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Crossed molecular beam scattering experiments in which the energy of the collision is varied can

reveal valuable insight into the collision dynamics. The energy resolution that can be obtained

depends mainly on the velocity and angular spreads of the molecular beams; often, these are too

broad to resolve narrow features in the cross sections like scattering resonances. The collision

energy resolution can be greatly improved by making appropriate choices for the beam velocities

and the beam intersection angle. This method works particularly well for situations in which one

of the beams has a narrow velocity spread, and we here discuss the implications of this method

for crossed beam scattering experiments with Stark-decelerated beams.

I. Introduction

The crossed molecular beam technique is one of the most

widely used experimental approaches to study collisions

between individual atoms and molecules, and has been seminal

to our present understanding of molecular dynamics at

a microscopic level.1 Since its introduction in the 1950’s,

the technique has witnessed a remarkable and continuous

development. Its present level of advancement allows for

accurate control over the collision partners prior to the

collision event, and for sophisticated detection of the collision

products.2–4

One of the most important parameters in a collision

experiment is the collision energy of the colliding particles.

The collision energy can be tuned by controlling the velocity of

the particles prior to the collision, or by changing the angle

between the intersecting beams. For the latter approach,

ingenious crossed molecular beam machines have been

engineered to continuously vary the collision energy.5

These methods have been used to measure, for instance, the

threshold behavior of rotational energy transfer,6,7 or to tune

the collision energy over the reaction barrier for reactive

scattering.8,9

Recently, new molecular beam techniques have become

available that allow for detailed control over the velocity of

molecules in a beam. This control is obtained by exploiting

the interaction of molecules with electric or magnetic fields in a

so-called Stark decelerator or Zeeman decelerator, respectively.10

The tunability of the velocity allows for scanning of the

collision energy in a fixed experimental geometry. State-to-state

inelastic scattering between Stark-decelerated OH radicals and

conventional beams of Xe, Ar, and He atoms, as well as D2

molecules,11–13 has been studied. These beam deceleration

methods hold great promise for future scattering experiments

and offer the possibility to extend the available collision energy

range to energies below one wavenumber.14

Essential in these experiments is the resolution with which

the collision energy can be varied. High energy resolutions are

particularly important at those collision energies where a

detailed structure in the energy dependence of the cross

sections is expected. At low collision energies, shape or orbiting

resonances can occur that are caused by rotational states of

the collision complex that are trapped behind the centrifugal

or reaction barrier.15,16 At collision energies near the energies

of excited states of one of the reagents, also Feshbach

resonances can occur.17 The experimental mapping of these

resonances would probe the potential energy surfaces that

govern the interactions with unprecedented detail.18

The energy resolution that can be obtained experimentally

depends on the velocity and angular spreads of the molecular

beam pulses. Typical molecular beam spreads are too large to

reveal narrow features like scattering resonances that often

require energy resolutions of about one wavenumber. So far,

only in exceptional cases have resonances been observed,

mostly for kinematically favorable systems in which a collision

partner with low mass has been used.19–22 Recently, crossed

beam experiments employing a tunable beam crossing angle

have been reported in which the resolution was sufficient to

resolve the contribution of individual partial waves to the

scattering.23,24

Compared to conventional molecular beams, Stark-decelerated

molecular beams offer superior velocity spreads that typically

range between 1 and 20 m s�1.25 This narrow velocity spread

can be exploited in crossed beam scattering experiments to

yield a high energy resolution. Indeed, energy resolutions of

Z 13 cm�1 have already been achieved for the OH–Xe and

OH–Ar systems, which is particularly good in view of the

relatively large reduced mass of these systems. This energy

resolution was sufficient to accurately measure the threshold

behavior of the rotational inelastic cross sections,11 and to

resolve broader features in the collision energy dependence of
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6,
14195 Berlin, Germany. E-mail: basvdm@fhi-berlin.mpg.de

PCCP Dynamic Article Links

www.rsc.org/pccp PAPER

D
ow

nl
oa

de
d 

by
 F

ri
tz

 H
ab

er
 I

ns
tit

ut
 d

er
 M

ax
 P

la
nc

k 
G

es
el

ls
ch

af
t o

n 
29

 J
un

e 
20

11
Pu

bl
is

he
d 

on
 1

1 
M

ar
ch

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0C
P0

24
05

H
View Online

http://dx.doi.org/10.1039/c0cp02405h
http://dx.doi.org/10.1039/c0cp02405h
http://dx.doi.org/10.1039/c0cp02405h


This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 8448–8456 8449

the cross sections.12 The sharp resonances that are predicted

by ab initio calculations remained elusive, however.

To further improve the energy resolution in these experiments,

the velocity spread of the collision partner needs to be reduced.

This can be achieved by using a second Stark decelerator to

obtain control over a molecular collision partner, or by using

mechanical velocity selectors to reduce the velocity spread of

the atomic collision partner. However, both approaches would

greatly reduce the number density in the colliding beam.

Here we describe a simple yet effective method to improve

the collision energy resolution that does not rely on velocity

selection of the target beam. We show that for beam crossing

angles smaller than 901, kinematically favorable situations can

occur in which the velocity spread of the target beam does not

contribute to the collision energy resolution. This enables high

collision energy resolutions without sacrificing the number

density of the target beam that is available to the scattering.

This method has been exploited before to improve the

resolution in scattering experiments. To the best of our knowl-

edge, it was described for the first time in a book chapter by

Pauly and Toennies26 in 1968 and it was part of the disserta-

tion27 of R. Feltgen (a student of Pauly) in 1970. The method

was used in an experiment by Scoles and coworkers, in which

orbiting resonances were observed in the integral elastic

scattering cross sections for the scattering of velocity selected

H atoms by Hg atoms.19,20 A beam intersection angle of 731

was used in order to improve the velocity resolution. A similar

investigation was performed by Toennies and coworkers, who

used a beam intersection angle of 461 to resolve orbiting

resonances in the scattering of H atoms by various rare gas

atoms.21 It is noted that a smart use of the beam kinematics

has also been exploited to optimize the post-collision velocity

spread of the scattered molecules.28,29

The method is particularly advantageous if one of the

beams has a narrow velocity spread. For collisions between

Stark-decelerated beams and conventional beams of rare gas

atoms, for instance, a very high energy resolution can be

obtained that may well be sufficient to experimentally resolve

scattering resonances, even for systems with a relatively large

reduced mass.

This paper is organized as follows. In Section II the method

is explained in more detail, and the beam properties that

are used throughout this paper are introduced. In Section III

we describe different experimental approaches that can be

followed to vary the collision energy, and their implications

for the collision energy resolution are analyzed. The description

will be held rather generally, although we will emphasize on

the experimental arrangement of one Stark-decelerated beam

colliding with a conventional molecular beam. In Section IV

we illustrate the potential of the method using a recent crossed

beam experiment as an example. In this experiment, a Stark

decelerated beam of OH radicals was scattered with a beam

of He atoms at a 901 crossing angle, and we show that the

future implementation of the method may well lead to the

experimental observation of scattering resonances for this

system. In Section V we will draw conclusions, again with an

emphasis on the advantages this method can have for crossed

beam collision experiments in which Stark-decelerated beams

are employed.

II. Collision kinematics

Consider two colliding particles with mass m1 and m2 and with

laboratory velocity vectors v1 and v2, respectively. This situation

is schematically represented in Fig. 1. The collision energy E of

the system, calculated in a frame of reference that is moving

with the velocity of the center-of-mass of the two particles, is

given by:

E ¼ m
2
jv1 � v2j2 ¼

m
2
ðv21 þ v22 � 2v1v2 cosfÞ; ð1Þ

where v1 and v2 are the magnitudes of the laboratory velocity

vectors, f is the enclosed angle between both velocity vectors,

and m = m1m2/(m1 + m2) is the reduced mass of the system.

This energy E is the total energy that is available for inelastic

processes. Small changes in v1, v2 or f will cause an approxi-

mate change of E that is given by its differential:

dE= m([v1� v2 cos f]dv1 + [v2� v1 cos f]dv2 + v1v2 sin(f)df).
(2)

The geometric meaning of the partial derivatives is brought

out more clearly if expressed directly by the velocity vectors:

dE = m([v1 � v̂1�v2]dv1 + [v2 � v̂2�v1]dv2 + |v1 � v2|df) (3)

with the vectors of unit length v̂1 and v̂2.

Two important special cases can occur. If the beams are

parallel on average (f = 01 or 1801), the influence of the

angular spread of the beams becomes negligible. If the relative

velocity vector g is, on average, perpendicular to v1 or v2, E is

almost unaffected by small changes in v1 or v2, respectively. In

this case the influence of the velocity spread of one of the

beams becomes negligible. The collision energy resolution thus

strongly depends on the geometry of the Newton diagram that

describes the scattering process. For a suitable choice of the

geometry, this can be exploited to optimize the collision energy

resolution in the experiment. This is the main idea behind the

method.

To make the discussion quantitative, an estimate of the

collision energy distribution is required. This distribution is

determined by the distributions of the vectors v1 and v2 and

hence by six independent variables. This number can be

reduced by changing to a more suitable coordinate system

Fig. 1 Laboratory velocity vectors v1 and v2 of two colliding

particles. The relative velocity vector of the two particles is given by

the vector g = v1 � v2.
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and by making appropriate approximations. If the vectors

v1 and v2 are written as functions of spherical coordinates the

collision energy becomes:

E(v1,v2) = E(v1(v1,j1,y1),v2(v2,j2,y2)) (4)

where y1(2) denotes the polar angle, i.e. the angle subtended by

v1(2) and the z-axis and j1(2) denotes the azimuthal angle, i.e.

the angle subtended by the orthogonal projection of v1(2) onto

the xy-plane and the x-axis. If the averaged velocity vectors lie

exactly within the xy-plane, the first order change of E with

y1(2) vanishes
35 so that we need to consider the projection of

the velocity vectors onto the xy-plane only. For the experiment,

this means that it is sufficient to collimate the beams by slits

(rather than pinholes) that are oriented perpendicular to the

xy-plane. We can now identify f in eqn (1) with f = j1 � j2,

and we only have to optimize the collision energy resolution

with respect to the three scalar variables v1, v2, and f.
In the experiment, v1, v2 and f are distributed around their

mean values; let the variance of these variables be denoted by

s.36 Because j1 and j2 are independent, the variance sf of the

distribution for f is given by s2f ¼ s2j1
þ s2j2

. Hence the

differential (2) can be used to estimate the width of the energy

distribution, and the variance of the collision energy, s(E), is
given to first order by:

s2ðEÞ ¼ m2ð½v1 � v2 cosf�2s2v1 þ ½v2 � v1 cosf�2s2v2

þ ½v1v2 sinf�2s2fÞ
ð5Þ

in which v1, v2 and f now stand for the respective mean values.

Because E as well as s(E) is linear in m, it suffices to consider

s(E/m). For convenience, the value of m is listed in Table 1 for a

few selected collision systems. The molecules that are listed in

the top row are typical molecules that are suitable candidates

for Stark deceleration.

III. Overview and applications

If one intends to conduct an experiment at a given mean

energy E with the highest possible resolution, one has to

optimize five parameters: Dv1, Dv2, Df and the mean values

of two of the three variables v1, v2, f —the third is always

determined through eqn (1). In the following sections, we will

analyze how the resolution depends on the experimental

parameters, using three different experimental approaches.

In Section IIIA we discuss the situation in which the beam

speeds are held constant, and the collision energy is tuned by

variation of the beam intersection angle f alone. In Section

IIIB, we describe the situation for a fixed beam intersection

angle and target beam speed; the collision energy is tuned by

variation of v1. Finally, in Section IIIC we discuss the most

general case in which v1, v2, and f are allowed to vary to

optimize the energy resolution.

The parameters that are used in the examples are chosen

to represent the collision energy resolution as realistic as

possible and that may be expected in an experiment. The

molecular beam velocity spreads are assumed to be 10% of

the mean speed of the beam. In those cases where the

velocity of the primary beam (v1) is varied, we assume that

the beam is produced with a Stark decelerator. For a Stark-

decelerated beam, the absolute velocity spread in the for-

ward direction is (almost) constant and does not depend on

the mean velocity; we will assume here a constant velocity

spread of 10 m s�1 for all cases. The angular spread of a

Stark-decelerated beam is generally smaller (typically 11, or

about 20 mrad) than the angular spread of a conventional

molecular beam. To simplify the analysis, we assume a

constant angular spread in our examples, but one should

keep in mind that it actually depends on the forward velocity

if a decelerator is used. Angular spreads are assumed to be 0,

20, 40 or 80 mrad.

In our analysis, we assume Gaussian distributions for all

variables. In this case the distribution for E, as approximated

by the differential, becomes a well defined Gaussian with s(E)
given by eqn (5). If we denote the full width at half maximum

of the distribution of quantity x by D(x) � Dx, we have D(x) =
2.35s(x) and

DðE=mÞ ¼ ð½v1 � v2 cosf�2D2
v1
þ ½v2 � v1 cosf�2D2

v2

þ ½v1v2 sinf�2D2
fÞ

1=2:
ð6Þ

This expression is used for all calculations that are

presented below.

A v1 and v2 constant, / variable

In this case, both beam speeds are assumed to be constant, and

the beam intersection angle alone is used to change the energy.

For the kinematic parameters we use v1 = v2 = 500 m s�1, and

Dv1 = Dv2 = 50 m s�1. The resulting curves for the energy

resolution D(E/m) as a function of E/m are shown in Fig. 2.

Two curves are shown that correspond to an angular spread of

Df = 0 (red dashed curve) and Df = 40 mrad (red solid

curve). The angle f that is needed to obtain a specific E/m is

given by the black curve with respect to the right axis.

If small crossing angles can be realized, fairly low collision

energies are accessible for systems with a small reduced mass.

For example, the system OH/4He has m = 3.2 u, so that at 301

a collision energy of B9 cm�1 is obtained with a resolution of

B1.9 cm�1.

The energy resolution D(E/m) depends approximately linearly

on the energy E/m, resulting in a constant relative energy

resolution DE/E. This linear behavior is a consequence of

Table 1 Reduced mass m = m1m2/(m1 + m2) (in atomic units) for a
selection of collision systems

m2/m1

7LiH OH/NH3 CO

8 17 28

1 H 0.88 0.94 0.97
2 D/H2 1.60 1.79 1.87
3 3He/HD 2.18 2.55 2.71
4 4He/D2 2.67 3.24 3.50
8 7LiH 4.00 5.44 6.22
17 OH/NH3 5.44 8.50 10.58
20 Ne/ND3 5.71 9.19 11.67
28 CO 6.22 10.57 14.00
40 Ar 6.67 11.93 16.47
83.8 Kr 7.30 14.13 20.99
131.3 Xe 7.54 15.05 23.08
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the choice of equal velocities v1 = v2 = v. With the help of

eqn (6) and (1), the relative energy resolution DE/E for this

special case is given by:

DE
E
¼

D2
v1
þ D2

v2

v2
þ 1þ cosf
1� cosf

D2
f

 !1=2

; ð7Þ

which is nearly independent of f for small values of Df.
It is noted that the low collision energies and high energy

resolutions that can be obtained for small beam intersection

angles and systems with low reduced mass have been exploited

recently in an experiment by Costes and coworkers, who have

thereby been able to observe oscillations in the integral cross

sections for the reactive scattering of S (1D2) atoms with H2

molecules.24

B v2 and / constant, v1 variable

In this case, the experimental geometry and the target beam

velocity are fixed and the collision energy is tuned by varying

the velocity v1. This situation pertains, for instance, to a

collision experiment in which a Stark-decelerated beam is

collided with a conventional molecular beam at a fixed beam

intersection angle. Hence we assume in our analysis for beam 2

the parameters v2 = 500 m s�1 and Dv2
= 50 m s�1; for beam 1

we assume a velocity spread of Dv1
= 10 m s�1 for all

velocities. Further, we assume an angular spread Df = 40

mrad (2.31).

In Fig. 3 the resulting values for D(E/m) are shown for two

different beam intersection angles. The red solid and red dashed

curves (with respect to the axis on the left) show the expected

collision energy resolution as a function of the collision energy

for f = 451 and f = 901, respectively. The corresponding

primary beam velocities v1 that are required to obtain this

collision energy are shown as green curves with respect to the

axis on the right.

From Fig. 3 it is evident that beam crossing angles of f =

451 result in lower collision energies, and, perhaps more

important, better energy resolutions. At low collision energies,

there are actually two values for v1 that result in the same

collision energy. The energy resolution, however, is much

different for both situations. The energy resolution shows a

minimum that occurs for the chosen beam parameters at

E/m = 7.6 cm�1 u�1 and v1 = 600 m s�1.

From the analysis given in Section II, one would expect that

the best collision energy resolution is obtained when the

relative velocity vector g is perpendicular to v2; this condition

is fulfilled for E/m = 10.4 cm�1 u�1 and v1 = 707 m s�1. The

position of the minimum that is found in Fig. 3 deviates

slightly from these values due to the nonzero angular spread

Df and the nonzero velocity spread of beam 1. This is

illustrated by the red dotted curve in Fig. 3, labeled

DE0(451), that shows the energy resolution that would be

obtained for Dv1
= Df = 0. In this hypothetical situation,

the best collision energy resolution that can be obtained is

indeed found for g > v2, and becomes independent of the

velocity spread of beam 2. To first order, the collision energy

spread vanishes in this case.

C Variation of v1, v2, and / for a fixed energy

In this case the mean collision energy is specified while v1, v2,

and f are allowed to vary. For a given choice of E, v1 and f,
there are in general two possible values for v2 which yield this

energy E. In calculations it is therefore advantageous to vary

v1 and v2 and to let f be uniquely determined by eqn (1). To

search for a minimum in DE then has the following geometrical

significance: the vectors v1, v2 and the relative velocity g define

Fig. 2 The dependence of the full width at half maximum D(E/m) on
E/m pertaining to the situation in which both beam velocities are

constant and the collision energy is tuned by variation of f (see

Section IIIA). Beam parameters: v1 = v2 = 500 m s�1, Dv1
= Dv2

=

50 m s�1 and Df = 40 mrad (2.31) (solid red curve), Df = 0 mrad

(dashed red curve). The corresponding beam intersection angle is

shown as the black curve with respect to the axis on the right side.

Fig. 3 The dependence of D(E/m) on E/m for the situation in which

the beam intersection angle and the target beam velocity v2 are

constant, while the collision energy is tuned by variation of v1 (see

Section IIIB). Beam intersection angles of f = 451 (red solid curve)

or f = 901 (red dashed curve) are assumed. Beam parameters: v2 =

500 m s�1, Dv2
= 50 m s�1, Dv1

= 10 m s�1, and Df = 40 mrad (2.31).

The corresponding primary beam velocities v1 are shown as the green

curves with respect to the axis on the right. Note that at low collision

energies for 451 there are two possible values for v1 at a given energy

with differing values for the resolution. The red dotted curve labeled

DE0(451) pertains to the hypothetical case in which Dv1 = 0 m s�1,

Df = 0 mrad.
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a triangle, g is held fixed and the vertex opposite to g is allowed

to move over all points within the plane (excluding some areas

which may not be accessible in the experiment).

Again, we calculate the expected energy resolution for an

experiment in which a Stark-decelerated beam collides with a

conventional molecular beam; i.e., we take the beam parameters

Dv1
= 10 m s�1, Dv2

= 0.10 � v2 and Df = 40 mrad. The

collision energy resolution D(E/m) is calculated on a sufficiently

fine grid of values for v1 and v2, where v1 = 100–1000 m s�1

and v2 = 400–1000 m s�1. The subsidiary condition of

constant energy is introduced by letting f be determined by

eqn (1). The surface D(E/m)(v1,v2) for the fixed collision energy

E/m = 10 cm�1 u�1 is shown in Fig. 4.

The optimal resolution with D(E/m) = 0.73 cm�1 u�1 is

obtained for v1 = 627 m s�1, v2 = 400 m s�1 and f = 511;

note that there is no local minimum, only a global one.

D Applications

In a crossed beam collision experiment, one would like to tune

the collision energy with the highest possible resolution for

each value of the collision energy. As described in Section

IIIC, one would have to optimize the values for v1, v2, and f to

accomplish this. This is possible in theory, it is however not

practical in an experiment. In this section we discuss to which

extent satisfactory results can also be obtained by a variation

of two parameters only.

First, let us assume that the apparatus allows for a continuous

variation of the crossing angle and the speed of beam one,

while the speed of beam two is fixed. As before, we assume

v2 = 500 m s�1 and Dv2 = 50 m s�1. We calculate the values

for v1 and f that result in an optimal energy resolution for the

cases Df = 20, 40, 80 mrad (hereafter referred to as case 1, 2

and 3, respectively). In all cases and for all values for v1 we

assume Dv1 = 10 m s�1. The minimal value for D(E/m) has

been determined by numerically evaluating eqn (6) on a

sufficiently fine grid, subject to the condition of constant

collision energy. In Fig. 5 the optimal values for D(E/m) are
shown (red curves) as a function of the collision energy for all

three cases. The values for f (black curve) and v1 (green curve)

for a given E/m are plotted with respect to the axis on the right.

To stay on the optimal curve, f and v1 have to be changed

continuously. It is of practical interest to consider what

happens if we move away from the optimal curve by either

changing only v1 or only f. In Fig. 6 such deviations are

considered for case 1. The solid lines correspond to a change of

v1 from 0 to 1000 m s�1 at fixed intersection angles (indicated

on each curve). The two dashed lines correspond to fixed

values for v1 with v1 = 575 or 773 m s�1 and variable f with

f = 01–901.

All curves touch the optimal curve of case 1, as it should be.

The energy range that can be scanned with a close to optimal

resolution appears limited, both in the case where only v1 is

varied and in the case where only f is varied. Note that by

changing v1 alone, the energy range with a satisfactory energy

resolution becomes more and more narrow as f decreases,

finally vanishing at f = 01.

Let us now consider an apparatus in which the beam

intersection angle is fixed, but both beam velocities are variable.

We assume f = 451, as this beam intersection angle appears

experimentally most feasible. Again, we assume the beam

parameters pertaining to case 1, i.e., Dv1
= 10 m s�1 for all

values of v1, Dv2
= 0.10 � v2, and Df = 20 mrad. In Fig. 7 the

optimal values for D(E/m) are shown (red curve, labeled (10)),

together with curve (1) that was shown in the preceding

figures. On the left side of this figure, the corresponding values

for v1 and v2 that are required to obtain the optimal value for

the energy resolution are shown in green.

It is observed that by a proper variation of v1 and v2 at a

fixed value of f = 451 (curve (10)), energy resolutions are

Fig. 4 Contour plot of D(E/m) for a fixed E/m of 10 cm�1 u�1 pertaining

to the situation where v1, v2, and f are varied (see Section IIIC). Beam

parameters: Dv1
= 10 m s�1, Dv2

= 0.10 � v2, Df = 40 mrad. The

contour lines for the beam intersection angles f are shown as black

curves.

Fig. 5 The minimized values for D(E/m) (red curves with respect to the

left axis) pertaining to the situation in which the target beam velocity v2
is kept constant, and both v1 and f are allowed to vary to tune the

collision energy. Beam parameters: Dv1 = 10 m s�1, v2 = 500 m s�1 and

Dv2
= 50 m s�1. The assumed angular spreads are Df = 20, 40,

80 mrad corresponding to curves 1, 2 and 3 respectively. The values for

v1 (green curve) and for f (black curve) that result in the optimal

energy resolution are plotted with respect to the axis on the right.
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obtained that are very similar to the optimal resolution that

results from a variation of v1 and f at a fixed value of v2 (curve

(1)). At low collision energies curve (10) is below curve (1). This

is a consequence of the fixed value of v2 = 500 m s�1 that was

assumed for curve (1); for curve (10) v2 may assume values

below 500 m s�1, improving the energy resolution.

Again, we may wonder what would happen if we move away

from the optimal curve by either changing only v1 or v2. This

situation is addressed on the right hand side of Fig. 7. The

energy resolution is shown that is obtained if v1 is varied

between 0 m s�1 and 1200 m s�1, while fixed values for v2 of

400, 500, 600 or 700 m s�1 are assumed. Again, we assume

Dv1
= 10 m s�1 for all values of v1, Dv2

= 0.10 � v2, and Df =

20 mrad. It can be seen that as long as v1 can be tuned

continuously, it is sufficient to change v2 in coarser steps in

order to traverse the minimum curve (10). This is of practical

importance because the mean speed of a beam can easily be

adjusted in larger steps by varying, for instance, the nozzle

temperature.

It is also interesting to compare some of the above results

to a direct numerical evaluation of DE. To see whether the

linear approximation is sufficiently accurate, we compare the

calculations for the three cases shown in Fig. 5 to a direct

numerical evaluation of D(E/m). For the latter we generate

independent random numbers from Gaussian distributions for

the angular and velocity spreads. All three cartesian velocity

components of a beam are assumed to be independent, and

the total angular spread is shared equally among both beams.

The distributions for D(E/m) are then not strictly Gaussian

in shape, but can be reasonably well approximated by a

Gaussian in all cases. The resulting values for a few sample

points are plotted as dots in Fig. 8. It is seen that the linear

Fig. 6 The expected energy resolution if only one parameter is

continuously varied in an experiment to tune the collision energy.

Beam parameters: Dv1 = 10 m s�1, v2 = 500 m s�1, Dv2
= 50 m s�1,

and Df = 20 mrad. Solid curves: v1 is continuously varied between

0 m s�1 and 1000 m s�1 for fixed beam intersection angles of 01, 301,

501, 651, 801 and 901. Dashed curves: f is continuously varied between

01 and 901 for fixed primary beam speeds of v1 = 575 m s�1 and v2 =

773 m s�1. The optimal energy resolution that is obtained if both v1
and f are tuned is shown as a comparison (curve (1); reproduced from

Fig. 5).

Fig. 7 The energy resolution for the situation in which both beam speeds v1 and v2 are varied for a fixed beam intersection angle f = 451. Beam

parameters: Dv1 = 10 m s�1 for all values of v1, Dv2 = 0.10 � v2, and Df = 20 mrad. Left panel: optimized energy resolution (curve (10)). The

values for v1 and v2 (green curves) that result in this energy resolution are shown with respect to the green axis on the left. Right panel: the energy

resolution that is obtained if v1 is continuously varied between 0 and 1200 m s�1 for fixed values of v2 of 400, 500, 600, and 700 m s�1. For

comparison, curve (1) of Fig. 5 is shown in both panels.
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approximation indeed describes the considered cases well, but

that it actually overestimates the numerically calculated spread

DE/m.

IV. Resonances in OH–He collisions

In this section, we illustrate the benefits of the method to

improve the energy resolution, using the scattering of Stark-

decelerated OH radicals with He atoms as an example. The

scattering of OH with He is well-suited to be studied with high

energy resolution, as this system is known to exhibit a

pronounced resonant structure in the inelastic scattering cross

sections.31 The potential well for the OH–He van der Waals

complex is shallow, and can only support a limited number of

bound states.32,33 The well depth of B25 cm�1 is significantly

smaller than the energy spacing between rotational levels of

the OH radical, resulting in resonances in the inelastic cross

sections that are grouped within rather narrow collision energy

ranges. The well-defined range of collision energies at which

scattering resonances can occur, in combination with the low

number of resonances that can be expected within this range,

yield interesting prospects to experimentally (partially) resolve

these resonances.

Recently, we have studied the low-energy state-to-state

rotationally inelastic scattering cross sections for this system

by scattering a beam of Stark-decelerated OH radicals with a

conventional beam of He atoms in a crossed molecular beam

(90 degrees crossing angle) configuration.34 In this experiment,

the velocity of the He atoms is B1000 m s�1, and the collision

energy is tuned by varying the OH velocity using the Stark

decelerator. In panel (a) of Fig. 9, the measured and the

calculated relative cross sections for 3 inelastic scattering

channels are shown. The OH molecules scatter out of the

X2P3/2, J = 3/2, f initial state into final states of the X2P3/2

manifold with J = 3/2e, 5/2e, 5/2f. The labels e and f denote

the lower and upper L-doublet component of the rotational

levels, respectively. The cross sections that result from quantum

close-coupled scattering calculations using high-quality

ab initio OH–He potential energy surfaces are shown in panel

(a) as well.

Three groups of scattering resonances at collision

energies around 126 cm�1, 188 cm�1 and 202 cm�1 are clearly

recognized in the calculated cross sections. These resonances

can be associated with the potential wells of the OH–He

potential energy surfaces that adiabatically connect to the free

He atom and the X2P1/2, J = 1/2, X2P1/2, J = 3/2, and X2P3/

2, J = 7/2 rotational energy levels of the free OH radical,

respectively. The collision energy resolution that was obtained

in the experiment amounted to approximately 25 cm�1; the

theoretically calculated cross sections, convoluted with the

experimental energy resolution, are shown as black curves in

panel (a) of Fig. 9. Clearly, the scattering resonances are

smeared out due to the experimental energy spread, and no

unequivocal resonant structure can be identified in the experi-

mental cross sections.

Fig. 8 The minimized values of D(E/m) pertaining to the three cases of

Fig. 5. The values for D(E/m) are calculated using the model (curves

labeled (1), (2) and (3); identical to the curves in Fig. 5) and direct

numerical evaluation using Gaussian beam distributions (dots).

Fig. 9 (a) Measured and theoretically predicted relative cross sections for three inelastic scattering channels for the scattering of OH radicals

(X2P3/2, J = 3/2, f) with 4He atoms (adapted from ref. 34). The theoretically predicted cross sections are shown as colored curves, while the black

curves result if the calculated cross sections are convoluted with the experimental energy resolution. (b–d) Experimental cross sections together

with the theoretically predicted relative cross sections, convoluted with the experimental energy resolution for two different experimental

arrangements. The beam parameters pertain to case (1): vHe = 1000 m s�1, DvHe = 100 m s�1, DvOH = 10 m s�1 and Df= 20 mrad. Gray curves:

fixed beam crossing angle of f = 901. Black curves: beam crossing angle f and OH velocity vOH are chosen to optimize the energy resolution at

each collision energy. The vertical axes pertain to the theoretically predicted cross sections; the gray and black curves are vertically offset by a few

percent for reasons of clarity.
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A straightforward strategy to improve the experimental

energy resolution in this experiment would be to improve

the angular and velocity spreads of both the OH radical and

He atomic beams. A significant improvement of the beam

parameters (and concomitant reduction in particle densities) is

considered feasible regarding the excellent signal-to-noise

ratio that has been attained in the experiment. In our crossed

beam scattering experiments, beam parameters pertaining to

case 1 of Section III, i.e., DvHe = 100 m s�1 (10% of vHe),

DvOH = 10 m s�1 and Df = 20 mrad, are considered

experimentally challenging but feasible.

In panels (b)–(d) of Fig. 9, the experimentally observed and

calculated relative cross sections for the three inelastic scattering

channels are shown again on an enlarged scale. The gray

curves show the theoretically predicted cross sections convoluted

with the experimental energy resolution that is expected if

the experiment would be performed with the case (1) beam

parameters. The vastly improved beam parameters only result

in a slightly improved energy resolution. Like in panel (a), this

energy resolution is not sufficient to resolve the scattering

resonances, and one may wonder if the improved energy

resolution that is obtained justifies the experimental effort of

improving the beam parameters.

Things look considerably better if the methodology to

improve the energy resolution as outlined in this paper is

followed. In panels (b)–(d) of Fig. 9, the black curves show the

cross sections that are expected experimentally if again case (1)

beam parameters are used, but now the beam crossing angle f
and vOH are chosen to optimize the resolution for every

collision energy. Clearly, the improved energy resolution

facilitates the experimental observation of the resonant structure

in the scattering cross sections. At the resonance positions, the

optimized parameters are: E = 126 cm�1: f = 441, vOH =

1388 m s�1; E=188 cm�1: f=49.81, vOH = 1544 m s�1; E=

202 cm�1: f= 50.81, vOH = 1577 m s�1, resulting in an energy

resolution DE of 5.2 cm�1, 6.6 cm�1, and 6.9 cm�1, respectively.

This resolution is sufficient to partially resolve the scattering

resonances; a further improvement of the beam parameters

will result in a further improvement of the energy resolution.

V. Conclusion

We have presented a simple yet effective method to optimize

the collision energy resolution in crossed molecular beam

scattering experiments. We show that for beam intersection

angles smaller than 901, kinematically favorable conditions

can be found in which the beam with the largest velocity or

angular spread contributes the least to the collision energy

resolution. This allows for high collision energy resolutions,

without the need for methods that reduce the velocity spread

of the beam(s) and without greatly reducing the particle

density in the beam(s). Via a systematic optimization of the

beam velocities and beam intersection angle, we have analyzed

the optimal value for the energy resolution that can be reached

experimentally using a realistic set of beam parameters.

The method may offer particularly large dividends if one of

the molecular beam pulses already has a narrow angular and

velocity spread, as is the case for Stark-decelerated beams, for

instance. Stark decelerators offer molecular packets with a

tunable velocity, an angular spread of typically 11, and a narrow

velocity spread that is typically in the 5–20 m s�1 range. Using

additional electric field elements with which the phase-space

distribution of the molecules is manipulated, velocity spreads

below 1 m s�1 can be obtained.30 Using a suitable beam

intersection angle and velocity of the target beam, this narrow

angular and velocity spread allows for exceptionally high colli-

sion energy resolutions. In particular for systems with a low

reduced mass, absolute collision energy resolutions ranging

from 0.5–5 cm�1 appear feasible. This may well be exploited

to experimentally observe and study scattering resonances.

Experiments of this kind are currently underway.
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