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Abstract

Recent developments in the determination of the planar S-matrix of
N = 4 Super Yang-Mills are closely related to its Yangian symmetry.
Here we provide evidence for a yet unobserved additional symmetry:
the Yangian level-one helicity operator.

1 Introduction

The S-matrix is an object of central importance to quantum field theories. Unfortunately it is
extremely challenging to compute it because we typically have to rely on perturbative methods.
Symmetries are extremely helpful in constraining the result. A couple of years ago it has been
noticed that loop scattering amplitudes in maximally supersymmetric Yang-Mills (N = 4 SYM)
theory in the planar limit are simpler than one might expect [1] based on the known symme-
tries such as superconformal symmetry. This simplicity was traced to a hidden superconformal
symmetry of dual Feynman graphs [2]. These observations have sparked enormous progress in
the determination of the planar S-matrix in this model, see [3] for reviews.

The appearance of dual symmetries is perhaps best understood from the point of view of the
AdS/CFT dual string theory where ordinary and dual symmetries are exchanged by a T-self-
duality [4]. The closure of these two sets of symmetries is the infinite-dimensional algebra [5]
known from the context of planar integrability [6]. Indeed, it was shown that the planar tree-level
scattering amplitudes in N = 4 SYM are invariant under the Yangian Y(psu(2, 2|4)) [7] for the
superconformal algebra psu(2, 2|4).

In this letter we find evidence for an additional symmetry of planar scattering amplitudes. It
is not part of the above Yangian, but it fits nicely into its structure: It is the level-one recurrence
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B̂ of the u(1) outer automorphism B of psu(2, 2|4). The automorphism, sometimes called “bonus
symmetry” [8], acts on particle states as the helicity operator. It is clear that helicity is generally
not conserved in scattering amplitudes (MHV: “Maximum Helicity Violating”), but here we will
argue that its level-one recurrence in the Yangian is indeed a proper symmetry.

An analogous observation has been made in the context of the worldsheet S-matrix [9] for
planarN = 4 SYM. This S-matrix is based on an extension of psu(2|2) which also possesses a u(1)
automorphism. It was shown to be exactly symmetric under the Yangian level-one automorphism
[10], sometimes called “secret symmetry”, while there appear to be obstacles for the other levels.

In the following we shall present evidence in favor of the Yangian level-one helicity generator
B̂ being a symmetry of the planar S-matrix: As a first check we show compatibility with the cyclic
nature of color-ordered amplitudes. Next we confirm explicitly that tree-level MHV amplitudes
are invariant. We will also check that the Grassmannian formula for leading singularities [11]
respects our symmetry, and hence symmetry extends to all tree-amplitudes at least. Finally, we
show that our symmetry becomes exact in a distributional sense when appropriate correction
terms are added.

2 Setup

In the planar limit the S-matrix is described by color ordered scattering amplitudes An. In
N = 4 SYM the particle momentum, flavor and helicity are conveniently encoded by a spinor-
helicity superspace: The amplitude An is a function of the Λk = (λk, λ̃k, ηk), k = 1, . . . , n. The
complex conjugate spinors λk, λ̃k ∈ C2 describe a real massless momentum pk = λkλ̃k. Likewise,
ηk ∈ C0|4 is a Grassmann variable to encode flavor.

Free superconformal symmetries JA are represented on particles by suitable differential op-
erators JAk acting on Λk [12]. As usual they act on an amplitude An as a sum over all external

particles. Conversely, the Yangian symmetries ĴA act on pairs of external particles as follows

JA =
n∑
i=1

JAi , ĴA = fABC

n∑
j<k=1

JBj J
C
k . (1)

Here f denotes the psu(2, 2|4) structure constants. When promoting them to u(2, 2|4) we find

the free action of the Yangian level-one helicity generator B̂

B̂ =
n−1∑
k=1

n∑
j=k+1

(
Qαb
k Sj,αb − Q̄α̇

k,bS̄
b
j,α̇ −Qαb

j Sk,αb + Q̄α̇
j,bS̄

b
k,α̇

)
. (2)

Here Q and S denote the superconformal translations and boosts, respectively. Gladly, the
broken helicity operator B does not appear in B̂. In the following we will argue that the bonus
Yangian generator B̂ defined in (2) is a symmetry of the planar S-matrix.

3 Cyclicity

Colour-ordered amplitudes are invariant under cyclic shifts of the external particles. Symmetries
have to respect this property. The generators JA in (1) are cyclic, whereas the ĴA typically map
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cyclic functions to non-cyclic ones. This can be seen by shifting the summation range in (1) by
one unit [7]

ĴA(2,n+1) − ĴA(1,n) = fABCJ
B
1 J

C + fABCf
BC
D JD1 . (3)

Luckily, for scattering amplitudes the r.h.s. is zero: The first term vanishes because JA is a
symmetry, and the second one because the dual Coxeter number of psu(2, 2|4) is zero. Hence
the Yangian generators are cyclic.

For the proposed bonus Yangian symmetry B̂ the situation is slightly different: The first
term vanishes as before due to superconformal symmetry. In u(2, 2|4) the combination fABCf

BC
D

is proportional to δABδ
C
D, and we obtain an additional C1. This vanishes because the central

charge of all individual particles is zero, and B̂ is indeed cyclic.

4 Invariance of MHV amplitudes

First act with B̂ in (2) on MHV amplitudes [13]

An,2 =
δ4(P ) δ8(Q)∏
j〈j, j + 1〉

,
P =

∑
j λjλ̃j,

Q =
∑

j λjηj,
(4)

with the spinor product 〈j, k〉 := εαβλ
α
j λ

β
k . The fermionic derivatives in S, Q̄ act only on δ8(Q),

and we obtain

Qαb
j Sk,αbAn,2 = λαj η

b
j∂k,αλ

β
k

∂δ8(Q)

∂Qβb

δ4(P )∏
i〈i, i+ 1〉

, (5)

Q̄α̇
k,bS̄

b
j,α̇An,2 = −ηbj ∂̄j,α̇λ̄α̇kλ

β
k

∂δ8(Q)

∂Qβb

δ4(P )∏
i〈i, i+ 1〉

. (6)

The bosonic derivative in (5) acts on the λβk , both delta functions and the spinor brackets in the
denominator. The action on δ4(P ) produces

λαj η
b
jλ

β
k λ̃

α̇
k∏

i〈i, i+ 1〉
∂δ8(Q)

∂Qbβ

∂δ4(P )

∂Pαα̇
(7)

which cancels precisely the contribution from (6). The contribution from the action on δ(8)(Q)
is proportional to λαj η

a
jλ

β
kη

b
k∂

2δ8(Q)/∂Qaβ∂Qbα. This expression is symmetric in j and k and
vanishes due to the antisymmetry of (2). Next consider the contribution originating from the
derivative acting on the spinor brackets. Combining the contributions from ∂k and ∂k+1 (after a
shift k → k + 1) acting both on the same 〈k, k + 1〉 we obtain

− λαj ηaj
∂δ8(Q)

∂Qαa

δ4(P )∏
i〈i, i+ 1〉

. (8)

This term cancels identically with the derivative acting on λβk in (5). The shift k → k+ 1 leaves
behind certain boundary terms: The terms for j = k ± 1 are zero due to 〈j, j〉 = 0; the ones for

j, k = 1, n cancel each other identically. Thus we find that B̂ leaves MHV amplitudes invariant,
B̂An,2 = 0.
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5 Invariance of the Grassmannian Integral

We complete the proof of invariance of tree amplitudes under B̂ using the Grassmannian integral
formula [11] for leading singularities Ln,k in Nk−2MHV amplitudes An,k with 2 < k ≤ n− 2

Ln,k '
∫

dk×nt
∏k

a=1 δa
M1(t) · · ·Mn(t)

, δa = δ4|4(
∑n

j=1 tajZj). (9)

Here t is a k × n matrix, and Ma represent its minors of k consecutive rows starting at a. The
particle momenta are encoded using supertwistors ZA = (µ̃α, λ̃α̇, ηa) with µ̃ the Fourier conjugate
to λ [12] (the calculation using momentum twistors [14] is virtually the same). The u(2, 2|4)
algebra is now represented on particles by linear differential operators JAB = (−1)BZA∂B. The
corresponding Yangian generators take the form

ĴAB = ĴA<,B − ĴA>,B, ĴA≶,B =
n∑

j≶k=1

JAj,CJ
C
k,B. (10)

In this form our generator reads B̂ = ĴAA.
We shall now show that both contributions B̂< ' B̂> ' 4k(k − 1) on Ln,k, and hence B̂

annihilates the Grassmannian integral. Our proof and notation follows along the lines of [15].
The calculation is identical up until the point

k∑
b=1

∫
dk×nt

M1 · · ·Mn

(−1)A[OAb − VAb ](∂Aδb)
∏
a6=b

δa (11)

where it becomes necessary to commute a certain operator OAb past the minors Mp in the
denominator. At this point it is important to be very careful as to not overlook the contributions
that arise from the supertrace over the index A, cf. footnote 9 in [15]: Specifically due to the
wrapping of the minors Mp around the end of the k × n matrix tbj it is necessary to make
a distinction between the two cases p ≤ n − k + 1 and p > n − k + 1. In the first case the
supertrace has no impact on the calculation. In the latter case, however, it is inevitable to use
the constraint from the delta functions δa twice. For the delta function bearing the derivative
∂Aδb the supertrace leaves an extra term proportional to the Grassmannian integral. The result
of this operation is given by

(−1)A
k∑
b=1

n∑
p=n−k+2

n∑
s=p

s−1∑
i=1

1

Mp

ZAi tbsMs→i
p (∂Aδb) = −

n∑
s≥p=n−k+2

[
8δb + (−1)A

k∑
b=1

ZAs tbs(∂Aδb)

]
(12)

after adding and subtracting the terms missing to make the sum over s range from 1 to n and
then performing the partial integration of the derivative ∂A. The form of the second part on the
right hand side follows from the antisymmetry of the minors which singles out the terms with
i = s. The two sums in the first term evaluate straightforwardly to −4k(k − 1). Repeating this
procedure for the second term on the right hand side of (12) yields a factor of 8k(k − 1), such

that in the end one is left with 4k(k − 1)Ln,k. The contributions from B̂< and B̂> cancel each
other leaving only a total derivative under the integral as in the proof of [15]. This confirms that

B̂ is a symmetry of all leading singularities and, in particular, of tree level amplitudes of N = 4
SYM.
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6 Distributional Contributions

Due to the holomorphic anomaly (∂/∂λ̄α̇)〈λ, µ〉−1 = 2πεα̇β̇µ̄
β̇δ2(〈λ, µ〉) the above derivations

disregard certain distributional contributions which at first sight violate the exactness of the
symmetry. In [16] it was shown that in the case of superconformal boosts S, S̄ the representation
can be corrected to restore the symmetry. The correction terms are operators S+, S̄+ which
act on an amplitude with n − 1 legs and return an amplitude with n legs. The statement of
exact invariance then takes the form SAn + S+An−1 = 0. As our generator B̂ contains the
superconformal boosts we will have correct it by a suitable length-changing deformation B̂+

such that
B̂An + B̂+An−1 = 0. (13)

Before we consider the correction, let us briefly discuss how to work with length-changing
operators. The correction S+ acts on an (n − 1)-particle function and generates an n-particle
function. We define the action on the first leg via a three-vertex S+ [17]

(S+
1 Fn−1)(1, . . . , n) :=

∫
d4|4ΛS+(1, 2, Λ̄)Fn−1(Λ, 3, . . . , n). (14)

Note that it shifts all the legs 2, . . . n−1 of Fn−1 by one index to 3, . . . , n. We then use the cyclic
shift operator (UnFn)(1, . . . , n) := Fn(2, . . . , n, 1) to bring the correction term into all possible
places1

S+ =
n∑
k=1

S+
k , S+

k := Uk−1n S+
1 U1−k

n−1 . (15)

For our new symmetry generator B̂ we propose the following correction term B̂+

B̂+ =
n−1∑
k=1

n∑
j=k+1

(
Qαb
k S+

j,αb − Q̄α̇
k,bS̄

+,b
j,α̇ −Qαb

j S+
k−1,αb + Q̄α̇

j,bS̄
+,b
k−1,α̇

)
. (16)

Note the shift of argument for S+ as compared to (2) when Q acts further to the right.

As a first check we consider cyclicity of B̂ + B̂+ (supposing we act on cyclic functions)

(Un − 1)(B̂ + B̂+) =− 2Qαb
1

(
Sαb + S+

αb

)
+ 2Q̄α̇

1,b

(
S̄b
α̇ + S̄+,b

α̇

)
(17)

+ QαB
(
2S1,αb + S+

0,αb + S+
1,αb

)
− Q̄α̇

b

(
2S̄b

1,α̇ + S̄+,B
1,α̇ + S̄+,b

0,α̇

)
.

The Q’s anticommute exactly with the S+
k ’s [16], therefore the action of B̂ + B̂+ is cyclic.

Interestingly, only the combination of B̂ and B̂+ is cyclic because only the combination S+S+

annihilates amplitudes exactly.
More importantly, we can show exact invariance of MHV amplitudes. To show (13) we note

the action of S̄+

S̄+,b
k,α̇An−1,2 = 2πεα̇β̇

(
λ̄β̇kη

b
k+1 − λ̄

β̇
k+1η

b
k

)
δ2(〈k, k + 1〉) δ8(Q) δ4(P )∏

i 6=k〈i, i+ 1〉
. (18)

1Note that we use shift operators Un and Un−1 acting on two different spaces. Hence S+
k is not periodic:

S+
k+n = S+

k U
−1
n−1. In physical situations we act only on cyclic states where Un−1 ' 1 such that S+ preserves

cyclicity.
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By construction almost all distributional terms cancel. Only at the boundary there are some
residual terms for which we need some identities to show full cancellation

0 = εα̇β̇Q̄
α̇
1,bλ̄

β̇
1 = εα̇β̇Q̄

α̇
1,bλ̄

β̇
2η

b
1δ

2(〈1, 2〉) = Q̄α̇
b δ

8(Q)δ4(P ). (19)

7 Conclusions and Outlook

In view of the conjectured integrability for the planar S-matrix of N = 4 SYM, and its many
useful applications, it is extremely important to understand the underlying symmetries. In this
letter, we have proposed that there exists an exact symmetry besides the established Yangian
algebra Y(psu(2, 2|4)). This Yangian-like symmetry generator B̂ is the level-one recurrence of the
helicity generator B, both of which are included in the bigger algebra Y(u(2, 2|4)). Now curiously,

the novel B̂ appears to be a symmetry whereas B clearly is none. This leads to an intriguing
structure of the symmetry algebra somewhere in between Y(psu(2, 2|4)) and Y(u(2, 2|4)).

We have shown explicitly that the bonus Yangian symmetry B̂ is a symmetry of all tree-level
amplitudes, and argued that the symmetry is exact in a distributional sense, at least for MHV
amplitudes. This, in conjunction with the invariance of the Grassmanian integral, leads to the
conclusion that B̂ stands a good chance of being a symmetry of loop amplitudes, up to some
deformation terms [17]. Similarly the question arises whether B̂ is a symmetry of the (bulk)
higher-loop spin chain Hamiltonian for planar anomalous dimensions of local operators, cf. the
reviews [18,6].

Notably, the new symmetry is stronger than the dual symmetries. Together with the ordinary
superconformal symmetries we can generate all previously known symmetries of the S-matrix in-
cluding the dual superconformal ones (this also holds when the correction term B̂+ is considered)
via

[B̂,Q] = +Q̂, [B̂,S] = −Ŝ, . . . (20)

Conversely, the ordinary and dual superconformal symmetries only close onto the Yangian
Y(psu(2, 2|4)). As an outer automorphism our symmetry can never be generated in this fashion.

Therefore one might wonder if B̂ actually yields stronger constraints for the S-matrix than the
dual symmetries: Abstractly this is to be expected, but potentially the S-matrix is special and
invariance under B̂ is automatic, cf. [19]. Given these considerations it may also be interesting

to check the invariance under B̂ of the proposed all-loop integrand [20] as it enjoys manifest
Yangian invariance under the conventional Yangian of psu(2, 2|4). It is conceivable that this

sheds some light on the (geometric) transformation induced by the generator B̂ which is at the
first level of the Yangian in both the original and dual picture of the S-matrix, i.e. it is simple
in neither picture.

To finish, we comment on scattering amplitudes of N = 6 super Chern-Simons theory, which
enjoy a similar Yangian symmetry [21]. Its Yangian Y(osp(6|4)) does not admit an external

automorphism, however, the action of the generator R̂ is somewhat reminiscent of our bonus
Yangian symmetry B̂.

Acknowledgments. We would like to thank L. Ferro, T. Matsumoto, T. McLoughlin and
J. Plefka for useful discussions. The work of N.B. is supported in part by the German-Israeli
Foundation (GIF).
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