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Recent developments in the determination of the planar S matrix of N ¼ 4 super Yang-Mills are

closely related to its Yangian symmetry. Here we provide evidence for a yet unobserved additional

symmetry: the Yangian level-one helicity operator.
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Introduction.—The S matrix is an object of central im-
portance to quantum field theories. Unfortunately, it is
extremely challenging to compute it because we typically
have to rely on perturbative methods. Symmetries are
extremely helpful in constraining the result. A couple of
years ago it was noticed that loop scattering amplitudes
in maximally supersymmetric Yang-Mills (N ¼ 4 SYM)
theory in the planar limit are simpler than one might expect
[1,2] based on the known symmetries such as superconfor-
mal symmetry. This simplicity was traced to a hidden
superconformal symmetry of dual Feynman graphs [3–5].
These observations have sparked enormous progress in
the determination of the planar S matrix in this model,
see [6,7] for reviews.

The appearance of dual symmetries is well understood
from the point of view of the AdS/CFT dual string theory
where ordinary and dual symmetries are exchanged by a
T-self-duality [8–10]. The closure of these two sets of
symmetries forms an infinite-dimensional algebra [11]
known from the context of planar integrability [12].
Indeed, it was shown that the planar tree-level S matrix in
N ¼ 4 SYM is invariant under theYangian Yðpsuð2; 2j4ÞÞ
[13] for the superconformal algebra psuð2; 2j4Þ.

In this Letter we find evidence for an additional sym-
metry of planar scattering amplitudes. It is not part of
the above Yangian, but it fits nicely into its structure: It is

the level-one recurrence ~B of the uð1Þ outer automorphism
B of psuð2; 2j4Þ. The automorphism, sometimes called
‘‘bonus symmetry’’ [14], counts the helicity of particle
states. We will refer to it as the hypercharge. It is clear
that helicity is generally not conserved in scattering am-
plitudes, but here we will argue that the level-one hyper-

charge ~B is indeed a proper symmetry.
An analogous observation has been made in the context

of the world sheet S matrix [15] for planar N ¼ 4 SYM.
This S matrix is based on an extension of psuð2j2Þ which
also possesses a uð1Þ automorphism. It was shown to be
exactly symmetric under the Yangian level-one automor-
phism [16,17], sometimes called ‘‘secret symmetry,’’ while
there seem to be obstacles for the other levels.

In the following, we shall present evidence in favor of

the Yangian level-one hypercharge ~B being a symmetry of

the planar S matrix: as a first check we show compatibility
with the cyclic nature of color-ordered amplitudes. Next
we confirm explicitly that tree-level MHV (maximally
helicity violating) amplitudes are invariant. We will also
check that the Grassmannian formula for leading singular-
ities [18] respects our symmetry, and hence symmetry
extends to all tree amplitudes at least. Finally, we show
that our symmetry becomes exact in a distributional sense
when appropriate correction terms are added.
Setup.—In the planar limit the S matrix is described

by color-ordered scattering amplitudes An. In N ¼ 4
SYM the particle momentum, flavor, and helicity are con-
veniently encoded by a spinor-helicity superspace: the

amplitude An is a function of the �k ¼ ð�k; ~�k; �kÞ, k ¼
1; . . . ; n. The complex conjugate spinors �k, ~�k 2 C2 de-

scribe a real massless momentum pk ¼ �k
~�k. Likewise,

�k 2 C0j4 is a Grassmann variable to encode flavor.
Free superconformal symmetries JA are represented on

particles by suitable differential operators JA
k acting on �k

[19]. As usual they act on an amplitude An as a sum over
all external particles. Conversely, the Yangian symmetries
~JA act on pairs of external particles as follows:

J A ¼ Xn
i¼1

JA
i ;

~JA ¼ fABC
Xn

j<k¼1

JB
j J

C
k : (1)

Here f denotes the psuð2; 2j4Þ structure constants. When
promoting them to uð2; 2j4Þ we find the free action of the

Yangian level-one hypercharge ~B

~B ¼ Xn�1

k¼1

Xn
j¼kþ1

ðQ�b
k Sj;�b � �Q _�

k;b
�Sb
j; _� �Q�b

j Sk;�b

þ �Q _�
j;b

�Sb
k; _�Þ: (2)

HereQ andS denote the superconformal translations and
boosts, respectively. Gladly, the broken hypercharge B ¼P

i�
A
i @=@�

A
i does not appear in

~B. In the following we will

argue that the bonus Yangian generator ~B defined in (2) is a
symmetry of the planar S matrix.
Cyclicity.—Color-ordered amplitudes are invariant

under cyclic shifts of the external particles. Symmetries
have to respect this property. The generators JA in (1) are
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cyclic, whereas the ~JA typically map cyclic functions to
noncyclic ones. This can be seen by shifting the summation
range in (1) by one unit [13]

~J A
ð2;nþ1Þ � ~JA

ð1;nÞ ¼ fABCJ
B
1J

C þ fABCf
BC
D JD

1 : (3)

Luckily, for scattering amplitudes the right-hand side is
zero: the first term vanishes because JA is a symmetry,
and the second one because the dual Coxeter number of
psuð2; 2j4Þ is zero. Hence the Yangian generators are
cyclic.

For the proposed bonus Yangian symmetry ~B the situ-
ation is slightly different: the first term vanishes as before
due to superconformal symmetry. In uð2; 2j4Þ the combi-

nation fABCf
BC
D is proportional to �A

B
�C
D, and we obtain an

additional C1. This vanishes because the central charge of

all individual particles is zero, and ~B is indeed cyclic.

Invariance of MHVamplitudes.—First act with ~B in (2)
on MHV amplitudes [20,21]

An;2¼�4ðPÞ�8ðQÞQ
j
hj;jþ1i ; P¼X

j

�j
~�j; Q¼X

j

�j�j; (4)

with the spinor product hj; ki :¼ "���
�
j �

�
k . The fermionic

derivatives in S, �Q act only on �8ðQÞ, and we obtain

Q�b
j Sk;�bAn;2 ¼ ��

j �
b
j

@

@��
k

��
k

@�8ðQÞ
@Q�b

�4ðPÞQ
i
hi; iþ 1i ; (5)

�Q _�
k;b

�Sb
j; _�An;2¼��b

j

@

@~� _�
j

~� _�
k �

�
k

@�8ðQÞ
@Q�b

�4ðPÞQ
i
hi;iþ1i : (6)

The bosonic derivative in (5) acts on the ��
k , both delta

functions and the spinor brackets in the denominator. The
action on �4ðPÞ produces

��
j �

b
j�

�
k
~� _�
kQ

i
hi; iþ 1i

@�8ðQÞ
@Qb�

@�4ðPÞ
@P� _� ; (7)

which cancels precisely the contribution from (6). The

contribution from the action on �ð8ÞðQÞ is proportional to
��
j �

a
j�

�
k �

b
k@

2�8ðQÞ=@Qa�@Qb�. This expression is sym-

metric in j and k and vanishes due to the antisymmetry
of (2). Next consider the contribution originating from
the derivative acting on the spinor brackets. Combining
the contributions from @=@�k and @=@�kþ1 (after a shift
k ! kþ 1) acting both on the same hk; kþ 1i we obtain

� ��
j �

a
j

@�8ðQÞ
@Q�a

�4ðPÞQ
i
hi; iþ 1i : (8)

This term cancels identically with the derivative acting

on ��
k in (5). The shift k ! kþ 1 leaves behind two

boundary terms in the sum (2). Here we complete the
sum

P
j�j�j ¼ Q and move it past the derivative acting

on �8ðQÞ. A careful calculation shows that all remaining

terms cancel. Thus we find that ~B leaves MHVamplitudes

invariant, ~BAn;2 ¼ 0.
Invariance of the Grassmannian integral.—We complete

the proof of invariance of tree amplitudes under ~B using
the Grassmannian integral formula [18] for leading singu-
larities Ln;k in Nk�2MHV amplitudes An;k with 2< k �
n� 2

Ln;k’
Z dk�nt

Q
k
a¼1�a

M1ðtÞ���MnðtÞ ; �a¼�4j4
�Xn
j¼1

tajZj

�
: (9)

Here t is a k� n matrix, and Ma represent its minors
of k consecutive rows starting at a. The particle momenta

are encoded using supertwistors ZA ¼ ð ~��; ~� _�; �aÞ with
~� the Fourier conjugate to � [19] (the calculation using
momentum twistors [22] is virtually the same). The
uð2; 2j4Þ algebra is now represented on particles by linear

differential operators JA
B ¼ ð�1ÞBZA@B. The corre-

sponding Yangian generators take the form

~JA
B ¼ ~JA

<;B � ~JA
>;B;

~JA
+;B ¼ Xn

j+k¼1

JA
j;CJ

C
k;B: (10)

In this form our generator reads ~B ¼ ~JA
A.

We shall now show that both contributions ~B< ’ ~B> ’
4kðk� 1Þ on Ln;k, and hence ~B annihilates the

Grassmannian integral. Our proof and notation follows
along the lines of [23], where the calculation for all pre-
viously known Yangian operators can be found in detail.

We apply ~B< to Ln;k and obtain

Xk
b¼1

Z dk�nt

M1 ���Mn

ð�1ÞA½OA
b �VA

b �ð@A�bÞ
Y
a�b

�a: (11)

We have defined OA
b

:¼ P
a;i<jZ

A
i taið@=@tajÞtbj and

VA
b

:¼ P
i<jZ

A
i tbi. Now we commute the operator OA

b

past the minors Mp in the denominator. At this point it is

important to be very careful as to not overlook the contri-
butions that arise from the supertrace over the index A,
cf. footnote 9 in [23]: specifically due to the wrapping of
the minorsMp around the end of the k� n matrix tbj it is

necessary to make a distinction between the two cases
p � n� kþ 1 and p > n� kþ 1. In the first case the
supertrace has no impact on the calculation. In the latter
case, however, it is inevitable to use the constraint from the
delta functions �a twice. For the delta function bearing the
derivative @A�b the supertrace leaves an extra term
proportional to the Grassmannian integral. The result of
this operation is given by
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ð�1ÞA Xk
b¼1

Xn
p¼n�kþ2

Xn
s¼p

Xs�1

i¼1

1

Mp

ZA
i tbsMs!i

p ð@A�bÞ

¼ � Xn
s�p¼n�kþ2

�
8�b þ ð�1ÞA Xk

b¼1

ZA
s tbsð@A�bÞ

�
; (12)

after adding and subtracting the terms missing to make the
sum over s range from 1 to n and then performing
the partial integration of the derivative @A. The form of
the second part on the right-hand side follows from the
antisymmetry of the minors which singles out the terms
with i ¼ s. The two sums in the first term evaluate straight-
forwardly to �4kðk� 1Þ. Repeating this procedure for
the second term on the right-hand side of (12) yields a
factor of 8kðk� 1Þ, such that in the end one is left with

4kðk� 1ÞLn;k. The contributions from
~B< and ~B> cancel

each other leaving only a total derivative under the integral

as in the proof of [23]. This confirms that ~B is a symmetry
of all leading singularities and, in particular, of tree-level
amplitudes of N ¼ 4 SYM.

Distributional contributions.—Because of the holomor-

phic anomaly ð@=@ �� _�Þh�;�i�1 ¼ 2�" _� _� ��
_��2ðh�;�iÞ

the above derivations disregard certain distributional con-
tributions which at first sight violate the exactness of the
symmetry. In [24] it was shown that in the case of super-

conformal boostsS, �S the representation can be corrected
to restore the symmetry. The correction terms are operators

Sþ, �Sþ which act on an amplitude with n� 1 legs and
return an amplitude with n legs. The statement of exact
invariance then takes the form SAn þSþAn�1 ¼ 0.

As our generator ~B contains the superconformal boosts
we will have to correct it by a suitable length-changing

deformation ~Bþ such that

~BAn þ ~BþAn�1 ¼ 0: (13)

Before we consider the correction, let us briefly discuss
how to work with length-changing operators. The correc-
tionSþ acts on an (n� 1)-particle function and generates
an n-particle function. We define the action on the first leg
via a three-vertex Sþ [25]

ðSþ
1 Fn�1Þ :¼

Z
d4j4�Sþð1; 2; ��ÞFn�1ð�; 3; . . . ; nÞ: (14)

Note that it shifts all the legs 2; . . .n� 1 of Fn�1 by one
index to 3; . . . ; n. We then use the cyclic shift operator
ðUnFnÞð1; . . . ; nÞ :¼ Fnð2; . . . ; n; 1Þ to bring the correc-
tion term into all possible places [26]

Sþ ¼ Xn
k¼1

Sþ
k ; Sþ

k
:¼ Uk�1

n Sþ
1 U

1�k
n�1: (15)

For our new symmetry generator ~B we propose the

following correction term ~Bþ:

~Bþ ¼ Xn�1

k¼1

Xn
j¼kþ1

ðQ�b
k Sþ

j;�b � �Q _�
k;b

�Sþ;b
j; _�

�Q�b
j Sþ

k�1;�b þ �Q _�
j;b

�Sþ;b
k�1; _�Þ: (16)

Note the shift of argument forSþ as compared to (2) when
Q acts further to the right.

As a first check we consider cyclicity of ~Bþ ~Bþ (sup-
posing we act on cyclic functions)

ðUn � 1Þð ~Bþ ~BþÞ ¼ �2Q�b
1 ðS�b þSþ

�bÞ
þ 2 �Q _�

1;bð �Sb
_� þ �Sþ;b

_� Þ
þQ�Bð2S1;�b þSþ

0;�b þSþ
1;�bÞ

� �Q _�
b ð2 �Sb

1; _� þ �Sþ;B
1; _� þ �Sþ;b

0; _� Þ:
(17)

The Q’s anticommute exactly with the Sþ
k ’s [24], there-

fore the action of ~Bþ ~Bþ is cyclic. Interestingly, only

the combination of ~B and ~Bþ is cyclic because only the
combination SþSþ annihilates amplitudes exactly.
More importantly, we can show exact invariance of

MHV amplitudes. To show (13) we note the action of �Sþ

�Sþ;b
k; _�An�1;2 ¼ 2�" _� _�ð ��

_�
k �

b
kþ1 � ��

_�
kþ1�

b
kÞ

� �2ðhk; kþ 1iÞ�
8ðQÞ�4ðPÞQ

i�k

hi; iþ 1i : (18)

By construction almost all distributional terms cancel.
Only at the boundary there are some residual terms for
which we need some identities to show full cancellation

0 ¼ " _� _�
�Q _�
1;b

��
_�
1 ¼ " _� _�

�Q _�
1;b

��
_�
2�

b
1�

2ðh1; 2iÞ
¼ �Q _�

b�
8ðQÞ�4ðPÞ: (19)

Conclusions and outlook.—In view of the conjectured
integrability for the planar S matrix of N ¼ 4 SYM, and
its many useful applications, it is extremely important to
understand the underlying symmetries. In this Letter,
we have proposed that there exists an exact symmetry
besides the established Yangian algebra Yðpsuð2; 2j4ÞÞ.
This Yangian-like symmetry generator ~B is the level-one
recurrence of the hypercharge B, both of which are in-
cluded in the bigger algebra Yðuð2; 2j4ÞÞ. Now, curiously,
the novel ~B appears to be a symmetry whereas B clearly
is none. This leads to an intriguing structure of the sym-
metry algebra somewhere in between Yðpsuð2; 2j4ÞÞ and
Yðuð2; 2j4ÞÞ.
We have shown explicitly that the bonus Yangian sym-

metry ~B is a symmetry of all tree-level amplitudes, and
argued that the symmetry is exact in a distributional sense,
at least for MHV amplitudes. Cyclicity of color-ordered
amplitudes is respected (3) and (17). All this, in conjunc-
tion with the invariance of the Grassmanian integral, leads
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to the conclusion that ~B stands a good chance of being a
symmetry of loop amplitudes [27]. Similarly the question

arises whether ~B is a symmetry of the (bulk) higher-loop
spin chain Hamiltonian for planar anomalous dimensions
of local operators, cf. the reviews [12,28].

Notably, the new symmetry is stronger than the dual
symmetries. Together with the ordinary superconformal
symmetries we can generate all previously known symme-
tries of the S matrix including the dual superconformal

ones (this also holds when the correction term ~Bþ is
considered) via

½ ~B;Q� ¼ þ ~Q; ½ ~B;S� ¼ � ~S; . . . : (20)

Conversely, the ordinary and dual superconformal symme-
tries only close onto the Yangian Yðpsuð2; 2j4ÞÞ. As an
outer automorphism our symmetry can never be generated

in this fashion. Therefore one might wonder if ~B actually
yields stronger constraints for the S matrix than the dual
symmetries: abstractly this is to be expected, but poten-

tially the S matrix is special and invariance under ~B is
automatic, cf. [29]. Invariance of the proposed all-loop
integrand [30] in fact follows from invariance of the
Grassmannian integral by construction.

It would also be desirable to shed some light on the

(geometric) transformation induced by ~B which is at the
first level of the Yangian in both the original and dual
picture of the S matrix, i.e., it is simple in neither picture.

To finish, we comment on scattering amplitudes of
N ¼ 6 super–Chern-Simons theory, which enjoy a simi-
lar Yangian symmetry [31]. Its Yangian Yðospð6j4ÞÞ does
not admit an outer automorphism, however, the action of

the generator ~R is somewhat reminiscent of our bonus

Yangian symmetry ~B.
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