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Angle-resolved photoemission and the electronic structure of Pd(111)
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A theoretical study of various models which are commonly used for the analysis of angle-resolved

photoemission is reported. For the example of the Pd(111) surface we discuss the quality and justi-

fication of these models. %e have calculated the @~I-resolved surface and bulk densities of states
and the band structure of occupied and unoccupied states. FurtheHIlore, we have calculated photo-
emission spectra within the one-step approach. These theoretical spectra reproduce the main

features and trends of the experimental data. We find that the k~I-resolved densities of states are, in

general, not reflected in the photoemission. The spectra can only be interpreted in a modified
direct-transition model where the inf1uence of the inelastic electron-electron interaction in the final

state is taken into account.

I. INTRODUCTION

Angle-resolved ultIaviolet photoelectron spectroscopy
(ARUPS) has become a common technique for investigat-
ing thc electronic structure of clean and adsorbate covered
surfaces. ' The success of this method is largely due to its
high surface sensitivity (the escape depth of elastically
photoemitted electrons is of the order of 5—10 A) and to
the fact that the experimental data can be interpreted
nearly completely in terms of a single-particle picture. In
applications to ordered adsorbate layers the method allows
a direct experimental determination of the two-
dimensional band structure E(k~~) of the adlayer induced
states. On the other hand, for clean surfaces the method
has been used not only to extract information about sur-
face states, but also for an experimental determination of
the three-dimensional bulk band structure. In contrast
to the analysis of surface features we note that those inter-
pretations in terms of a bulk band structure are not only
based on exper1mental data, but they also rely on theoret1-
cal models. Unfortunately these models depend on several
assumptions of which the justifications are still open.
Often different authors use different models for their
analysis of experimental data. For clean crystals, ARUPS
is mostly interpreted in terms of the three-step model of
photoemlsslon. In this appI oxllTl at1on the cxc1tatlon
should happen sufficiently far from the surface and
should not be affected by it. Furthermore the three pro-
cesses of (1) excitation in the bulk, (2) transport of the ex-
cited electron to the surface, and (3) transmission into the
vacuum are assumed to occur independently from each
other. Despite the success of this approach for interpret-
ing experimental spectra, a detailed understanding of its
Justiflicatlon 1s still Imsslng. The IIla1Il problem with this
approach arises because it assumes that all three com-
ponents of the electron wave vector k are good quantum
nuHlbcrs, that they RI'c known Rnd conscrvcd IQ thc cxclta-
tion process. This is certainly true for the components of
k parallel to the surface (k„,kr) because the symmetry is
coIlscrvcd 1n thcsc dlIcct1ons. However, perpendicular to

the surface the symmetry is broken. In turn the com-
ponent k, is not a good quantum number. Even if there
were an appmximate validity of the three step-model, k, is
not conserved upon the transmission of the photoelectron
into the vacuum. As a consequence, the determination of
k,—which is the needed normal component of the wave
vector inside the crystal —remains an important problem.
Several methods which allow a pure experimental deter-
mination of k, have been developed (see, e.g., Ref. 9, and
references therein). Unfortunately these methods are not
always applicable and even if they are, the determination
of k, is often not conclusive. Therefore, most published
work is based on other methods which rely on further
theoretical assumptions introduced even on top of the
three-step model. In fact, two different methods have
been used in the past. The first appmach uses a theoreti-
cal bulk band structure of a ground-state calculation.
In applications of this appmach it was found that it can
describe most experimental I'csults. However, onc
shortcoming 1s obv1ous: th1s TIlodcl g1vcs Qo CQ1issions at
energies and directions which correspond to a band gap of
the unoccupied (final) state band structure. This is in
clear contrast to the experimental results. The second ap-
proach assumes that the final-state band structure can be
described by a free-electron parabola, the energy zero of
%'hich 1s used as an a6)ustablc paraQ1ctcr. Peaks 1n thc
photoemission spectra are then interpreted in terms of
direct transitions between the initial-state band structure
(E (EF,Ez is the Fermi energy) and this parabola. The
results, i.e., the experimentally deduced initial state bands
were in surprising agreement with corresponding theoreti-
cal ones.

An RltcITlativc apploach to thc above-mentioned models
emphasizes the high surface sensitivity of ARUPS. It is
well known that transition metals have a high density of
surface states and surface resonances. ' '" As those should
contribute significantly to the photoemission and because
k, is certainly not defined for them, it might be argued
that an angle- and energy-resolved photoem1ss1on spec-
trurn should be analyzed in terms of the k~I-resolved dcn-
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sity of states at the surface. "
The most sophisticated approach for analyzing AR-

UPS, which would also account for all above-mentioned
models, if they were valid, is the one-step theory. In this
approach the energies and wave functions of the semi-
infinite crystal are calculated and the photocurrent is
evaluated from the golden-rule formula [see Eq. (3)
below]. For clean surfaces the first calculations of this
type were performed by Pendry and Titterington' and by
Jepsen. '

In this paper we address the questions of quality and
justification of the various models which have been used
for the interpretation of ARUPS on clean crystals. For
this purpose we have performed a variety of calculations
using an approach which is based on the two-dimensional
Korringa-Kohn-Rostoker (KKR) method. ' ' As a first
step we have calculated angular-resolved photoemission
spectra for the emission from a Pd(111) surface. We com-
pare these results to experimental data in order to show
that these calculations reproduce indeed the main experi-
mental results. Unfortunately and despite the fact that
those calculations are quite elaborate, the comparison of
theoretical photoemission spectra with the experimental
ones allows no deep insight into the nature of the photo-
emission process and it also gives no direct justification of
one or another of the above-mentioned models. Therefore,
we have also studied these models and we compare them
with the calculated photoemission spectra. In particular
we investigate the k~~-resolved density of occupied states
at the surface and in the bulk. We find that structures in
those local densities of states are in general not related to
the features of the corresponding photoemission spectra.

Furthermore, we study the bulk band structure at the
initial- and final-state energies. Here we find that a sim-
ple direct transition model where the initial- and final-
state bands are calculated with the same (ground-state) po-
tential, in general, cannot account for the structures in
photoemission spectra. It is shown that the effective
single-particle potential of the ground state needs to be
modified for excited electrons. In particular the inelastic
electron-electron interaction has to be taken into account
as it affects the dispersion of the bands by dehybridization
and even energy gaps can be closed. The theoretical
analysis shows that the angle-resolved photoemission can
be understood in terms of a direct transition model if the
inelastic electron-electron interaction in the final state is
taken into account. Further, this analysis gives a justifica-
tion of using a free-electron parabola for the dispersion of
the unoccupied band structure in the analysis of angular-
resolved photoelectron spectra. We note, however, that
the wave function of the excited state deviates significant-
ly from a single plane wave.

In the following section we discuss the theoretical back-
ground of our study. In particular we describe the
method for calculating the k

~

~-resolved Green's function
of a semi-infinite crystal. Section III then deals with the

comparison to experimental data and with the theoretical
investigation of models which are commonly used for the
analysis of ARUPS from a clean surface.

II. TH EGRET

This section deals with the theoretical background and
the method of our study. In particular we describe the
calculational approach to evaluate the k t~-resolved Green's
function for a semi-infinite crystal. Further, we address
the calculation of the excited-state energy bands and wave
functions. Finally, we give the parameters which enter
the actual calculations of the Pd(111) surface. Hartree
atomic units are used.

In the one-electron approximation the energy- and
angle-resolved photocurrent is given by the golden-rule
formula:

~(Ex ~ &)=
16 3 (2')'"X

I &f I
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I
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X 5(EJ E; fico) —. (1)—

Here Ey is the energy of the detected electron and 8 is the
polar angle of the detector position measured with respect
to the surface normal. Correspondingly, P is the azimu-
thal angle defined with respect to the x and y axes in the
surface plane. The operator of the photon-electron in-

teraction is H'=(I/c)A p, with A as the vector potential,

p as the momentum operator, and c the velocity of light.
Thus we neglect the spatial dependence of the electromag-
netic field inside the crystal. However, we take into ac-
count the refraction of the light at the surface and we
determine the vector potential in the crystal according to
the Fresnel formula. The sum in Eq. (1) covers all occu-
pied states. The energy of the ultraviolet light is %co. The
time-reserved final state (f I

satisfies the same boundary
conditions as a low-energy electron diffraction (LEED)
wave function. Thus it is the scattering solution for an
electron incident from the position of the detector onto
the crystal surface. As the energy of this electron is E~,
its k vector is

k„=(2E~ )
' ~ sin8 cosP,

k» =(2E~)'~ sin0sing,

k'"'=(2')' cos0 .

The index "out" is noted at the z component, because this
component is only well defined outside the sample. Be-
cause of the periodicity paralld to the surface, the wave
function

I f ) satisfies the two-dimensional Bloch
theorem. Therefore, k„and k» are well defined outside
and inside the crystal (at least modulo g where g is a
two-dimensional reciprocal-lattice vector).

If we replace the sum over occupied states and the 5
function in Eq. (1) by the imaginary part of the Green's
function, we get

&/2 3 3f J d «r'gq(Eq, k~~, r)~'(r)Im[G(E~ f, k~~, r, r ')]a'(r- )y~(E—~, k~~,
.r ) .
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Here we have also taken into account the periodicity of
the semi-infinite crystal. Therefore, k~~

—if reduced to the
first surface Brillouin zone (SBZ)—is a good quantum
number and the Green's function can be written as

In order to solve Eq. (5) we treat the crystal as a system
of 11011oveilappillg layers

d k()«E k(('r r') ~ (4)

Because the dipole operator H' does not destroy the
translational symmetry parallel to the surface, k~~ is con-
served in the excitation process and the integral of Eq. (4)
does not appear in Eq. (3). Equation (3) shows that the
energy- and angle-resolved photocurrent is not only deter-

mined by the k
~

~-resolved density of states

( —(2/n)1»[6(E, k~~, r, r )]) but the off-diagonal elements

of 6(E,k~~) enter as well.

A. Layer IIJ'reen's function

In order to calculate the Green's function of a semi-
infinite crystal, which enters Eq. (3), we start from the
Dyson equation

6(E,kii, r, r')=6 (E,kii, r, r')

+ fd "6(Ek ' ")V( ")

with

)(6(E,kii,'r ",r ')

6 ~J~(E k r r')=6'(E, k~~, r, r')

+ Jd""6'(E,k~~;-r, r" )

where Vo( r ) is the surface barrier, V, ( r ) is the surface
atomic layer, V2(r) the second atomic layer, etc. Equa-
tion (5) can be rewritten now as

6(E,k~~', , ')=6'~ ~(E, k~~, , ')

I "6'~' E,k(), r, r" VJ r"

Here V'(r ) is the potential energy of the semi-lnf1»te crys-

tal and 6 (E, k~~,'r, r '
) is the vacuum Green's function. It

is convenient to use a vacuum Green's function which is
already adapted to the two-dimensional periodicity (paral-
lel to the surface):

i~2E~ r —r' —R

60(E,k;r, r )=—gI e J ik .R.
j/~

fr —r' —R, f

(6a)

(6b)

Here Rj span a two-dimensional lattice with the unit cell
area Q. g are the corresponding two-dimensional
reciprocal-lattice vectors and kg is defined as

O'J' is called the empty layer Green's function because it
is a Green s function of a semi-infinite crystal where the
jth layer is missing. The advantage of Eqs. (9) and (10)
compared to Eq. (5) arises, if 6(E, k~~, r, r ') is needed
only for r, r ' within the range of one or another layer.
Without any restriction we consider the jth layer. Because
VJ(r ) is zero outside this range and because both Green's
unctions 6(E,k~~, r, r ') and O'J'(E, k~~,'r, r ' obey the

two-dimensional Bloch theorem, the integral in Eq. (9)
covers only one unit cell of this layer. Therefore, we need
to know 6 ~ only within this region. Because the poten-
tial energy of O'1' is constant in this region, the empty
layer Green's function can be expanded in terms of spheri-
cal Bessel and Hankel functions. As a consequence Eq.
(9) reduces to the calculation of the scattering of a free
electron at a localized potential. This is a we11-known
problem. ' Therefore, we are left with the evaluation of
Eq. (10) for r and r ' within the range of the jth layer.
This means that we have to calculate the reflection of the
Green's function 6 at the two boundaries of g~ 0 V;(r)
and of g,". .+,V;(r) and the multiple scattering between
them. We emphasize that the knowledge of O'J' outside
the empty region (i.e., the jth layer) is not needed. If we
introduce reflection operators

j—1 —1

RJ. (E,k)))=6 (E, k(~) Q VI 1 —6 (E,k~~) g V;

RJ+(E,kii)=6 (E,kii) g Vl
1 =J+1

1 —6 (Ek))) g V;
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Eq. (10) reads

G' '(E, k~~)=(1+RJ++RJ +RJ+RJ +RJ R++ )G (E k )

=[1+RJ+(1 R~—RJ+) '+(1 RJ—RJ+) 'RJ

+RJ+(1 RJ—RJ+) 'RJ +(1 RJ—RJ+) 'R~ RI+]G (E,k~~) .

(12a)

(12b)

For the convenience of shorter notation Eqs. (11) and (12)
are written in the operator formulation. We note that the
particular ordering of the reflection processes in Eq. (12b)
allows us to treat the multiple scattering exactly. ' In the
actual calculation Eq. (12b) is evaluated in a plane-wave

basis exp[i(k~~+g, ks ).r] because then the matrices of
R+, R, and G are finite in a good approximation and
the method to calculate those reflection matrices for a fin-
ite or infinite number of layers is well established in the
LEED theory. ' The same calculation is also possible for
a bulk layer. Then both reflection matrices R+ and R
describe the reflection at a semi-infinite crystal.

B. Final state

The method to calculate the final state of angular-
resolved photoemission will not be discussed in detail as
this follows closely the approach of LEED. The particu-
lar boundary condition of this wave function was noted
above. Accordingly the time-reversed final state is calcu-
lated as an incoming plane wave which is scattered at the
semi-infinite crystal. The difference compared to the
standard LEED problem arises because in photoemission
we are not interested in the asymptotic behavior of this
wave function (far away from the crystal), but we need the
wave function inside the crystal close to the nuclei. For
this calculation as well as for the evaluation of the photo-
current we use the formulation of Pendry. '

Evoc= 0

v(r-j

v„(r j

i
l

I

v„,(rj

-v

FIG. 1. Schematic figure of the effective single-particle po-
tential V,ff(r) (solid line) and the electrostatic potential V (r)
(dashed line) normal to a solid surface. V„,(r) is the exchange-
correlation potential, Vo the inner potential, and 4 the work
function.

C. Choice of parameters

We start from the electronic ground state of a Pd crys-
tal which we take from the self-consistent band-structure

I

calculation of Moruzzi et al. This potential is of the
muffin-tin form. Therefore, the splitting of the crystal
into nonoverlapping layers [see Eq. (8)] is obvious. We
use the same potential for all layers from the bulk to the
surface. The surface barrier which connects the vacuum
with the surface atomic layer is approximated by a step
function. This potential does not account properly for the
rearrangement of electronic charge at the surface, but it is
a reasonable approximation for the questions addressed in
the present study. We now discuss a modification of the
electronic ground-state potential which is important for
the calculation of the photocurrent. Figure 1 shows
schematically the potential at a crystal surface. The effec-
tive one-particle potential, V,fr(r), is built from two con-
tributions. There is the classical electrostatic potential
V~(r ) of the nuclei and the electronic charge density, and
secondly there is the quantum. -mechanical contribution,
V„,( r ) describing exchange and correlation. The height of
the potential barrier at the surface is denoted by Vo and
the work function is 4. This potential holds for the elec-
tronic ground state of the crystal, i.e., for electron states
below the Fermi level. The Green's function in Eq. (3)
should, however, describe the hole created by the photoex-
citation process. For Pd no indications of strong hole-
hole correlation effects have been observed. Therefore,
the potential entering the Green's function calculation is
modified only insignificantly: the main aspect not includ-
ed in the ground-state potential is the finite lifetime of the
hole. This can be treated in a phenomenological way by
adding a small imaginary part I to the potential. We use
a linear increase with I (E~)= —0. 1 eV and I (Ez 4eV)—
= —0.5 eV. The main consequence is a broadening of the
peaks in the photoemission spectrum: a discrete level at
the Fermi energy gets a full width at half maximum of 0.2
eV, and a level at EF—4 eV gets a width of 1 eV.

Whereas the modification of the ground-state potential
is not very important in the present study for the initial
states, it is significant for the wave function of the final
state. For unoccupied states the exchange-correlation in-
teraction is expected to decrease with increasing energy.
In the classical limit, i.e., E~ oo, it is zero and we are left
with the electrostatic potential. Furthermore, the inelastic
electron-electron interactions have to be considered. They
determine the small escape depth of the photoelectron and
thus the high surface sensitivity of ARUPS. Both effects,
the decrease of V„and the inelastic interactions, are not
independent of each other and they should be described by
replacing the exchange-correlation potential, V„,( r ), by an
energy-dependent complex nonlocal self-energy
X(E, r, r ' ). ' Since the detailed behavior of X(E,r, r '

) is
not known for a real surface, we use an approximation
which is common in LEED intensity calculations. Thus
we account for these effects by using a complex optical
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FIG. 2. Energy dependence of the real and imaginary part of
the self-energy X(E,r) [scc Eq. (13)], as determined by I EED
(Ref. 22).
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b,Xg (E)= + l.5 eV,

baal(E)= —2 eV . (14b)

The other parameters of the calculation are concerned
with the height and position of the surface barrier and
with the basis set. As mentioned above the surface barrier
is approximated by a step function. Its position is just in
front of the muffin-tin potentials of the surface layer. For
the electronic ground state its height V0 (see Fig 1) is.
determined from the calculated Fermi energy (6.8 eV)
above muffin-tin zero and from the experimentally
determined work function [@=5.6 eV for Pd(111) (Ref.
23)]. This adds up to V0 ——12.4 CV. Concerning the
plane-wave basis set it was sufficient to take between. 19
and 22 reciprocal lattice vectors into account (the actual
number depends on the value and direction of k ~~). In the
angular momentum representation we include spherical
waves up to 1=4.

The vector potential is calculated from the Fresnel for-
mulas. %'e use the value inside the crystal. The dielectric

potential:

X(E,r )= V„,( r ) +hX(E)8(z —z0) .

8 is the step functIon which is zero in the vacuum region
(z +z0) and unIty otherwtsc. Thc order Qf magnitude of
&&(E) has been estimated from a LEED analysis for the
clean and adsorbate covcrcd Pd(100) surface. Approxi-
IIlatcly this 1csult shQuld hQld fQr other Pd surfaces as

Figure 2 shows the result of this analysis. Between
Ez+ 30 eV and Ez+ 150 eV the real part of b.X(E) is ap-
pmximately constant, b.X+ (E)=3+ 1 eV. The imaginary
part is estimated as b,XI(E)=—4 eV. For the HCI
(fko =21.2 cV) pllotocII11881on thc ctlc1'gy of 'tlM p11otocxclt-
ed electron is just in the middle between the Fermi energy
and the lower energy of this LEED analysis.

Therefore, we have chosen

~ ~ ~

I [ I [ [ I I l I l I I I
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Energy below EF (ey)

FIG. 3. Theoretical angle-resolved photoemission spectra
(solid line) and experimental results of Dahlback et al. (Ref. 25)
(dashed line) for the Pd(111) surface. The geometry is shown in
the inset.

constant at IrIr0=21.2 eV is taken fmm an experimental
analysis which gave EI ——0.71 and E2 ——1.45.

III. RESULTS

The most sophisticated approach for analyzing ARUPS
is the one-step theory [see Eq. (3)]. Unfortunately this ap-

proach is quite elaborate and the comparison of those cal-
culated photoemission spectra with the experiIDental re-

sults allows no direct insight into the nature of the photo-
emission process. In th1s section we d1scuss the calcula-
tions of photoemission, i.e., final-state, initial-state
Green's function, and photoemission spectra for the clean
Pd(111) surface. In Sec. III A we compare these calculat-
ed spectra to experimental results. In Secs. III 8 and III C
we then analyze the initial-state Green's function and
final-state band structure in order to elucidate the validity
of various models which are commonly used for the
analysis of ARUPS.

A. One-step approach of photoeHlission

We start our study of various models for the interpreta-
tion of ARUPS with a discussion of theoretical photo-
emission spectra which are calculated within the one-step
approach [i.e., Eq. (3)]. Figure 3 shows the calculated re-
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suits for the Pd(111) surface in comparison to the experi-
mental data of Dahlback and co-workers. The light is
Unpolarized and 1ncidcnt Rt 8 polar angle 8~=60. Thc
azimuth is in the [211] direction. Thus the light beam
lies in the (110) plane. Also the emitted electrons are
detected in this plane.

The agreement between theory and experiment is gen-
erally good, both for the energies of structures and for the
intensities. In part1culaf thc characteristic change 1Q thc
spectra from 8= + 20 to 8= —20' is weH reproduced by
the theory. We therefore conclude that our description of
the Pd crystal and its surface accounts well for the elec-
tronic structure of the initial and final states and the opti-
cal transition matrix elements.

Nevertheless, wc also scc some dcviat1ons bctwccn thc
theoretical and experimental spectra. There are several
reasons which could cause these differences. At first we
note that the spin-orbit coupling is not included in the cal-
culations. This approximation affects the energies by up
to 0.4 eV and it also changes the hybridization of wave
functions and therefore t4e relative intensities in the
photoemission spectra. Another uncertainty is the treat-
ment of the incident light. In our approach the electric
field is assumed to be constant over the region where the
optical excitation takes place. We note that a better
description is not known for a realistic surface, but a dif-
ferent approach will affect the relative intensities of peaks.
Finally, we emphasize the Uncertainty in energies and in-
tensities due to the self-energy X(E,r ). We recall that the

correct behavior of this function is not known for a realis-
tic s«ace. The choice used in the calculations of Fig. 3
(scc Sec II) is o»y a «asonabie fi~st approximation. In
order to test tile influence of the self-energy on calculated
photoemission spectra we show in Figs. 4 and 5 two other
choices of X(E,r). In Fig. 4 we neglect the change in the
real part of the potential, i.e., we set b,Xll ——0. And in the
calculatlolls of Flg. 5 wc llavc used EX@= +3 cV, wlllc11
is the value determined for the higher energies of LEED.
Comparing these results and those of Fig. 3 we see a clear
dependence of the peak energies and intensities on b,Xz.
The comparison with the experimental spectra, contained
in each of the figures, does not favor the one or the other
choice. The value of KXz ——+ 1.5 eV is only a reasonable
compromise. Calculations with different choices of AXI
from —1 to —4 eV show differences of the same order of
magnitude. The value of b,XI ———2 eV turned out to be
the best compromise.

Despite these uncertainties we conclude that t]he overall
agreement bctwccIl cxpcriIIlcnt Rnd theory 1s good. There-
fore, we can now perform a detailed analysis of the calcu-
lated photoemission spcctI'8 11l order to test thc various
models which are commonly used for the interpretation of
cxpcf1IDcntal spcctI'R.

B. k ~~-rcsolvcd «icINltg of states

One model for the interpretation of ARUPS emphasizes
that the wave-vector component k, of the photoelectron is
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FKJ. 6. k~~-resolved local densities of states per atom and eV
for Pd(111). Only states which are symmetric with respect to
the (110) plane are considered. The three top rows show results
for the bulk layer, the second and the first surface layer. The
bottom row displays the corresponding angle-resolved photo-
emission spectra for s-polarized light. The geometry is shown in
the inset of Fig. 3.

not conserved in the photoemission process. Further it is
assumed that a photoemission spectrum can be interpreted
as an image of the kII-resolved density of states (DOS).
This model accounts well for the emission from intrinsic
surface states and from adsorbate induced states. For
clean transition metals a significant high density of sur-
face states has been reported. ' '" Therefore, it might be
expected that the k II-resolved density of these states at the
surface dominates the photoemission. ' Such a model has
also been used for the interpretation of ARUPS from
GaAs'

In order to determine the quality of this approach we
compare theoretical angle-resolved photoemission spectra
for Pd(111) with the corresponding DOS. We emphasize
that both are calculated from the same Green's func-
tion G (E, k

~
~,
.r, r ' ). We use the same geometry as in

Fig. 3. Thus kI~ points in the [211]direction, i.e., it lies
in the (110) plane which is a mirror plane of the semi-
infinite crystal. As a consequence the wave functions are
either symmetric or antisymmetric with respect to this
plane, The dipole-selection rules then determine that s-
polarized light can only excite electrons from antisym-
metric initial states and p-polarized light excites only from
symmetric initial states. Therefore, we compare the
photoemission spectra and DOS for symmetric and an-

tisymmetric states separately. The results are shown in
Figs. 6 and 7. For convenience of a clearer discussion we
have introduced a little modification compared to the cal-
culations of Fig. 3: We have neglected the energy depen-
dence of the hole lifetime and use 1 = —0. 1 eV for the
whole valence band. This gives sharper structures and
thus allows a clearer comparison.

The upper parts of Figs. 6 and 7 display the local densi-
ties of states for a layer in the bulk and for the first and
second layers at the surface. These DOS are identical for
both directions (k

~ ~

and —k
~

~) because of time reversal
symmetry T.he lower part of these figures shows the cor-
responding photoemission spectra for +0 and —0. The
spectra are clearly different for both directions of emis-
sion. Similarities between certain spectra and the layer
DOS turn out to be incidental. A closer inspection of
those cases shows that the positions of the maxima do not
coincide exactly. As both results are obtained from the
same Green's function we can conclude that the k~I-
resolved density of states cannot explain the angle-
resolved photoemission.

Before continuing the discussion of other models, we
like to compare our results to those of the self-consistent
pseudo-potential calculation of Louie. ' At first we note
that for the bulk both calculations are self-consistent and
they agree in fact to within an accuracy of +0.2 eV. For
the surface our calculation is not self-consistent.
Nevertheless, the agreement between our results for sur-
face states or resonances and surface DOS with those of
Louie is of the same quality as that of the bulk layer

C. Direct transition model

In the direct transition model it is assumed that k, is a
good quantum number and is conserved in the optical ex-
citation. A photoemission spectrum is then interpreted in
terms of direct transitions between the bulk energy bands
E(k). Because kII is determined directly by the experi-
mental geometry [see Eq. (2)], the initial- and final-state
bands should be considered as a function of k, . When the
final-state bands are shifted down by the photon energy,
the cross points with the occupied bands determine the en-
ergies of possible transitions. Several calculations of
angle-resolved photoemission spectra have been performed
in this model, i.e., the initial and final states are calculated
for the same bulk ground-state potential and the transition
matrix elements are evaluated between Bloch states. '

Obviously the surface is completely neglected and also a
complex self-energy has not been considered so far.

To test this model we have calculated the initial- and
final-state band structure by using the ground-state poten-
tial. Figure 8 displays these results E(k, ) for k~I corre-
sponding to 8=20' [see Eq. (2)]. The comparison with the
photoemission spectrum shows that there is no correlation
between the direct transitions and the photoemission spec-
trum. The final-state band structure in Fig. 8 (dashed
line) includes already the real part of the self-energy,
AX+ ——1.5 eV. This gives rise to a constant shift of these
bands. If this shift were neglected, the discrepancy be-
tween the direct transition model and the photoemission
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FIG. 7. Same ss Fig. 6, but for states which are miisymmetric vnth respect to the (110)plane. The photoemission spectra are for
p-poJMIzed 11ght.

spectra would be even larger. Tlius tllc illitlsl- slid fiiial-
state band structure of Fig. 8 sic cslcillafcd foi' tile real
potential, i.e., EXI——0. In contrast, in the photoemission
spectrum a complex self-energy is taken into account (see
Sec. II} at least in a crude first approximation. We show
below that if the influence of tile imaginary part of
X(Z, r ) is included in the band-structure calculation, then
the direct transition modd gives a good description of
peak pos1t1ons 1n ARUPS.

Figure 9 shows the influence of a complex self-energy
on the band structure. At first (left part of Fig. 9) we con-
sider the ground-state potential, thus setting
X(E,r )= V„,(r ). We note that in general also bands with
complex wave vector are possible even for a real poten-
tial. For bulk calculations these bands have no physical
meaning as their wave functions are not normalizable.
But their relevance arises for the surface calculations
where they should be included for the representation of lo-
calized wave functions. Therefore, also bands with com-
plex k~ arc 1ncludcd. Owing to thc pcriod1CIty paI'allcl to
the surface no localization is possible with respect to the

x,y coordinates, and kI~ has to be real. We show results

for k!!=0(relevant to normal emission) and only bands
with wave functions which remain unchanged under sym-
metry operations of the surface. Other wave functions

11Rvc 8 11odc 8't 'tllc surfRcc llorlllal snd tllils csllllot carry
current normal to the surface. In the left band structure
of Fig. 9 we see a s-p —derived band (labeled A) with a
dispersion similar to that of a free electron. At about 18
eV this band is crossed by a flat f band leading to a small
hybridization gap. Below 8 eV at L we see the top of 8
6.5-eV gap and above 22 eV at I" there is another gap,
The size of these gaps reflects the significance of the in-
teraction of electrons with the lattice. Thc broken lines
give the bands with complex k, . These bands are doubly
degenerate. Only states with ! Imk, ! &0.3 A ' are con-
sidered. When we take into account the complex self-
energy of Eqs. (13) and (14), the band structure is changed
significantly (right part of Fig. 9}.The main modifications
arc:

(i) the degeneracy of the complex bands with +Imk, is
I'cmovcd»

(ii) the real bands get a nonzero imaginary part of k, ;
(iii) the gaps in the band structure are closed.
Thus the s-p —derived band (A) shows a dispersion prac-

tically identical to a free-electron parabola and its ima-
ginary part is nearly constant. The flat f band has disap-
peared and the two bands (8 and C), which emerged from-
it (and several other complex bands of the real potential)
have got an Imkg at least t%'1cc as large as that of band A.
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FIG. 8. Direct transition model for two angles of emission.

Top: band structure of the real potential, i.e., AXI ——0, for initial

(solid line) and final states (dashed line). The latter are shifted
down in energy by ~=21.2 eV. Bottom: Calculated photo-
emission spectra for unpolarized light. The geometry is shown

in the inset of Fig. 3. The distance between two layers parallel
to the surface is 0=2.27 A.

The above discussion shows that the influence of a com-
plex self-energy on the band structure can indeed be signi-
ficant. Based on an experimental analysis of ARUPS on
aluminum, this has been also shown recently by Levinson,
Greuter, and Plummer. Therefore, we include the com-
plex self-energy for a further test of the direct transition
model. This is displayed in Fig. 10. The band structure
E ( k, ) in these figures is calculated at a wave vector k

~ ~

according to the photoemission parameters [see Eq. (2)],
and the unoccupied states are shifted down by the photon
energy. In the middle row we show the complex band
structure which is calculated with the same X(E,r) as the
photoemission. The top row shows the bands for the real
potential (XXI——0) for comparison. Only certain bands
need to be considered: Final-state bands with a sign of
Imk, such that the wave functions increase into the solid
are not meaningful and states which decay too fast, i.e,
with Imk, &0.3 A ' are neglected as well. Further the
group velocity of the final states has to point towards the
vacuum region. We only discuss results for s-polarized
light, but those for p-polarized light show qualitatively the
same behavior. Figure I0 shows that the direct transition
model works when the infiuence of X(E,r) is included.
We also not that only one final-state band, namely that la-
beled as A, contributes to the photoemission. A compar-
ison with the real potential band structure shows that this
band is derived from the nearly free-electron, or s-p band.
This band couples best to the plane wave in the vacuum
measured by the detector. Transitions into other bands

~SR=0, h, 2;1=0 6,zR = l,5 ev,. 6 zl = —2 ev

0,5

Re k,

0,5 1 0

)mk,

Wove ~ector (~/d)

0.5

Re k,

0 0,5

, Im k,

FIG. 9. Complex band structure for Pd along I 1.. Only states relevant for normal emission in ARUPS are considered [no node in
the (111) direction]. Left: Calculated for the self-consistent ground-state potential of Ref. 20. Right: Calculated for a modified
ground-state potential [see Eqs. (13) and (14)]. The distance between two layers parallel to the surface is d=2.27 A.
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FIG. 10. Direct transition model for ARUPS from Pd(111). Top row: Band structure of initial (solid lines) and final states
(dashed llncs). Thc latter arc sh1ftcd down 1n cnclgy by 21.2 CV. Calculated for thc I'cal potcntlal, 1.c.~ AXI =O. Middle row."Same
as top, but final states are calculated for a modified potential [see Eqs. (13) and (14)]. Bottom row: Calculated photoemission spec-
tra. The geometry is shown in the inset of Fig. 3. The distance between two layers parallel to the surface is d=2.27 A.

but A are found to be negligible. We emphasize however
that the free-electron-like dispersion of band A does not
imply a free-electron wave function. The wave function is
significantly more complicated than a single plane wave.
Similar results for Cu have been reported by Jepsen. '

The energy or wave-vector uncertainty due to the corn-
plex energy has only little effect with respect to the accu-
racy of energies predicted by the direct transition model.
In various calculations for s- and p-polarized»ght and
several polar and azimuthal angles the discrepancy be-
tween the energies of direct transitions and of peaks in the
photoemission was always less than 0.2 eV.

In this paper we reported KKR Green's-function calcu-
lations for the electronic structure of a semi-infinite Pd
crystal. The results agree with those of the self-consistent
pseudopotential calculations for a seven-layer Pd slab of
Louie. ' Further we have calculated the energy- and

igle-resolved photoemission using the one-step theory of

Pendry. The comparison with experimental data shows
that the theory accounts for all main features and trends.

We have then concentrated on a discussion of various
models commonly used for the analysis of ARUPS. Our
approach is based on the fact that the one-step theory of
photoemission should be able to confirm the one or the
other model. The detailed analysis shows that the main
structures in a photoemission spectrum can be understood
in terms of a modified direct transition model where the
influence of a complex self-energy, X(E,r}, is included in
the calculation of the unoccupied bands. We have only
considered a crude approximation of X(E,r) and there is
some hope that this might be sufficient in many applica-
tloils. Fol' a def ailed ai1alysls of ARUPS, ol at, lowei'
final-state energies, a better treatment might be important.
No such calculation has been attempted.
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