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Abstract
The integrable structure of the one-dimensional Hubbard model is based
on Shastry’s R-matrix and the Yangian of a centrally extended sl(2|2)

superalgebra. Alcaraz and Bariev have shown that the model admits an
integrable deformation whose R-matrix has recently been found. This R-matrix
is of trigonometric type and here we derive its underlying exceptional quantum
affine algebra. We also show how the algebra reduces to the above-mentioned
Yangian and to the conventional quantum affine sl(2|2) algebra in two special
limits.

PACS numbers: 02.30.Ik, 02.20.Uw, 71.10.Fd
Mathematics Subject Classification: 17B37, 17B67, 81U15

1. Introduction and overview

The algebraic structures underlying integrable models have been intensively studied in the past
few years and a variety of approaches have been formulated in order to systematically derive
solutions of the Yang–Baxter equation [1, 2]. The solutions of the Yang–Baxter equation, also
known as R-matrices, characterize the integrability of the model and a large number of solutions
have been obtained through the quantum group framework making use of deformations of
universal enveloping algebras. One of the most prominent applications of quantum groups,
or more specifically quantum deformations Uq[g] in the case considered here, lies in the fact
that if g is finite dimensional, we can associate an operator R ∈ End(A ⊗ A) satisfying the
quantum Yang–Baxter equation with any representation A of Uq[g]. This fact was realized
independently by Drinfel’d and Jimbo [3] who showed how to associate a family of Hopf
algebras with any symmetrizable Kac–Moody algebra. Nevertheless, it is worth remarking
here that the defining relations of the quantum deformed algebra Uq[g] first appeared in the
work of Kulish and Reshetikhin on the quantum sine-Gordon model [4]. The definitions of
Uq[g] can be extended to arbitrary Kac–Moody algebras, in particular, to the affine Lie (super)
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algebra ĝ associated with g, and the distinction between a Lie (super) algebra and its affine
extension has remarkable consequences.

It is well known that the Yang–Baxter equation has an intimate connection with Artin’s
braid group [5] when an R-matrix does not depend on spectral parameters [6]. The constant
solutions of the Yang–Baxter equation are usually, though not always, prevenient from the
non-affine Lie algebras g and the introduction of the spectral parameter can be performed in
two principal ways. The first one is the so-called Baxterization method developed by Jones
[7]. This method makes use of the algebraic structures related to Artin’s braid group as a
starting point to derive spectral parameter-dependent solutions of the Yang–Baxter equation.
The second method is based on the affine Lie algebras ĝ, more specifically the quantum affine
algebras Uq[̂g] or the Yangian algebras Y[g] as a special case. For the latter, the parameter
of the evaluation representation lifting the representations of g to ĝ becomes the spectral
parameter of the R-matrix.

Within the quantum group framework, the R-matrix describing scattering on the string
worldsheet in the context of the AdS/CFT correspondence (see [8] for reviews) can be
obtained from a central extension of sl(2|2) [9–11] and its Yangian algebra Y [12] (see also
[13, 14]). Curiously, the spectral parameter-dependent R-matrix in the fundamental
representation already follows from the non-affine algebra [9]. This property however does
not carry over to higher representations where the Yangian most conveniently determines the
R-matrix [15].

Interestingly enough, the fundamental R-matrix associated with the centrally extended
sl(2|2) superalgebra turns out to be equivalent [16] to Shastry’s R-matrix [17] responsible
for the integrable structure of the one-dimensional Hubbard model. The Hubbard model (see
[18]) is the simplest generalization beyond the band theory description of metals and it has
found applications in a variety of contexts. It can be used to describe the Mott metal–insulator
transition [19], π electrons in the benzene molecule [20] as well as some higher loop planar
anomalous dimensions of local operators in N = 4 super Yang–Mills theory [21]. Now it is
clear that the one-dimensional Hubbard model takes a solitary place among the spin chain
models, not just phenomenologically, but also algebraically. This can be observed in the Lieb–
Wu equations [19] which have a peculiar form which is unlike those for conventional spin
chains based on a generic Lie (super) algebra g. Moreover, Shastry’s R-matrix is non-standard
in the sense that it depends non-trivially on two spectral parameters, rather than on their simple
combination. On the algebraic level, these unique features can be traced to the exceptional
nature of psl(2|2) which is the only simple Lie superalgebra with a non-trivial threefold central
extension [22]. Although the existence of such a large center allows more freedom in setting
up the integrable structure, and it is thus ultimately responsible for the peculiar features of
this model, these non-standard features have left scientists puzzled for a long time. Even now
the algebraic structures underlying the integrability of the one-dimensional Hubbard model
are far less developed than those for conventional spin chains, cf [18] and [14]. Merely the
classical limit of the algebra and its classical r-matrix is reasonably well understood [23, 24].

The one-dimensional Hubbard Hamiltonian is also a paradigm in condensed matter
physics, and together with the supersymmetric t-J model [25], it is the fundamental block
for the study of non-perturbative effects in strongly correlated electron systems due to the
fact that they are integrable. In [26], Alcaraz and Bariev proposed a Bethe ansatz solvable
Hamiltonian interpolating between the Hubbard and the supersymmetric t-J models. Besides
the hopping term (kinetic energy), this model contains not only a Coulomb interaction as in the
case of the Hubbard model, but also a spin–spin interaction resembling the t-J Hamiltonian.
It turns out that this Alcaraz–Bariev model can be viewed as a quantum deformation of the
Hubbard model [27] in much the same way that the Heisenberg XXZ model is a quantum
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Figure 1. Dynkin diagram for sl(2|2).

deformation of the XXX model. More precisely, the R-matrix of the Alcaraz–Bariev model is
based on a quantum deformation Q of the extended sl(2|2) algebra3. Although the R-matrix
is not necessary in order to obtain the exact spectrum of the model, this knowledge still offers
the possibility of studying thermodynamic properties in an efficient way through the quantum
transfer matrix method [29].

Many of the same peculiar features of the Hubbard model apply to the Alcaraz–Bariev
model and the associated quantum deformation Q of the centrally extended sl(2|2) algebra
[27]. However, with the caveat that quantum deformation makes some structures substantially
more complicated to handle. Except for its classical limit [30], which already provides valuable
insights into the expected structures, it is fair to say that our knowledge of the complete
underlying algebra is still limited. With that in mind, the scenario described above thus asks
for a formulation of the quantum affine algebra Q̂ based on the extended sl(2|2). Even
though quantum deformations introduce additional complexity, they also bring about some
new symmetries into the framework as compared to Yangians which are rather singular limits
thereof. This may eventually help us to uncover the full structure of the Hopf algebra underlying
integrability in the AdS/CFT correspondence.

This paper is organized as follows. We start in section 2 with a review of the quantum
deformed extended sl(2|2) algebra Q and its associated integrable structures. Next we use a
special property of its affine Dynkin diagram to derive the affine extension Q̂0 in section 3. For
the reader’s convenience, we summarize the algebraic relations of Q̂0 in section 4. We go on
by establishing the fundamental representation in section 5 which requires refining the algebra
Q̂0 to Q̂. In the remainder of the paper, we study two interesting limits of the algebra. One of
them is the conventional quantum affine algebra Uq[ŝl(2|2)] described in section 6, followed
by the extended sl(2|2) Yangian Y discussed in section 7. Section 8 is left for conclusions and
final remarks.

2. Quantum deformation of extended sl(2|2)

In the following, we shall briefly review the quantum deformed extended sl(2|2) algebra Q
introduced in [27].

Cartan matrix. We shall consider the sl(2|2) Dynkin diagram in figure 1 such that the
associated Cartan matrix A and normalization matrix D read

A =
⎛⎝+2 −1 0

+1 0 −1
0 −1 +2

⎞⎠ , D = diag(+1,−1,−1). (2.1)

With the help of D, we obtain the following symmetric matrix which frequently appears in the
defining relations:

DA =
⎛⎝+2 −1 0

−1 0 +1
0 +1 −2

⎞⎠ . (2.2)

3 The algebra has also been discussed in the Faddeev–Zamolodchikov framework in [28].
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Generators. The algebra is conveniently presented in terms of Chevalley–Serre generators.
The generators are the raising and lowering generators E j and F j as well as the exponentiated
Cartan generators K j = qH j with j = 1, 2, 3. All of them are even generators of our
superalgebra, except for the pair of odd generators E2 and F2, in accordance with the Dynkin
diagram in figure 1. In addition, there are two central charges U and V = qC. The algebra has
two parameters: the deformation parameter q and the coupling parameter g. A third parameter
α could be absorbed into a redefinition of the generators, and thus does not count as a parameter
of the algebra. Nevertheless, it is convenient to keep it unspecified.

Algebra. The Chevalley–Serre generators satisfy the standard quantum deformed
commutation relations ( j, k = 1, 2, 3) 4,

K jEk = qDAjk EkK j, FkK j = qDAjk K jFk, [E j, Fk} = Dj jδ jk

K j − K−1
j

q − q−1
. (2.3)

In addition, the following Serre relations hold ( j = 1, 3):

[E1, E3] = {E2, E2} = [E j, [E j, E2]] − (q − 2 + q−1)E jE2E j = 0

[F1, F3] = {F2, F2} = [F j, [F j, F2]] − (q − 2 + q−1)F jF2F j = 0. (2.4)

Center. The algebra defined by the above relations has three central elements,

C1 = K1K2
2K3

C2 = {[E2, E1], [E2, E3]} − (q − 2 + q−1)E2E1E3E2

C3 = {[F2, F1], [F2, F3]} − (q − 2 + q−1)F2F1F3F2. (2.5)

The latter two are usually projected out by the Serre relations C2 = C3 = 0 of the superalgebra
sl(2|2). Furthermore, in psl(2|2) the former is also projected out by the condition C1 = 1.
Here we keep them all, and thus our algebra is based on a central extension of psl(2|2) or
sl(2|2). As shown in [11, 27], it turns out that we obtain a very interesting algebra if we impose
one constraint on the central elements as follows:

C1 = V−2, C2 = gα(1 − U2V2), C3 = gα−1(V−2 − U−2) . (2.6)

Coalgebra. All the above relations are compatible with the following coalgebra structure.
The coproduct for all X ∈ {K j, U, V} is group-like, �(X) = X ⊗ X, while for E j and F j, it
takes the standard form but with a twist induced by the central element U,

�(E j) = E j ⊗ 1 + K−1
j U+δ j,2 ⊗ E j, �(F j) = F j ⊗ K j + U−δ j,2 ⊗ F j. (2.7)

The twist is based on the gl(1) derivation in gl(2|2) which applies only to the fermionic
generators E2 and F2.

Fundamental representation. The algebra has a family of representations acting on the
(2|2)-dimensional graded space V. The raising and lowering generators are represented by the
following (2|2) × (2|2) supermatrices:

E1 �

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ E2 �

⎛⎜⎜⎝
0 0 0 b
0 0 0 0
0 a 0 0
0 0 0 0

⎞⎟⎟⎠ E3 �

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎠
4 Our K2, K3 are inverted compared to usual conventions to make the symmetric matrix DA appear in place of the
Cartan matrix A; this makes D j j appear in [E j, Fk}.
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Figure 2. Dynkin diagram for ŝl(2|2).

F1 �

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ F2 �

⎛⎜⎜⎝
0 0 0 0
0 0 d 0
0 0 0 0
c 0 0 0

⎞⎟⎟⎠ F3 �

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ . (2.8)

We shall not present here the supermatrix representations for K j since they easily follow
from the algebra relations (2.3). The central elements U and V are represented by uniform
multiplication with U and V, respectively. In their turn, these central elements are related to
the coefficients a, b, c and d through the constraints

ad = q1/2V − q−1/2V −1

q − q−1
, bc = q−1/2V − q1/2V −1

q − q−1
,

ab = gα(1 − U2V 2), cd = gα−1(V −2 − U−2). (2.9)

The above constraints imply the following relation between U and V :

g2(V −2 − U−2)(1 − U2V 2) = (V − qV −1)(V − q−1V −1)

(q − q−1)2
, (2.10)

while one of the parameters a, b, c, d can be chosen freely. Altogether, we thus have a two-
parameter family of representations.

Fundamental R-matrix. In [27], the fundamental R-matrix for the above-described algebra
has been explicitly derived. The R-matrix is a linear map R : V ⊗ V → V ⊗ V which is a
function of the variables parametrizing each one of the spaces V. The form of the R-matrix
was obtained by demanding that the cocommutativity condition

R�(X) = �̃(X)R (2.11)

hold for X ∈ {E j, F j, K j, U, V}. Here �̃(X) stands for the opposite coproduct defined through
the permutation map

�̃(X) = P�(X)P, (2.12)

where P denotes the graded permutation operator. Relation (2.11) has proved to completely
and consistently determine the fundamental R-matrix up to an overall scalar factor. The explicit
form of R is lengthy and shall not be reproduced here since it was given in [27].

3. Derivation of the affine extension

Now we shall consider the affine extension of the algebra defined above. The affine extension
for the Dynkin diagram in figure 1 is given in figure 2. The associated Cartan matrix A for
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ŝl(2|2) and the symmetric Cartan matrix DA with D = diag(+1,−1,−1,−1) now read

A =

⎛⎜⎜⎝
+2 −1 0 −1
+1 0 −1 0

0 −1 +2 −1
+1 0 −1 0

⎞⎟⎟⎠ , DA =

⎛⎜⎜⎝
+2 −1 0 −1
−1 0 +1 0

0 +1 −2 +1
−1 0 +1 0

⎞⎟⎟⎠ . (3.1)

The crucial observation here is that the new fourth node of the Dynkin diagram is completely
analogous to the second one. Consequently, the second and fourth rows and columns of the
matrix DA coincide. In practice, this means that the associated Chevalley–Serre generators
should obey analogous commutation relations. This observation will help us tremendously in
completing this unusual affine algebra.

Doubling the fermionic node. We introduce the new set of generators {E4, F4, K4} and, as
explained above, they should act as copies of the generators {E2, F2, K2}. In their turn, the
coupling constant g, the normalization α as well as the central elements U and V always appear
in conjunction with the generators {E2, F2, K2}. Thus, it makes sense to double those as well
in such a way that we relabel {g, α, U, V} as {g2, α2, U2, V2}, and introduce new constants and
central generators {g4, α4, U4, V4}.

The algebra relations and coproducts for the new generators {E4, F4, K4} will be direct
copies of the ones for {E2, F2, K2} discussed in section 2. This almost guarantees that we
get a consistent algebra and coalgebra structure. Now we merely have to take care of the
relations of the quantum affine algebra ŝl(2|2) mixing the two sets of generators, namely the
anticommutators {E2, F4}, {E4, F2}, {E2, E4} and {F2, F4}.
Compatibility. The anticommutators {E2, F4} and {E4, F2} commute with the Cartan
subalgebra and thus they should belong to it as well. Fortunately, the coproducts for the
generators involved are completely fixed at this stage and the compatibility between them
imposes constraints on the algebra. In particular, we have

�(E2) = E2 ⊗ 1 + K−1
2 U2 ⊗ E2, �(F4) = F4 ⊗ K4 + U−1

4 ⊗ F4, (3.2)

and thus

{�(E2),�(F4)} = {E2, F4} ⊗ K4 + K−1
2 U2U−1

4 ⊗ {E2, F4}. (3.3)

This suggests that {E2, F4} should be composed by a linear combination of the group-like
elements K4 and K−1

2 U2U−1
4 . Under these considerations, we can use an ansatz and easily

obtain a solution for the compatibility condition {�(E2),�(F4)} = �({E2, F4}). By doing so,
we find

{E2, F4} = −g̃α̃−1
(
K4 − U−1

4 U2K−1
2

)
(3.4)

and similarly

{E4, F2} = +g̃α̃+1
(
K2 − U−1

2 U4K−1
4

)
, (3.5)

with two new constants g̃ and α̃. In the standard quantum affine algebra ŝl(2|2), the rhs of
(3.4) and (3.5) vanishes and this is one of the main differences of our unusual affine algebra.
It is worth remarking here that similar relations, though not equivalent, also appeared in [31].

The anticommutators {E2, E4} and {F2, F4} do not commute with the Cartan subalgebra
and considerations on the coalgebra structure lead us to conclude that they must be trivial.
Hence,

{E2, E4} = {F2, F4} = 0. (3.6)

The question remains whether the above relations, in particular the mixed ones (3.4)
and (3.5), define a consistent algebra: as we shall see later, the algebra admits at least
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one representation. Using the coproduct, one can define further representations as tensor
products. Hence, the relations consistently define an algebra with a non-trivial representation
theory5.

4. Hopf algebra structure

We shall call the above-derived quantum affine algebra Q̂0 and in what follows, we summarize
its defining relations. Some of the constants will be refined later to give a more special
algebra Q̂.

Algebra. The algebra Q̂0 consists of a deformed extension of the quantum affine algebra
ŝl(2|2). It is generated by the corresponding Chevalley–Serre generators K j, E j, F j (i, j =
1, 2, 3, 4) and central elements Uk and Vk (k = 2, 4). It is also useful to recall here the
symmetric matrix DA and the normalization matrix D associated with the Cartan matrix A for
ŝl(2|2):

DA =

⎛⎜⎜⎝
+2 −1 0 −1
−1 0 +1 0

0 +1 −2 +1
−1 0 +1 0

⎞⎟⎟⎠ , D = diag(+1,−1,−1,−1). (4.1)

The algebra has a set of group-like elements X, Y ∈ {1, K j, Uk, Vk} which are invertible
and commutative,

XX−1 = 1, XY = YX. (4.2)

The Chevalley–Serre raising and lowering generators E j and F j satisfy the usual relations,
except for the two mixed anticommutators given in (3.4) and (3.5),

KiE jK
−1
i = qDAi j E j, KiF jK

−1
i = q−DAi j F j,

{E2, F4} = −g̃α̃−1
(
K4 − U2U−1

4 K−1
2

)
, {E4, F2} = g̃α̃

(
K2 − U4U−1

2 K−1
4

)
,

[E j, F j} = Dj j

K j − K−1
j

q − q−1
, [Ei, F j} = 0 for i �= j, i + j �= 6. (4.3)

In addition to relations (4.3), the algebra Q̂0 also satisfies the following Serre relations
( j = 1, 3):

[E1, E3] = E2E2 = E4E4 = {E2, E4} = 0

[F1, F3] = F2F2 = F4F4 = {F2, F4} = 0

[E j, [E j, Ek]] − (q − 2 + q−1)E jEkE j = 0

[F j, [F j, Fk]] − (q − 2 + q−1)F jFkF j = 0. (4.4)

The quartic Serre relations of the superalgebra ŝl(2|2) are deformed by the central elements
Uk and Vk as follows:

{[E1, Ek], [E3, Ek]} − (q − 2 + q−1)EkE1E3Ek = gkαk
(
1 − V2

kU2
k

){
[F1, Fk], [F3, Fk]

} − (q − 2 + q−1)FkF1F3Fk = gkα
−1
k

(
V−2

k − U−2
k

)
, (4.5)

and the remaining central elements of the superalgebra ŝl(2|2) are then related to Vk through

K−1
1 K−2

k K−1
3 = V2

k . (4.6)

In summary, the above quantum affine algebra Q̂0 has five parameters: q, gk, g̃ and α̃. The two
normalizations αk merely originate from our choice of basis.
5 It is conceivable though that the above relations imply further simple relations, such as U2U4 = 1 and V2V4 = 1
which hold on the representation in section 5.
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Algebra automorphism. The quantum affine algebra Q̂0 has been constructed by making
use of the similarity between nodes 2 and 4 of the Dynkin diagram in figure 2. In fact this
similarity leads to an algebra automorphism flipping nodes 2 and 4 if the coupling constants
are related by

g2 = g4, α4 = ζ 2α̃2α2, (4.7)

where ζ 4 = 1. Thus, the following map is an algebra automorphism:

E2 → ζ α̃−1E4, E4 → −ζ α̃E2,

F2 → ζ−1α̃F4, F4 → −ζ−1α̃−1F2,

U2 → U4, U4 → U2,

K2 → K4, K4 → K2. (4.8)

Coalgebra, antipode and counit. For the group-like elements X ∈ {1, K j, Uk, Vk}
( j = 1, 2, 3, 4 and k = 2, 4), the coproduct �, the antipode S and the counit ε are defined as
usual,

�(X) = X ⊗ X, S(X) = X−1, ε(X) = 1, (4.9)

while for the remaining Chevalley–Serre generators, they are deformed by the central elements
Uk as follows ( j = 1, 2, 3, 4):

�(E j) = E j ⊗ 1 + K−1
j U+δ j,2

2 U+δ j,4

4 ⊗ E j, S(E j) = −U−δ j,2

2 U−δ j,4

4 K jE j, ε(E j) = 0,

�(F j) = F j ⊗ K j + U−δ j,2

2 U−δ j,4

4 ⊗ F j, S(F j) = −U+δ j,2

2 U+δ j,4

4 F jK
−1
j , ε(F j) = 0.

(4.10)

The above relations characterize our quantum affine algebra Q̂0 as a Hopf algebra. We have
verified explicitly the compatibility between the algebra and the coalgebra (as well as the
antipode relations). In other words, �(XY ) = �(X )�(Y ) is compatible with all algebra
relations. In particular, the unusual algebra relations (2.5), (2.6), (3.4) and (3.5) were derived
in order to obtain a consistent Hopf algebra structure. In the following section, we shall discuss
the algebra’s fundamental representation, upon which a large class of finite-dimensional
representations can be constructed by means of the coalgebra.

5. Fundamental representation

Now we would like to lift the four-dimensional fundamental representation given in (2.8) to
a representation of the affine algebra. The representation theory of affine algebras has been
discussed in [32]. In particular, it was shown in [33] that any finite-dimensional irreducible
representation of ĝ extended from g is isomorphic to an evaluation representation. In the
quantum case, there also exists an evaluation homomorphism ev : Uq[g] → Uq[̂g] defined by
Jimbo in [34, 2] which reduces to the usual evaluation in the classical limit q → 1. Moreover,
when g ∼= sl, it was shown in [35] that any extension of a representation from Uq[g] to Uq[̂g]
on the same space is isomorphic to an evaluation representation.

Due to the non-standard nature of our extended quantum affine algebra Q̂0, it is not clear
if this whole scenario of evaluation representations applies to our case. Nevertheless, we find
here that the set of generators {K4, E4, F4, U4, V4} satisfying (4.3) can be obtained as copies
of the generators {K2, E2, F2, U2, V2} with modified coefficients.
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Doubling ansatz. As before, we assume the generators E4 and F4 to act respectively as copies
of E2 and F2 but with different coefficients. Hence,

Ek �

⎛⎜⎜⎝
0 0 0 bk

0 0 0 0
0 ak 0 0
0 0 0 0

⎞⎟⎟⎠ and Fk �

⎛⎜⎜⎝
0 0 0 0
0 0 dk 0
0 0 0 0
ck 0 0 0

⎞⎟⎟⎠ for k = 2, 4. (5.1)

By doing so, we obtain two sets of four constraints from (2.9). Furthermore, the mixed relations
(3.4) and (3.5) yield another set of four constraints, namely

a2d4 = g̃α̃−1
(
q1/2U2U

−1
4 V2 − q−1/2V −1

4

)
, b2c4 = g̃α̃−1

(
q−1/2U2U

−1
4 V2 − q1/2V −1

4

)
,

c2b4 = g̃α̃
(
q1/2V −1

2 − q−1/2U−1
2 U4V4

)
, d2a4 = g̃α̃

(
q−1/2V −1

2 − q1/2U−1
2 U4V4

)
. (5.2)

In total, we have 12 constraints for 12 parameters (ak, bk, ck, dk,Uk,Vk). Thus, the solution
of the constraints completely fixes all the parameters and leaves just a discrete set of four-
dimensional representations.

Constrained parameters. The seven constants gk, αk, g̃, α̃, q can be chosen in a special way
in order to solve two of the constraints. One suitable choice6 expressed in terms of the four
parameters g, q, α, α̃ reads7

g2 = g4 = g, α2 = α4α̃
−2 = α, g̃2 = g2

1 − g2(q − q−1)2
. (5.3)

In fact there is a convenient replacement for g in terms of a new parameter q̃ which also allows
us to parametrize the quadratic relation for g̃ as

g = q̃ − q̃−1

2i(q − q−1)
, g̃ = i(q̃ − q̃−1)

(q − q−1)(q̃ + q̃−1)
. (5.4)

We shall be mainly concerned with the above choice of parameters in this paper. Thus, we
shall denote the algebra Q̂0 obeying constraints (5.3) by Q̂g,q or Q̂ for short. It depends on
two parameters, g and q, and it is expressed using two normalization constants α and α̃.
Nevertheless, we shall also use the original parameters gk, αk, g̃, α̃, q with the above relations
implied.

Two-parameter family. The solution of the remaining constraints for the fundamental
representation leaves us with

U4 = ±U−1
2 V4 = ±V −1

2 . (5.5)

Relations (2.10) between the Uk and the Vk then automatically coincide. Furthermore, one of
the coefficients ak, bk, ck, dk can be chosen freely. Altogether, this amounts to a two-parameter
family of representations which is thus a unique lift of the fundamental representation to the
quantum affine algebra.

It is interesting to observe here that the representations of E2 and F2 are respectively
related to the representations of E4 and F4 by the simple map given in (5.5). In fact, this map
also appears when considering the transpose representation.

6 Another choice that will not be discussed here is g̃2 = −1/(q − q−1)2 and α4 = −α2α̃
2(g2/g4)±1.

7 It would be interesting to see what implications these relations might have on the algebra relations defined in
section 4 as they change the representation theory substantially.
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The x±-parametrization. Above we have obtained constraints for the coefficients
ak, bk, ck, dk (k = 2, 4) characterizing the fundamental representation of the quantum affine
algebra Q̂. In particular, instead of solving constraints (2.9) in favor of Uk and Vk, as was done
in (2.10), we could also have solved them in favor of the coefficients ak, bk, ck, dk. In that case,
we would be left with the relation (k = 2, 4)

(akdk − qbkck)(akdk − q−1bkck) = 1. (5.6)

A convenient novel parametrization of this constraint uses a pair of variables x+ and x−

related by q−1ζ (x+) = qζ (x−) with

ζ (x) = −x + 1/x + ξ + 1/ξ

ξ − 1/ξ
, ξ = −ig̃(q − q−1). (5.7)

Note that in order to simplify our results, we consider a convention for x± different from that
used in [27]. More precisely, the convention used here can be obtained from that of [27] by
performing the transformation x±

BK = gg̃−1(x±
here + ξ ).8

The ak, bk, ck, dk can now be parametrized in terms of the variables x±
k and γk as follows:

ak = √
gγk, bk =

√
gαk

γk

x−
k − x+

k

x−
k

,

ck =
√

gγk

αk

i
√

qg̃

Vkg
(
x+

k + ξ
) , dk =

√
g

γk

Vkg̃
√

q
(
x+

k − x−
k

)
ig(ξx+

k + 1)
, (5.8)

while Uk and Vk read

U2
k = q−1 x+

k + ξ

x−
k + ξ

= q
x+

k

x−
k

ξx−
k + 1

ξx+
k + 1

, V 2
k = q−1 ξx+

k + 1

ξx−
k + 1

= q
x+

k

x−
k

x−
k + ξ

x+
k + ξ

. (5.9)

Now the mixed constraints (5.2) impose a relation between (x±
2 , γ2) and (x±

4 , γ4) which
is then solved by

x±
2 = x±, γ2 = γ ,

x±
4 = 1

x± , γ4 = iα̃γ

x+ , (5.10)

where the normalization coefficients α2 and α4 are related by (5.3).
A convenient multiplicative evaluation parameter z for our quantum affine algebra turns

out to be

z = q−1ζ (x+) = qζ (x−). (5.11)

Cocommutativity. The R-matrix of the quantum deformed Hubbard model derived in [27]
is in fact invariant under the full quantum affine algebra Q̂ defined by relations (4.1)–(4.10).
More precisely, the cocommutativity relation

R�(X4) = �̃(X4)R (5.12)

is also fulfilled for X4 ∈ {K4, E4, F4, U4, V4} in addition to those in (2.11).
In order to see that, it is convenient to work with the parametrization in terms of the

variables x± and γ . Interesting enough, relations (5.10) and (5.1) state that the fundamental
representation of X4 can be obtained respectively as copies of X2 ∈ {K2, E2, F2, U2, V2} under
the mapping

x± 	→ 1

x± , γ 	→ iα̃γ

x+ , α 	→ αα̃2, α̃ 	→ − 1

α̃
. (5.13)

8 Fortunately, the R-matrix in [27] is only mildly affected by this affine transformation: A, D, G, H, K, L do not
change; in B, E substitute s(x) = 1/x; only C, F require more care.
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Now considering the fundamental R-matrix given in [27],9 a straightforward computation
reveals that R is invariant under this map up to an overall scalar factor. More precisely,
R 	→ fR with some irrelevant scalar factor f = f (x±

1 , x±
2 ). The cocommutativity condition

for X2 in (2.11), R�(X2) = �̃(X2)R, then directly maps to that for X4 (5.12). This proves
the invariance of R under the full quantum affine algebra Q̂.

6. Conventional quantum affine limit

In this section, we aim at investigating the quantum affine algebra Q̂ and its fundamental
representation in the limit g → 0. We shall show that it reduces to the standard Uq[ŝl(2|2)]
algebra up to a Reshetikhin twist [36] and a gauge transformation [6]. This limit corresponds
to the case ‘T(conv)’ in the analysis of the classical algebra [30].

Algebra. The affine algebra Q̂ differs significantly from the standard Uq[ŝl(2|2)] by the fact
that the anticommutators {E2, F4} and {E4, F2} do not vanish. Nevertheless, one can readily
see from (4.3) and (5.3) that the above-mentioned anticommutators vanish when g → 0, as
well as the central elements deforming the quartic Serre relations (4.5). Moreover, in the limit
g → 0, relations (4.3)–(4.10) almost reproduce the standard products, coproducts, antipodes
and counits of the quantum affine algebra Uq[ŝl(2|2)].

Merely the Hopf algebra structure described in (4.10) requires a more elaborate analysis.
The coproducts �(Ek) and �(Fk) with k = 2, 4 appear twisted by the central elements Uk,

�(Ek) = Ek ⊗ 1 + K−1
k U+δ j,2

2 U+δk,4

4 ⊗ Ek

�(Fk) = Fk ⊗ Kk + U−δ j,2

2 U−δk,4

4 ⊗ Fk. (6.1)

We recover the standard Hopf algebra structure of the Uq[ŝl(2|2)] by the following similarity
transformation of the coproduct10:

�̄(X) = (U2 ⊗ 1)−1⊗B2 (U4 ⊗ 1)−1⊗B4�(X)(U2 ⊗ 1)1⊗B2 (U4 ⊗ 1)1⊗B4 , (6.2)

where Bk are two continuous automorphisms of Uq[ŝl(2|2)] defined by

[Bk, E j] = +δ j,kE j, [Bk, K j] = 0, [Bk, F j] = −δ j,kF j. (6.3)

This clearly removes the central elements Uk from the above coproducts (6.1).
The above transformation can be viewed as composed from a Reshetikhin twist [36] and

a change of basis. The operator

F = (1 ⊗ U2)
−B2⊗1/2(U2 ⊗ 1)1⊗B2/2(1 ⊗ U4)

−B4⊗1/2(U4 ⊗ 1)1⊗B4/2 (6.4)

satisfies the relations F12F21 = 1 and F12F13F23 = F23F13F12. As demonstrated in [36],
�(F )(X ) and R(F ) also form a Hopf algebra with

�(F )(X) = F−1�(X)F , R(F ) = FRF . (6.5)

The coproduct �(F ) is already equivalent to the standard coproduct �̄. This can be seen

upon conjugating the basis X′ = U−B2/2
2 U−B4/2

4 XUB2/2
2 UB4/2

4 which effectively conjugates the
coproduct by

(1 ⊗ U2)
B2⊗1/2(U2 ⊗ 1)1⊗B2/2(1 ⊗ U4)

B4⊗1/2(U4 ⊗ 1)1⊗B4/2. (6.6)

9 We use a convention for x± which differs slightly from the one used in [27], as explained above.
10 We define exponents with coproducts as (U2 ⊗ 1)1⊗B2 = exp((log U2) ⊗ B2).
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Fundamental representation. To understand the limit g → 0, it is also convenient to consider
the fundamental representation of Q̂ given in terms of the variables x± and γ . Since the variables
x+ and x− are constrained by relation (5.11), we first need to introduce an appropriate expansion
for them in the proposed limit. Direct inspection of relation (5.11) leads us to the following
expansion:

x± = i

g

q±1z − 1

q − q−1
+ O(g) and γ = γ̄√

g
, (6.7)

where γ̄ emerges from a rescaling of γ required to obtain finite results.
Taking into account expansion (6.7), in the limit g → 0, we find that the coefficients ak,

bk, ck and dk defined in (5.8) assume the following values:

a2 = γ̄ , b2 = 0, a4 = 0, b4 = αα̃
z

γ̄
,

c2 = 0, d2 = 1

γ̄
, c4 = − 1

αα̃

γ̄

z
, d4 = 0. (6.8)

Up to some factors, these define the canonical representations of Ek, Fk in Uq[ŝl(2|2)]. In their
turn, the central element eigenvalues Uk and Vk are then given by

U2 = U2
2 = U−2

4 = 1 − zq

q − z
, V 2 = V 2

2 = V −2
4 = q. (6.9)

Moreover, we find

K4 � K−1
1 K−1

2 K−1
3 , E4 � αα̃z[[F3, F2], F1], F4 � −α−1α̃−1z−1[[E3, E2], E1], (6.10)

which corresponds to the standard evaluation representation of the quantum affine algebra
Uq[ŝl(2|2)] up to a conventional rescaling of the generators E4 and F4. This observation
supports z as the evaluation parameter of the quantum affine algebra Q̂.

Fundamental R-matrix. Next we would like to obtain the limit of the fundamental R-matrix.
In order to proceed, we need to apply the Reshetikhin twist (6.4), (6.5) to the fundamental
R-matrix. On one hand, we have to note that the automorphisms B2 and B4 have no fundamental
representation. On the other hand, we are saved by the fact that they appear only in a
combination which is represented by the fermion number operator

B = B2 − B4 � diag(0, 0, 1, 1) (6.11)

due to the relation U2 � U−1
4 . Hence, the operator F in (6.4) becomes11

F � U−B/2
2 ⊗ U+B/2

1 . (6.12)

The matrix elements of R(F ) still contain the factors γ̄i remaining from the normalization
between the bosonic/fermionic states, cf (6.8), as well as some factors of Ui. These can be
removed by a spectral parameter-dependent gauge transformation [6]

R̄ = (G1 ⊗ G2)R(F )(G1 ⊗ G2)
−1 with Gi = UB/2

i γ̄ −B
i . (6.13)

Altogether, the transformation reads

R̄ = [
(
√

U1/U2/γ1)
B ⊗ (

√
U1U2/γ2)

B]R[(γ1/
√

U1U2)
B ⊗ (γ2

√
U1/U2)

B
]
. (6.14)

Although we shall not present the explicit form of the R-matrix, we find that R̄ equals the
R-matrix of the Perk–Schultz model Uq[ŝl(2|2)] [37] up to an overall factor. Moreover, the
matrix R̄i j depends only on the ratio zi/z j and as expected, it satisfies the Yang–Baxter equation
in the usual trigonometric form

R̄12(z1/z2)R̄13(z1/z3)R̄23(z2/z3) = R̄23(z2/z3)R̄13(z1/z3)R̄12(z1/z2). (6.15)

11 In the following, Ui denotes the eigenvalue of U2 � U−1
4 on site i.
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7. Yangian limit

In the previous sections, we have found that the (trigonometric) R-matrix of [27] has a
quantum affine symmetry. On the other hand, it is known that the undeformed (rational)
R-matrix enjoys Yangian symmetry [12]. Since the quantum deformed fundamental R-matrix
(in x± parametrization) trivially reduces to the undeformed one by taking the deformation
parameter q to 1, one of the natural questions is how the quantum affine symmetry is related
to the Yangian symmetry in this limit. This is not only an important consistency check of
our quantum affine algebra but also it might serve the possibility of investigating the Yangian
structure in the AdS/CFT correspondence from the viewpoint of the quantum affine algebra
Q̂. This limit corresponds to the case ‘R(full)’ in the analysis of the classical algebra [30].
However, in comparison with the limit of the R-matrix itself, the Yangian limit of the quantum
affine algebra is not straightforward. For instance, if we take the parameter q to 1 naively, the
quantum affine algebra does not reduce to the Yangian algebra but just gives the undeformed
universal enveloping algebra. Since the Yangian algebra is generated by the level-0 (non-affine)
and (at least one) level-1 generators, we need to find a non-trivial limit to obtain the Yangian
algebra.

In this section, we show that the AdS/CFT Yangian symmetries [12] are actually
reproduced from our quantum affine algebra Q̂. The limit is analogous to the Yangian limit
of the quantum affine gl(n) outlined in appendix A. There is however a subtlety related to an
extra generator of the Yangian Y , which was called secret symmetry in [38].

Fundamental representation. The difficulty of the Yangian limit in our case is that the affine
generators E4 and F4 in (5.1) do not obey the standard evaluation representation. The evaluation
representation is helpful to find the algebraic identification between the quantum affine algebra
and Yangian. However, we have found that it is possible to take the q → 1 limit. In order
to see this, we would like to start with investigating the analytic properties of the parameters
a2, b2, c2, d2 and a4, b4, c4, d4. As an important fact, the two sets of parameters are related as
follows:

MT4 =
(

z−1 0
0 1

)
T2

(
w−1 0

0 wz

)
with M =

(
0 αα̃

−α−1α̃−1 0

)
, Tk =

(
ak −bk

−ck dk

)
,

(7.1)

where the evaluation parameter z (cf (5.11) in x± variables) and w are given by

z = VU − V −1U−1

V −1U − VU−1
, w = g̃

g

q1/2U − q−1/2U−1

VU − V −1U−1
= g

g̃

V −1U − VU−1

q−1/2U − q1/2U−1
. (7.2)

The limit q → 1 can be taken in different ways. For the Yangian limit, we assume U to
remain finite and arbitrary, as expected from [9]. Relation (2.10) between U and V implies
that V → 1. More precisely, as q = 1 + h for h → 0,

V = 1 + hC + O(h2) with C2 = 1
4 − g2(U − U−1)2. (7.3)

The latter constraint between the central charges U and C agrees with [9]. The parameters x±

remain finite and they obey the constraint12

(x+ − x−)(1 − 1/x+x−) = ig−1. (7.4)

Using these, the central charge eigenvalues take the familiar form

U2 = x+

x− , C = 1

2

1 + 1/x+x−

1 − 1/x+x− . (7.5)

12 Even though our x± parametrization is slightly different from [27], it has the same q → 1 limit.
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It is easy to see that the parameters z and w in (7.2) can be expanded as

z = 1 − 2higu + O(h2), w = 1 + hig(u − v) + O(h2). (7.6)

The rational evaluation parameters u [12] and v are given by

u = ig−1C
U + U−1

U − U−1
= 1

2
(x+ + x−)(1 + 1/x+x−)

v = ig−1 1

2

U + U−1

U − U−1
= 1

2
(x+ + x−)(1 − 1/x+x−). (7.7)

Note that −αα̃(c4, d4) → (a2, b2) and α−1α̃−1(a4, b4) → (c2, d2) and hence in the limit
q → 1, we find −αα̃F4 � E321 and α−1α̃−1E4 � F321 with

E321 = [[E3, E2], E1], F321 = [[F3, F2], F1]. (7.8)

That is, the limits of F4 and E4 are not independent and the generators should be replaced by
the rescaled differences (αα̃F4 +E321)/(q−1) and (α−1α̃−1E4 −F321)/(q−1). Consequently,
what matters in the Yangian limit is

lim
q→1

MT4 − T2

ig(q − 1)
=

(
u 0
0 −u

)
T2 + T2

(
v 0
0 −v

)
= NT2, (7.9)

where we have introduced the following matrix:

N =
(

2u −iα(1 + U2)

−iα−1(1 + U−2) −2u

)
. (7.10)

Algebra. Relation (7.9) with matrices (7.10) leads us to the following identification between
the quantum affine algebra Q̂ and its associated Yangian algebra:

lim
q→1

−αα̃F4 − E321

ig(q − 1)
= 2Ê321 + iα(1 + U2)F2

lim
q→1

α−1α̃−1E4 − F321

ig(q − 1)
= −2̂F321 + iα−1(1 + U−2)E2, (7.11)

with the Yangian evaluation representation

Ê321 � uE321, F̂321 � uF321. (7.12)

Since the generator E321 (F321) is the highest (lowest) weight in the adjoint of psl(2|2), it is
sufficient to obtain the other Yangian generators. In fact, we have listed all level-1 generators
in appendix B. In comparison with the standard case (A.11), the left-hand sides of (7.11) have
the same structure but on the right-hand sides, we need some additional terms.

The point is that these relations (7.11) are actually compatible with the coalgebra structure.
In other words, the limit of the coproduct on the left-hand side of (7.11) induces the Yangian
coproducts on the right-hand side,

lim
q→1

−αα̃�F4 − �E321

ig(q − 1)
= (2Ê321 + iα(1 + U2)F2 − ig−1kE321) ⊗ 1

+ U ⊗ (2Ê321 + iα(1 + U2)F2)

− ig−1[−E321 ⊗ (H3 + H2 + H1) + (H3 + H2 + H1)U ⊗ E321

+ E32 ⊗ E1 − E1U ⊗ E32 − E3U ⊗ E21 + E21 ⊗ E3]

= �(2Ê321 + iα(1 + U2)F2),

14
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lim
q→1

α−1α̃−1�E4 − �F321

ig(q − 1)
= (−2̂F321 + iα−1(1 + U−2)E2) ⊗ 1

+ U−1 ⊗ (−2̂F321 + iα−1(1 + U−2)E2 + ig−1kF321)

+ ig−1[F321 ⊗ (H3 + H2 + H1) − (H3 + H2 + H1)U
−1 ⊗ F321

+ F32 ⊗ F1 − F1U−1 ⊗ F32 − F3U−1 ⊗ F21 + F21 ⊗ F3]

= �(−2̂F321 + iα−1(1 + U−2)E2). (7.13)

Here k is the affine central element given by k = H1 + H2 + H3 + H4 whose eigenvalue
k vanishes on evaluation representations. These coproducts coincide with the results in [12]
where k was projected out, cf appendix B for a translation of the generator notation. Note that
the additional terms iα(1 + U2)F2 and iα−1(1 + U−2)E2 on the right-hand side of (7.13) are
required to cancel certain contributions from the higher central charges in the original Yangian
symmetries �Ê321 and �F̂321 [12].

The deeper meaning of the additional terms in (7.11) is not clear to us. It is nevertheless
interesting to interpret them as a contribution of an extra Yangian generator B̂ called secret
symmetry [38]. The fundamental representation of this generator is given by

B̂ � v

2
diag(1, 1,−1,−1) (7.14)

with the parameter v in (7.7). The relevant two of its commutators read [24]

[B̂, E321] = −Ê321 − iα(1 + U2)F2, [B̂, F321] = F̂321 − iα−1(1 + U−2)E2. (7.15)

These are indeed compatible with their coproducts; therefore, the equivalent replacement in
(7.13) is valid as well. Using this secret symmetry, we can rewrite the Yangian limit (7.11) as

lim
q→1

−αα̃F4 − E321

ig(q − 1)
= Ê321 − [B̂, E321], lim

q→1

α−1α̃−1E4 − F321

ig(q − 1)
= −F̂321 − [B̂, F321].

(7.16)

8. Conclusions

In this work, we have derived a novel quantum affine algebra Q̂ based on a central extension
of the sl(2|2) Lie superalgebra. As a matter of fact, this algebra emerges naturally from
compatibility requirements with the R-matrix of the deformed Hubbard chain [27] also known
as the Alcaraz–Bariev model [26]. In this sense, the formulation of this algebra sheds some new
light into a more complete understanding of the integrable structure underlying the Hubbard
model and its deformed counterpart.

The construction of the quantum affine algebra Q̂ was immensely guided by the Dynkin
diagram of the ŝl(2|2) algebra. More precisely, the similarity between the fermionic nodes
2 and 4 of the Dynkin diagram given in figure 2 suggests for instance that the generators
associated with node 4 should act as copies of those associated with node 2. This observation
has played a fundamental role not only for the establishment of the commutation relations
(4.3), but also for the construction of the fundamental representation.

The quantum affine algebra Q̂ possesses fundamentally a deformation parameter q
originated from the deformation of the universal enveloping algebra of sl(2|2), as well as
a coupling parameter g introduced by the central extensions. Here we have also shown that the
algebra Q̂ reduces to the standard quantum affine algebraUq[ŝl(2|2)] in the limit g → 0, which
unveils a relation between the Alcaraz–Bariev model and the Perk–Schultz model Uq[ŝl(2|2)]
in this particular limit. We have furthermore investigated the limit q → 1 where we have found
that the affine algebra Q̂ reproduces the Yangian Y of a centrally extended sl(2|2) algebra.
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This Yangian Y corresponds to the same algebra underlying Shastry’s R-matrix which also
plays an important role for integrability in the context of the AdS/CFT correspondence. In this
way, as quantum affine algebras offer a more uniform description in comparison to Yangians,
this limit procedure might help us address integrability in the AdS/CFT correspondence.

In the analysis of the classical algebra performed in [30], the conventional quantum affine
and Yangian limits reduce respectively to the cases ‘T(conv)’ and ‘R(full)’. However, in the
classical limit, a whole cascade of algebras has been presented in [30] which makes us wonder
if all the cases indeed possess a quantum counterpart.

Furthermore, it would be worthwhile to investigate higher representations of the algebra,
cf [39], which are likely to be direct analogs of the undeformed case studied in [16, 40, 15].
Finally, the formulation of Drinfel’d’s second realization for this algebra would constitute a
valuable step toward the universal R-matrix, cf [41].
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Appendix A. Yangian limit of quantum affine gl(n)

As we have mentioned in the beginning of section 7, the Yangian limit is not so much trivial.
Therefore, it is convenient to review the generic example of the gl(n) case (n � 3) [42]. That
is the limit from Uq[ĝl(n)] to Y[gl(n)], which enables us to make the logic clear.

The generators of the Lie algebra gl(n) are given by Ji
j with i, j = 1, . . . , n and they

satisfy the standard commutation relations[
Ji

j, Jk
l
] = δk

j J
i
l − δi

lJ
j
k. (A.1)

In order to describe its quantum deformation Uq[gl(n)], it is convenient to introduce the
corresponding Chevalley–Serre simple roots Ei, Fi, Hi with i, j = 1, . . . , n − 1, which are
related as

Ei = Ji
i+1, Fi = Ji+1

i, Hi = Ji
i − Ji+1

i+1 . (A.2)

Their commutation relations are given by

[Hi, E j] = +Ai jE j, [Hi, F j] = −Ai jF j, [Ei, F j] = δi j
qHi − q−Hi

q − q−1
(A.3)

with the Cartan matrix A defined by

Ai j =
⎧⎨⎩

+2 for i = j
−1 for |i − j| = 1
0 for |i − j| � 2.

(A.4)

Furthermore, the following Serre relations hold for |i − j| = 1:

[Ei, [Ei, E j]] = (q − 2 + q−1)EiE jEi

[Fi, [Fi, F j]] = (q − 2 + q−1)FiF jFi (A.5)
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and for |i − j| � 2

[Ei, E j] = [Fi, F j] = 0. (A.6)

The affine extension Uq[ĝl(n)] to Uq[gl(n)] is obtained by adding the affine generators
En, Fn, Hn and extending the Cartan matrix to n × n. The relations are almost the same
as the above but the indices in (A.3)–(A.6) are considered modulo n. It is noted that the
summation of the Cartan generators H1 + · · · + Hn = k turns out to be the affine central
element.

The quantum affine algebra has a Hopf algebra structure. For the Chevalley–Serre
generators, the coproducts, antipodes and counits are given by

�(Ei) = Ei ⊗ 1 + q−Hi ⊗ Ei, S(Ei) = −qHi Ei, ε(Ei) = 0,

�(Fi) = Fi ⊗ qHi + 1 ⊗ Fi, S(Fi) = −Fiq
−Hi , ε(Fi) = 0,

�(Hi) = Hi ⊗ 1 + 1 ⊗ Hi, S(Hi) = −Hi, ε(Hi) = 0. (A.7)

One of the important representations of the algebra is the evaluation representation, in
which the affine generators are expressed as

En � z−1qJ1
1+Jn

n Fn−1···1, Fn � zq−J1
1−Jn

n En−1···1, Hn � −Hn−1 − · · · − H1, (A.8)

with the evaluation parameter z. Here we have used the following abbreviations:

En−1···1 = [[[En−1, En−2]q, . . .]q, E1]q, Fn−1···1 = [[[Fn−1, Fn−2]q−1 , . . .]q−1 , F1]q−1 , (A.9)

where the q-deformed commutators are defined by

[A, B]q±1 = AB − q±1BA. (A.10)

Note that the affine central element k vanishes in this representation.
The Yangian limit is taken by the following identification:

lim
q→1

Fn − q−J1
1−Jn

n En−1···1
q − 1

= Ên−1···1, lim
q→1

qJ1
1+Jn

n Fn−1···1 − En

q − 1
= F̂n−1···1 . (A.11)

The left-hand sides of the above relations are the q → 1 limit of the quantum affine generators
and the right-hand sides are the level-1 Yangian generators. This identification (A.11) has two
good properties. The first one is the consistency with the Yangian evaluation representation,

Ên−1···1 � uEn−1···1, F̂n−1···1 � uFn−1···1, (A.12)

where the Yangian evaluation parameter u is related to the quantum one in (A.8) as z = qu and
the book-keeping notations (A.9) are replaced by q = 1. The second one is the compatibility
with the coproducts. In other words, the following Yangian coproducts are automatically
derived from the quantum affine algebra from relations (A.11) up to the affine central
element k,

�Ên−1···1 = (Ên−1···1 + kEn−1···1) ⊗ 1 + 1 ⊗ Ên−1···1

+ 2

[
En−1···1 ⊗ Jn

n + J1
1 ⊗ En−1···1 +

n−2∑
k=1

En−1···k+1 ⊗ Ek···1

]
�F̂n−1···1 = F̂n−1···1 ⊗ 1 + 1 ⊗ (̂Fn−1···1 + kFn−1···1)

+ 2

[
Fn−1···1 ⊗ J1

1 + Jn
n ⊗ Fn−1···1 −

n−2∑
k=1

F1···k ⊗ Fk+1···n−1

]
. (A.13)

In fact, the defining relations of the Yangian algebra Y[gl(n)] stem from those of the quantum
affine algebra Uq[ĝl(n)] via identification (A.11).
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Appendix B. Yangian limits for all generators

In this appendix, we would like to list the Yangian limits for all the generators in the quantum
affine algebra Q for completeness. In order to do that, it is convenient to introduce some
notations Qaα = εabQα

b and Saα = εαβSa
β (a, α = 1, 2) for the fermionic generators [9, 16].

These generators are defined by the Chevalley–Serre basis as

Q11 = E32, Q12 = E2, Q21 = −E321, Q22 = −E21,

S11 = −F21, S12 = −F321, S21 = F2, S22 = F32. (B.1)

We also denote another set of fermionic generators which include the affine generators E4, F4

as Qα
a, Sa

α . They are given by replacing E2, F2 with E4, F4 in (B.1), respectively,

Q11 = E34, Q12 = E4, Q21 = −E341, Q22 = −E41,

S11 = −F41, S12 = −F341, S21 = F4, S22 = F34. (B.2)

This notation allows us to express the Yangian limits in synthesized forms. The Yangian limits
for the fermionic generators are now given by

lim
q→1

αα̃Saα − Qaα

ig(q − 1)
= 2Q̂aα − iα(1 + U2)Saα = Q̂aα − [B̂, Qaα]

lim
q→1

α−1α̃−1Qaα + Saα

ig(q − 1)
= 2̂Saα + iα−1(1 + U−2)Qaα = Ŝaα + [B̂, Saα]. (B.3)

The other Yangian limits for the bosonic generators, which are defined by

R11 = −F1, R12 = R21 = − 1
2 H1, R22 = E1,

L11 = −E3, L12 = L21 = − 1
2 H3, L22 = F3,

C = − 1
2 H1 − H2 − 1

2 H3, P = {[E1, E2], [E3, E2]}, K = {[F1, F2], [F3, F2]},
(B.4)

are inductively obtained by computing suitable commutation relations from (B.3) as

lim
q→1

αα̃{Saα, Qbβ} − εabεαβP

2ig(q − 1)
= εabεαβ P̂ + i

2
α(1 + U2)(εαβRab − εabLαβ + εabεαβC)

lim
q→1

{Qaα, Sbβ} + αα̃εabεαβK

2αα̃ig(q − 1)
= εabεαβK̂ + i

2
α−1(1 + U−2)(εαβRab − εabLαβ − εabεαβC)

lim
q→1

α−1α̃−1{Qaα, Qbβ} + αα̃{Saα, Sbβ}
4ig(q − 1)

= −εαβR̂ab + εabL̂αβ − εabεαβĈ − i

2
gεabεαβ (U2 − U−2) . (B.5)

The above limits (B.3) and (B.5) give the same coproducts presented by [12, 38] and the
symmetries of the undeformed R-matrix [9].
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