussion and conclusions can be found in Sec.
VIIIL

II. METHOD OF CALCULATION

A. Full-potential LMTO

We solve the Schrodinger equation for each crystal
structure at a number of volumes, self-consistently within
the local-density approximation? (LDA). The Hamiltoni-
an is represented in a basis of linear muffin-tin orbitals'®
(LMTO?’s) which are augmented with numerical solutions
of the radial Schrodinger equation within nonoverlapping
muffin-tin spheres. No shape approximation for the po-
tential or charge density is used. In the interstitial re-
gion, these quantities are expressed in Hankel-function
expansions using a recently developed approach.!” This
method is not much slower than standard LMTO calcu-
lations in the atomic-spheres approximation'®'® (ASA).
Because the augmentation is done in somewhat smaller
spheres than in the LMTO-ASA method, it is necessary
to include two basis functions in each angular momentum
!/ channel. These are chosen to have kinetic energies of 0
(as do conventional LMTQ’s) and —1 Ry. The basis thus
consists of 18 functions per atom. The core is permitted
to relax but is taken to be spherical.

In the linear method, we are restricted to one principal
quantum number in each [/ channel in the band calcula-
tion. However, in the first-row transition metals—
particularly at the beginning of the series and in the
non-close-packed structures—the 3p electrons spill out of
the muffin-tin spheres and can show non-negligible
dispersion; even 3s electrons can be affected in extreme
cases such as the diamond cubic structure. These *‘sem-
icore” electrons from low-lying bands separated from the
valence bands by an energy gap. We have treated the
semicore states in the same way as the band states, by set-
ting up and diagonalizing the Hamiltonian a second time.
This automatically corrects errors in the eigenvalues and
charge density due to the wave functions extending into
the interstitial region and into neighboring spheres. In
the “second-panel” band calculation we use only an sp
basis, and since the bands are quite flat and completely
filled, only a few (special®®) k points are needed in accu-
mulating the eigenvalue sum. An alternative method of
dealing with semicore states has been discussed by
Mattheiss and Hamann.?!

A. T. PAXTON, M. METHFESSEL, AND H. M. POLATOGLOU 41

B. Sources of error and assessment of accuracy

Sources of error fall naturally into two categories: ap-
proximations arising in the construction of a model to
represent the solid state, and those arising from the exe-
cution of the model. The use of local-density-functional
theory in calculating structural properties of transition
metals has been addressed in the literature??">*~2¢ and
will be discussed in the present context briefly in Sec. III.
Aside from the LDA, our model assumes that the full-
potential LMTO method'” with a basis of 18 orbitals per
atom is suitably accurate for the present purpose. Possi-
ble sources of error are approximations made in the cal-
culation of the interstitial charge density, and exchange-
correlation energy density and potential, and have been
assessed in some detail recently.?’” The charge density is
calculated exactly in the muffin-tin spheres in angular
momentum components up to / =4. We use the same an-
gular momentum cutoff in the interpolation of quantities
in the intersitial region,'” expanded in Hankel functions
of energies —1 and —3 Ry. A measure of the errors in
this procedure is given by the dependence of the total en-
ergy on the kinetic energies (i.e., the localizations) of the
charge-density basis set. In the close-packed metals,
varying the energies from (—1,—3) Ry to (—0.1,—1)
Ry leads to total energy changes of less than 0.1 mRy per
atom. Errors arising from the size of the basis are easy to
assess:?’ in the present instance, the total energy is abso-
lutely converged to within a few mRy per atom. This is a
far smaller error than that made by the LDA, in particu-
lar in calculating the energies of free atoms.?” Further-
more, this small error is known to cancel in the calcula-
tion of energy differences between different crystal struc-
tures.

Convergence in the eigenvalue sums falls into the
second category mentioned at the beginning of this sec-
tion, and is a consequence of the need to evaluate in-
tegrals over the Brillouin zone. We use a uniform mesh
of sampling points with at least 15 divisions along each of
the primitive vectors. In cubic lattices we shift this mesh
into “special points”?° positions so as to decrease the de-
generacy of each point and hence minimize the total
number of sampling points. In conventional sampling,?*
a complementary error function of width W replaces the
step function at the Fermi surface so as to ensure ex-
ponential convergence with the number of divisions. We
use a recently developed generalization of this,?® in which
we approximate the step function by a complementary er-
ror function plus N higher-order correction terms. The
width parameter W and the order N are determined by
stringent convergence tests in typical cases and subse-
quently estimated by the amount of variation in the DOS
near the Fermi energy. We find that in self-consistent
calculations the total energy is less sensitive to the choice
of W and N than in the problem of integrating a given set
of bands. This is apparently a consequence of the varia-
tional principle, and means that a choice of N and W by
inspection is appropriate here. A more careful choice of
these parameters can lead to a very large saving in non-
self-consistent methods, such as frozen potential or
Harris-Foulkes calculations. We estimate that our
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Brillouin-zone integrals are converged absolutely to
within 0.5 mRy.

ITII. STRUCTURAL ENERGY
VERSUS BANDFILLING IN THE
CLOSE-PACKED PHASES

We begin the presentation of our results with the ener-
gies of the close-packed structures, fcc, hcp, and bcc.
There is a long tradition of the calculation of the close-
packed structural energy differences as a function of
atomic number in the three transition series.?” 33 This
has arisen from the curiosity evoked by the observation
that the transition metals follow a consistent trend
hcp—bec—hep—fece across each of the three series,
with the only exceptions being La, Mn and the ferromag-
netic elements Fe and Co. Friedel®* first suggested that
the structural energy of the transition metals was dom-
inated by the eigenvalue sum or bond energy arising from
the narrow band of d electrons. This suggestion was
partly motivated by the observation that the sublimation
energies followed a parabolic development across the
series as did the cohesive energy in the Hartree approxi-
mation,’% 3¢

EF
[ (e4—EmyEdE ,

for any reasonable shape of the d-electron density of
states n, (centered at the atomic energy level €,) includ-
ing the very simple rectangular DOS.**7 Developing n,
in its power moments,

= J " (E—e,'ny(E)E ,

Ducastelle and Cyrot-Lackmann®® showed the direct con-
nection between these moments and the lattice topology.
Exploiting the fivefold degeneracy of the d band, and
transformation rules given in the Slater-Koster tables,*®
they gave the exact result that within the tight-binding
model, the fcc-hcp energy difference would go through
zero at least twice as a function of the filling of the d
band. This follows from the first four moments (po—pu;)
being identical in the two structures. Furthermore, using
only the difference between the first nonidentical moment
uy for each structure, they were able to immediately
sketch the general shape of the fcc-hcp energy-difference
curve as a function of number of d electrons. The
characteristic separation of the bcc DOS into predom-
inantly T, bonding and predominantly E, antibonding
states by a pseudogap immediately leads to the prediction
that the bec structure will be stabilized in the center of
the transition series, i.e., near half band filling. Using just
eight exact moments of the DOS of a canonical d band®
in a first-neighbor model (first and second in bcc) already
gives enough detail to the shapes derived from the above
simple arguments to reproduce the structural trends
(with the exceptions of incorrectly predicting the bcc
structure for the noble metals in which the s-electrons are
playing a major role in cohesion, and moving the second
zero in the fcc-bee curve to too large a band filling, hence
giving the bce structure to the hcp metals in group 8).°
The first calculation of these structural energy
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differences in the LDA was by Skriver,”® who used
LMTO-ASA in the force theorem developed by Ander-
sen.** Here, only one structure (fcc) is made self-
consistent. The resulting atomic-sphere potentials are
then used to construct a trial potential for the second
structure. The structural energy difference is then the
difference in eigenvalue sum of the self-consistent struc-
ture and that obtained from solving the Kohn-Sham
equation in the trail potential. There is a clear connec-
tion between this simplified (but in many cases accurate)
LDA approach and the association of the structural ener-
gy difference with Friedel’s bond energy. A comparison
shows*! that the canonical moments method is in good
qualitative agreement with the LDA force theorem re-
sults. In Fig. 1, we show the structural energy differences
we have been discussing, calculated self-consistently in
the full-potential LMTO method outlined in Sec. II. We
compare these with the results of Skriver®® for the first-
row metals.

Although it is clear that the structure of these curves
can be easily predicted from simple tight-binding models,
the fact that the actual energy differences are very small
means that great care must be taken when making these
calculations from first principles. In fact, the fcc-hep en-
ergy differences are on the order of the absolute accuracy
of first-principles methods, so it is gratifying that we are
in such good agreement with the calculations of Skriver
in the ASA force theorem. Indeed, many of the
differences that remain are due to the fact that while
Skriver®” used an ideal axial ratio for all his hep struc-
tures, we have chosen to use experimental values for
those metals (Sc and Ti) whose observed ground-state
structure is hcp. Also we have calculated the energy
differences at our calculated atomic volumes rather than
at experimental ones.

Let us comment briefly on the results. The structures
of the nonmagnetic elements Sc, Ti, and V are correctly
reproduced, as well as that of Cr, where the half filling of
the d band dominates over magnetic effects in stabilizing
the bce structure. The local-density prediction of the
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FIG. 1. hcp-fec (circles) and bee-fee (squares) structural ener-
gy differences in the 3d transition metals. (a) present results us-
ing full-potential LMTO; (b) Skriver’s calculations using
LMTO-ASA and the force theorem.
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structure of Mn and Fe is hcp. In the observed ground
state Mn has the structure of the “y” phase,*’ a body-
centered-cubic structure with 58 atoms per cell. The
structure is almost topologically close packed.***} Of the
29 atoms in the primitive cell, there are four inequivalent
positions populated by 1, 4, 12, and 12 atoms, respective-
ly. Five atoms are in CN16 (i.e., with a coordination
number of 16) coordination polyhedra, 12 in CNI12
icosahedra, and 12 have 13 neighbors in their coordina-
tion shells. Experimentally,* it is found that the Mn
atoms in CN16 polyhedra have a large (spin up) local
magnetic moment, while the remaining 24 atoms have a
smaller (spin down) moment such that the total antiferri-
magnetic moment is zero. Topological close packing is
the most efficient way of close packing two atoms of
different sizes. In a-Mn, the high-spin atom behaves as
the large atom, and the low-spin atom as the small atom:
the magnetic structure seems consistent with the atomic
structure of the y phase in which the higher coordinated
sites tend to be occupied by the larger atom.*? It is not
clear at present, though, why this structure should be
favored over simpler close-packed structures, for exam-
ple, the antiferromagnetic bcc 6-Mn. Ferromagnetic a-
Fe is, of course, well known to have the bce structure in
the ground state. Nonmagnetic hcp Fe, however, is
thought*’ to have a lower enthalpy than fcc below 400 K,
which is consistent with the present results. Also a-Fe
begins to transform to hcp e-Fe at 130 kBar,* although
at this pressure the magnetic moment will still be larger
than 2 Bohr magnetons®>*’ so it cannot be the vanishing
of the moment that stabilizes the hcp phase. LMTO-
ASA calculations'® in the local-spin-density approxima-
tion with gradient corrections to the exchange-
correlation energy density*® show a phase transformation
from ferromagnetic a-Fe to nonmagnetic fcc at about 80
kBar. These authors'® did not consider the hcp phase,
but their results must be an upper bound on the a-¢
transformation pressure in their model. Our nonmagnet-
ic calculations incorrectly give Co the fcc structure, al-
though below 700 K Co is hep.* In fact, both phases are
observed at room temperature, and it has been speculat-
ed*’ that fcc is in fact the stable phase. It remains to be
seen whether the ground-state structure of Co can be cal-
culated from first principles; we return to this point
briefly in Sec. VI. The fcc structure of Ni is correctly
predicted in the LDA. hcp Ni has been observed in thin
films subjected to heat treatment,’® and electron®' and
neutron irradiation.’> However, there seems to be no evi-
dence of the existence of hcp Ni in a bulk phase. Finally,
it is interesting to note that the structural energy
differences in Cu are extremely small. Cu lies beyond the
realm of d-band tight-binding theory, but it seems that in
the LDA, the energies of hcp and fcc phases in Cu [and
Ag (Ref. 25)] are almost indistinguishable.

IV. ENERGY-VOLUME RELATIONS

We now turn to our calculated E-V curves in the first-
row transitions metals. Curves of this kind were first pro-
duced for Si in an historic paper by Yin and Cohen®? us-
ing local-density theory in a plane-wave, first-principles
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pseudopotential calculation. These curves were original-
ly intended to demonstrate the power of the LDA in pre-
dicting structural phase stability and pressure-induced
transformations in Si. However, they also became stan-
dard bench mark results against which classical® or sem-
iempirical tight-binding®> models could be tested. In
some cases they have actually been used in fitting the pa-
rameters of the models.>®

In view of this, and the increasing interest in the
creation of classical and semiempirical potentials for
transition metals, we show in Fig. 2, E-V data points for
the elements Sc—Cu, each in six structure: fcc, hep, bec,
simple hexagonal (sh), simple cubic (sc), and diamond cu-
bic (dc). We have drawn curves by hand through the cal-
culated data points. For those elements for whom the
close-packed structural energy differences are close to
zero, we show additional curves in insets with expanded
scales. We should note, however, that on these scales the
separation of the curves approaches the accuracy of our
calculations (see Sec. III). We have omitted the hcp
curves in V, Ni, and Cu. In V, the two curves become su-
perimposed at /0,<0.9 (see also Fig. 3). hcp Ni will
be discussed in Sec. VI. The energy difference between
ideal axial ratio hcp and fcc Cu is less than 0.007
eV/atom in our calculations. We do, however, find fcc
Cu to be stable by this amount with respect to ideal axial
ratio hep.

The energies shown in Fig. 1 are binding energies per
atom Ej, relative to the energies of spin-polarized free
atoms. The free-atom energies are identical to those
given by Moruzzi, Janak, and Williams?? since we have
used their parameterization of the von Barth—Hedin
exchange-correlation energy density. The atomic
volumes are given relative to the observed atomic
volumes in the ground state; these volumes are given in
Table I. In the same table, we show our calculated atom-
ic volumes Q_;, cohesive energies, and bulk moduli K,
obtained from least-squares analyses of the E-V data
points. We will comment briefly on these results; they
may be compared to a similar compilation by Moruzzi,
Janak, and Williams,??> who pioneered these calculations
using the Korringa-Kohn-Rostoker (KKR) method. (We
have neglected corrections for zero-point motion in our
calculations.??) The cohesive energies (E, ., = —Ejy) are
well known to be consistently overestimated in the
LDA.? This is most probably largely due to errors made
in calculating the total energy of free atoms. However, it
is useful to know what the LDA values of cohesive ener-
gy are, and to compare these to more approximate calcu-
lations. ;. and K, are, respectively, underestimated
and overestimated in the LDA. In fact, we find that our
bulk moduli are also mostly higher than those found by
Moruzzi, Janak, and Williams,2? although both are quot-
ed at the calculated atomic volume.”” In the magnetic
metals, the magnetic moment favors larger atomic
volumes, and hence the errors in Q_;, and K, are partic-
ularly large in these elements in the present non-spin-
polarized calculations. A direct comparison to experi-
mental quantities for magnetic materials is not very
relevant and is included in Table I for completeness and
for comparison with previously published calculations.?
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TABLE 1. Self-consistent, ground-state properties of the 3d metals. Q is the reference atomic
volume and the experimental cohesive energy E ., and bulk modulus K are taken from Kittel’s book
[C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976)].

Q, E ., (eV/atom) K (Mbar)

Element Structure (A3 Qo /Qo Theory Expt. Theory Expt.
Sc hep 25.00 0.92 4.87 3.90 0.6 0.44
Ti hcp 17.65 0.95 5.98 4.85 1.2 1.05

\% bce 13.83 0.94 5.83 5.31 2.0 1.62
Cr bce 12.01 0.93 4.58 4.10 2.8 1.90
Mn hcp 12.21 0.87 4.61 2.92 2.9 0.60
Fe hep 11.80 0.87 5.90 4.28 3.0 1.68
Co fce 11.06 0.94 5.96 4.39 2.6 1.91
Ni fce 10.90 1.00 5.29 4.44 2.0 1.86
Cu fce 11.81 1.01 3.89 3.49 1.6 1.37

V. THE HARRIS-FOULKES APPROXIMATION 8F[n,]

Elngl=3 &~ [ ——no+Fln,].

One of the most expensive or time-consuming aspects
of the density functional method is the need to proceed
with the calculation to self-consistency. This was the
motivation for Harris® to develop his approximate energy
functional. Independently, Foulkes* discovered the same
functional in a study of the relationship between density-
functional and tight-binding theories.> The Hohenberg-
Kohn! total energy is, as usual, separated into a nonin-
teracting kinetic energy term T, and an electrostatic term
F, both functionals of the self-consistent charge density
ny:

E[no]=T,[no]+F[ne],

and if €; are the eigenvalues of the self-consistent Kohn-
Sham? problem, then

Ti
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The Harris-Foulkes (HF) total energy is a functional only
of a trial input density n;,:
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where €; and n, are the eigenvalues and charge density
obtained from solution of the Kohn-Sham equations with
effective potential 6F[n;,]/8n. The HF functional is seen
here to have the following properties. (i) It is identical to
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FIG. 3. Structural energy-volume curves for Ti and V in the Harris-Foulkes approximation. Axes as in Fig. 2.
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the Hohenberg-Kohn functional when n;; =n,. (ii) For a
given trial density, the HF total energy is equal to the
self-consistent total energy to second order. As a conse-
quence, Eyy is stationary (but not necessarily minimal) at
ng.

The HF approximation is only one in a class of non-
self-consistent density-functional methods exploiting the
variational principle. These include the non-self-
consistent procedure based on the Hohenberg-Kohn func-
tional®® (recently reviewed and compared with the HF
approximation®”%) and methods based on the force
theorem.®"** The HF approximation is especially appeal-
ing in the present context because of its close connection
with tight-binding theory as developed by Foulkes*> and
Sutton et al.” Furthermore, the HF approximation has
in the recent past been shown to be remarkably successful
in reproducing self-consistent calculations of structural
properties of elements and compounds.®? We have found
similarly excellent agreement between self-consistent and
HF calculations in the present study of transition metals.

The procedure we have followed is the same as that of
Polatoglou and Methfessel,®? except that we remove the
shape approximation of the ASA. Details can be found
in Ref. 60. There is then a close connection between our
implementations of the self-consistent and non-self-
consistent problems. Our trial density is a superposition
of overlapping, self-consistent free-atom densities. (We
use an s2d" atomic configuration.) From this density, we
construct an effective Kohn-Sham potential exactly as in
the self-consistent calculations, following the same pro-
cedure for the solution of the Schrdodinger equation.!’
The sum of occupied eigenvalues is added to the “double
counting” terms evaluated for the input density. We may
choose to stop here or accumulate n,, and continue to
self-consistency to obtain the Hohenberg-Kohn total en-
ergy.

For brevity, we concentrate on results for Ti and V,
and show in Fig. 3 their E-V relations, and give in Table
I1 a detailed tabulation of properties for all six structures.
Figure 3 and Table II may be used to compare directly
the HF with the self-consistent results. The equilibrium
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atomic volumes are generally overestimated; the bulk
moduli are very similar to the self-consistent values. (We
have estimated the bulk moduli at the minimum of the
Harris-Foulkes E-V curves.) Absolute cohesive energies
are also overestimated in almost all cases. We find this to
be a general trend for the transition metals in the first
row. This is possible because Ey is a stationary but not
necessarily variational estimate of the total energy’ as
mentioned above. An improvement in the total energy
can be made by renormalizing the trial atomic densi-
ty,%3% but for simplicity we have not attempted this here.

V1. AXIAL RATIO OF hcp TRANSITION METALS

It would have been desirable to minimize the self-
consistent total energy in the hcp structures with respect
to the axial ratio as well as the atomic volume. It has al-
ready been shown in the case of Si that the full-potential
LMTO method is capable of accurately reproducing the
change in total energy with lattice distortions, even up to
third order in the strain.!”?’ Nevertheless, we have
chosen to use ideal axial ratios in all metals except Sc and
Ti, where we have used experimental values. Apart from
the expense involved, we find that nonmagnetic Fe, Co,
and Ni are mechanically unstable with respect to a rhom-
bohedral c¢/a distortion. This is a Peierls instability
driven by the very flat d bands at the Fermi surface
characteristic of the fcc and hcp band structures. (This
effect is of course removed in the magnetic electronic
structure by shifting the nondegenerate spin bands up
and down with respect to the Fermi energy.) No doubt,
the fcc structure would also distort into a rhombohedral
lattice, but because the fcc structure is at a symmetry dic-
tated energy extremum with respect to rhombohedral dis-
tortion, it is admissible to calculate its total energy. The
hcp structure with ideal axial ratio is at no such ex-
tremum, and we therefore tentatively have shown E-V
curves for hcp Fe and Co (especially since the hcp-fcc
phase transformation in Co is of interest) but not in Ni,
where the instability is strongest. We also remark that in
stable hcp structures, we find the energy change involved

TABLE II. Comparison of equilibrium volume, cohesive energy, and bulk modulus between self-
consistent (SC) calculations and the Harris-Foulkes (HF) approximation. We use Ti and V as examples

and show results from all six phases studied.

Qon /Do E.p (€V/atom) K, (Mbar)
Element Structure SC HF SC HF SC HF
Ti fcc 0.91 0.94 5.92 5.97 1.2 1.1
hep 0.95 0.97 5.98 6.04 1.2 1.1

bce 0.90 0.92 5.89 5.94 1.2 1.1
sh 0.96 0.97 5.65 5.69 1.0 1.0
sc 0.98 1.00 5.16 5.12 0.9 0.8
dc 1.19 1.13 348 3.53 0.3 0.3
v fcc 0.98 1.00 5.51 5.69 1.9 1.9
hep 0.98 0.99 5.50 5.66 1.9 1.9
bce 0.94 0.95 5.83 6.01 2.0 2.0
sh 1.00 1.01 5.25 3.37 1.6 1.7

sC 1.03 1.03 4.87 4.92 1.4 1.5
dc 1.29 1.25 3.22 3.34 0.8 0.7
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in minimizing the axial ratio is of the order of 1 mRy per
atom (see also Ref. 26) which is undetectable on the scale
of Fig. 2. In noble metals, the variation is almost ten
times smaller:®> such a change is unlikely to be sufficient
to stabilize hcp Cu with respect to fcc; however, we have
not attempted the calculation.

Notwithstanding the above remarks, some comments
on the axial ratio in hcp transition metals are in order.
Ducastelle and Cyrot-Lackmann® have proved (again, as
described in Sec. IV, using the fourth-moment degenerate
d-band model) the following remarkable result. Transi-
tion metals for which the fcc-hcp energy difference is neg-
ative will further lower their energy by a reduction in axi-
al ratio. Conversely, in those metals whose fcc phase is
stable with respect to hcp, the hcep structure would dis-
tort so as to increase its axial ratio. The same result was
found numerically by Finnis,®”° who calculated the
(ddo), (ddm), and (ddb) bond orders in the canonical
d-band model as a function of band filling. In the hcp
structure, the six bonds parallel to the close-packed
(0001) planes are inequivalent to the six out-of-plane
bonds. Finnis found that the ratio of the in-plane to out-
of-plane (dd ) bond orders was <1 around band fillings
of 1 and 2 d electrons (corresponding to Sc and Ti) and 5
and 6 (Mn and Fe), and > 1 elsewhere. The result is that,
since in the tight-binding bond model the interatomic
force is proportional to the bond order,? in the former
case the interatomic forces would act to shorten the out-
of-plane bonds and hence lower the axial ratio, and vice
versa, exactly as predicted by Ducastelle and Cyrot-
Lackmann.*

Considering the connection between the HF and tight-
binding bond models, it would be disappointing if this
effect were not reproduced in the HF approximation.
Table III shows that for Sc, Ti, and V the prediction is
indeed confirmed. Moreover the axial ratios in Sc and Ti
are in satisfactory agreement with experiment.

The tight-binding picture of the axial ratio is remark-
ably well supported in the axial ratios of metastable hcp
metals. The a-¢ phase transformation*® in Fe is rather
sluggish, but on its completion at about 300 kBar
(Q2/9Qy=0.88), the axial ratio is 1.59, having quite
strongly decreased with pressure as the hcp phase be-
comes more stable. hcp Ni is almost certainly
unstable—thin films grown electrolytically on hcp Co
transform to the fcc structure when removed from their
substrates®—and its axial ratio’>>*5! is 1.65 (larger than
ideal 1.633). In Co, the axial ratio is 1.632; this implies
that hcp is marginally stable with respect to fcc, contrary
to our LDA result and the speculation of Troiano and
Tokich.*

TABLE III. Hexagonal axial ¢ /a ratio for Sc, Ti, and V cal-
culated in the Harris-Foulkes approximation and compared to
the experimental values.

Axial ratio
Element HF Expt.
Sc 1.57 1.594
Ti 1.59 1.587
\4 1.65

VII. UNIVERSAL FEATURES OF THE
ENERGY-VOLUME RELATIONS

A. The zero-temperature equation of state

In a recent series of papers,®>% by examining a large
database of theoretical and experimental findings, Rose
and co-workers have found that in a wide variety of in-
stances, energy-length relationships have a universal
shape. This has become known as the “Rose equation of
state’”” and takes the form

E(a) EE*(at)z.p(at)e—a‘z_(1+a“)e_a‘ )
Ecoh

where p is a polynomial and®
pla*)=—1—a*—0.05(a*)*.

It is claimed that any binding energy-bond length relation
of the form E(a) can be cast into the universal form by
scaling first the energy with its value at the minimum and
then the length a by subtracting the equilibrium length
and dividing by a scaling factor which is chosen to ensure
that the second derivative E*"(a*) is equal to unity.
Rose et al. choose the Wigner-Seitz radius rywg as their
measure of length so that a*=(rys—rwsg)/l, where
rwsg is the equilibrium value of ryg and / turns out to be
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Given a set of energy-length relationships, one may scale
the energies until all curves have a minimum in the ordi-
nate at — 1, shift the curves so that the minimum falls in
the abscissa at zero, and scale the lengths until all curves
have the same second derivative. It is obvious that in the
range where the variation of energy with length is quad-
ratic, the curves will fall on a universal relationship. It is
less obvious that the universality will extend well beyond
the harmonic range. Since we have amassed a fairly large
database of E-V points, it seemed approprate to attempt
to scale our data to the Rose equation of state, and the re-
sult is shown in Fig. 4. In Fig. 5 we show in several

0.8

-1t

-0.8 -0.4 0 0.4
FIG. 4. Data points from Fig. 2 scaled to the Rose equation
of state; E* is the scaled binding energy and a* the scaled

Wigner-Seitz radius. The solid curve shown is the function
—(14a*)e "
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FIG. 5. Data from Fig. 4 shown on expanded scales so that each point may be identified with a particular element and crystal
structure. Axes and the solid curve are as in Fig. 4. To avoid showing a lot of empty space, we have split the a * axis into panels and
used an optimal E* scale for each panel. In the upper panels the points are labeled according to structure, and in the lower accord-
ing to element. This illustrates in which cases there is deviation from the Rose equation of state.

panels the data on expanded scale—each panel appears
twice, once with the points distinguished by structure and
once by element. As expected, the fit is perfect close to
the minimum, and any deviation here is due to errors in
the least-squares procedure and a small amount of noise
in the curves in Fig. 2. It is noticeable that our data devi-
ate from universality in the high-pressure regime while
the fit is excellent up to very large volumes. Unfortunate-
ly, the latter range is of little interest in practice. Note
that the deviation at high pressure is mostly confined to
the non-close-packed structures or to Ni. However, the
deivations are not such that one can even draw a smooth
curve through all the points of a given metal. Our data
indicate that the universal scaling does not apply to all
structures of all metals, or even to all structures of a
given metal; but for one structure of one metal one can
find a parameterization of the Rose equation of state that
will go through all the points.?>?® Also the universal
curve does fit over a range of a* which is significantly
beyond the harmonic range.

B. Transferability of tight-binding parameters

The fit to the Rose equation of state is good enough
that we may take the analysis a little further. At the
same time we will renew contact with tight-binding
theory and make an assessment of the transferability of
the tight-binding model into situations where close pack-
ing no longer pertains (e.g., vacancies, surfaces, etc.).

Rose et al.®® did not offer any explanation of their re-
markable result; in particular, they did not associate their
length scaling parameter / very convincingly with any
physical property of the metals in question. For example,
replacing / by the Thomas-Fermi screening length led to
a number of anomalies in the universality of the scaling
procedure.%® A very interesting analysis from the point
of view of tight-binding theory was made by Spanjaard
and Desjonqueres.’’” They considered a tight-binding
model for the d band with transfer integrals scaling with
bond length R like —e 9% and a repulsive Born-
Mayer—type of interaction of the form e PR In the
second-moment approximation, the binding energy can
be written in closed form, having an attractive term pro-
portional to —V'Z e 9% and a repulsive term proportion-
al to Ze ~PX, where Z is the number of neighbors. (This is
also the motivation behind the Finnis-Sinclair®®® intera-
tomic potential for transition metals.) Spanjaard and
Desjonqueres were able to scale their binding-energy ex-
pression Eg(R) to the form E*(R*), where
R*=(R —R,)/Igp if R, is the equilibrium bond length
and Ig related to the Rose et al. scaling length via
lsp /1 =rwsg /Ry. They then found a number of interest-
ing consequences. (i) The curves of E*(R*) were in-
dependent of the ratio p /q for all values between 2 and 5,
except for deviations at large volumes. (ii) Using
p/q=2.95 the curve of E*(R*) was indistinguishable
from the Rose equation of state. (iii) The scaling pro-
cedure results in the following relation between the scal-
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ing length and the tight-binding parameters:
1
lsp=—7—.
SD ‘/pq

Although this analysis is only possible in the second-
moment approximation, it would be encouraging if the
values of Igp for a particular metal were fairly indepen-
dent of structure, since this would imply that a tight-
binding parameterization of p and ¢ might be transfer-
able. In Fig. 6, we show I from our calculated E-V
curves, as well as the values obtained form the experi-
mental bond lengths, cohesive energy, and bulk modulus.
We find that, indeed, while /g varies from metal to met-
al, in many cases it has a universal value for all structures
except the diamond cubic. This does not immediately
lead to tight-binding parameters, since only the product
pq is obtained. However, the decay of the transfer in-
tegrals ¢ can be obtained for transition metals from
quantum-mechnical arguments’®’"3%®_one finds gR,
varies between 3 and 5 (its canonical value) across the
transition series. The Born-Mayer exponent is less easy
to estimate, and it is this parameter which could be ob-
tained from Fig. 6.

We have not made any tight-binding calculations of
the structural E-V relations. Therefore we do not know
whether the usual canonical tight-binding d-band model
is capable of reproducing the LDA results for non-close-
packed structures. Having the curves in Fig. 2 available
should make the problem easier. This, at least, was the
case in Si. The original Chadi-Harrison”>"3 tight-binding

L O fcc
>
hcp
08t 8 @)
(@)

O bcc
<o
O sh
0.7 N D sc
% <> dc
0.6} + -+ Expt]

+

Q

o8 g
°+ 9
2

+
0.4f @
O

o

1 1 1

Isp (&)

®
o

o 0oOO

1 L 1 1 1

Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 6. The Spanjaard and Desjonqueres scaling parameter
Isp (A) calculated from data in Fig. 2 for each structure and for
each element. Estimates from experimental cohesive energy,
atomic volume, and bulk modulus are shown as crosses.
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model for Si gave only moderate success compared to the
LDA results for phase stability, and especially quite poor
reproduction of the stability of close-packed phases.’
Later, however, Goodwin et al .56 used the LDA curves
to actually make a fit to a scaling law for tight-binding
parameters, leading to a tight-binding model for Si that
reproduces the LDA results very well.

A particular criticism of the tight-binding method is
that the diagonal Hamiltonian matrix elements are con-
stant and do not vary with atomic volume or crystal
structure. This leads, in Si, to large errors in deformation
potentials, for example, and is probably the origin of the
failure of the Chadi-Harrison model to reproduce the
LDA results for close-packed structures. In the case of
transition metals, we can address this question rather
more easily. The canonical d-band model® results in a
Hamiltonian which is directly analogous to the first-order
LMTO Hamiltonian,*

H,;=(C—E,)8;+VAS;VA; .

Here i and j are composite site and orbital indices,
C—E, and V A are standard potential parameters, and S
is the matrix of LMTO structure constants.!**® Matrix
elements in the second term, in the usual tight-binding
model, take the Slater-Koster® form

(ddo) —60 5
(ddm) | = |+40 | XA 5 :
(dd§) —~10

in which the bandwidth is 25A, d is the bond length, and
s is the Wigner-Seitz radius. The first term C-E,, corre-
sponds to €, (see Sec. III) and is taken to be the fixed-
energy zero and center of the d band. Therefore, the
volume and structure dependence enters only in the vari-
ation of the Slater-Koster parameters. For fixed-volume
distortions, these scale like 1/d°, while the volume
dependence of A (Refs. 70 and 6) is canceled by the s° so
that the Slater-Koster integrals also account correctly for
volume dilatations in the tight-binding model.”* We
show in Table IV self-consistent LMTO-ASA d-band po-
tential parameters in vanadium for the fcc, bcc, and sim-
ple cubic structures at the reference atomic volume ().
The fact that C—E_ and V'A are nearly the same in a
wide range of coordination numbers is encouraging, but
the error involved in assuming a volume-independent
band center remains to be assessed.

We believe, therefore, that it will be possible to con-
struct tight-binding models for transition metals that will
be transferable. The tight-binding method has many ad-
vantages: it is simple and transparent, and easy to carry
out in both reciprocal and direct space.

TABLE IV. LMTO d-electron potential parameters for V in
fce, bee, and sc lattices.

C—E, VA
Structure (Ry) (Ry'’?)
fcc 0.178 0.146
bee 0.184 0.146

sC 0.203 0.171
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VIII. DISCUSSION AND CONCLUSIONS

We have presented a systematic study of the structural
energy-volume relations of first-row transition metals in
the local-density approximation. This serves as a demon-
stration of the full-potential LMTO method'”?’ as well as
presenting a useful database for the field testing of intera-
tomic potentials. The analysis has concentrated on
the connection to simpler models and non-self-consistent
calculations; particular emphasis has been placed on
the hierarchy self-consistent LDA — non-self-consistent
LDA —semiempirical tight binding. This connection has
already been made in the literature, but only on a formal
level. For example, Sutton et al.,” while presenting the
detailed justification of their tight-binding bond model
using the Harris-Foulkes stationary functional, did not
show comparisons between their bond, promotion and
repulsive energies as estimated from empirical or canoni-
cal models, and the same quantities calculated exactly in
the LDA. We have used the Rose equation of state®> %
and the Spanjaard and Desjonqueres tight-binding
analysis®’ to use our E-V database to address the question
of transferability of tight-binding parameters. We have
also argued that since the HF approximation is capable
of reproducing very accurately the self-consistent calcula-
tions of static structural properties of transition metals,
on the basis of the arguments of Sutton et al.” it should
be possible to find a tight-binding model suitable for de-
fect calculations. [This is already known by experience;
there have been numerous successful calculations of de-
fect and surface structures of transition metals (see, for
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example, Refs. 75 and 76).]

Little mention has been made of the class of empirical
classical potentials such as the embedded-atom,”’ Finnis-
Sinclair,%® and “glue”’® models, although we believe our
energy-volume curves will be of some use in constructing
such models in the future. These are all essentially of the
same form, although their derivations are quite different.
This has led to some confusion in evaluating their range
of applicability. One could extend the hierarchy given in
the previous paragraph one stage further by adding clas-
sical potentials as derivatives of the tight-binding scheme.
This is implicit in the derivation of the Finnis-Sinclair po-
tentials, although the embedded-atom method is thought
to originate directly from self-consistent density-
functional theory. The ‘“‘glue” model, on the contrary,
was constructed on a wholly ad hoc basis, but nonetheless
it has been no less successful than the other two
theories.”®’® We do not know whether these classical po-
tentials can be given a firmer footing, nor whether the re-
sults presented here will be useful in doing so.
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