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1

Introduction

1.1 Graphene

In the last few years graphene has become one of the most discussed topics in physics

and material science [1, 2]. The vast increase of publications per year is outrunning

previous physics-hypes on other carbon allotropes like fullerenes and nanotubes [3].

Before the causes for this exceptional euphoria and the aims of this thesis will be

described in this introduction, some elementary comments on graphene’s nomenclature

and its physical structure will be given.

The word graphene is a coinage deduced from the word graphite and the suffix

-ene that is used for polycyclic aromatic hydrocarbons like naphthalene, anthracene,

coronene and, in the simplest case, benzene [6]. Thus, the term graphene refers to

one strictly two-dimensional monolayer of graphite in the (0001)-plane as shown in

Fig. 1.1. The hexagonal structure that will be explained in further detail below, is

not only known from graphite, but also from carbon nanotubes and, somehow, from

fullerenes [7]. Therefore graphene is often used as a first approach to theoretically

describe properties of these other carbon allotropes [7].

Since in graphite the distance between the graphite planes is huge (3.37Å) compared

to the distance of carbon atoms within the same plane (1.42Å), graphene serves as a

model particularly for the description of this three-dimensional material [8, 9]. This was

first done by P.R. Wallace, who used graphene as a simple theoretical model to calculate

the band structure of graphite in 1947 [8]. Wallace correctly identified graphene as a

zero-gap semiconductor and understood that the mean free path within a graphene

1



1. INTRODUCTION

Figure 1.1: Some carbon allotropes. - Diamond and graphite have been known since

prehistoric times. Nanotubes were discovered in 1991 [4]; fullerenes in 1985 [5]. The year

graphene was discovered depends strongly on the point of view (more information in the

text). The models in this picture were made with VESTA
TM

by the present author.
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1.1 Graphene

sheet must be extraordinarily high [8]. Although more work on this system has been

performed in the following decade [10, 11], only nearly 40 years later DiVincenzo and

Mele pointed out that the linear dispersion of the electronic band structure near the

K-point in graphene, has a zero effective mass of the charge carriers as a consequence in

graphene [12]. The reason this rather simple phenomenon was not understood earlier,

was the lack of interest by the scientific community. In 1937 Landau had theoretically

demonstrated that strictly two-dimensional crystals were thermodynamically unstable

[13], and thus scientific interest in a clearly two-dimensional crystal system such as

graphene was mostly limited to theoretical modeling1.

Still, many experimentalists have created graphene often as an unwanted byproduct

in their experiments. Van Bommel et al. created graphene or thin graphite films

by silicon evaporation of SiC in 1974 [14]. However, the first documented graphene

synthesis as a carbon monolayer happened in 1977 by Oshima et al. on lanthanum

hexaboride via segregation of dissolved carbon atoms. It is particularly tricky to create

clean crystal surfaces for those materials that tend to dissolve carbon atoms, and it is

usually easier to study the carbon covered surfaces than to do experiments on the clean

surfaces. That is probably the reason, why the second study on a clearly one-atom thick

graphene layer was performed on ruthenium [15]. Subsequently there have been studies

of graphene films on nickel that were grown via cracking of hydrocarbons [16], and on

iridium using the same method [17]. However none of these studies and of those that

followed in the next decade focussed on the extraordinary properties of graphene. And

since most studies were actually on graphene on metal substrates graphene’s properties

were not preserved in any of these systems2.

Graphene’s breakthrough came with the production of free-standing graphene flakes

by exfoliation from graphite crystals by Novoselov et al. [18]. On the one hand Lan-

dau’s law – that strictly two-dimensional materials could not exist – was falsified3, and

on the other hand the extraordinary transport properties of graphene were measured

in experiment for the first time [21, 22]. Similar measurements to those of Novoselov

1However, quasi-two-dimensional systems on substrates and 2D-electron gases as in GaAs were

experimentally studied long before, but they do not contradict Landau’s theorem.
2With SiC as the only exception. On most metals the graphene π-bands are hybridized in such way

that the properties of graphene are strongly modified, as will be extensively discussed in this thesis.
3If the existence of free-standing graphene sheets really falsifies Landau’s law is not completely

clarified [19, 20].

3



1. INTRODUCTION

et al. had been performed in the same year for graphene on SiC by Berger et al. [23]

and nearly at the same time by Zhang et al. [24], but the experimental investiga-

tion of graphene as the revolutionary strictly two-dimensional material, as what it is

known nowadays in the science community, has often primarily been attributed to the

extraordinary experimental work of Novoselov et al. [18]1.

1.1.1 The band structure of graphene

Figure 1.2: Models of graphene. - Left: The graphene pz states are perpendicularly

orientated to the graphene layer. Right: The graphene lattice with the two graphene

sublattices denoted and the unit cell drawn in.

The majority of the outstanding properties of graphene are a consequence of the

extraordinary band structure at the Fermi surface. Before we start the simple mathe-

matical derivation to understand this, it is important to become aware of the fact that

only the pz electrons contribute to transport phenomena in graphene, since carbon has

two electrons in the s-shell and four electrons in the p-shell; the low-lying s-electrons do

not contribute to the transport in graphene, while three of the four p-shell electrons are

necessary to keep the sp2-bonds from each carbon atom to its three neighbors. Thus,

the pz orbitals that are mirror symmetric to the graphene plane, as one can see in Fig.

1.2, left side, are the only electrons that contribute to electronic transport phenomena.

1For further information on the controversial discussion concerning the investigation and invention

of graphene see http://graphenetimes.com/2009/10/geim-is-not-columbus/

4



1.1 Graphene

1.1.1.1 Derivation of the electronic structure of the graphene pz-states

The following simple derivation for the graphene π-bands is close to the one of Wallace

[8], and contains some additional ideas that can be found in Saito’s and Dresselhaus’

book [7].

Figure 1.3: Geometry of graphene in real and reciprocal space. - The geometry

of graphene with its two sublattices translates into K-space in a hexagonal lattice similar

to that of a hexagonal system with one atom per unit cell.

The interatomic distance in graphene is 1.42Å which gives a = |~a1| = |~a2| = 1.42Å×
√
3 = 2.46Å as the lattice parameter, according to Fig. 1.3. Therefore,

~a1 =

(√
3a

2
,
a

2

)

~a2 =

(√
3a

2
,−a

2

)

which then determines the reciprocal lattice vectors as

~b1 =

(

2π√
3a

,
2π

a

)

~b2 =

(

2π√
3a

,−2π

a

)

.

5



1. INTRODUCTION

As shown in Fig. 1.2, right side, the graphene unit cell contains two carbon atoms.

These two carbon atoms are obviously inequivalent, since the three nearest neighbors

of each sublattice are 60◦ turned with respect to each other. Therefore, in a nearest

neighbor approximation with

Hij = 〈Φi|H|Φj〉 (1.1)

with Φi and Φj the wave functions of states i and j, and H the Hamiltonian matrix

element, the full Hamiltonian of our system can be written as a 2× 2 matrix

(

HAA HAB

HBA HBB

)

. (1.2)

The Bloch orbitals can then be written as

Φj(~r) =
1√
N

∑

~Rα

ei
~k ~Rαφj(~r − ~Rα) (1.3)

with N the number of wave vectors in the first Brillioun zone (BZ), α = A,B and thus

~RA and ~RB as the sites of the atoms of each sublattice, and ~k and ~r the wave vector

and the site-coordinate in real space.

By inserting equation 1.3 into equation 1.1 for the diagonal matrix elements of the

hamiltonian matrix 1.2, we get

HAA(~r) =
1

N

∑

~R, ~R′

ei
~k(~R−~R′)〈φA(~r − ~R′)|H|φA(~r − ~R)〉 (1.4)

=
1

N

∑

~R=~R′

ǫ2p +
1

N

∑

~R=~R′+~ai

e±i~k~ai〈φA(~r − ~R′)|H|φA(~r − ~R)〉+ ... (1.5)

= ǫ2p + higher terms... (1.6)

with ai = a1, a2. We assume from equation 1.5 that the main contribution to the

transition matrix element comes from the nearest neighbor interaction, and therefore

the energy of the 2p state can be approximated as ǫ2p. Thus,

HAA = HBB = ǫ2p. (1.7)

Therefore only the two off-diagonal matrix elements of the Hamiltonian have to be

evaluated. Since every atom of sublattice A has three neighboring atoms of sublattice

6



1.1 Graphene

B, HAB can be written as

HAB =
1

N

∑

R,i

ei
~k ~Ri〈φA(~r − ~R)|H|φB(~r − ~R− ~Ri)〉, i = 1, 2, 3

= t
∑

i=1,2,3

ei
~k ~Ri

= tf(~k)

with t = 〈φA(~r − ~R)|H|φA(~r − ~R − ~Ri)〉. Therefore, by inserting the previously given

coordinates indicated in Fig. 1.3, we get

f(k) = eikxa/
√
3 + 2eikxa/(2

√
3) cos

kya

2
. (1.8)

Since matrix 1.2 must be Hermitian and f(k) is a complex function, we know that

HAB = H
∗
BA

1. Therefore,

H =

(

ǫ2p tf(k)
tf∗(k) ǫ2p

)

, (1.9)

and the overlap integral matrix can easily be written as

S =

(

1 sf(k)
sf∗(k) 1

)

(1.10)

with s = 〈φA(~r − ~R)|φA(~r − ~R − ~Ri)〉. Now, from det (H − ES) = 0 one can find two

solutions

E(~k) =
ǫ2p ± tω(~k)

1± ω(~k)
(1.11)

with

ω(~k) =

√

|f(~k)|2 =

√

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (1.12)

Depending on the t and s values, one can fit the theoretically calculated band

structure to experimental data. Fig. 1.4 shows the theoretically calculated electronic

structure of the graphene π-bands according to equation 1.112. One can clearly see that

the upper anti-bonding π∗-band and the lower bonding π-band touch at the K-point and

render graphene a zero-gap semiconductor. This is only the case if both orbital energies

ǫ2p for the sublattices have the same energy. Naturally the fact that the electron wave

1The star signifies the complex conjugate.
2For Fig. 1.4 I used t = 3 and s = 0.1. These are reasonable values and close to the values for

graphite [7].

7



1. INTRODUCTION

Figure 1.4: Theoretically calculated graphene π bands. - The band structure has

been calculated and plotted by the present author with Mathematica
TM

using equation

1.11.

8



1.1 Graphene

function’s first derivation is only continuous at the K-point, when the lower π band is

coupled to the upper π∗ band, leads to the conclusion that the electron wave functions

are now over both sublattices. Therefore, transport in graphene happens over A to B

sublattice hopping and since the three nearest neighbors are at different positions for

both sublattices, one has to distinguish between two different K-point K and K’.

Besides the zero-gap semi-conducting property of graphene, a remarkable feature is

also the linear dispersion of the bands at the K-point near to the Fermi-level [12]. As

one can see in Fig. 1.4 the two bands appear strictly conical in their structure around

the K-point. Since this behavior is known for particles without any rest-mass (often

referred to as Dirac-particles) these cones are often referred to as Dirac cones and the

point where these cones meet as Dirac point.

1.1.1.2 Breaking the symmetry of the two carbon sublattices

As mentioned previously the energetic equivalence of the sites of the atoms of the two

sublattices is responsible for the zero-gap of the electronic band structure in graphene.

A breaking of the symmetry automatically leads to a gap opening. If the energetic

difference between the two sublattices is ∆, the Hamiltionian 1.9 changes into1

H =

(

ǫ2p +
∆
2 tf(k)

tf∗(k) ǫ2p − ∆
2

)

. (1.13)

Therefore, the band structure for the bonding and anti-bonding π states have to be

rewritten as

E(~k, π∗) = ±
√

ǫ22p −
∆

2
+ t2|f |2 (1.14)

The graphene band structure around the K-point calculated with this formula re-

sults in a band gap of size ∆ at the K-point and a destruction of the strictly conical

band structure.

However, a gap without destroying the linear behavior of the electrons cannot be

achieved in any physical system, since the wave function of any system has to be

differentiable [26, 27]. Since both the anti-bonding and the bonding π-band wavefunc-

tions, are not differentiable at the K-point and only the fact that they touch allows an

electronic structure consistent with differentiable wave functions at the K-point, the

Dirac-behavior of the electrons is destroyed by the appearance of a gap.

1See also Bostwick et al. [25]
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1.1.2 The extraordinary properties of graphene

The linear dispersion of the π and π∗ bands at the K-point and the fact that they touch1

leads to the conclusion that transport in graphene happens mainly by hopping of the

electrons from one sublattice to the other [12]. The strictly linear band dispersion makes

the electrons behave like particles without a rest mass, which travel with an effective

speed of light ceff ≈ c/300 ≈ 106m/s [21] through the graphene sheet. Moreover,

together with the vanishing density of states this leads to an extremely high room

temperature mobility of charge carriers of 15000cm2/Vs [21], which exceeds the best

values for charge carrier mobilities in silicon. The mean free path of the charge carriers

in graphene has been measured to be around 0.5mm [18, 28], which is a phenomenon

often referred to as ballistic transport. Interestingly ballistic transport in graphene is

barely affected by chemical doping [29], which makes graphene a promising candidate

for future field effect transistors2.

All these extraordinary characteristics in graphene show a significantly low temper-

ature dependence [21, 22]. The most spectacular example is probably the Quantum

Hall Effect (QHE) at room temperature [30]. Moreover the QHE in graphene shows

an anomalous half-integer quantization that originates from an unusual geometrical

phase3 (often referred to as Berry’s phase), again induced by the strict symmetry of

the two sublattices [24].

Another interesting feature of graphene as a system for fundamental research be-

comes clear by inserting ǫ2p = 0 in the Hamiltonian 1.9. Then

H =

(

0 tf(k)
tf∗(k) 0

)

(1.15)

which is mathematically equivalent to the Pauli-matrix. Thus, the appearance of an

electron in one of the two sublattices A and B is mathematically equivalent to the spin

of an electron, and can therefore be referred to as a pseudo-spin. This makes graphene

1As mentioned in the previous subsections, the linear dispersion of course requires the zero band

gap.
2Since in future field effect transistors, graphene has to be placed on a semi-conducting substrate,

slight substrate-induced doping is probable. Chemical doping could correct the zero-gate voltage charge

carrier density.
3The unusual geometrical phase in the physical case of graphene means that the wave function

of an electron in graphene under a magnetic field changes its phase by 1

2
π, when describing a closed

trajectory in k-space [31].
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1.2 Graphene on different substrates

the only system known to mankind that allows for a study of fermionic Dirac particles

[32]. In case of bilayer graphene this even leads to a system with four spin-directions

with no known equivalence in nature [1, 2, 33].

1.1.3 Possible future applications

The high mobility of charge carriers and its low temperature- and doping-dependence

make graphene a promising candidate for replacing silicon in future field effect transistor

based devices [21, 33]. Indeed, industrial companies such as IBM [34, 35], Samsung

[36, 37], and Intel [23, 38] are already doing research in this field, to create graphene-

based field effect transistors. The biggest issue concerning such field effect transistors

is the lack of an energy gap at the Dirac energy ED (see also chapter 3).

Due to graphene’s stability, it has moved into the focus of research on one-electron

transistors and more generally onto the field of molecular-sized electronic devices [33, 39,

40]. Moreover, its Fermi surface that shows only electronic states at the K-points make

it a promising candidate for future spin filtering devices [41, 42] (see also chapter 5)

and also the first graphene-touch screen have been produced recently [43]. In summary,

it seems very likely that graphene will find its way into modern electronic devices and

its whole set of potential applications still has to be explored.

1.2 Graphene on different substrates

Two major issues are currently in the focus of graphene research for industrial purposes

[1]:

• The fabrication of wafer-sized graphene layers.

• The interaction of materials with graphene.

The first point relates to a very simple problem: it is clear that graphene flakes,

made by the exfoliation method [18], will never find their way into industry, since those

are small and rather expensive to produce [1]. So other methods of graphene production

have to be explored and some will be discussed in the next subsections.

The second point indicates another fundamental issue of graphene-based devices.

Since the graphene band structure extensively depends on the symmetry of the two

11
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sublattices, one has to know how a substrate material can modify or destroy these

unique properties. This is not only related to the fact that graphene sheets in devices

probably will have to be placed on substrates, but also to the ineluctable electrical

contacts of graphene with different materials for electronic applications.

1.2.1 Graphene on SiC

One of the best-explored methods of graphene growth is the annealing of a SiC crystal

to temperatures above 1150◦C, which makes the silicon atoms evaporate and leaves

the carbon atoms in a graphitic structure on the surface [44, 45]. This method was

first studied by van Bommel et al. in 1974 [14] and was rigorously researched during

the second half of the 90’s [44, 45, 46, 47]. The big graphene tide in research, starting

in 2004, then led to studies that proved the possibility of graphene growth on SiC

revealing the characteristics of free-standing graphene1 [23, 48, 49].

However, Low-Energy Electrons Microscopy (LEEM) studies show that the quality

of graphene layers grown by the previously mentioned method on the 6H-SiC(0001)

surface is rather limited [50], whilst graphite films on most other surface orientations

studied show less sharp Low-Energy Electrons Diffraction (LEED) spots [51]. But

novel methods of graphene growth on the 6H-SiC(0001) surface seem to yield graphene

samples of improved quality [52, 53], while graphene-growth on the (0001) surface

shows layer thicknesses that are difficult to control, but preserves the characteristics of

monolayer graphene [54].

Before the characteristics of graphene grown on the SiC(0001) surface will be dis-

cussed, some comments on the graphene layers grown on the (0001) surface will be

given.

1.2.1.1 Gap or no gap

The first graphene layer on the 6H-SiC(0001) surface is strongly bound to the substrate

and shows no linear dispersion of the graphene π bands at the K-point [55] and is thus

often referred to as a buffer layer or 0th graphene layer [25]. Thus, the next layer

will be referred to as a single graphene layer in the following. This layer exhibits all

1The term free-standing graphene refers to its band structure. Graphene on SiC is electron doped by

450 meV. Other possible substrate-induced changes in graphene’s electronic structure will be discussed

in section 1.2.1.1.
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1.2 Graphene on different substrates

important properties of a graphene monolayer with an electron-doping of 450meV [49].

However, angular-resolved photoemission spectroscopy measurements reveal that the

graphene π-bands show a slightly anomalous structure around the K-point in form of a

kink that is accepted as being induced by electron-phonon coupling processes [49] and

a feature at the Dirac-point that has been interpreted as a consequence of electron-

plasmon interactions [49] or alternatively as a substrate-induced band gap [56].

Figure 1.5: The graphene-stackings for graphene on the SiC(0001) and the

SiC(0001) surface. - A graphene bilayer in the AB-stacking (left panel) and the 27.8◦

rotated stacking as grown on the SiC(0001̄) surface. The two sublattices for the lower

graphene layer are colored grey and brown, the two sublattices for the upper graphene

layer are colored bright and dark blue.

From a theoretical point of view a substrate-induced band gap of a graphene layer

on the buffer layer would make sense, since graphene layers are mostly stacked in

the classical AB-manner as shown in Fig. 1.5. As in bulk graphite this leads to a non-

vanishing ∆ in the Hamiltonian 1.13 and therefore can lead to a gap opening. But if the

interaction of the two graphene layers is weak enough such effect could be suppressed.

However, Zhou et al. refer to a band gap of 260meV without observing any band gap

in form of a photoemission intensity minimum in their spectra1 [56, 57]. Moreover the

electron-plasmon interaction naturally results in an unusual broadening of the bands

1Photoemission spectroscopy as a method will be explained in the next chapter.
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at the K-point that has been observed [49]. Zhou et al. would have to explain this

kink-related broadening of the bands at ED. This is highly controversial and has been

discussed extensively [25, 58]. Such a gap would make SiC an even more promising

candidate as a substrate for graphene in future electronic devices, since a band gap is

still missing in such a system.

In chapter 3 of this thesis, data on a clearly gapped spectrum of a graphene layer

on gold on Ru(0001) will be shown. The gap size accounts to 200meV and none of the

broadening features that were seen by Zhou et al. are present1. As will be explained

in that chapter, graphene on Ru(0001) is comparable in many aspects to the graphene

on SiC(0001) system.

1.2.1.2 Multilayer graphene that behaves like a single graphene sheet

Ten years ago the graphitization of the SiC(0001) surface seemed to be a less promising

approach towards waver-sized graphene sheets, since the LEED studies of Forbeaux et

al. showed that the graphene planes grow in varying orientations and reveal strongly

varying layer thicknesses on the same sample [60], but on the other hand these films of

10 to 20 graphene layers show the transport characteristics of single graphene sheets

[28, 61]. This was attributed to the stacking of the graphene layers that differs to the

usual AB-stacking, and instead are stacked in such a manner that one layer is rotated

by 47.8◦ to the lower layer, which then preserves the two sublattices from symmetry

breaking [54] (see Fig. 1.5, right panel).

Therefore this method provides graphene layers with Dirac-like quasiparticles that

are easy to make. However, field effect transistors might be difficult to be based on

such systems, since the charge transfer between the layers is very low and therefore the

absence of field-induced change of charge carrier concentration is an issue. Moreover a

gap opening could be difficult to achieve.

1.2.2 Graphene on metals

In all future graphene-based electronic applications, it is highly probable that graphene

will have to have metal contacts, and thus it is of essential interest to study how

1See also Enderlein et al. [59].
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graphene’s properties change when in contact with metals. This is particularly impor-

tant since the graphene π-bands will necessarily hybridize with metallic bands on all

metals, and in many cases this can happen near to the Fermi surface1, as is the case

for nickel [63, 64] and ruthenium [15, 65], which are both focussed upon in this thesis.

In both systems the first grown graphene layer does not show Dirac-cones at the Fermi

level [66, 65].

Moreover, metals are important in many methods of graphene fabrication. An often

used method that will be explained in detail in chapter 5 is the cracking of hydrocarbons

on the metal surface [16, 67].

1.3 Aims of this thesis

The current status of graphene research makes it necessary to explore different methods

of graphene growth and the interaction of graphene with varying substrates. As will be

explained within the next chapter, ARPES as a method particularly serves this pur-

pose, since it makes detailed studies of the band structure of two-dimensional systems

possible.

For this thesis graphene-layers of different thicknesses have been grown and stud-

ied on Ru(001) via segregation (chapter 3), on one monolayer of intercalated gold on

Ru(001) (also chapter 3), on Θ-Ni2Si(001) via the diffusion of nickel atoms in a SiC(001)

surface (chapter 4), and on Ni(111) via chemical vapor deposition (CVD) (chapter 5).

For each system a different method for graphene formation has been used and all three

systems show significantly differing characteristics.

1If the hybridization happens far away from the Fermilevel, as it is the case on Ir [62], the band

structure of graphene close to the Fermi surface is naturally preserved.
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Experimental

2.1 An introduction to photoemission spectroscopy

2.1.1 The photoelectric effect

The photo effect - also known as the photoelectric effect - was first observed by Alexan-

dre Edmond Becquerel [68] and later extensively studied by Heinrich Hertz [69] and

Wilhelm Hallwachs [70]. These researchers found that when a surface is exposed to

electromagnetic waves above a material-specific frequency, electrons were emitted from

the surface. At the end of the 19th century people tried to explain this behavior within

the model of the Maxwell theory. However, this approach failed when Philipp Eduard

Anton von Lenard measured in an experiment in 1902 the dependence of the energy

of the emitted electrons on the frequency of the incoming electromagnetic wave [71].

According to Maxwell’s theory, the energy of the emitted electrons should increase with

the intensity and not with the frequency as measured be Lenard.

Albert Einstein solved this problem with a very simple model, in which the elec-

tromagnetic wave is treated as a bunch of particles, namely photons [72]. In Einstein’s

model, a photon excites an electron in the solid and transfers its energy completely

to the electron. If the energy of the electron exceeds a certain energy which is often

referred to as work of emission or work function, it may leave the surface. The kinetic

energy of the emitted electron can then be written as

Ek = hν −Wf (2.1)
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2. EXPERIMENTAL

with h the Planck constant, ν the frequency of the irradiated light and Wf the material-

specific work function.

2.1.2 Photoemission spectroscopy

The energy-resolved detection of photoelectrons with so-called electron energy analyz-

ers opens the possibility of using the photo effect for spectroscopic purposes, since one

would naively expect that the detected photoemission electron density would be pro-

portional to the density of states (DOS) in the material. In fact besides the DOS many

other effects influence the intensity of the photoemission signal1.

In this case, the momentum of the emitted electron should - again naively - be

able to be determined by the momentum of the electron prior to being exited by the

photon, which is naturally determined by the band structure of the material2. Since

the momentum can be measured via the exit angle and the energy of the emitted

electron, the method is called angle-resolved photoemission spectroscopy (ARPES). In

the following subsection a common, simplified theoretical model for the description of

photoemission processes will be explained.

2.1.2.1 The three-step model of photoemission

An intuitive, but also rather incomplete model, to describe the process of photoemission

is given by the semi-classical three-step model [73, 74]. In contrast to offering a complete

description, the photoemission process within this model is strictly divided into three

consecutive steps, as demonstrated in Fig. 2.1 a).

• The electron is excited by the photon.

• The electron moves through the material to the surface.

• The electron escapes the potential barrier of the surface.

The momentum of the photon is usually neglected within this model. This is rea-

sonable for all photoemission studies that are presented in this thesis. Therefore, the

1i.e. the transition probability of the initial state to the final state of the electrons. See also

subsection 2.1.2.2.
2Here one would have to take into account possible quasi-particle processes within the crystal, as

well as interference effects of the emitted electron wave. See also subsection 2.1.2.2
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2.1 An introduction to photoemission spectroscopy

Figure 2.1: The three-step model of photoemission - a) a schematic to demonstrate

the three steps of photoemission in this model. b) Band structure of graphene taken from

Saito and Dresselhaus [7], as presented in a lecture of Eli Rotenberg. The arrows mark

allowed transitions of electrons from occupied to non-occupied states, as required for step

1.
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momentum ~~k of the electron must be conserved. Thus,

~kf = ~ki + ~G (2.2)

with ~kf and ~ki as the wave vectors of the electron in the final and the initial state,

while ~G is the reciprocal lattice vector. Like in an atom transitions with ~kf = ~ki are

forbidden, but the periodical potential allows quasi-perpendicular transitions, since in

the one-Brillouin Zone picture the electron does not gain momentum. Since energy

conservation must be fulfilled, we can write for the energy in the final state

E(~kf ) = E(~ki) + hν. (2.3)

This means the electron gains the energy hν from the photon without gaining mo-

mentum. Thus, the electron becomes excited into an upper band without changing its

momentum as demonstrated in Fig. 2.1, right panel.

The next step is the transport of the electron through the material. Since this can

be considered as a classical transport process, scattering events will inevitably occur.

By definition, scattering events will change the momentum and energy of the electron

and thus destroy the information carried by them. Therefore, non-scattered electrons

will give a sharp photoemission signal from the band structure of the material, while

scattered electrons will either obtain a broadening of the photoemission signal or appear

as background signal in the data sets. Thus, the sharp photoemission signal will come

from the electrons that originated close to the surface.

The average distance an electron can travel within a material without scattering

events is called themean free path. The mean free path depends strongly on the electron

energy, but is relatively independent of the material the electron goes through as one

can see in the so-called universal curve in Fig. 2.2. Since the electrons that were detected

during the experiments in this thesis usually had kinetic energies ranging from 50 to

100eV, only electrons of the upper few layers contributed to our measurements. This

makes ARPES a highly surface sensitive method and thus the perfect tool to examine

two-dimensional structures such as one- or few-layer graphene.

The last step of the three-step model is the escape of the electron from the surface.

If the surface can be considered as flat, ~kf can be split in two components: ~kf‖ parallel
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Figure 2.2: The universal curve - The markers represent the experimentally determined

mean free paths. After Zangwill’s Physics at surfaces with experimental data from Rhodin

and Gadzuk [75], and Somorjai [76]. The theoretical curve is from Penn [77].
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to the surface and ~kf⊥ perpendicular to the surface. If ~q is the wave vector of the

electron outside the crystal, then

~q‖ = ~kf‖ + ~g‖ (2.4)

with g‖ as the reconstructed reciprocal lattice vector of the surface plane. In case of

(100), (010) and (001) surfaces, this will be the reciprocal lattice vector ~G of the specific

crystal lattice in the specific direction1.

In contrast, ~k⊥ is not conserved during the process, since the electron must lose

momentum when leaving the surface. The experimental determination of the spectral

function in the ~k⊥ direction is far more complicated to measure than ~k‖. It has to be

performed either by changing the photon energy or by measuring different orientations

of the same crystal. For both approaches the resolution is rather limited, however since

graphene is a strictly two-dimensional material no spectral function measurements in

the ~k⊥-direction had to be performed for this thesis.

The kinetic energy of the emitted electron is determined by

E(~q) =
~
2~q2

2m
(2.5)

with m the rest mass of the electron. Now, if Θ is the exit angle of the emitted electron,

~q can be written as ~q = sinΘ
|~q‖| and thus equation 2.5 transforms to

√

E(~q) =
~|~q‖|√
2m sinΘ

. (2.6)

By multiplying with ~q‖ and inserting equations 2.2 and 2.42, we get

~k‖i =

√

2mE(~q)

~2
sinΘ

~q

|~q‖|
− ~G‖ − ~g‖. (2.7)

Since all measurements presented here were performed on graphene or unrecon-

structed surfaces, thus allowing the assumption of ~G‖ = ~g‖, the formula can be further

simplified for transforming angular-resolved data sets into k-space.

k‖i =

√

2mE(~q)

~2
sinΘ, (2.8)

1In case of reconstructed surfaces such as (531) g‖ will be the reconstructed lattice vector of the

surface.
2This is possible since the momentum in parallel direction is preserved in our model.
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which is the formula that has been used for all transformations from angular space into

k-space that were done in this thesis.

However, since the kinetic energy is a photon energy-dependent variable and band

structures do not intrinsically depend on this value, the measured spectra are usually

mapped against the binding energy Eb = EF − E(~ki). Since logically E(~q) = E(~kf )−
EV , with EV as the vacuum potential, together with equation 2.3 we get

Eb = hν − Φ− E(~q), (2.9)

where Φ = EV − Ef is the work function. As a result, within this simplified model, a

two-dimensional band structure can be completely mapped by only measuring the exit

angle and the energy of the emitted photoelectrons.

2.1.2.2 Beyond the three-step model of photoemission

The previously described model neglects not only the momentum of the photon but also

all kinds of quasi-particle interactions within the crystal, although these interactions

can significantly influence the measurement [49, 78, 79]. A complete description of a

real photoemission process is given by Fermi’s golden rule that generally gives a way

to calculate the transition rate from one quantum state to a continuum of states. For

a photoemission process the transition rate can then be written as

j(~R,E, hν) ∝
∑

ioc

|〈Φf |δH|Φi〉|2δ(Ei − hν − Ef ) (2.10)

with Φf and Φi as the wave functions of the initial and the final state and δH as the

dipole operator. The sum is over all occupied states. This formula completely describes

the photoemission process and is usually difficult to solve. However, in most cases the

transformation of pure ARPES data within the three-step model is sufficient to create

band maps that are correct within the accuracy of measurement. When multi-particle

interactions like electron-plasmon or electron-phonen coupling influence the measured

data in high-resolution ARPES-studies and the transformation into the band maps is

done within the three-step model, the additional effects appear as deformations in the

band maps [80, 81].
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Since in all data presented in this work multi-particle processes, such as electron-

phonon or electron-plasmon interactions play only a minor role1, a further discussion

is out of the scope of this thesis.

2.1.3 Fermi mapping

Figure 2.3: Schematic of the photoemission data acquiring method with a

hemispherical analyzer and a goniometer with a β-flip. - The analyzer is able

to resolve the incoming electrons in terms of energy and θ-angle. Using equation 2.8 the

resulting spectrum can be easily transferred to an energy vs. one k-direction spectrum.

By flipping the goniometer along the β-angle, full k-space mapping is possible by stacking

together the data sets for different β-positions. The schematic has been taken from Eli

Rotenberg.

Hemispherical electron analyzers of the most recent generation are able to resolve

the energy and one component of the exit angle of the emitted photo electrons. This

is the case for all analyzers used for this thesis: the PHOIBOS100 and PHOIBOS150

by SPECS
TM

as well as the R4000 by Scienta
TM

. As a convention we will refer to the

angle which is covered just by the analyzer as θ, as is also demonstrated in Fig. 2.3.

If the sample is mounted on a goniometer that can be turned around the θ-axis, full

two-dimensional band mapping along one line in k-space is possible. However, to map

the full two-dimensional band structure and to measure the full DOS at the Fermi level

(this is called Fermi mapping), meaning all points in k-space, another axis has to be

added.

1With one exception concerning a minor issue in the evaluation of the data presented in Chapter

3.

24



2.1 An introduction to photoemission spectroscopy

In the past, such photoemission data sets have always been acquired by turning the

sample around its azimuth φ and take bandmaps along the θ-direction [82, 83]. Due to

their circular appearance these spectra are colloquial referred to as pizza plots. These

plots have several disadvantages: the k-space resolution decreases with ascending dis-

tance to the Γ-point, a sample mounted in a non-perpendicular manner will make it

impossible to measure EDCs at the Γ-point, and it is very tricky to measure inhomo-

geneously covered samples. The first point in particular makes this scanning method

very inefficient for graphene band mapping, since the region of interest for this material

is usually at the K-point.

Figure 2.4: Schematic demonstrating a full ARPES data set. - The data sets are

represented in a 4-dimensional matrix.

A much better method of Fermi mapping is performed by adding a flip axis β

as demonstrated in Fig. 2.3. This axis allows acquiring two-dimensional band maps

without any disadvantages. In Fig. 2.4 a full data set in angular space and in the

k-space presentation is demonstrated. By including both ~k‖ directions, the energy and

the photoemission intensity data sets are saved in 4-dimensional matrices.

Further details concerning the photoemission stations used will be given in section

2.2.

2.1.4 Core level spectroscopy

Our valence band spectra are mostly taken with photon energies below 100eV, since

low photon energies give a better energy- and k‖-resolution. However, when higher
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photon energies1 are used, one can excite the electrons from the lower lying energy

levels. These electrons usually do not contribute to the bonding of the crystal atoms

and show no or only weak dispersion, since they are in the closed shells of the element.

Commonly they are referred to as core electrons, and thus their detection is called core

level spectroscopy.

Core levels change their energy depending on the chemical surrounding. Therefore

core level spectroscopy is a very useful tool to determine the different chemical config-

urations of one element that has differing sites in a crystal, and to detect modifications

of the crystal structure.

2.2 Apparatus

During my time in the group we have set up an ARPES station with a He-lamp as

a photon source and completely reworked an ARPES station for exclusive usage at

BESSY. Furthermore, for the data presented in chapter 3, another ARPES station at

the ALS was used. In the following subsections all three setups and their components

will be described in detail.

Since electrons interact with gases, all stations were always kept under ultra-high

vacuum conditions. This was attained with a combination of membrane pumps, turbo

molecular pumps (TMPs), ion pumps and titanium sublimation pumps (TSPs). Further

information concerning ultra-high vacuum techniques will be given in subsection 2.3.3.

2.2.1 The laboratory PES setup

As a constantly usable ARPES station, we set up an apparatus with a UVS300 He-lamp

by SPECS
TM

as a photon source and a PHOIBOS150 electron analyzer. A schematic

of the chamber is shown in Fig. 2.5. The goniometer is moveable in all three spatial

directions by several centimeters. Moreover the mechanics allow the sample to be

rotated in θ- and β-direction as indicated in Fig. 2.5 in the two right subfigures. The

φ axis can only be moved in a certain fixed β-position.

1For core-level measurements that have been acquired for this thesis photon energies between 150

and 1000eV were used.
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Figure 2.5: Schematic of the ARPES station in the lab. - The UVS300 serves as a

photon source. The goniometer is mounted on the lower end of the cryostat. A differentially

pumped rotary feedthrough allows rotation of the entire manipulator apparatus around the

θ-axis. The goniometer is mounted on the lower part of the manipulator and allows β-flip

movement, as well as azimuthal rotation (angle φ). The axes x and z rotate with θ. The

picture was made by B. Frietsch.
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2.2.1.1 The UVS300 He-lamp as a photon source

To create high-intensity ultra violet (UV) radiation we used the UVS300 He-lamp by

SPECS
TM

. For operating conditions, a helium atmosphere of 10−5mbar was stabilized

within the lamp. The electrons, emitted by a titanium filament, are guided via a

strongly inhomogeneous magnetic field to the discharge section, where a He-plasma

is generated. In this ARPES station we use a TMM302 grating, also by SPECS
TM

,

to separate the resulting He-typical radiation of the He I and He II line (21.22 and

40.82eV). To create a focused spot with a diameter of 1mm on the sample, a metal

capillary is used.

Although synchrotrons1 have the advantage of tunable photon energy and usually

give a higher photon flux and a smaller beam focus, a He-lamp is still superior in some

details. Aside from the fact that an ARPES-apparatus in a lab is always usable2, the

narrow line width of the He-emission lines gives a better energy resolution than most

state-of-the-art synchrotron monochromators can provide.

However, a He-lamp limits measurements to two photon energies, which makes these

sources useless for a wide range of photoemission experiments3.

2.2.1.2 The functionality of hemispherical electron analyzers

Not only the PHOIBOS150, but all other 180◦ hemispherical electron analyzers that

were used in the scope of this thesis, essentially function by the same basic mechanism.

Some basic principles will be explained in this subsection. For further information the

book of Granneman and van der Wiel is recommended [84]. However, most of the

principles explained here are from the manual for the PHOIBOS100 and PHOIBOS150

analyzer by SPECS
TM

.

A hemispherical analyzer consists of an electrical lens for the angular resolution

and a hemisphere to resolve the energy. In Fig. 2.6 a PHOIBOS150 analyzer is shown.

The photoelectrons enter the analyzer through the nose cone into the lens. To cut off

scattered electrons, SPECS analyzers are equipped with an iris. After the electrons

were angularly or spatially resolved in the lens, they enter the hemisphere, which then

1The functionality of a synchrotron will be explained in subsection 2.2.2.1.
2Beam time at synchrotrons is very limited and periods of beam time are mostly limited to one to

four weeks with very demanding beam time schedules.
3i.e. resonant photoemission spectroscopy.
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2.2 Apparatus

Figure 2.6: A PHOIBOS150 analyzer by SPECS from two different perspec-

tives. - Some of the most important parts are labeled. The image was taken from

SPECS
TM

.
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resolves their energy. At the end of the electrons’ trajectories they are detected by a

channeltron or channel plates. The latter have been used for all spectra presented in

this thesis.

Figure 2.7: Trajectories of the electrons in the electrical lens for the WAM

mode with Ep = 50eV and Ek = 20eV - According to equation 2.11 the retarding ratio

is 2/5. The image was made by Sven Mähl.

The strictly cylindrically-symmetric electrical lens consists of an array of electrical

potentials that serve to widen and refocus the electron beam, which then hits the

analyzer entrance plane as demonstrated in Fig. 2.7. Although there exist lens modes

that allow spatial resolution, we will only focus on the angle-resolving lens modes in

this subsection. These lens modes let the lens bundle the electron beam in a manner

that makes the electrons hit on the entrance slit plane in such way that the emission

angle from the sample and the distance from the beam center on the entrance slit plane
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obey an isomorphic relation to each other. In the best case this relationship is linear

and the proportionality factor is given by the magnification. However, the so-called

wide-angle mode (WAM) that allows the taking of scans within an angular range of

26◦, cannot necessarily provide a linear relationship over the whole angular window.

This is particularly the case if the retarding ratio (explained in detail later in this

section) is close to non-defined regions.

The electrons that leave the material with a certain kinetic energy Ek are retarded

within the lens down to the pass energy Ep. Electrons with the same Ek to Ep ratio

will have equal trajectories and thus

R =
Ek

Ep
(2.11)

is called the retarding ratio. Lens modes have to be designed for different retarding

ratios and therefore every lens mode can only be used within a certain interval of

retarding ratios. In this thesis most scans have been performed with retarding ratios

between 0.5 and 2.

In the exit slit plane, the exit slit cuts off a certain interval of the β-direction, as

demonstrated in Fig. 2.8. Since the spectra taken in angle-resolving lens modes are

usually barely effected by huge spot sizes, the entrance slit size primarily determines

the resolution in β-direction.

Behind the entrance slit, the electron beam enters the hemisphere in which an

electrical field guides the electrons. Only electrons that have a kinetic energy within a

certain interval will reach the exit plane. Electrons with higher energies will be absorbed

in the outer hemisphere and electrons with lower energies will be absorbed in the inner

hemisphere. An electron with the nominal pass energy will pass the hemisphere in the

centered orbit. Thus,

Ep = ek∆V (2.12)

with e the electron charge, k a calibration constant which depends on the radii of the

outer and inner hemisphere, and ∆V the potential difference between inner and outer

hemisphere. This means that Ep is proportional to ∆V which determines also the

kinetic energy interval of electrons that can pass through the hemisphere1.

1Of course this is only valid, if the slit size is neglected. However, since for most scans shown in

this thesis a narrow slit (10 to 20µm width) has been used, this effect can be neglected here.
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Figure 2.8: View on the entrance plane for the same mode as in Fig. 2.7. - x and

y represent the two orthogonal spatial directions in the entrance plane. The y-coordinate

can be directly transformed into the β coordinate with an isomorphic function, as the x-

coordinate can be transformed into the θ coordinate. Every cross symbolizes an electron

that left the sample in the angular direction (Θ, β) with Θ and β running from 0 to 15◦ in

1◦ steps. The black rectangle symbolizes the slit. 0.1× 20mm was a typical slit size used

for the experiments done for this thesis.
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On the exit plane of the hemisphere the electrons are detected by so-called micro-

channel plates. These channel plates consist of an array of electron multipliers each

with a diameter in the micrometer range.

The PHOIBOS150 hemispherical electron analyzer’s center trajectory has a radius

of 15cm. It has an identical lens as the PHOIBOS100, which can be run in several

angular-dispersive modes namely the HAD (High-Angular Dispersion) mode with a

nominal angular acceptance of 6◦, the MAD (Medium-Angular Dispersion) mode with

an angular acceptance of 8◦, the LAD (Low-Angular Dispersion) mode with an angular

acceptance of 14◦, and the WAM (Wide Angle Mode) with an angular acceptance of

26◦.

It should be mentioned that the denoted angular acceptance as given by the man-

ufacturer describes the minimum angular acceptance guaranteed for the specific lens

mode. Several factors like the retarding ratio and the exact distance from the sample

to the analyzer influence the width of the angular window actually available. This can

best be seen in Fig. 2.8; the crosses stand for electrons which come from the sample

from −14 to +14◦ exit angle, which already exceeds the denoted scope of the WAM.

2.2.1.3 The goniometer

To make full Fermi mapping possible a goniometer with β-flip, designed by B. Frietsch

and K. Horn, is used. As demonstrated in Fig. 2.5, the goniometer has six axes.

The samples are mounted on molybdenum sample holders that have two separated

contact plates. One of the contact plates is insulated against the rest of the goniometer,

which makes direct current heating possible. The sample can be cooled with a flow

cryostat. Copper braids running from the cryostat foot to the back of the goniometer

guarantee good heat transfer. A silicon diode is mounted behind the sample to control

the temperature. At this point temperatures down to 15K were reached, when using

helium as coolant.

2.2.1.4 Further equipment

The lab chamber is further equipped with a low-energy electron diffraction (LEED)

spectrometer to control sample preparation. LEED is a common supporting technique

for sample preparation in modern surface science experiments. Electrons of low energy
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are diffracted from the surface and hit a fluorescent screen on which the reciprocal

lattice with its lattice points is then projected [85].

Additionally in the lab chamber a transfer arm is mounted behind a gate valve

to exchange samples without venting. Several other gate valves are mounted on the

chamber to make the installation and exchange of evaporators possible without venting.

The chamber is rough-pumped by a simple membrane pump which creates a pre-

vacuum for the turbo molecular pump (TMP). For further vacuum improvement, a

titanium sublimation pump (TSP) and an ion getter pump are additionally opera-

tional.

2.2.2 The BESSY endstation

The chamber that was used for the major part of this work is set up on a long-term

basis at the Berlin storage ring for synchrotron radiation (BESSY). In contrast to most

synchrotrons, BESSY has only a few end station that are left set up continuously on

their beamlines. Usually synchrotron radiation users bring their own end stations and

mount them on a beam line, which can then be used as a photon source. Thus, although

our endstation remained at the synchrotron, it was mounted on several beam lines.

2.2.2.1 Synchrotron radiation

If a charged particle is accelerated by an external electric field, radiation (bremsstrahlung)

is emitted as demonstrated in Fig. 2.9. For the specific case of bremsstrahlung that gets

emitted in an x-ray gun, when an electron beam hits an anode, a classical description

was given by Kramers in 1923 [86]. However, actually the effect results from Maxwell

theory and is not required by classical energy and momentum conservation. This be-

comes particularly clear if the electric field is exchanged by a magnetic field which

classically does not influence the energy of a particle. However, a charged relativistic

particle which is under the influence of a magnetic field still emits bremsstrahlung.

This specific type of bremsstrahlung is called synchrotron radiation.

Thus, within relativistic theory a charged particle with a spiral trajectory in a

magnetic field constantly loses energy that is then transferred to the photons emitted.

During a full circle with the radius R an electron loses the energy

∆E =
e2β3γ4

ǫ03R
, (2.13)
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Figure 2.9: Schematic of bremsstrahlung. - A charged particle gets accelerated by

an external field and emits a photon.
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Figure 2.10: Schematic of a synchrotron - The schematic shows all basic

parts of a synchrotron and an undulator. The models were taken from wikipedia

(http://de.wikipedia.org/wiki/Synchrotron and http://de.wikipedia.org/wiki/Undulator).

with β = v/c, where v is the velocity of the electron and c the speed of light in vacuum,

while γ represents the Lorentz factor 1/
√

1− β2. As a result, more photons will be

emitted by the electrons if their velocity is closer to the speed of light. Furthermore,

this means that if the electrons are supposed to stay on the same trajectory in every

subsequent circle, they have to be regularly accelerated by electric fields. If the electrons

are accelerated by an electric field in a constant magnetic field and therefore describe

a spiral trajectory, the accelerator is called a cyclotron. If the electrons are accelerated

by an electric field and guided by a magnetic field and these two fields are synchro-

nized in such way that the electrons describe a trajectory with a constant radius, the

accelerator is called synchrotron. In BESSY and most other state-of-the-art devices for

synchrotron radiation the accelerated electrons are guided into a storage ring, in which

the electrons are kept at constant energies and therefore naturally describe a trajectory

with a constant radius.

As demonstrated in Fig. 2.10, before the electrons are guided into the accelerator

ring they are emitted from an electron gun, usually consisting of a cathode and an

anode, and are then linearly accelerated. To reach the end velocity the electrons are

then further accelerated in the synchrotron and then guided into the storage ring.
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In the BESSY storage ring the particles do obviously not describe a really circular

trajectory but travel usually straight until they reach a magnet as a deflecting device.

Then within a very small spatial interval synchrotron radiation is emitted. In some

more complex deflecting devices (usually with a tunable deflection), the photon beam

is then guided through optical elements to a monochromator that leads the subsequent

monochromatic beam into the beam line.

All measurements presented in this thesis that used a device for synchrotron radia-

tion as a photon source were performed on beam lines with an undulator as a deflecting

device. The schematic is shown in Fig. 2.10; the electron beam gets deflected several

times by a chain of alternately polarized dipole magnets. The distance from one dipole

magnet to the next with the same polarization is called λU . This arrangement of a

deflecting device leads to a strong beam intensity and relative good energy resolution.

The parameter that determines these characteristics is

K =
eBλU

2πmec
, (2.14)

where e is the electron’s charge, B the magnetic field, me the rest mass of en electron

and c the speed of light. K-values lower then one provide narrow energy bands, since

the amplitude of the electron trajectory is low. High K-values lead to higher beam

intensity with poor energy resolution. If the undulator has K ≫ 1, it is referred to as a

wiggler. The high amplitudes of the electron trajectories often make it necessary to use

a Halbach-array1 arrangement for the dipole magnets instead of the simple alternating

arrangement as shown in Fig. 2.10.

In an undulator and in a wiggler one can tune the synchrotron radiation in terms

of energy and polarization2 by varying the magnetic field as well as the orientation and

position of the magnets.

A synchrotron radiation device as a photon source has several advantages in com-

parison with a He-lamp or an x-ray gun:

• A wide range of different photon energies can be used3.

• Intensity and luminosity are higher than from other photon sources, except LASERs.

1A Halbach-array refers to an array with the structure ↓←↑→↓← ...
2Synchrotron radiation is linearly polarized in the center of the radiation cones. Further from the

center it is circularly polarized.
3i.e. from 50 to 1500eV
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• Well defined and tunable linearly and circularly polarized light.

• The radiation is pulsed, which opens a wide range of possibilities in measuring

time-dependent processes.

BESSY ll is a high-end synchrotron in which the electrons are accelerated to 1.7GeV.

In its ordinary operation mode (namely the multi bunch mode) 350 electron packets

are in the ring with a time-wise distance of 2ns. The ring current is then between 250

and 300mA. Furthermore, BESSY sometimes runs in the single bunch mode with one

single electron packet, making time-resolved measurements possible1. Additionally, the

low-alpha mode with compressed electron packets allows measurements with terahertz

radiation.

2.2.2.2 Equipment of the BESSY endstation

The BESSY endstation basically consists of two vacuum chambers.

The analysis chamber that is attached to the beam line has a goniometer which is

identical in construction to the one in the lab apparatus. It uses a PHOIBOS100 ana-

lyzer that is different from the PHIOBOS150 by the 5 cm smaller diameter of the mean

electron trajectory inside the hemisphere. In addition, the analysis chamber contains

a LEED, several gate valve protected ports that allow the installation of evaporators,

and a separated heating stage. By using an especially shaped wobble stick, the sample

holder can be placed on the heating stage. Afterwards a small filament can be moved

right behind the sample and by applying high voltage (HV) to the heating stage and

switching on the filament, electron-beam heating can be performed.

The analysis chamber is pre-pumped by a membrane pump and a small TMP.

Another TMP, an ion pump and a TSP are operational in the chamber.

The preparation chamber is equipped with a simple 4-axes goniometer (with axes

x, y, z and θ), a LEED, a sample garage for up to three samples and a load lock.

The possibility of preparing a sample and simultaneously doing photoemission scans

on a different sample in the main chamber makes this end station very suitable for

synchrotron beam times which are usually time-wise limited.

1During single bunch mode the electron packages have a time-wise distance of 800ns.
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The preparation chamber is rough-pumped by a membrane pump and has both a

TMP and a TSP.

2.2.3 The ESF

The measurements presented in chapter 3 were all done at the electronic structure fac-

tory (ESF) on beam line 7 at the Advanced Light Source (ALS) in Berkeley, California.

During the stay of the author in Berkeley, the ESF consisted of an analysis chamber,

a preparation chamber, a storage chamber with space for over 50 sample holders, and

two small chambers with sample transport and storage systems.

Aside from several evaporators the analysis chamber has a full 6-axes goniometer

which can be cooled down to temperatures below 17K, an R4000 hemispherical analyzer

by Scienta, and a LEED spectrometer. Additionally a He-lamp is mounted, which

makes ARPES measurements without synchrotron radiation possible.

Eli Rotenberg recieved the Kai Seigbahn prize in 2009 for the creation and devel-

opment of the ’Electronic Structure Factory’ end-station at the Advanced Light Source,

which could legitimately be called the most useful ARPES end-station in the World.

Since the present author was not involved in setting up the machine, no detailed

description will be given, however most important information can be found online at

http://www-bl7.lbl.gov/BL7/endstations/esf.html.

2.3 Special issues with the experimental set-up

UHV technique as well as photoemission spectroscopy specifically go together with

many issues concerning the experimental set-up. This section will cover the explana-

tions for all the main problems that appeared during the time of setting up the ARPES

stations, as well as some more enhancements that have been implemented.

2.3.1 Distortions in angular space

The understanding of possible and apparent distortions in angular space is fundamental

for setting up ARPES machines. However, it is common to see the analyzer as a black

box, which is probably resulting largely from the complexity of these problems; since

the analyzer in an angular resolved lens mode projects the energy and the two angular
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dimensions onto three spatial dimensions, one has to deal with a quasi-six dimensional

problem, where many factors have to be taken into account.

2.3.1.1 Curved and straight slits

Figure 2.11: Schematic of the electron trajectories in the analyzer - The SIMION

model was made by Thomas Braun [87]. Three different electron energies are marked by

black, red and blue color.

In Fig. 2.11 one can see how the angularly and energetically resolved electrons

hit the channel plates in the hemispherical analyzer. Since the electrical field within

the hemisphere is spherically symmetric, a straight entrance slit will lead to a curved

constant energy line in the angularly resolved photoemission intensity maps. This can

best be seen in Fig. 2.12.

The red lines in the schematics on the left of this figure represent isoenergetic

electrons. The blue lines represent the projection of the entrance slit on the channel

plate plane. As one would expect, a straight entrance slit will lead to curved, constant

energy lines on the channel plates. This distortion can easily be avoided by a curved
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2.3 Special issues with the experimental set-up

Figure 2.12: Schematic of slit-related changes in the photoemission spectra. -

Left: schematics of the electron trajectories within the hemisphere for a straight (top) and

a curved (bottom) slit. Right: Respective raw CCD-camera shots of the channel plates. x-

and y-direction refer to θ angle and energy. Further information in the text.
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slit. However, as will be discussed later in this subsection, a curved slit has a somewhat

distorting effect on our kind of valence band data sets.

On the right side of Fig. 2.12, shots from the CCD camera that reads out the signal

from the channelplates for two spectra of polycrystalline metals close to the Fermi

edge are shown. The upper spectrum is taken in WAM with a straight slit and a

retarding ratio of 1 with the PHOIBOS100 analyzer. The y- and x-direction refer to

the energy- and Θ-direction respectively. As one can see, in this spectrum the Fermi

energy is clearly curved, since the electrons that enter the hemisphere further away

from the middle trajectory are further away from the inner hemisphere and thus from

the sides of the slit electrons with a slightly higher kinetic energy are passing through

the hemisphere.

The photoemission signal on the channel plates is cut off on the sides. Depending

on the retarding ratio and the lens mode these cut offs can be structured differently.

In the upper panel on the right and left side, the photoemission signal close to the

Fermi edge is cut off by two straight parallels from the exit slit of the hemisphere, as

marked by the straight red lines. The exit slit cut offs are usually very sharp without

any modification of the photoemission intensity close by. These cut offs usually play

an important role when the measurements are performed in wide-angular acceptance

modes with low retarding ratios, since this leads to a strong trapezoidal photoemission

signal, which sometimes exceeds the diameter of the exit slit.

In contrast to the exit slit cut offs the nose cone cut offs usually show a strong

photoemission signal directly before the cut. The cut offs originate in the lens system

(usually at the nose cone), on which the electrons are scattered. This can only happen

in lens modes with extraordinary high angular acceptance.

At the very bottom the cut off in the same subfigure (still Fig. 2.12, upper right

image) results from the inner hemisphere. Depending on the kinetic energy of the

electrons the spectrum is here either cut off by the hemisphere (upper spectrum) or

by the channel plates (lower spectrum). Both are easy to distinguish since the channel

plates are circularly shaped1.

In the lower right part in Fig. 2.12 an image taken in low-angular dispersion mode

with a curved slit and the PHOIBOS150 analyzer is shown. The Fermi edge is perfectly

1Deviations from the circular shape in Fig. 2.12 result from a small compression of the CCD-

pictures.
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straight, and since the lens mode does not have a particularly wide angular acceptance,

no scattered electrons from the lens system are detected. Instead, the spectrum is cut

off by two rather sharp lines on the sides. These are the projection of the sides of

the entrance slit on the channel plate plane. Those can be easily identified due to the

trapezoidal shape that results from the hemispherical projection.

Additionally, a feature can be seen in this spectrum that results from a scratch on

the channel plates (and is marked respectively). Our software allows us to automatically

remove such effects.

As mentioned previously, for the valence band spectra primarily presented in this

thesis a straight slit has been used since the curved energy line can be easily corrected,

while the distortion that a curved slit creates in angular space is rather complicated

to correct. Furthermore, as will be explained in subsection 2.3.1.2 even small magnetic

fields in the chamber have a more distorting influence on the angular-space if a curved

slit is used.

Figure 2.13: Comparison of an entrance plane with a curved slit and one with

a straight slit. - The red crosses symbolize electrons coming from different angles from

the sample. The x-coordinate stands in an isomorphic relation to the θ-angle, while the

y-coordinate refers to the β-angle. As one can see, a straight slit will lead to spectra with a

constant β-coordinate, while a curved slit will lead to spectra that different Θ coordinates

will be coupled to different β coordinates.

How the distortion in angular space originates can easily be seen in Fig. 2.13.

While a straight slit will let electrons through that have a Θ-independent β-coordinate,
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a curved slit will lead to a coupling of these two coordinates.

Figure 2.14: Constant energy cuts at the Fermi surface for different θ positions

for graphene on Ru(0001) taken with a straight and a curved slit. - The raw

data set has been taken at the ESF and no corrections have been made. One can clearly

see the different trajectories of the K-point in the CCD-camera picture (In the lower right

panel for both scans).

Graphene serves particularly well to demonstrate this distortion in angular space,

since it has a particularly sharp feature at the K-point. By performing β scans for

different θ angles (which we then named β-θ scan) we can track the movement of

the K-point on the CCD-camera picture. This is demonstrated in Fig. 2.14, where

constant energy cuts approximately 500meV below the Fermi level of graphene on gold

on Ru(0001) are shown1. By tracking the bright feature at the K-point (see for both

scans the lower right panel), one can see the projection of the slit in CCD-camera pixel

vs. β-angle coordinates. The aberration from a strictly slit-curved function in the

1The data demonstrated are totally raw and thus for the spectra taken with a straight slit, the

energy scale is curved. Consequently, the term ”constant energy map” is not actually correct.
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respective graph results from the lens mode.

In conclusion, all valence band spectra should always be performed with straight

slits to avoid distortions in k-space, while for core-level measurements a curved slit

should be used, since core levels show no or only weak dispersion and thus no k-space

distortion can be observed.

2.3.1.2 Magnetic fields

A big issue in the field of photoemission is the presence of unwanted magnetic fields

in the vacuum chambers. To protect photoemission stations from external magnetic

fields usually µ-metal shielding is used. µ-metal is a nickel-iron-alloy (approximately

75% nickel, 15% iron and additional copper and molybdenum) with an extremely high

magnetic permeability. However, the issue in the experimental set-up is usually not

the µ-metal shielding itself, but rather the couplings of the separated µ-metal shells of

each of the different parts of the experiment. In our case the magnetic coupling from

the analyzer nose cone to the inner µ-metal shield with a µ-metal rim was the weakest

part of the shield. Most magnetic field in the chamber disappeared, when the rim was

additionally shielded by an extra µ-metal collar.

The lab machine, which is made out of stainless steal, has an inner 5 mm thick

µ-metal shielding that was installed in March 2007, since first measurements with the

machine showed strong distortions in angular space.

The BESSY endstation is made out of µ-metal, which makes further magnetic

protection unnecessary. µ-metal is a suitable material for ARPES-stations due to the

strong magnetic shielding, but at the same time it is softer than stainless steal, which

can lead to unwanted deformations. Moreover, it can make a chamber useless if it

becomes accidentally magnetized.

Since the major part of the electrons’ trajectories is situated within the lens and

analyzer hemisphere, the µ-metal shielding of these two parts is particularly important.

Thus, the lens and the hemisphere are double-shielded by two layers of 1.5 mm thick

µ-metal cladding. The µ-metal shielding within the lens will not only protect the lens

from outer magnetic field, but it will also bundle the background magnetic field from

the chamber, and thus the maximum rest field strength will be found within the lens.

This is demonstrated in Fig. 2.15, where a curve of the magnetic field within the lens

shows a dependence on the depth in the lens. As one can see, the highest magnetic
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Figure 2.15: Magnetic field in the lens of a PHOIBOS225 analyzer by SPECS.

- With the kind permission of Sven Mähl

field is only 2cm behind the lens entrance. Here the electrons still have almost their

original kinetic energy, and have not been accelerated or decelerated by the lens to reach

the pass energy. Thus, one would expect a strong influence on magnetic field-induced

distortions on changing the kinetic energy and only a weak effect from modifying the

pass energy.

SPECS GmbH approves a magnetic field with a maximum of 2µT in the chamber for

ARPES-measurements1. However, of course even small magnetic fields will influence

the electron trajectories and while electrons with high kinetic energies will be influenced

rather weakly by the rest magnetic field, slow electrons will be strongly affected. Thus,

all SPECS analyzers have a tunable coil in the inner hemisphere to annihilate weak

magnetic fields.

In a first approximation, one may visualize the effect of a magnetic field on angular

space mapping by a closer inspection of the entrance-slit plane, as demonstrated in

Fig. 2.16. The appearance of a field is here symbolized by a simple shift of the electron

trajectories in the x-y-plane.

A perpendicular shift is slightly more complicated: In a first approximation it can

be visualized by examining Fig. 2.7; a shift by a magnetic field can be approximated by

a shift of the entrance plane, and thus will slightly scale the angular window. Moreover,

since only at the entrance plane will electrons from the same exit angle and different

energies have the same x-y-position, one would expect a slight angular dependence of

1The values of the magnetic field in Fig. 2.15 greatly exceed this value, since the measurements

were taken in an open analyzer that was not mounted on any shielded chamber.
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Figure 2.16: Schematic of the entrance plane with and without a field-induced

shift. - In case of a shift of the electron trajectories (lower panels), the effect on the

angular space with a straight slit (left panels) will be an asymmetry in the spectrum. In

the case of a curved slit the effect is obviously more complex.
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the energies in the spectra. However, since this effect should be weak in comparison to

the changes induced by the shift in the x-y-direction, it will not be further discussed

here1.

It is obvious that in the case of a straight slit one major effect will appear: the

lens-induced distortion of the angular space will not be symmetric to the center. This

is not a serious problem and can usually be eliminated by correcting the angular space

digitally with the help of a grid that can be installed directly in front of the nose cone.

As a consequence one will observe a distorted grid in the spectrum and can use this as

a reference image for further correction.

Aside from the previous effect, in the case of a curved slit a far more complex dis-

tortion appears in the spectra, since then the asymmetry in the y-direction (β direction

in angular space) crucially influences the angularly resolved spectra.

In Fig. 2.17, constant energy maps at the Dirac point of graphene on SiC in three

β-Θ scans are shown, one with a maximum magnetic field within the lens of 16µT,

one with 8µT and one with 2µT. The scans were taken in the lab chamber with the

UVS300 He-lamp and the PHOIBOS150 analyzer by SPECS
TM

, for which a maximum

magnetic field of 2µT in the chamber is recommended by the manufacturer as mentioned

previously. All measurements were performed in a completely identical experimental

configuration. The only parameter that was modified was the current that was applied

through a coil mounted around the analyzer lens flange to control the magnetic field in

the chamber. With no current on the coil, the maximum magnetic field was 6µT in the

chamber, which exceeds the nominal maximum value. However, unfortunately such a

configuration with a permanently mounted coil should not be used to compensate the

magnetic field in the chamber during normal measurements since the induced magnetic

field will magnetize the µ-metal shielding in the long term.

As mentioned previously, a strongly asymmetric distortion as demonstrated here in

this subsection was detected in an earlier version of the lab machine long before the

present author started to work in the group. The setup consisted of the PHOIBOS150

analyzer, the lab vacuum chamber and an earlier version of the goniometer. BESSY

was used as a photon source. Since only weak µ-metal shielding was installed and

the analyzer was without straight slits, the distortion appeared both extremely strong

1The effect should be weak, since the electrons hit the entrance plane nearly perpendicular. This

is demonstrated in Fig. 2.7.
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Figure 2.17: β-Θ scans for a curved slit and different magnetic fields in the

chamber - The 2µT scan shows a nearly symmetric behavior of the K-point movement,

while the 8 and 16µT scans strongly deviate from the symmetric form.
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and asymmetric. Since the reason for the distortion was not clear at that time, a

long-lasting discussion with the manufacturer started as a consequence. The SPECS
TM

support had difficulties to figure out the exact reason for the distortion, because they

were not used to the concept of β scans. At the same time, the lack of expertise

concerning the functionality of a hemispherical analyzer and the lens system prevented

the research group’s finding the solution of the problem1. One hypothesis was that

the analyzer has an intrinsic defect. Therefore, aside from experiments controlled by

tuning the obvious parameters such as the kinetic energy of the electrons, the analyzer

was once exchanged and once turned upside down to figure out the exact reason for

the distortion in angular space.

These experiments did not lead to a solution, since every time the analyzer was

turned or exchanged the magnetic coupling of the µ-metal shield of the lens and the

µ-metal shield of the chamber became worse, and thus the effect became progressively

stronger.

Figure 2.18: Pixel-dependent K-point position for different kinetic energies,

lens modes and pass energies. - Higher kinetic energies move the extremum of the arc

closer to the center. Lens modes with a lower angular acceptance limit the aperture of the

arc. As one would expect, in agreement with Fig. 2.15, the modification of the pass energy

has only a weak effect.

The hypothesis that the magnetic field combined with the curved slit is responsible

for the distortion is particularly supported when taking a closer look at the depen-

dencies of the K-point movement of the different analyzer parameters. This is best

1Although the theoretical possibility of a magnetic field as the cause was always under discussion;

but magnetic field measurements in other ARPES chambers showed that much higher magnetic field

than in our stations were very common and the effect of a curved slit was underestimated.
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demonstrated in Fig. 2.18. As one would expect, a strong dependency of the kinetic

energy of the electrons on the K-point movement could be verified. Higher kinetic

energies make the slit-projection symmetric, while low kinetic energies (as i.e. in the

lab chamber) lead to a strong asymmetry in the observed curve. Furthermore, lens

modes that cover a lower angular range logically reduce the effect. Also the weak de-

pendency on the pass energy stands in perfect agreement with the hypothesis. Finally,

no dependence on the iris aperture and the slit-size could be detected.

In summary it should be mentioned that we did not manage to lower the magnetic

field down to 2µT, however with straight slits such small rest magnetic field are not

significantly distortive, while for core level measurements the β-θ distortion, as induced

by a magnetic field and a curved slit, has no effect on the data.

2.3.2 Alignment

The following description of the alignment procedure assumes that the reader already

has read the respective manuals, or is otherwise sufficiently skilled in controlling a

photoemission station with a hemispherical analyzer with channel plates.

Figure 2.19: The alignment. - The axes that are important for the alignment are

drawn in.

Since in contrast to most other ARPES stations the goniometer has six axes, the

alignment of the system is a rather tricky issue. On the one hand the beam has to hit
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exactly the θ rotation axis of the chamber1 (see Fig. 2.19) where the analyzer has also

to be pointed. Furthermore, the sample has also to be directly at the rotation axis.

For these reasons, the issue of a proper alignment is to find the z-position in which the

sample surface is directly on the θ-axis, in order to have the beam best focused on the

same position, where the focus of the analyzer lens should also be situated. Usually

the first point presents the biggest issue.

Before the exact alignment procedure is explained, it should be mentioned that

in all our chambers the x- and z-axes are sample-fixed. This means that changing

the x-position will always move the sample left and right from the perspective of the

sample. Thus, if the photon beam strikes the sample and one changes the x-position

of the sample, the beam will roam over the sample without changing the alignment. In

contrast, movement along the z-direction will change the alignment and thus this axis

is crucial for the alignment of the goniometer.

For the alignment, the following axes, as shown in Fig. 2.5, have to be moved:

• The z-axis, which controls the movement of the sample perpendicular to its sur-

face in the β = 0 position.

• The θ-axis.

• The β-axis.

• The y-, and the x-axes.

Beginning from scratch, the z-axis will be in a certain, arbitrary position. The θ-

and β-axes should be moved to normal emission position2, and the y- and x-axes should

be moved in such way that the analyzer points to the middle of the sample. Before the

sample will be moved in the correct position, one should assure that the channel plates

of the analyzer are switched off. Then one should open the iris, put in a wide-open

slit, and look through the alignment window of the analyzer. Now, one can move the

goniometer in x- and y-direction until the analyzer points to the middle of the sample.

Subsequently, the analyzer and channel plates should be switched on. For alignment,

one should use a spatially resolving lens mode (in case of low photon energies the High

1The θ rotation axis is fixed to the chamber, not to the sample.
2Normal emission position means the sample is pointing along the analyzer lens axis.
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Magnification 2 mode serves best). One can check if there is a weak photoemission

signal from the sample by putting the channel plates on their maximum voltage, and

shutting the photon flux on and off. Then the lamp, chamber alignment mechanism

or beam line mirror (whatever is the device that controls the relative beam position

to the chamber) should be moved in such a way that the photoemission intensity on

the sample is maximized. At some point one will see the beam with the detector as a

more or less thin line in the spectrum and then the beam should be moved in such way

that it is situated in the middle of the CCD-camera picture so its intensity should be

maximized. After the exact position of the beam on the CCD-camera picture has been

written down, the goniometer should be moved around the θ-axis in such a way that

the sample faces increasingly towards the beam.

This will induce a movement of the beam position on the CCD-camera picture (if

the alignment is not perfect). At some point the beam will even move out of the picture.

It should be noted how fast this happens (i.e. one can write down the θ position for

every 100-CCD pixel movement of the beam).

At this point, the sample should be turned back into normal emission and the z-

axis should be moved by a few centimeters in an arbitrary direction. Subsequently,

the beam should be aligned again until it is at the same pixel position as before in

normal emission. Afterwards, the θ axis should be moved again in the beam direction

and it should be noted down again how many pixels by degree the beam moves. If

the movement is now less than before, the alignment has improved, and thus the next

iterative alignment step should be performed in the same z-direction as before. If the

movement has increased, the alignment should be continued in the other z-direction.

After several iterative steps, one will find a z-position that allows the beam to stay

in the middle of the CCD-picture until the θ-axis has moved so far that the analyzer

cannot detect any photoelectrons since the framework of the goniometer is in the way.

Further alignment can then be performed by turning the θ-axis in the opposite direction

(away from the beam). However, this will sharpen the entrance angle of the photons

on the surface and one has to decide how perfect the alignment should be. Due to

temperature changes the alignment can never be perfect for a long time1, but it can

1Usually a well-aligned chamber can be used for weeks without realignment. However, if one wants

to make full Fermi-mapping, it can happen that he has to measure in goniometer position with a very

sharp entrance angle of the beam. Here, temperature-dependent movements in the micrometer range

can influence the measurement.
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easily be sufficient. Thus, the alignment only has to be perfect within the angular range

in which measurements will be performed in the subsequent experiments.

Subsequently, the height has to be aligned by turning the β-flip. When during β-

movement the beam moves out of the window, one can move the y-axis until the beam

is in the middle again. When the β-axis can be moved all along the angular range that

will be in use during the subsequent experiments without any recognizable change of

the beam position, the y-axis is aligned.

After this procedure the alignment is done. However, after a new sample is in the

goniometer the z-axis (only(!!!) the z-axis) should be realigned.

2.3.3 Ultra-high vacuum issues

To achieve ultra-high vacuum conditions, all chambers used for this thesis have rough-

pumps to create a prevacuum in the 0.1mbar range. Such a vacuum is sufficient to get a

turbo-molecular pump started, which can then pump the chamber down straight in the

10−9mbar range without further vacuum improvement such as a bake-out or additional

UHV-pumps.

Bake-outs are needed since the metal surfaces within the vacuum chamber are usu-

ally covered with thin water films. These water films permanently evaporate in the

chamber. Since the vacuum in the volume tends towards thermal equilibrium with the

surfaces and the majority of the water molecules stick on the surfaces, pumping a cham-

ber down to the UHV range can take arbitrarily long1. For this reason the chambers

were always heated up by heating tapes to a temperature over 100◦C for about 36h.

Overheating was prevented by controlling the temperature with several thermocouples,

since many parts of the stations should no be heated to excessive temperatures (i.e.

channel plates, electrical feed-throughs etc.). After such a bake-out cycle ultra-high

vacuum conditions could be achieved.

TMPs are very efficient pumping systems, although their ability of pumping small

molecules is very limited. However, hydrogen is usually quite an issue, since the metal

UHV-chamber cannot prevent hydrogen from permanently entering the chamber. For

this reason, titanium sublimation pumps were used; the evaporated titanium binds

reactive molecules such as hydrogen, and then sticks on the surfaces of the chamber.

1Without a bake-out even weeks of pumping won’t be enough to achieve pressures in the low

10−10mbar range
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Additionally in all chambers ion pumps were used. These pumps work with an

extremely high electrical field that ionizes the molecules. These molecules then also

tend to react with the surfaces nearby.

At the ESF an additional extremely effective cryo-pump is used. Since molecules

tend to stick on cold surfaces a small cooled part guarantees very quick pumping.
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Graphene on ruthenium

3.1 Introduction

As previously described in Chapter 1, the extraordinary properties of graphene render

it a promising candidate for future electronic devices [33]. These properties derive

exclusively from the equivalence of the quasiparticles to massless Dirac fermions, and

the conical shape of the π and π∗ bands which cross only at two points (K and K’) of

the Brillouin zone.

The lack of an energy gap near these crossings (at the Dirac energy ED) limits

the potential for applications, and the preparation of graphene-based systems with a

gap is an important step towards future graphene device engineering applications. The

simplest mechanism for opening a gap is by breaking the symmetry of the two carbon

sublattices which protects this gap [88], for example in armchair nanoribbons1 [90], in

biased graphene bilayers [91, 92] or by breaking the sublattice symmetry by bonding

graphene (or bilayer graphene) to a substrate [93].

As discussed in chapter 1, epitaxial graphene on SiC(0001) presents an anomalous

bandstructure near ED which has alternately been interpreted as due to many-body

renormalization (known as “kinking”) of the bands due to electron-plasmon scattering

[25, 49, 94, 95, 96, 97, 98] or else due to symmetry breaking due to substrate interaction

as outlined above [56, 99]. Such behavior should be distinguished by the observation of

the presence or absence of an energy gap, but the interpretation of the data has been

1The sublattice symmetry breaking in carbon nanoribbons happens due to different site energies

of the carbon atoms at the edge. See Ezawa [89] and references therein.
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controversial [57, 58]. A gap-like spectrum in disordered graphene has been demon-

strated [100], so it is important that the number of defects be minimized in order to

observe the intrinsic spectral function.

The Ru(0001) surface is particularly suitable for the study of graphene’s interaction

with a substrate for several reasons: graphene layers of extraordinary good quality can

be easily grown [101, 102, 103], the second layer reveals a structure that is similar to

free-standing graphene [65], and intercalation of noble metals can easily be performed,

as will be described later in this chapter.

Here I present data that show in a single system – graphene grown on the Ru(0001)

surface – that the behavior of the graphene bands near ED can be selected between

extremes, from exhibiting the specific many body kinks to a situation where a gap

appears, by controlling the structure of the graphene-substrate interface. When the

first layer below graphene is a graphene-like “buffer layer”, the spectrum exhibits kinks

due to many-body interactions, but when this buffer layer is replaced with a layer of

Au atoms, the spectrum changes to an unmistakably gapped one. This constitutes the

first direct observation of a gap at the Dirac point in a sample without the complication

of small domain size or high defect density1 [57, 58].

3.2 Apparatus

The ARPES experiments were performed at the Electronic Structure Factory at beam

line 7 at the Advanced Light Source of Lawrence Berkeley National Lab (see subsection

2.2.3) using 95eV photon energy for all valence band spectra. The photoemission

intensity data sets over the energy-momentum space (E,kx,ky) were collected with a

Scienta R4000 energy analyzer with samples on a liquid He-cooled, 6-axis goniometer

at T = 20K. The energy/momentum resolutions were 30 meV/0.01Å
−1

. The base

pressure during measurements was < 7× 10−11 mbar.

3.3 Preparation

Before the graphene formation the ruthenium crystal was flashed several times at ap-

proximately 2000◦C and annealed at 1000◦C under an oxygen atmosphere of 10−7mbar

1Some part of the data and conclusions presented here have been published in New Journal of

Physics in March 2010 [59].
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Figure 3.1: LEED images of different Ru(0001)-based systems. - Upper left panel:

The clean Ru(0001) surface shows sharp LEED spots at 100eV electron energy. First BZ

is drawn in. Upper right panel: The first carbon layer (here referred to as the buffer layer)

shows similarly hexagonal LEED-spots. The lattice missmatch of the Ru(0001) surface

and the buffer layer results in hexagonal satellite spots around the main spots. The LEED

image has been taken with 60eV electron energies, since at higher electron energies the

satellite spots show strongly reduced intensity. Lower left panel: LEED image of another

graphene layer atop the buffer layer taken at 60eV. The LEED spots in the second BZ

are much weaker. Although the relative intensity of the satellites increased. Lower right

panel: LEED image taken at 100eV electron energy of a graphene layer over intercalated

gold. The peaks in the second BZ are strong and show many satellites.
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until no C1s core level photoemission peaks could be observed. The graphene layer was

prepared using the carbon segregation method [65, 101]. In a small temperature win-

dow around 600◦C the carbon atoms that are dissolved in the crystal segregate to the

surface. Thus, to create graphene layers the sample was annealed to 1000◦C and then

cooled down slowly within 10min (for a monolayer), 30min (for a bilayer), or 90min

(for three layers). In Fig. 3.1 one can see LEED images of the clean Ru(0001) surface,

the buffer layer atop, one graphene monolayer and one monolayer on intercalated gold.

The LEED images prove that the graphene layers grown by this method exhibit the

same hexagonal lattice orientation as the Ru(0001) surface.

Recent studies demonstrate the high quality of such graphene overlayers[101, 102].

The initial graphene layer on the Ru(0001) surface exhibits a hexagonal superstructure

with a periodicity of 30Å [104], which is attributed to the lattice mismatch of about

10% between graphene (lattice constant a = 2.46Å) and the Ru(0001) substrate (a =

2.706Å) [104]. Ab initio calculations suggest that this mismatch is accommodated by

a pronounced rippling resulting in the position-dependent strength of interaction with

the substrate [38, 105], but experiments show partially contradictory results [101, 102].

The initial graphene layer, while metallic, does not show a clear π band crossing at EF

[106], while the subsequent one and two layers show mono- and bilayer graphene-like

bandstructures [65], respectively. We therefore call the initial layer the buffer layer (in

analogy with the situation on SiC(0001)) and subsequent layers the first, second etc.

graphene layer.

Several times after recleaning the ruthenium surface it was found that no further

graphene layer growth was possible, since not enough carbon was dissolved in the

crystal. To upload the ruthenium crystal with new carbon, it was annealed to 1000◦C

under an ethylene atmosphere of 10−6mbar for 30min. This resulted in carbon being

adsorb into the crystal.

For the experiments presented in subsection 3.4.2 Au was intercalated under the

graphene layer. This was accomplished by depositing a thick Au film (> 3 ML) on top

of the buffer layer, followed by light annealing of 600◦C, after which most of the gold

evaporates leaving a single layer intercalated underneath the buffer layer. The buffer

layer was then transformed into a true graphene layer with sharp π bands and a clear

Fermi surface (see Fig. 3.2).
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3.4 Results

Figure 3.2: Overview of the photoemission intensity maps of the measured

systems - Left column: schematics of the systems; namely the clean Ru(0001) surface (a),

the graphene buffer layer on the surface (b), a quasi free-standing graphene layer on top

of this (c), an additional second graphene layer atop (d), and the graphene/gold/Ru(0001)

interlayer system (e). Middle column: band maps along Γ-K direction of the respective

systems measured with 95 eV photon energy. High symmetry points are drawn in. Right

column: respective Fermi surfaces. BZs are drawn in.

Fig. 3.2 compares the different systems that have been measured. The spectral

function at 95 eV photon energy of clean Ru(0001) in subfigure a) stands in good

agreement with previous studies [65, 82, 107], however it shows a Ru(0001) surface

state as marked by the dashed line in the band map and the respective Fermi surface.

That this band belongs to a surface state is clear due to its relative strength for clean

Ru(0001) surface and its absence in the case of a covered surface1.

1To clarify the nature of the state, we have performed live ARPES measurements, while covering
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The spectral function of the buffer layer is characterized by the absence of sharp

graphene π-bands in the vicinity of the Fermi level, in agreement with previous studies

[15, 65, 106] that show that the Dirac energy1 ED in the buffer layer on ruthenium

is shifted by 2.6eV to higher binding energies compared to those for pure graphite.

This can be attributed to the strong interaction between this layer and the ruthenium

substrate leading to a strong hybridization between the graphene π and Ru 4d valence

band states[15, 38, 65, 106]. Such interaction leads to the formation of an unusual

“cloudy” structure around the K-point, which is clearly visible in the band map and

the Fermi surface. Although the interpretation of this cloudy feature as an energy

band is not straightforward, we can take its general shape to indicate an electron

pocket derived from the graphene π-band, but heavily modified by strong interactions

of the graphene monolayer on ruthenium, and inhomogeneously broadened due to the

spatially-varying interaction strength.

The formation of the first graphene monolayer (on top of the buffer layer) on

Ru(0001) leads to dramatic changes in the electronic structure of the system. We

now observe a linearly-dispersing π-band around the K-point which crosses the Fermi

level, reflecting the massless behavior of electron carriers in the graphene layer. There

is no apparent interaction between the bands in the two layers. The graphene layer,

similarly to the graphene/SiC system [25, 49, 80], is n-doped with the position of the

Dirac energy ED at 0.5eV binding energy (BE) below the Fermi level EF . We conclude

that both layers are doped by charge transfer from the substrate, but only the upper

layer’s bands strongly resemble pure graphene in accordance with Sutter et al. [65].

Another interesting feature are the graphene satellite bands around the K-point

that one can see in Fig. 3.2 c) that will be discussed in subsection 3.5.3.

As one would expect the spectral function of the graphene bilayer close to EF

is likewise similar to the graphene bilayer on SiC [25, 92, 108]. Instead of one π-

band band now two π-bands with a non-linear dispersion at the K-point appear in the

photoemission spectra.

Previous studies of graphene on Ni(111), [109, 110] show that upon intercalation

with noble metals, the π-states in graphene recover nearly the same band structure as

the Ru(0001) surface with hydrogen (data not shown in this thesis).
1The strong hybridization of the graphene π-bands with the Ru d-bands actually makes the term

Dirac energy invalid. But since the respective would be Dirac energy level still has fundamental meaning

in terms of doping, it will be used in this context.
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pure graphene, exhibiting the linear dispersion of the π-bands in the vicinity of the

Fermi level. This reflects the weakening of the interaction between the graphene layer

and the substrate. Fig. 3.2 e) shows the electronic structure as well as a photoemission

intensity map at the Fermi level of the 1ML graphene/Au/Ru(0001) system. Now, the

buffer layer is transformed into a true graphene layer with sharp π bands and a clear

Fermi surface.

3.4.1 Graphene layers of different thickness on ruthenium

Fig. 3.3 compares the spectral function of the buffer layer, and mono- and bilayer

graphene on the Ru(0001) surface. As one can see all three Fermi surfaces (upper left

panel in each column) do not show a homogeneous intensity distribution where the

bands cross the Fermi surface. Instead the intensity on the left is much lower, or even

vanishing in the case of the monolayer, than on the right in the Fermi maps. This

can best be seen in the band maps along the Γ-K direction (panels below the Fermi

maps), where in all three cases only one band reveals strong photoemission intensity.

This effect was explained by an interference effect of the emitted electrons by Shirley

et al. [111]. Since this interference effect strongly depends on the equality of the wave

functions of the electrons in the two sublattices, the relative photoemission intensity of

the two bands along the Γ-K direction can be seen as a direct measure of the strength

of the symmetry breaking between the sublattices [80].

For the buffer layer, the graphene π-bands are only very weakly visible for reasons

discussed above. However, the position of the bands let us estimate the doping of the

buffer layer to 2.2(±0.3)eV, which slightly disagrees with the value of 2.6eV measured

by Sutter et al. via π-band shift at the Γ-point [65].

As shown in the lower left panel of Fig. 3.3, the photoemission intensity profile

along the Γ-K line at E = EF has been fitted with two Lorentzian functions. Since

the line width should primarily be determined by the natural line-width close to the

Fermi-level, Gauß-folding was neglected. Two lorentz fits are necessary since along the

Γ-K line around the K-point the π-band with decreased photoemission signal shows

a rather strong intensity. The intensity ratio of the two peaks in the photoemission

intensity profile, after subtraction of the background, is roughly 1 : 2, which would

go together with a band gap of 5eV according to the model of Jones [88], as it was

expanded by Bostwick et al. [25]. However, this model is based on a Hamiltonian of
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Figure 3.3: Spectral functions and photoemission intensity profiles at the Fermi

surface along Γ-K line around the K-point of graphene layers of varying thick-

ness on Ru(0001) - Upper panels: photoemission intensity maps around the K-point

for the buffer layer (left column), monolayer (middle column) and bilayer graphene (right

column) on ruthenium. Lower panels: Respective photoemission intensity profiles and fits

at ky = 0 and E = EF .

64



3.4 Results

graphene around the K-point as presented in equation 1.14 in section 1.1.1.2, which is

based on the assumption that the electrons still are close to Dirac-behavior. Naturally

it is questionable if this approximation is valid in case of such a strong symmetry

breaking. Moreover, due to the strong hybridization of the graphene π-bands with

the Ru 4d states a discussion concerning the exact size of a gap might be difficult,

since the hybridization might directly influence it. Finally, the hybridization probably

leads to a change of cross sections within the hybridized bands1 and thus might induce

photoemission intensity variations that make the upper approach for an estimation of

the gap size impossible.

For the monolayer the situation is different and no weak-intensity band is observed.

Instead, the photoemission intensity map shows all the characteristics of quasi-particle

interactions as previously found for graphene on SiC [49]. This quasi free-standing

graphene layer is doped by 500meV, which is also close to the doping of 450meV as

observed for SiC [49].

In the case of bilayer graphene, the fit has been performed with four peaks as shown

in Fig. 3.3, right, lower panel. The inner two peaks result from a band that has its

maximum above the Fermi level. Therefore, these peaks have been fitted with Gauss-

folded Lorentz-functions due to the stronger broadening. Since the second graphene

layer is stacked in such manner that the carbon atom of one sublattice is always above

a hole, while the other is above an atom, the bilayer reveals a gap opening due to a

strong symmetry breaking that can also be quantified by the relative intensity of the

weaker band [25]. In our case the intensity ratio for the two outer peaks in the profile

in Fig. 3.3) is 0.03, which relates to a gap-size of 200(±50)meV and thus agrees with

the directly measured value of 180(±30)meV.

For SiC it has been shown that the doping-gradient between the two layers leads to

strong modifications for the electronic structure of bilayer graphene in comparison to

free-standing non-doped graphene [92]. Since the substrate-induced doping of graphene

on Ru(0001) is rather similar to the doping of graphene on SiC, the bilayer situation

is also similar.

Another remarkable feature are the satellite bands of the graphene π-states shown

in Fig. 3.2 for mono- and bilayer graphene. The satellites reveal the same structure as

the π-bands but are shifted by 0.23Å−1 in a hexagonal structure. The hexagon of the

1As it is the case for graphene on Ni(111) (see chapter 5).
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satellites is 30◦ rotated with respect to the hexagon of the original graphene π-bands.

A similar satellite structure has been observed for graphene on SiC and interpreted as

a low-energy electron diffraction pattern from the buffer layer [25, 49]. This will be

further discussed in section 3.5.

3.4.2 Energy gap formation in graphene on ruthenium by control of

the interface

As mentioned previously, gold-intercalation underneath the buffer layer has been per-

formed. We estimate, based on core-level intensity measurements (shown in Fig. 3.6

and discussed in subsection 3.5.1) that the Au layer thickness is about 1 ML, inde-

pendent of the pre-deposited Au layer thickness. The same thickness of intercalated

gold was obtained for the graphene/Au/Ni(111) system [112]. The spectral function

around the Γ-point still reveals weak photoemission intensity from the Au surface state,

indicating residual gold islands on top of the graphene layer [112]. Nevertheless the

intensity of the graphene π bands and the relative weakness of the gold surface state

proves that most Au has intercalated.

The intercalation of Au underneath the buffer layer on Ru(0001) leads to an energy

shift of the π-band of the graphene layer to lower binding energies compared to the

buffer layer, and mono- and bilayer graphene on Ru(0001). Charge transfer from the

graphene layer to the substrate is particularly weak, as can best be seen by the fact that

the Fermi surface appears to be pointlike in Fig. 3.2 e), which indicates zero or nearly

zero doping of the graphene layer. However, a close look at the dispersion of the π-states

around the Fermi level in Fig. 3.4 (left, lower panel) reveals that the Fermi surface is not

really pointlike, since the Dirac-point is ∼ 150 meV above EF , consistent with a small

p-doping of the graphene layer in the 1ML graphene/Au/Ru(0001) system. A similar

p-doping of graphene was recently observed in the case of deposition and annealing of

a thin gold layer on the graphene monolayer on SiC(0001) [113].

In order to study the shape of the bands around ED, it is necessary to push the

band crossing below the Fermi level by n-type doping. This was done by controlled

deposition of potassium atoms on top of the 1ML graphene/Au/Ru(0001) system [92],

upon which the π-band and the Dirac-point shift rigidly to higher binding energies

with increasing K dosage. Surprisingly, with increasing doping a clear energy gap for

π-states becomes visible at ED (Fig. 3.4; best visible in the lower right panel).
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Figure 3.4: Doping scan for K on graphene on Au on Ru(0001). - A series

of photoemission intensity maps around the K-point of the Brillouin zone of the 1ML

graphene/Au/Ru(0001) system for clean (left column), and progressive doping with potas-

sium. The upper and lower rows are taken along two orthogonal directions in the reciprocal

space as indicated by the red and black line at the K point in the Brillouin zone (inset).
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Figure 3.5: Comparison of the two quasi free-standing 1 monolayer graphene

systems. - Comparison of the spectral function of one monolayer graphene on (a) buffer

layer or (b) one monolayer gold atoms on Ru(0001). Three cuts of the spectral function are

shown along (upper left) the Fermi surface vs (kx, ky) (lower left, right) the bandstructure

along the two orthogonal cuts indicated in the inset to Fig. 3.4. For both systems the

photoemission intensity along the K-point is plotted and fitted with one Voigt-peak for the

buffer + first, and with two Voigt-peaks for the Au + first graphene layers on Ru(0001).
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Comparison of the two one-monolayer-graphene-on-ruthenium band structures is

shown in Fig. 3.5. From the conical shape of the π∗ bands, the K point spectrum

(and hence the Dirac crossing energies ED) can be unambiguously determined. For the

graphene/buffer layer system [Fig. 3.5 (a)] we find that, within the limits of our experi-

mental resolution, 30 meV, the band structure at the K-point exhibits no gap. Instead

it has a weak kink around ED, consistent with the influence of electron-plasmon cou-

pling as reported for graphene on SiC [49, 80] and predicted for free-standing graphene

[95, 96, 98]. The energy distribution curve (EDC) at the K-point [see right panel of

Fig. 3.5(a)] can be represented by a single Voigt peak with a full width at half maxi-

mum (FWHM) of 100meV. In contrast, n-doped graphene on Au on Ru shows the clear

formation of an energy gap at ED; an analysis of the EDC at the K-point shows that

it requires two peaks (of FWHM 100 meV) to model the data, demonstrating that the

band structure of this graphene layer exhibits a gap of about 200± 30 meV gap. Since

we acquired the spectra in Fig. 3.5 by a fine sampling of the entire two-dimensional

momentum range, we can be sure that the presented band structure cuts passed pre-

cisely through the K-points, and therefore the observed gaps cannot be due to sample

misalignment.

3.5 Discussion

3.5.1 The thickness of the gold layer

Before the origin of the band gap will be discussed, it should be clarified that the

amount of gold that has intercalated is indeed only one monolayer. This can best be

seen in the core level spectra in Fig. 3.6 a), where the C1s (at 284 eV) and the Ru3d (at

284 and 280 eV) core levels are shown for the clean surface, the buffer layer, and the

two graphene monolayer systems discussed here. The spectra have been normalized

to the Ru3d3/2 peak at 280 eV. If we consider the mean free path of gold equal to

the mean free path of carbon as a first approximation, we would expect the 284 eV

peak of the graphene/Au/Ru(0001) spectrum being roughly the respective peak of

the graphene/buffer/Ru(0001) system subtracted by the peak of the buffer/Ru(0001)

system, since no carbon photoemission signal would be expected other than from the

graphene layer. This is roughly the case. If more than one monolayer had intercalated
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Figure 3.6: Graphene on intercalated gold on Ru(0001). - a) Core level scans

around 280 eV binding energy of Ru(0001), the buffer layer, the monolayer, and one mono-

layer on intercalated gold. b) Spectral function of graphene on gold on Ru(0001) around

the K-point in Γ-K direction for higher potassium coverage then shown in previous figures.

One can see clearly the phase transition via the appearance of a second π-band and the

disappearance of the original one with increasing potassium coverage. c) Artist view of

one monolayer of graphene on a Au(111) layer with a lattice constant of 2.81Å. The unit

cell of the superstructure is drawn in.
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underneath the graphene layer, the 284 eV peak would be significantly higher than the

graphene/buffer/Ru(0001) peak.

3.5.2 The origin of the band gap

The band gap opening at the K-point in the monolayer graphene on one monolayer of

gold on the Ru(0001) surface seems particularly surprising, since gold as a noble metal

should only weakly interact with the graphene layer. Before a simple explanation is

given for this apparent problem, some possible mechanisms that might cause a band

gap have to be excluded.

• A mechanism of gap opening at the K-point due to hybridization with gold states

is unlikely. This is primarily because there are no gold states expected near ED.

Moreover, theoretical calculations of graphene on nickel show that even in hy-

bridized graphene systems the non-gapped spectral function should be preserved

at the K-point [41]. As shown in chapter 1 subsection 1.1.1.2 the π and π∗

bands must touch, as long as the sublattice symmetry is preserved. Finally a

hybridization-induced band gap would likely change with varying doping since

the gold bands would not shift in the same manner, meaning that the energetic

position of the Dirac-point would change in relation to the hybridizing Au-state,

as observed for graphene on Ni(111) [66]. No such effect was observed.

• A gap opening due to the formation of a potassium superstructure on the graphene

layer, as reported by Pivetta et al.[114], can be excluded, since the formation of

such a superstructure is a rather sudden phase transition that can easily be de-

termined in our data sets, via an apparent change in the band structure. Our

measurements begin to show such phase transition with higher potassium cover-

age, as demonstrated in Fig. 3.6 b).

• Finally, the band gap does not increase with higher potassium coverage, proving

that the potassium itself is not the reason for the gap-opening.

Thus we propose that the band gap in the 1ML graphene/Au/Ru(0001) system

results from a symmetry-breaking of the two carbon sub-lattices in the graphene layer.

This results in a weak breaking of the chiral symmetry, inducing a weak but finite

intensity of the left band along the Γ-K direction shown between the two arrows in
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Fig. 3.5(b) [25, 111, 115]. The ratio of the left to right band intensities in Fig. 3(b) is

about 35, which agrees with theoretical predictions for the size of a gap of 200meV [25].

Within our statistics, there is no equivalent observable intensity for the graphene/buffer

layer/Ru system [between arrows in Fig. 3.5(a)], consistent with lack of a gap at ED.

As mentioned previously, the appearance of the gap in gold-intercalated graphene

still seems surprising. Calculations indicate a weak bond between noble metals and

graphene without a notable gap [93]. While a detailed explanation of why gold inter-

calation opens a gap will depend on the exact microscopic structure of the interface,

which is outside the scope of this work, we can speculate that the incommensuration

between graphene and Au lattice constants (2.46 and 2.81Å, respectively), neglected

in the calculations [93], plays a role. Depending on the exact length scales, the K and

K’ points of the graphene can be coupled, amounting to a breaking of the sublattice

symmetry in real space that protects the Dirac point from opening a gap. The model

of the respective stacking is shown in Fig. 3.6 c), which shows a simple speculative

model of the graphene-gold interface. Since each sublattice in the picture is shown in a

different color, one can see that the potential felt by one graphene sublattice from the

gold layer will always differ from the potential felt by the other sublattice. It is crucial

to understand that this is the case in either way the graphene lies atop the gold, as

long as the orientation is preserved, which is proven by the LEED images (Fig. 3.1)

and band maps (Fig. 3.2) down to a rotation of 0.5◦.

3.5.3 The origin of the satellites

In contrast to the ideas presented in the previous subsection, the strength of the photoe-

mission satellite bands is greatly reduced or even vanishing for interfacial Au compared

to the buffer layer. According to Bostwick et al. [25] this would be consistent with

a related weak potential associated with the Au incommensuration1. Thus, from this

point of view it seems that these two observations are contradictory.

However, the satellite spots arise from an electron diffraction but this actually does

not contradict the line of argument of the weak interaction between the graphene layer

and the buffer layer, since the diffraction spots cannot reveal from simply diffracted

electrons from the buffer layer, but rather from the diffraction of the superstructure

1And the same theory has been used by the present author [59]. However, here I will show that

this idea was based on a wrong assumption.
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from buffer layer and the substrate. Before this will be explained in detail, three strong

arguments against the idea that the strength of the satellite bands can be seen as a

measure of the strength of the interaction between the graphene layer and buffer layer

will be given:

• Graphene on the buffer layer on Ru(0001) and graphene on the buffer layer on

SiC(0001) are systems that can be very well compared. These systems only differ

by the substrate underneath the buffer layer, which should not induce much

change in the band structure in the graphene monolayer in either case [49, 65].

The only apparent difference lies in the orientation and distance of the satellite

peaks. In detail, the orientation of the satellites is rotated by 30◦ in relation to the

graphene in the case of Ru(0001) (see Fig. 3.2) and is not rotated in the case of SiC

[49]. However, the only structure in real space that is also rotated by 30◦ relative

to the graphene in these systems is the substrate: while graphene on ruthenium

has the same orientation as the substrate, graphene on SiC has an orientation

that is rotated by 30◦. Note that the orientation of the satellites is rotated on

ruthenium, while the substrate is not rotated, and in SiC the opposite is the

case [55]. This naturally is the case, if the spots arise from the buffer/substrate

superstructure, as will be explained below, but is puzzling if the satellites arise

from the interaction between the graphene and the buffer layer.

• The distance between the satellite spots and the main spot accounts for roughly

0.3Å−1 in the case of ruthenium and about 0.5Å−1 in the case of SiC1. However,

the buffer layer will have roughly the same lattice constant in both systems and

there is no reason to believe, why it should vary so strongly in both cases. Indeed

such a strong variation of the C-C bond is very unlikely.

• The diffraction of electrons from the buffer layer cannot be any indicator for the

interaction of the graphene πz orbitals with the buffer layer since the diffraction

can only happen to the already emitted photoelectrons. So the electrons must

be excited to vacuum level, if diffraction shall happen. If the buffer layer on the

substrate was moved 20Å away from the graphene layer, diffraction of the emitted

electrons would still be present, but there would be no interaction at all between

the layers.

1The data has been extracted from Bostwick et al. [25].

73



3. GRAPHENE ON RUTHENIUM

Therefore, the simplest explanation of the satellite bands is that the diffraction

happens between the buffer layer and the substrate. This naturally explains, why the

satellite spots show a hexagon that is rotated by 30◦, since then the diffracted electrons

arise from the sharp electron beam from the photoelectrons from the π-band, which

are subsequently scattered on the lattice points1. Thus the orientation of the shadow

spots equals the orientation of the lattice points of the reciprocal lattice.

It is important to understand that diffraction on the buffer layer would not reveal

in such satellite spots, since the buffer layer has the same lattice constant as the up-

per graphene layer. Instead the spots can easily be explained be diffraction on the

superstructure of the buffer-Ru(0001)-interface.

So how do the strong satellites go together with a weak interaction of the graphene

layer with the buffer layer? In fact the strength of the diffraction satellites rather

supports the theory of a weak interaction of these two layer, since the electrons can

only be diffracted, if they are not caught in the crystal potential.

3.6 Summary

Our results show that intercalation of gold under graphene can be a useful technique

to restore graphene’s unique properties when bonding to a substrate strongly modifies

its electronic properties. These changes can range from modest, such as changing the

natural doping of the graphene-substrate system, to more drastic, as in the case where

the unique properties of the graphene are lost due to strong substrate hybridization

as it is the case for the buffer layer on Ru(0001). Here no symmetry breaking can be

observed, consistent with the fact that the buffer layer has the structure of graphene,

but the strong bonding to the substrate destroys the conical bands [101]. This is a

particularly important consideration for the interface between graphene and electronic

contacts.

Moreover, the nature of the satellite bands that have been observed previously for

graphene on SiC [25, 49] could be clarified. The present author agrees with the opinion

in previous studies that they result from diffraction of the photo electrons, but they

1It is important to keep in mind that diffraction points refer to lattice points of the reciprocal

lattice, which means that the M-point is situated in the middle of two diffraction points (see Fig. 1.3)

and the Γ-M direction is 30◦ rotated with respect to the Γ-K direction.
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rather result from a diffraction between the buffer layer and the substrate and not

between the graphene and the buffer.

In conclusion, the electronic structure modification of a single graphene layer on

Ru(0001) upon the gold intercalation was studied by means of angle-resolved photo-

electron spectroscopy. The spectral functions of the bilayer graphene film on Ru(0001)

is characterized by the absence of any energy gap in the electronic structure. The

energy gap for the π-states is found after intercalation of Au monolayer underneath

monolayer graphene on Ru. The appearance of such gap in the electronic structure

is assigned to the fact that the symmetry for two carbon sublattices is broken in the

graphene/Au/Ru(0001) system due to the geometry of the system.
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4

Graphene on SiC produced by

Nickel Diffusion

4.1 Introduction

The graphitization of the SiC(0001) surface, by annealing at temperatures above 1150◦C

under UHV conditions, has been known for a long time [14] and has become one of the

predominate methods for graphene fabrication in the field of experimental physics in

the last ten years [23, 28, 45, 49, 54, 100, 108, 116, 117]. Although this high temperature

graphitization method produces samples of such a good quality that e.g. quasiparticle-

interactions in ARPES-data can be studied in detail [49], LEEM-measurements reveal

highly non-homogeneous carbon coverage on these samples [50]. Recently discovered

alternative methods include growth on the same surface ex situ under an argon atmo-

sphere [52, 53] and graphene growth on the SiC(0001̄) crystal face, where the quality

of the graphene layers is no better [55] but the properties of single-layer graphene are

preserved, due to the different stacking of the layers [54, 117].

A little-studied method of graphene growth on SiC utilizes the chemical reaction of

nickel with the substrate. This process has been at the focus of research on metal-SiC

contacts [122, 123, 124], graphite intercalation compounds (GICs) [118], nanostructures

[120], and only recently has it been recognized in the field of graphene research [119,

125]. As illustrated in Fig. 4.1, graphene is not necessarily synthesized during the

process and it has been reported that slight modifications of the reaction process can

lead to e.g. different types of islands on the same sample [118, 126], graphene islands of
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Figure 4.1: Different configurations of the Ni-SiC-interface after annealing. -

Previous studies resulted in systems with remarkably different characteristics under only

slightly modified preparation procedures. (A) A sample as investigated by Robbie et al..

After depositing 2.5 ML of nickel on the SiC(0001) surface and annealing at 600◦C under

UHV conditions, they found two different types of islands on the sample; one was considered

to be a GIC [118]. (B) and (C) Samples with a pre-deposited 200nm Ni-film after a short

annealing at 750◦C and subsequent cooling with different cooling rates under vacuum

conditions, according to Juang et al.. Depending on the cooling rate, they observed either

a graphene layer or a disordered carbon nanofilm on top of their samples [119]. (D) Hähnel

et al. pressed a Ni disc onto the 6H-SiC wafer under an argon atmosphere and annealed at

1245◦C, which resulted in graphite clusters on a δ-Ni2Si crystal. The graphite planes grew

quasi perpendicular to the SiC(0001) plane [120]. (E) The study of Fujimura and Tanaka

focusses on the reaction of 0.5µm nickel films on polycrystalline α-SiC (6H). Depending

on the annealing temperature they obtained either δ- or Θ-Ni2Si on top (Θ-type only

above annealing temperatures of 1400◦C) [121]. (F) This is the sample configuration as we

produced it. See also Fig. 4.2.
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mm size, disordered thin carbon-layers (both [119]), or bulk-internal graphite formation

with the graphite planes quasi perpendicular to the SiC(0001) plane [120].

One of the most interesting features of this method is that all studies previously

mentioned agree that the quality of the SiC surface does not seem to be too important

for the quality of the resulting graphene layers or other carbon structures formed. Since

this automatically leads to a cheaper production of the substrate (since the waver loss

rate is automatically lowered), such an approach could be of special interest for future

industrial production applications.

In this chapter, we use core-level photoemission and ARPES to study graphene

produced by nickel diffusion on SiC. LEED, ARPES and core level measurements prove

that the graphene layer is situated on a Θ-Ni2Si substrate that got synthesized upon the

nickel diffusion. The spectra reveal a strong hybridization of the graphene π-bands with

the nickel d-bands comparable to the situation of graphene on nickel (see next chapter).

Moreover, the core level and valence band spectra show the appearance of second-

layer islands with strongly varying orientations. Our analysis of these spectra show

that the bilayer islands prefer certain orientations that can be attributed to different

superstructures resulting from the Moiré pattern of the rotated second layer islands.

4.2 Apparatus and Preparation

All measurements in this chapter have been performed at the BESSY end station

described in Chapter 2 in the respective subsection. The end station was attached to

the UE56-1 SGM beam line at BESSY.

The sample preparation was performed in the analysis chamber, where the base

pressure never exceeded 5 × 10−10mbar. We started with a 6H-SiC crystal, from

SiCrystalTM, with a hydrogen-etched (0001) surface, which was annealed at 600◦C

for several hours until sharp 1 × 1 LEED spots could be observed (see also Fig. 4.2).

In some cases a
√
3 structure could be observed on the SiC surface before the Ni depo-

sition, but no difference in the quality of the graphene layers deposited later could be

detected.

The Ni deposition was performed via molecular beam epitaxy (MBE) from an elec-

tron beam nickel evaporator. Before every deposition cycle, the deposition rate was
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Figure 4.2: LEED images and a model of graphene on Θ-Ni2Si - a) LEED image

of the clean SiC 1× 1 reconstruction before the Ni deposition, taken at 165 eV. b) LEED

image of the graphenized sample, taken at 49 eV. The black vectors belong to the graphene,

the red vectors belong to the unit cell of the underlying Θ-Ni2Si(0001) plane and the blue

vectors belong to the 3
√
3 superstructure. All other LEED spots can easily be reproduced

by linear combinations of these vectors. c) Model (produced with VESTA by the present

author) of the system with the superstructure drawn in. The upper Ni atoms are colored

red, the lower Ni atoms are light grey, silicon is blue. The two sublattices of the graphene

layer have different colors (brown and grey) to illustrate that the hybridization does not

occur exclusively in one sublattice. The bordeaux-color shaded area in the unit cell of the

superstructure shows the area in which one sublattice is closer to the nickel atoms, while in

the non-shaded area within the unit cell, the other sublattice is closer to the nickel atoms.
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determined with a quartz crystal oscillator. During the determination process, the sam-

ple was turned away from the evaporator and was turned into the molecular beam only

after the deposition rate was well stabilized. Subsequently, 10 to 20Å were deposited

on the sample before it was rotated to face away from the evaporator, which then was

switched off. Afterwards, the sample was heated resistively by direct current. The an-

nealing temperature was around 1000◦C and was estimated visually by the color of the

sample1. We always annealed the sample for 10min. Annealing at lower temperatures

resulted in an ordering of the nickel layer or intercalation of the nickel into the crystal

(probably building carbon-rich δ-Ni2Si), without any sign of graphene π-bands in the

subsequently registered ARPES scans; higher temperatures resulted in an evaporation

of the nickel and graphitization of the sample via the high temperature process2.

Finally, it is important to mention that the thickness of the deposited nickel layer

(10 to 20Å) had no influence on the spectra of the graphenized system that will be

discussed in the following sections. Instead, an uncontrolled variation of graphene cov-

erage was observed, which could be traced back to the only poorly-controlled variable,

namely the annealing temperature. This is well supported by the fact that differences

in sample characteristics could be observed over one and the same sample, when it had

experienced a slight temperature gradient.

Measurements were performed with six different samples with predeposited Ni-

layers of 10, 15, and 20Å thickness.

4.3 Results

As can be seen in Fig. 4.2, the LEED spots of the graphenized system show a clear,

bright hexagonal spot pattern that can obviously be attributed to the graphene layer.

This is supported by the size of a graphite-like peak in the core levels (see also Fig.

4.3), as well as by the strength of the graphene-typical π-bands, which will be discussed

later. Interestingly, both LEED images in Fig. 4.2 were taken with the same sample

1Although this method might seem rather imprecise, the experience of the present author can

guarantee an error below 50◦C, since the quality of the resulting graphene layer, assembled by the

often-used classical graphitization of SiC, is extraordinarily temperature-dependent and thus served as

a perfect test of practice.
2This could easily be determined by the graphene band structure, which showed all characteristics

of graphene on SiC.
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orientation, proving that the graphene lattice has the same orientation as the SiC(0001)

surface and is not rotated by 30◦, as is the case when the graphene is grown by simple

annealing at temperatures above 1150◦C, where the growth process is responsible for

the rotation of the lattice [47]. As will be discussed later, the underlying structure is

a Θ-Ni2Si crystal, and since the least amount of nickel deposited on the sample was

5ML, the Ni2Si layer can be estimated as at least 7ML thick, which means that no SiC

spots contribute to the LEED pattern.

As also explained in the caption of Fig. 4.2, the additional rather bright spots that

are marked by red vectors belong to the Θ-Ni2Si (0001) plane underneath the graphene

layer. The blue vectors point to the additional spots, belonging to the resulting 3
√
3 su-

perstructure, as marked in Fig. 4.2 c). The respective supercell contains 8×8 graphene

unit cells. All spots in the LEED images that do not directly belong to the structures

discussed can easily be reproduced by linear combinations of two or three of the vectors

referring to those structures.

4.3.1 Core levels

The core-level overview spectrum in Fig. 4.3 reveals a strong oxygen peak for both the

clean SiC(0001) surface and the Ni-covered sample, at 533 eV binding energy. For the

1×1 SiC(0001) surface, this has been observed before [46], and is thought to result from

an oxygen layer on top of the surface, which is a relic of the ex situ preparation [51].

The relative strength of the oxygen peak to that of the surface peaks increases after the

deposition, showing that the nickel probably intercalates underneath the oxygen layer

formerly situated on the 6H-SiC surface. However, after the annealing procedure, the

oxygen signal is completely gone and the graphenized system shows no signs of other

components than nickel, silicon and carbon.

The C1s core levels in Fig. 4.3 from the clean surface show a slightly asymmetric

peak, similar to the respective curve after the nickel deposition. Both spectra can

be fitted with two Voigt functions at 283.41 and 283.55 eV binding energy, showing

that the slight shift of the photoemission intensity maximum in the curves results from

a change in the relative concentration of different carbon configurations. The slight

shift suggests that the predominant peak for the clean spectrum results from structural

changes near the surface, while the weaker peak results from carbon deeper within

the bulk, since these core levels would not change after the deposition and - although
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Figure 4.3: Core levels - Upper panel: overview of core level spectra taken at 1000 eV

photon energy from the clean 1 × 1 SiC(0001) surface, as well as immediately after the

deposition and after the annealing. The most important peaks are marked by the blue

dashed lines. Due to the Auger- and core-level density at lower binding energies, not all

peaks are marked in that range. Lower panels: Core level spectra of Ni2p, C1s and Si2p as

marked, respectively. In the C1s- and Si2p-core level plots, light grey lines refer to the full

fit functions, while the blue lines represent the specific individual peaks. The C1s and Si2p

core-level scans from the clean surface agree well with previous results [46, 47]. Although

the fits of the Si2p spectra look as if the spin-orbit splitting was not taken into account,

that is simply a result of the relatively small spin-orbit splitting in SiC. The fits for the

Ni2p core levels are rather complicated, due to their satellites and the slightly different

sites of the Ni atoms. Especially the spectra right after the deposition can be fitted only

by assuming two different sites for the nickel, but the broad widths of the satellites make

it difficult to resolve them in a reasonable manner.
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the overall C1s core level intensity was clearly weaker - if there were no structural

changes, the relative height of both peaks should stay the same. This argument is also

supported by the fact that the peak which was weaker after the deposition shifted to

higher binding energies.

Following annealing, the C1s core level spectrum changed drastically and became

very similar to that of graphene on SiC with a slightly asymmetric peak at 284.5 eV

and a small bulk-related peak at 283 eV (which is about 0.5 eV lower in the case of

SiC [55]). The maximum shifts by over 1eV towards higher binding energies, and the

signal at roughly 283.5eV binding energy vanishes totally, while instead a small peak at

283eV appears. Although the large peak is well known from graphene on SiC(0001) [55]

and is thus easily understood, the small peak must be due to carbon in a significantly

different position. However, owing to the fact that there must be a large amount of

spare carbon from the SiC that probably sits as defects in the Ni2Si layer, it is most

likely that this produces the additional C1s peak.

The Si2p spectra taken at 200 eV photon energy in Fig. 4.3 agree well with previous

studies for clean SiC [47] and show an asymmetric structure, which results from the

spin-orbit splitting (with a splitting of roughly 600 meV, which is thus not directly

visible due to the peak width) on the one hand, and from the silicon atoms that are

deeper within the bulk and do not belong to the 1×1 reconstruction on the other hand.

The mean free path at 100 eV electron energy, taken from the universal curve, is in the

< 1 nm range, which results in the observed low intensity of the observed bulk states.

Only a very weak shift of approximately 60 meV to lower binding energies was found

for the states that correspond to the 1× 1 reconstruction.

After the annealing, drastic changes occurred in the core-level spectra of Si2p, and

no SiC-typical signal could be observed. The intensity maximum shifted to 101 eV,

which is a typical value for nickel silicides [127], with a small peak at 100 eV from the

bulk.

The nickel 2p core levels, as well as their satellites (also in Fig. 4.3), can reveal much

information about the system [128, 129]. For the Ni2p core-level spectra immediately

after the deposition, the Ni2p peaks could not be fitted properly with only one Voigt

line, but instead two Voigt lines close together (probably also due to surface effects,

as for the other core level spectra) were required. However, in the case of the Ni core

levels, this results in rather complicated fit functions due to the Ni2p spin-orbit splitting
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combined with the satellites, which were fitted with only one Voigt function each, due

to their widths. The fits still reveal information about the rough distance from the

main peak to its satellite, which lies between 5 and 6 eV (the higher Ni core-level peak

is situated at 851.5 eV, while its satellite appears at slightly more than 857 eV), and

thus agrees sufficiently well with previous data for metallic Nickel [128].

After the annealing, a proper fit of the spectral function could only be obtained by

assuming that two slightly different spin-orbit splittings are present1, which is reason-

able since the nickel atoms have two different sites in the Θ-Ni2Si layer. The satellite

is then separated from its main peak by 8 eV, which refers, according to Nesbitt et al.

[129], to a semiconducting or only barely metallic system. This supports the hypothesis

discussed later in the text that the substrate is Ni2Si, which shows only very weak DOS

at the Fermi level [127]. Notable is also the sharpness of the peaks, suggesting that all

the nickel is in the same system and no island formation has occurred, as suggested by

Robbie et al. [118].

4.3.2 Valence bands

In Fig. 4.4, 1 to 3, the valence band spectra for samples of different graphene coverage

are shown. As mentioned before, no dependence of the nickel coverage and the intensity

of the graphene π bands could be observed, but a strong sensitivity to the annealing

temperature was noticed. Thus, since we always estimated the annealing temperature

by eye, an uncontrollable variable entered into the measurements; however the strength

of the π bands in comparison with the other bands can be considered as a good indicator

of the actual graphene coverage, which means that Fig. 4.4, 1 to 3, show samples

with increasing graphene coverages. The valence-band spectra indicate clear π bands,

proving the graphitic character of the system, with the π-band intensity maximum

at the Γ point at 8.4 eV binding energy, which is a reasonable value if the system

is compared to its most similar well-studied systems, graphene on silicon carbide and

graphene on nickel (see chapter 5). Further comments on the nature of these bands, as

well as doping, will be given in section 4.4.

An estimate of the graphene coverage achieved is rather difficult, since the formation

of the graphene layer occurs simultaneously with the substrate formation and there-

fore no measurements on a clean Ni2Si surface were taken. Thus, since the graphene

1Chemical influence on the spin-orbit splitting is not unusual. See Balasubramanian [130].
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Figure 4.4: Valence band spectra - 1 to 3, A and B: The spectral function close to the

Fermi level in Γ-K- and Γ-M directions and corresponding Fermi surfaces for samples with

low (1), medium (2) and high (3) graphene coverage with BZs drawn in (more information

in the text). The reason for the strong, and slightly confusing, intensity fluctuations in the

Fermi surface plots lies in the generally low intensity at the Fermi surface, which makes

the spectra more sensitive to camera- or channel-plate-induced intensity fluctuations. The

weakness of the π-bands at the Γ-point in Fig. 3A is due to a non-optimal angular position

during the scan.
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coverage estimation process is based on some assumptions and is not straightforward,

it will be the focus of subsection 4.4.2, where the results are discussed further.

However, a closer look reveals an extremely unusual spectral function of the graphene

interface. The following extraordinary characteristics of the system can be noted:

• In Fig. 4.4, 1A and B, the features of the substrate are marked by dashed blue

lines and agree with previous ARPES studies on Ni2Si [127].

• The graphene π-bands are strongly hybridized with the nickel d-bands, as shown

by the dashed lines in Fig. 4.4, 2A. This situation seems to be similar to graphene

on Ni(111) [41, 66] (see also next chapter).

• With high graphene coverage a non-hybridized graphene π-band passes through

the Fermi level with a circular shape (see Fig. 4.4, 3B), unaffected by the boundary

of the first BZ. As will be explained in the next section, this feature can be

interpreted as the photoemission signal of varyingly oriented bilayer island atop

the first graphene layer.

• The previously mentioned circularly shaped photoemission signal shows intensity

variations as can be seen in Fig. 4.4, 3B. A particularly noticeable feature is the

intensity minimum in Γ-M-direction.

• This π-band crossing the Fermi level shows a strong intensity loss before reaching

it1.

4.4 Discussion

4.4.1 The Graphene Substrate

To understand the electronic structure of the system, it is important to determine the

actual substrate to which the graphene is bonded. Although it has been mentioned

before that the substrate is Θ-Ni2Si, the actual determination process has not yet been

discussed.

The appearance of the nickel-derived d states at 1.6 eV binding energy suggests

that the underlying substrate is Ni2Si, since NiSi, NiSi2 and Ni3Si would have their

1The intensity loss occurs clearly before the band reaches the Fermi level and is not due to an

incorrect estimation of the Fermi edge, which was determined from an integrated spectrum.
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d bands at significantly different binding energies (see tabulation 4.1). Although it

is probable that carbon atoms are placed within the Ni2Si-lattice (see also [120]), a

nickel carbide as the substrate can be excluded for several reasons: Primarily, such

nickel carbide products have not been found in any comparable study and actually

would be in strong conflict with results concerning the phase diagram of this reaction

[122, 124, 131]. Furthermore, a stronger substrate-related peak in the core level spectra

of C1s would then be expected (see Fig. 4.3).

Franciosi et al. [127] Bisi et al.1 [132] Bylander et al. [133]

NiSi2 3.15 eV - -

NiSi 1.8 and 3 eV 2 and 3 eV -

Ni2Si 1.3 eV 1.5 eV -

Ni3Si - - 0.3 eV

Table 4.1: Binding energies of the Ni d bands in different nickel silicides

Structures of the type NixSi with x > 3 can be excluded, since their d bands would

be at the Fermi level and such a system would not explain the resulting band structure,

as will become clearer later in this section. Still, the Ni2Si system can crystallize either

in the orthorombic δ-Ni2Si type or the hexagonal Θ-Ni2Si type [134]. Experiments

showed that the δ type usually only transforms to the Θ type at temperatures above

1200◦C [134], but according to Tomam this temperature can be lowered to 800◦C by

the presence of silicon in solid solution [135]. Although Fujimura and Tanaka claim that

the Θ phase in the present system can be realized only at temperatures above 1400◦C

[121] (which stands in fact in strong contradiction to the well-studied graphitization

process that occurs at these temperatures and which has been extensively studied in

the last few years [23, 48, 49]), we have strong evidence that the Θ phase is present in

our case, as will be explained below.

In previous studies, where the Ni2Si was synthesized in the orthorombic δ system,

Hähnel et al. produced graphite planes that grew quasi perpendicular to the surface

[120]. Since we did not observe such structures and the LEED images do not show any

signs of anisotropic compounds (the δ type is strongly anisotropic, which necessarily

would be visible in the LEED images and probably even in the ARPES-data), we can

assume that the graphene is formed on a hexagonal Θ-Ni2Si substrate. This conclusion

is supported by the lattice parameter in the hexagonal (0001) plane, which amounts to
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3.805 Å [135] and is thus in good agreement with the observed lattice mismatch in the

LEED images.

All together, this gives stronger arguments for the crystal structure shown in Fig.

4.2, which results in a superstructure of 8× 8 graphene cells lying on a 3
√
3× 3

√
3 su-

percell. The mismatch, calculated from free-standing graphene and the bulk-truncated

Ni2Si, is in that case less than 0.5%. As can be easily seen, in this configuration nei-

ther of the two sublattices is more strongly perturbed, but instead both sublattices

experience the same interactions with the substrate.

4.4.1.1 Θ-Ni2Si as a substrate for graphene

Since the δ modification of Ni2Si predominates in most systems, the overwhelming part

of the literature is focussed on this configuration, and there barely exists literature on

the Θ modification. However, the theoretical study of Peterson et al. predicts weak

Si-p states crossing the Fermi level [136], which makes the material a metal with a very

low DOS at the Fermi level. Our photoemission data show these states, in form of a

parabola marked by the upper blue dashed line in Fig 4.4, subfigure 1A, and by the

blue dashed line in subfigure 1B. This silicon state does not cross the graphene π-bands

as far as one can see from our data.

Based on our knowledge of the system, we would expect the hybridization of the

graphene π bands with the Ni d bands, as observed and indicated in Fig. 4.4, 2A. Since

there is no reason to believe that not all the graphene that is directly connected to the

substrate should show this hybridization, the fact that the π-bands, which cross the

Fermi level (as shown in Fig. 4.4, 3B) do not exhibit any hybridization with the nickel

d-bands, strongly suggests that this band reveals a second layer.

4.4.1.2 Structure and orientation of the graphene bilayer islands

The fact that the bilayer π-band crosses the Fermi level with a circular shape, partly

outside the first BZ (see red dashed circle in Fig. 4.4, 3B), can be explained by a variety

of different orientations for the bilayer islands. Such a configuration also naturally

explains the photoemission intensity loss of these bands approaching the Fermi level,

but it seems surprising that no such effect could be observed in the LEED images.

However, if the bilayer coverage is low, which is consistent with the C1s core level

spectra and the ARPES data, the LEED signal of these islands must be very low. If
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we interpret the small shoulder of the graphitic C1s core level peak in Fig. 4.3 as a

signal from the second layer, the coverage would be below 0.1ML. Since LEED does

not add the signal of all orientations but should show every orientation separated, it

seems clear, that no signal can be observed with this method.

It is well known that graphite can stack in the most common AB-stacking mode

[137], but also the turbostratic mode [137] or in the special case of graphite grown

by silicon evaporation of SiC on the (0001̄) face in a 27.8◦ rotated manner [54] (See

Fig. 4.5). Commensuration of two graphene layers is possible in several stackings, but

the exact binding energies for different stackings are difficult to calculate, due to the

weakness of the interaction between the layers [138].

In Fig. 4.5 six commensurate bilayer graphene stacking modes are shown. Among

the infinite number of possible stackings, these six modes are the ones with the smallest

supercells. As will become clear below, in our case stackings with larger supercells are

present. Each stacking mode can be characterized by the angle of rotation of the

graphene unit cell of the upper layer compared to that of the lower layer. Therefore,

this angle will be subsequently called the rotation angle. In the common AB stacking of

the layers, the rotation angle amounts to zero. In the turbostratic stacking mode, the

layers are rotated by 21.8◦. The eight bilayer stacking configurations with the smallest

unit cells are as follows

Graphene unit cells by supercell Rotation angle Commons

1 0◦ AB or AA stacking

7 21.8◦ turbostratic

13 27.8◦ as grown on 6H-SiC(0001̄) [54]

18 13.2◦ -

31 17.9◦ -

37 9.4◦ -

49 16.4◦ -

51 7.4◦ -

Table 4.2: Different possible bilayer stackings

In Fig. 4.6 the photoemission intensity at 1.7 Å−1 distance from the Γ-point for

different angular positions at the Fermi level is shown. 0◦ refers to the Γ-K-direction

of the first layer. Since the first layer does not give any photoemission signal at the
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Figure 4.5: Different bilayer stackings. - The six different stackings indicated belong

to the six smallest supercell configurations. The carbon atoms of the lower graphene layer

are sublattice-dependent brown and grey colored, the ones of the upper layer are bright

and dark blue.

91



4. GRAPHENE ON SIC PRODUCED BY NICKEL DIFFUSION

Figure 4.6: Photoemission intensity of the bilayer band at 1.7 Å−1 distance

from Γ-point in angular dependence. - Some rotational stacking positions for small

unit cells are marked by the blue lines.
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Fermi surface (see Fig. 4.4, 1B), the signal can be identified as coming from the bilayer.

Since the second layer should only reveal electronic states at the Fermi level near the

K-point, the strength of the signal can be seen as a direct indicator for bilayer islands

with the respective rotation angle.

Although the rotation angle for the bilayer could vary between 0 and 60◦, a plot

from 0 to 30◦ is sufficient, since our data show a strict symmetry around the 30◦ rotation

angle. This proves that the islands do not show any preferred chirality.

As one would expect, the photoemission intensity in Fig. 4.6 is lowest for 30◦ rotation

angle, since the supercell would be infinitely large for this stacking1. The second obvious

feature is an intensity peak around 17.9◦ rotation angle.

However, other stackings could not be directly resolved in our data. This is not

surprising, since three factors are expected to limit the resolution for such a system:

• As previously mentioned, the van-der-Waal bonding between the graphene sheets

is explicitly weak, which makes it difficult to calculate for different stackings

[138]. Moreover, the system is very similar to graphene on nickel and one would

expect that similarly to that system, the formerly unoccupied pz-orbitals that

are responsible for the van-der-Waals bonding lower the binding energy of the

sheets, due to the charge transfer to the substrate [139]. This means that the

system, depending on the island size, could form even larger supercells than the

ones shown in tab. 4.2.

• The fact that many small islands of different orientations exist strongly suggests

that the bilayer is of poor quality. This can lead to quantum confinement and

other effects that lead to an unusual broadening of the bands [58].

• Finally, one would expect different distances of the islands to the first graphene

layer for different orientations [138]. This automatically leads to varying doping

strength, which will also give a broadening of the photoemission signal in Fig.

4.6, since the respective spectrum was taken at the Fermi surface and depending

on the doping, the layers will give a slightly different signal at this energy.

1It has to be mentioned that small changes of the lattice parameter in the second layer can lead to

the possibility of islands with this stacking.
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One additional remarkable feature in the data presented in Fig. 4.6 is the distinct

peak at roughly 18◦. It is suggestive to attribute this peak to the stacking with the 31-

graphene unit cells superstructure that has a 17.9◦ rotation angle. However, our data

and the lack of theoretical calculations make it difficult to explain such an unusual

stacking preference, but it is probable that the growth mechanism itself is responsible

for the stacking arrangement, since configurations with relatively small supercells (like

turbostratic and 27.8◦ rotation angle – the latter is not drawn in in Fig. 4.6) barely

exist.

Our data agree well with the recent work by Woodworth et al. [125], who achieved

multilayer platelets atop the first graphene layer using a similar preparation method.

4.4.2 Layer Thickness

In Fig. 4.4, 1 to 3, clearly different layer thicknesses were obtained, as can be readily

determined by the different apparent intensities of the π bands. The sample in Fig. 4.4,

1, shows a strong inner circle, which can be attributed to the substrate, and only weak

π bands with no bilayer-induced intensity, which can only be the case if the graphene

coverage is less than 1ML. The strength of the inner circle may suggests a coverage of

about 0.7 ML.

The weakness of the inner ring in Fig. 4.4, 2, and the appearance of bilayer-induced

intensity suggests that the coverage achieved is about 0.9ML, with islands of lower and

higher coverage, probably comparable to the situation of graphene grown in situ by

the high-temperature method on SiC [50].

The vanishing inner ring in Fig. 4.4, 3, suggests that the coverage exceeds 1 ML all

over the sample, and can be roughly estimated as 1.1 ML.

In principle the similarity to the graphene/Ni(111)-system could lead to the conclu-

sion that a closed bilayer growth is difficult to achieve. In fact, since the carbon from

the graphitization results from the bulk could be the main reason that bilayer growth

could be performed in this system. Since graphene on Ni(111) is usually grown via

chemical vapor deposition, no closed second layer can be built, since the single carbon

atoms do not stick to the surface.
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4.5 Conclusion

In summary, we have successfully created a monolayer of graphene on SiC via inter-

calation of Ni atoms which formed Θ-Ni2Si and allowed the carbon to segregate to

the surface. Depending on the annealing temperature, bilayer islands are formed atop

the first graphene layer. The islands show strongly varying orientations, which can be

correlated with a lowered local density of states of the pz orbitals perpendicular to the

graphene sheet.

To our knowledge we are also the first to have produced a graphene layer on a Θ-

Ni2Si (0001) surface, and we are likewise the first to find a system where the graphene

appears in such varying orientations.

Local probe experiments might lead to novel discoveries.
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Graphene on Nickel

5.1 Graphene on nickel

5.1.1 A short introduction to graphene on nickel

The formation of graphene layers on Ni(111) surfaces via chemical vapor deposition

(CVD), by the cracking of hydrocarbons, has long been a known method [16, 67] and

has drawn special attention because of the small lattice mismatch between free-standing

graphene and the planar interatomic distance of the close-packed Ni(111) surface, which

is only 1.3% [140]. This small lattice mismatch allows the graphene to form huge layers

without defects. Furthermore the strong interaction of the graphene layer with the

substrate limits the graphene thickness to one ML [66], making this fabrication method

very promising for industrial purposes1.

However, since the electronic properties of graphene on nickel are strongly modified

by the hybridization of the graphene π-bands with the nickel d-bands [63, 64, 66], for

most electronic applications the graphene layer has to be detached from the substrate.

Recently this has been done with ultra-large graphene sheets of cm2-size, made by

CVD on nickel [36]. These sheets were prepared by CVD on thin nickel films on silicon

wavers and then detached by etching the substrate.

1The self-inhibiting growth process is thought to result from the low electron density atop the

graphene layer on nickel, since the formally empty π∗ orbitals are occupied and participate in the

charge transfer to the substrate [139]. However, Odahara et al. saw a LEED signal from a graphene

bilayer system that had been detached by etching from a Ni(111)-surface. The authors suggest that

the bilayer was formed accidently by crumbling of the detached graphene layer [141].
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Still, the modification of the graphene band structure arising from hybridization

with the nickel 3d-bands is of high interest. ARPES serves well for studying the inter-

action of graphene with its substrates, but the hybridization of the Ni-d-bands with the

graphene π-bands could as yet be observed clearly only for the lower graphene π-bands

[64, 66] . Theoretical studies predict hybridized nickel states close to the Fermi-level at

the K-point [41], and also at the M-point, due to hybridization of the graphene π-states

with the nickel sp-bands (see also the theoretical band structure in Fig. 5.6) [41, 142].

Figure 5.1: Graphene on Ni(111) - a) VESTA
TM

-model of graphene on Ni(111). The

grey and brown spheres atop represent the two carbon sublattices. The larger spheres

underneath represent the nickel atoms. The unit cell is drawn in. b) & c) The Fermi

surface for the majority and minority spin direction of the Ni(111) surface. d) Fermi

surface of free-standing graphene. Subfigures b) to d) were taken from Karpan et al. [41].

The atomic structure of graphene on Ni(111) (as proposed by Gamo et al. from

LEED-experiments [140], and corroborated by Kawanowa et al. with ion-scattering

experiments [143]) is shown in Fig. 5.1. As one can see, the carbon atom of one

sublattice is always situated over a hole, while the carbon atom of the other sublattice

is situated over a nickel atom. This configuration is usually referred to as AC, while

the later mentioned graphene on Ni(111) configuration, where the graphene sublattice

symmetry is not broken, is usually referred to as BC (A then means the position right

above a nickel atom, B means the position above a nickel atom of the second layer

and C above a nickel atom of the third layer). The resulting violation of the sublattice

symmetry in the AC configuration leads to a gap opening, which is difficult to observe
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since the hybridization dominates the electronic structure of the system1 [64].

5.1.2 Graphene as a spin filter

Another interesting feature of multilayer graphene or graphite on Ni(111) is its theo-

retically predicted ability to serve as a perfect spin filter [41, 144]. The observation of

giant magnetoresistance (GMR) in interlayer systems of ferromagnetic (FM) and non-

magnetic metals (NM) [145, 146] has given rise to new applications, such as storage

devices [147], as well as to the relatively new field of spintronics. A perfect spin filter

would allow all electrons of one spin direction to pass through the device while the other

spin direction is completely blocked, thus resulting in a perfectly filtering GMR-device

with maximum conductivity. Not only FM|NM|FM systems can be used as spin filters,

but the non-magnetic metal can also be replaced by an insulator (I) or semiconductor

(SC) [148]. Even though spin filters are already utilized in hard disc reader heads, the

state-of-the-art devices still function as a far from perfect spin filter, due primarily to

material restrictions [148, 149, 150].

The reason why graphene and graphite might function as perfect spin filters becomes

clear by looking at the spin-dependent DOS on the Ni(111) Fermi surface (see fig. 5.1)

as calculated by Karpan et al. [41]. The majority spin direction in nickel has no states

at, or near, the K-point, which is the only point in reciprocal space where graphene

has a non-vanishing DOS at the Fermi level. However, due to the hybridization, spin-

mixed states appear in the band structure, which strongly reduces the spin filtering for

one ML of graphene on Ni(111). As one would expect, this effect decreases with more

graphene layers. Karpan et al. calculated that nearly perfect spin filtering should be

possible starting from a thickness of four graphene monolayers atop the nickel surface

[41]. Although such a system might be difficult to be experimentally realized since the

CVD-process on Ni(111) is self-inhibiting to one monolayer2, further fine-tuning of the

1One might think that a gap-related discussion fails in the case of strong hybridization near the

K-point. This is wrong in the case of graphene, since a non-broken symmetry of the two sublattices

will still lead to a Dirac-crossing as theoretically calculated by Karpan et al. for the so-called BC-

configuration of a graphene layer on Ni(111) [41] (see also Fig. 5.6).
2In contrast, the formation of multilayer graphene on polycrystalline nickel surfaces has been suc-

cessfully performed, but only graphene flakes of comparatively small sizes and varying thickness could

be obtained [151, 152].

99



5. GRAPHENE ON NICKEL

spin-filtering system could be done by the intercalation of other metals, which has been

previously performed and can easily be realized experimentally1 [109, 110, 153, 154].

In this chapter high quality ARPES data of graphene on Ni(111) are presented.

A nickel layer has been deposited on these samples to check if spin filtering could

be observed in our ARPES data, but no evidence for such an effect could be found.

Furthermore our data sets show hybridization features of the upper graphene π-band

close to the Fermi level that stand in excellent agreement with theoretical studies

[41, 142].

5.2 Apparatus and Preparation

All measurements have been performed with the BESSY end station as described in

subsection 2.2.2. The end station was attached to the UE56-1 SGM where the majority

of the data were taken. Additional measurements were performed at the Max-Planck

beam line UE56-2. All data sets shown in this chapter were taken with linearly polarized

light to prevent spin-dependent effects in the measurements.

To achieve a high quality Ni(111) surface, 200Å of nickel were deposited by CVD

on a W(110) surface that had been cleaned by several cycles of annealing at 800◦C

under an oxygen atmosphere of 10−7mbar for several hours, followed by subsequent

flashing at about 2200◦C by electron bombardment. The growth of nickel on tungsten

surfaces has been studied for decades [155], and W(110) is known as an ideal substrate

for the growth of epitaxial layers since the high surface energy and the closed bcc

(110) structure allow a high mobility of the condensing atoms, while chemical reactions

between the substrate and the adsorbate are inhibited[156, 157, 158]. The nickel film

was chosen to be relatively thick with 100 ML to prevent surface defects, induced by

the lattice mismatch between the W(110) and the Ni(111) plane. After deposition,

the crystal was slightly annealed at approximately 400◦C for two minutes to order the

nickel film and create a quasi defect-free Ni(111) surface.

To grow the graphene layer atop, a propylene atmosphere of 10−6mbar was in-

troduced in the chamber and the crystal was annealed at 600◦C to induce cracking.

Afterwards the chamber was pumped down to base pressure and the crystal was cooled.

1see also chapter 3.
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For the formation of the nickel/graphene/Ni(111) interlayer system, one more Ni

monolayer was deposited on the sample.

5.3 Results and Discussion

5.3.1 Band maps and energy distribution curves

In Fig. 5.2, the photoemission intensity maps of the systems measured are illustrated.

The flatly dispersing Ni-d-bands of the clean Ni(111) surface are clearly visible at both

photon energies used for the scans. Clearly the nickel d-bands are better resolved in

the scans with the graphene layer atop the surface, although one might expect the

opposite, since scattering with the photoelectrons coming from the nickel should be

avoided. However, the high reactivity of nickel gives the clean surface a short lifetime,

while the graphene layer covers and protects the surface1 [154].

In the band maps as well as in the energy distribution curves (EDCs) in Fig. 5.3,

one can see that the flatly dispersing nickel d-bands have their major intensity maxima

between the Fermi level and 3eV binding energy. The intensity of the extremely flatly

dispersed nickel surface state, as first reported by Himpsel et al.[159], which is best

visible around the Γ-point and is marked by the black arrow in the upper left panel in

Fig. 5.3, proves the cleanliness of the Ni(111) surface. The surface state could not be

resolved in the scans taken at 100 eV photon energy. The accompanied broadness of

the Ni-d-states suggests that the surface was dirtier during this scan.

The dark red ellipse in the upper right panel of Fig. 5.2 marks a nickel d-band that

seems to partly vanish after the graphene layer has been deposited. Such a behavior can

easily be explained by a hybridization of the respective nickel d-band with the upper

graphene π-band. The proposed hybridization could not directly be detected in our

data, since it takes place above the Fermi level. However, such hybridized nickel d-states

are predicted by theoretical DFT calculations [142, 41] and are in good agreement with

the EDCs (Fig. 5.3) and constant energy maps presented in Fig. 5.8.

The dashed ellipsoid in the upper left panel in Fig. 5.3 marks the non-dispersive 6eV

satellite signature of the Ni d-bands, which was first observed by Hüfner and Wertheim

1Although one high quality scan takes usually approximately one hour, the quality of the surface

decreased most during the sample transfer from the heating stage to the goniometer. This was verified

several times, since the first photoemission intensity maps were always accumulated while the sample

was still in the heating stage.
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Figure 5.2: Spectral functions of Ni(111), graphene on Ni(111) and the

Ni/graphene/Ni(111) interlayer system. - Left column: Band maps taken at 70eV

photon energy along Γ-M-, M-K and K-M directions of the clean Ni(111) surface (upper

row), one graphene ML on Ni(111) (mid row) and the Ni/graphene/Ni interlayer system

(lower row). Right column: Band maps taken of the same samples respectively at 100 eV

photon energy. The ellipse marks a nickel d-state (only visible in the upper panel), which

becomes hybridized with the upper graphene π-band and thus moves above the Fermi level.

More information in the text.
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Figure 5.3: Energy distribution curves of the samples at the high symmetry

points Γ, K and M. - Sample configurations, position in K-space, as well as photon

energies are given in the insets. The ellipse in the upper left panel marks the non-dispersive

nickel satellite at 6eV [160]. The same spectrum shows a strong nickel surface state (marked

by the arrow). The middle row presents EDCs of the graphene on nickel(111) system with

a strong π-state (marked by the blue dotted line in the left panel) and hybridized states

(marked by the ellipse in the middle, and the arrow in the right panel). More information

in the text.
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Figure 5.4: Cross sections for the nickel and carbon valence

and nearby valence states. - The calculated cross sections of the

atomic states that participate in the respective valence band spectra from

http://ulisse.elettra.trieste.it/services/elements/WebElements.html. It has to be

mentioned that calculations show that nickel 3d-states of the pure Ni(111) surface are

hybridized with the lower lying Ni 4s states, as well as with the Ni 4p states above the

Fermi level, which leads to modifications of the cross sections [142].
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[160] and explained by Guillot et al. [161]. The weakly dispersive nature that appears

in this structure at 100eV photon energy can easily be traced back to the overlying

4s-bands [142]. However, as shown in Fig. 5.4 the cross section of the 4s-states is

smaller by a factor of 100 in comparison to the Ni-3d-states. This results logically in a

dominance of the nickel 3d satellites. The relative strength of these is best proven by

the EDCs at the K- and M-point shown in Fig. 5.3, upper row, mid and right panel.

According to Bertoni et al. the band width of the 4s-bands is strongly decreased at

these points and the peak maximum is shifted by at least 2eV to lower binding energies

[142]. Our data do not show such an effect at these high symmetry points, which proves

that the respective feature cannot derive from the 4s-related states.

The formation of the graphene layer leads to dramatic changes in the band structure

as can best be seen in Fig. 5.2, mid row, in the scan with a photon energy of 70 eV,

where the characteristic graphene π-bands are clearly visible. As in previous studies

of graphene on nickel, no Dirac cones could be observed. The electronic structure of

graphene is strongly modified by the hybridization with the nickel 3d states around the

K-point. The π-band reaches it minimum at a binding energy of 9.9 eV (as marked by

the blue line in the respective panel in Fig. 5.3) at the Γ-point with a FWHM of 1.6 eV.

Both results are in good agreement with previous experimental studies that usually

show the photoemission intensity maximum from the π-states at slightly above 10 eV

[64, 66]. The quality of our data sets is superior to previous ARPES studies of graphene

on Ni(111) [66, 153, 154] - as proven by the rather well-resolved nickel d-states - and

our π-band position stands in perfect agreement with theoretical calculations [41, 142].

After the deposition of one more nickel monolayer, the π-bands are slightly broadened

with an FWHM of 1.9eV at the Γ-point, which is reasonable due to expected scattering

of the photoelectrons in the upper nickel layer.

In Fig. 5.5 one can see EDCs at the high symmetry points in a different arrangement

than in Fig. 5.3. As best visible in the EDCs at the K-point, the appearance of the

graphene π-bands is accompanied by a shift of the Ni 3d satellites by approximately

700meV to higher binding energies (the maxima are marked by the dashed blue lines).

This effect has been observed before [42] and is not in the scope of this thesis.

As one would expect, the EDCs in Fig. 5.5 for the Ni/graphene/Ni(111) interlayer

system show decreased graphene π-band signals which is best visible at the Γ-point.
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5. GRAPHENE ON NICKEL

Figure 5.5: EDCs at the high symmetry points for the measured systems taken

with 70eV photon energy. - The blue dashed lines mark the 500meV shift of the Ni 3d

satellite peak.

Only the EDCs at the M-point show no clear reduction of the graphene-related pho-

toemission signals, with the exception of the hybridized signal at the M-point close to

the Fermi level, which will be discussed later in this chapter.

5.3.1.1 Spin filtering effects

Our measurements on the Ni/graphene/Ni(111) interlayer system could in principle

serve to prove spin filtering by a lower photoemission intensity from the upper nickel

layer than one would expect, if possible spin filtering was neglected. This would be

feasible, since the upper nickel layer is grounded through the graphene layer, which is

in turn grounded via the lower nickel film and thus the photoemission intensity of the

upper nickel layer can serve as an indirect transport measurement. Since spin filtering

should take place through the graphene layer, the photoemission intensity of the nickel

d-bands of the upper layer should be slightly reduced (approximately 20% filtering of

the majority spin direction was calculated by Karpan et al. [41]). However, the density

of nickel d-band states makes it impossible to directly resolve the spin splitting in our

data sets.

If we assume that minority and majority spin directions participate equally to the

photoemission intensity, one would expect a reduction in the intensity of 10% for the

upper layer1. This effect is decreased even further, since the mean free path is still

high enough to allow the electrons from the lower nickel layers to contribute to the

1As mentioned this includes the assumption that minority and majority spin directions participate

equally to the photo emission intensity, which is not the case directly at the Fermi level where the

minority Ni d spin states lie partly above the Fermi level
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photoemission spectra. Additionally, it seems likely that the nickel atop the graphene

layer is only very weakly bound to the graphene1, since all the binding electrons of

the graphene layer are already occupied, and subsequently forms islands (this is in

perfect agreement with previous studies [42, 139]), which could explain the reduction

of sharpness in the photoemission signal. Consequently an evaluation of our data to

find conclusive evidence for spin filtering effects remained unsuccessful.

5.3.1.2 Hybridization effects in detail

The slight modification of the EDCs, taken at 70 eV and 100 eV photon energy at the

K-point for clean Ni(111), can be attributed to the change of position in the BZ in k⊥

direction. With the graphene layer atop, the hybridization of the graphene π-states

with the nickel d-states becomes clearly visible in the respective band maps in Fig. 5.2

and stands in good agreement with previous studies.

The EDCs in Fig. 5.3 serve even better to analyze the hybridization in detail.

This is particularly the case since the ratio of cross sections of the nickel 3d-bands

to the graphene π-bands strongly increases towards higher photon energies within our

photon energy range (from 12 at 70 eV photon energy to 20 at 120 eV photon energy).

The EDCs at the K-point of the graphene/Ni(111) system show strong photoemission

signals obviously induced by the graphene-layer (marked by the dashed ellipse in Fig.

5.3). Interestingly the lowest peak decreases strongly with higher photon energies, while

the peak at −2eV binding energy still is very strong in the 100 eV photon energy EDC.

This can only be explained by a π hybridization of the respective 3d state, while the

peak below is a π-dominated peak.

Furthermore the peak closest to the Fermi level in the same panel shows decreasing

relative photoemission intensity with increasing photon energy. This proves that it is

a d-hybridized π-state. This state has not been observed before, but was predicted in

theoretical studies[41, 142] and stands in good agreement with the data presented in

the next subsection.

1This does not contradict the strong interaction between the graphene and the Ni(111) surface, since

as the pz orbitals are now hybridized with the underlying nickel d-states the probability of presence

of the electrons on the graphene-covered surface is strongly reduced, which limits the charge-transfer

from the graphene layer to the upper nickel flakes.
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Interestingly such a hybridization effect of the nickel d-state, which is closest to the

Fermi-level also appears at the M-point (marked by an arrow in the right panel in mid

row of Fig. 5.3 with a strong signal at 70 eV photon energy), although one would naively

not expect such a hybridization at the M-point, since no graphene π-states are found

here close to the Fermi-level. However, it has been theoretically predicted by Karpan et

al. and Bertoni et al. that the graphene π-states hybridize with the M-point crossing

nickel sp-states above the Fermi level [41, 142]. The calculations from Karpan et al.

are shown in Fig. 5.6. The observed effect can be well explained within this model.

The relative increase of this state at 100eV results from the additional hybridization

from the nickel d-states as shown in the theoretical calculations for the AC-stacking in

Fig. 5.6.

The hybridization is not easily observable in the EDCs of the Ni/graphene/Ni(111)

system. This is obviously the case due to scattering processes in the upper nickel layer,

but can also be attributed to the previously mentioned low binding energy from the

surface to the upper nickel layer, which likely makes the nickel form islands on the

surface. This has been observed with STM (M. Fonin, private communication)1.

In Fig. 5.6, scans for the specific region of interest are shown. As will be shown

below, agreement with the theoretical calculations of Karpan et al. exists, although

the broadness of the bands resulting from the short hole life time make a detailed com-

parison impossible. Nevertheless, as expected our measurements show no appearance

of Dirac cones, ruling out the BC configuration.

However, in accordance with the theoretical calculations we see several broad pho-

toemission intensity maxima in the shown interval at the K-point:

• Directly at the Fermi level, a broad band is visible at all photon energies. Since

from the theoretical calculations the nickel minority spin d-states, as well as the

majority spin hybridized graphene π-band should contribute to the photoemission

signal, it is not surprising that the band is relatively strong for all photon energies.

• According to Karpan et al., the majority spin states should give a maximum at

0.8 eV binding energy, while the minority spin states should give a maximum at

1Fonin tried to do an STM study of the Ni/graphene/Ni(111) system. The upper nickel atoms were

so weakly bound to the graphene layer that the STM tip permanently moved the atoms, which tended

to form islands.
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Figure 5.6: The spectral function around the K-point for graphene on Ni(111) -

Upper and right panels: Bandmaps around the K-point taken at different photon energies.

As can easily be seen at 90eV, the relative photoemission intensity of the hybridization of

the upper π-band with the nickel d-bands is the strongest. Other two panels: calculated

band structure for majority and minority spin direction from Karpan et al.[41]. More

information in the text.
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0.9 eV. Although these peaks cannot directly be resolved in our data sets, the

band in the ARPES data is slightly shifted to higher binding energies for lower

photon energies. Additionally, the shape of this band at 70 eV photon energy is

very similar to the theoretically predicted majority spin band, while the minority

spin band shape is more similar to the one at 120eV photon energy. This can be

seen as a direct indicator for the spin-dependent hybridization as predicted by

theory, since one would expect that the cross section for the hybridized majority

spin states moves to lower photon energies.

• The lower lying majority spin state at 3.2 eV binding energy is present at all

photon energies.

The only scan in which the photoemission intensity at the Fermi level at the K-point

clearly dominates the other bands is the one taken at 90 eV photon energy. This can

be seen as a clear indicator that this hybridized π state has the highest relative cross

section here, since the relative intensity of the other states is significantly reduced.

5.3.2 Fermi surfaces and constant energy maps

In Fig. 5.7 the Fermi surfaces of the measured systems are shown. These are the Fermi

surfaces that are taken from the same scans as the band maps previously shown in

Fig. 5.2. Nearly all Fermi maps show only broad features and reveal a poor k-space

resolution in the measurement, which can easily be explained by the nickel induced

high DOS close to the Fermi level. This leads to a broadening of the bands in terms

of energy, resulting from the short lifetime of the holes. The broad band distribution

indirectly enters the k-space resolution, since the bands are only weakly dispersive.

Still, two structures stand out in the scans taken at 100eV photon energy: one

hexagonal structure, marked by the red line in Fig. 5.7, and a roughly circular structure

closer to the Γ-point, marked by the dashed white line in the same figure. While

the hexagonal structure looks similar to the theoretically predicted minority spin d-

band structure, as shown in Fig. 5.1 c), the circular structure is neither shown in the

theoretical minority nor the majority spin Fermi surface in this figure. In Fig. 5.2

the respective band is marked by the dashed curves close to Fermi level around the

Γ-point in the upper right panel. Here the structure looks like the strongly-dispersing
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Figure 5.7: Fermi surfaces of Ni(111), graphene on Ni(111) and the

Ni/graphene/Ni(111) interlayer system - A quarter of the first BZ on the Fermi

surface of the different systems. High symmetry points are drawn into the upper left

subfigure. The diagonal stripes are from the CCD camera.
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sp-bands from the majority spin direction, as predicted in the previously mentioned

studies [41, 142].

In the 100 eV scan of the graphene on Ni(111) sample, fuzzy photoemission intensity

maxima appear at the K-points. The facts that these maxima are well visible at 100 eV

and only appear within the graphene system are proof that they must result from

weakly π-hybridized nickel d-states, which stands again in perfect agreement both with

previous theoretical studies [41, 142] and the data presented in Fig. 5.6.

As observed the highest relative cross section of the hybridized π-state at the K-

point directly at the Fermi-level is located at 90 eV photon energy. The respective

constant energy maps close to Ef are shown in Fig. 5.8. At roughly 200 meV binding

energy the photoemission signal is most limited to the K-points, while at the Fermi

surface roughly homogeneous photoemission intensity could be observed all along the

K-K’-line. This agrees almost perfectly with the calculated band structure by Karpan

et al. as shown in Fig. 5.6; since non-hybridized nickel d-states of the minority spin

direction are located around the Fermi level, the π-state should be best resolved at

roughly 200 meV below the Fermi level.

At 500 meV below the Fermi level no π-hybridized states can be observed and

non-hybridized nickel d-states dominate the structure. These constant energy maps

perfectly show that no BC configuration of the graphene layer on the Ni(111) surface

can have occurred since this would lead to strong π-state signals even down to 1eV

binding energy.

5.4 Summary

To conclude, we successfully grew a graphene layer on the Ni(111) surface and deposited

one ML of nickel onto it to produce the nickel/graphene/Ni(111) interlayer system. As

expected, no direct evidence for a spin filtering effect in this system could be found.

However, our Fermi and constant energy maps of these systems show hybridization

effects close to the Fermi level which have not been previously observed.

These effects are expected to be the case for a hybridized state right at the Fermi

level at the M-point, as well as a strong hybridization at the K-point. The measurements

presented here stand in almost perfect agreement with revious theoretical predictions

[41, 142].
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Figure 5.8: Constant energy maps of one monolayer of graphene on Ni(111) -

The data wer taken at a photon energy of 90 eV. Γ- and K-points are drawn in the upper

left panel. Binding energies are inserted.
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Finally, our data confirm that the graphene/Ni(111) system is stacked in the so-

called AC-manner.
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6

Summary, Conclusions and

Outlook

6.1 Summary

There is no doubt that graphene is considered the most promising modern material for

a variety of future applications. In any graphene-based device, the graphene layers will

be situated on substrates and electronic contacts to other materials are unavoidable.

Therefore, studying graphene’s interaction with different materials is an important step

on the way to graphene-based electronics. Moreover, it is important to study different

growth mechanisms of graphene layers, since different growth methods lead, necessarily,

to different layer qualities.

For this thesis we have successfully grown graphene mono- and multilayers on dif-

ferent substrates and have measured their spectral functions respectively. Our method

serves to elucidate the substrate-induced modifications to the electronic structure of

graphene. Before the measured effects are summarized, a small discussion on the growth

mechanisms that have been used will be given.

6.1.1 Comparison of the different growth mechanisms

Three different graphene growth mechanisms have been investigated in this thesis to

obtain graphene layers:

• Growth via the segregation of carbon atoms from the bulk on Ru(0001) (chapter

3).
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• Graphene growth via diffusion of nickel atoms on the SiC(0001) surface, which

transforms the substrate into Θ-Ni2Si (chapter 4).

• Chemical vapor deposition (CVD) on the Ni(111) surface by cracking of propylene

molecules (chapter 5).

The segregation method on Ru(0001) leads to growth of homogeneous graphene

layers. The method is simple and can easily be manipulated, as proved by the controlled

growth of graphene multilayers. Moreover, the sharp bands in the ARPES-spectra

suggest that the first layer was of exceptional quality.

Low-temperature graphene growth on SiC leads to a rather inhomogeneous

graphene growth. Although such a statement should be made carefully, since no local

probe experiments have been performed, it seems that our samples prepared with this

method show limited quality. Besides the graphene monolayer, bilayer islands of varying

orientations were achieved.

CVD on Ni(111) leads to excellent graphene layers, as also known from previous

studies [36, 154]. The lower electron density on top of the graphene layer limits the

growth to exactly one monolayer, and the matching lattice constant of the Ni(111)

surface to that of graphene makes this method particularly suitable for the growth of

graphene wafers.

6.1.2 Comparison of the interaction of graphene with the different

substrates

The graphene layers on the different substrates showed explicitly different characteris-

tics.

Graphene on Ru(0001) does not exhibit Dirac-like behavior of the charge carriers

in the first graphene layer. The graphene π-bands are hybridized with the Ru 4d-bands

and the graphene-typical linearly dispersive electronic structure close to the Fermi

level is not preserved. However, the second graphene layer behaves, basically, like free-

standing graphene with slight electron doping. The ARPES-spectra for this system

shows electron-plasmon- and electron-phonon-interaction induced kinks and no band
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gap at the Dirac-point. An additional graphene layer results in a gapped bilayer-like

system, similar to the well-known respective interlayer system on SiC(0001).

Graphene on Au on Ru(0001) has a spectral function that is similar to free-

standing graphene with a 200 meV band gap at the former Dirac-point. This band

gap results from the weak interaction of the graphene pz-orbitals with the underlying

gold atoms and the special lattice mismatch, which results in a sublattice symmetry

breaking. However, the band gap lies about 150 meV above the Fermi level since

gold induces hole-doping in the graphene layer, and could only be made visible in the

ARPES spectra by potassium-induced electron-doping.

Graphene on Ni(111) and on θ-Ni2Si shows strong hybridization between Ni

3d and graphene π valence band states. Both systems are very similar in terms of

spectral function, although the Ni d-bands do not cross the Fermi level for Θ-Ni2Si.

The lowered electron density atop the graphene layer makes the graphene-growth on

Ni(111) self-limiting to one monolayer, while on Θ-Ni2Si bilayer islands of different

orientations appear atop the first layer. For the graphene/Ni(111)-system we showed

many hybridization effects that have been theoretically predicted, but not previously

observed.

6.2 Conclusions

In spite of the fact that the segregation and the CVD-method produced good-quality

graphene layers, while the Ni-diffusion method of graphene growth on SiC did not

lead to such high quality results, further conclusions should be drawn with regards to

possible future applications.

6.2.1 Possible Future Applications

The CVD-method of graphene growth on nickel has already led to graphene layers of

extraordinary size and quality [36]. Therefore, it seems likely that future graphene

wafers will be produced on Ni(111) via CVD1. However, most electronic applications

1Although graphene wafers of similar size and quality have also already been grown on Cu-substrates

[43].
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would require either free-standing graphene, or graphene layers that are situated on a

semi-conductor, which means that the graphene layers have to be separated from these

substrates, e.g. by Kim et al. [36].

Moreover, as discussed in Chapter 3, free-standing graphene exhibits no band-gap.

Although it is in principle possible to build most binary devices on a low/high-current

basis, this is far more complicated than using simple doping-induced metal/insulator

transitions. We have shown in Chapter 3 that it is in principal possible to create a clear

substrate-induced band gap, but gold, as a field-effect transistor substrate for future

applications is rather unlikely, gold being a metal. Due to the fact that the Dirac

characteristics of the charge carriers in graphene are automatically destroyed by the

appearance of a band gap at the Dirac-point, it is also questionable whether a technical

approach towards gapped graphene-based devices is the most promising.

On nickel and Θ-Ni2Si, the graphene π-bands are strongly hybridized and the

charge carriers do not exhibit Dirac-behavior. This makes such a system unsuitable for

graphene-based field-effect transistors, but other applications might be possible.

6.2.1.1 Graphene as a spin filter

Graphene on nickel could be used as a spin filter in future spintronics devices. However,

the spin filtering is better with graphene multilayers. Such layers probably cannot be

grown by CVD, due to the low binding energy of the second layer, but other methods

could lead to perfect spin filters.

6.3 Outlook

The number of graphene publications is still increasing exponentially [3], and it is

highly probable that graphene will enter every-day electronics within a few decades.

Besides possible future electronic applications that have already been discussed in this

thesis, graphene’s stability and optical properties also make it a promising candidate

for flexible electronics and touch screens [43].

Moreover, graphene provides a perfect laboratory as a material for extensive fun-

damental research. There are still many possible substrates that have not been studied

via angular-resolved photoemission spectroscopy to clarify the modifications of the
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graphene band structure. Whatever graphene research will bring to us, it might not

only change our everyday life, but also our understanding of fundamental physics.
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Parts of this thesis have been published in New Journal of

Physics vol.12, 2010, no.3. See also Bibliography, item [59]

(http://dx.doi.org/10.1088/1367-2630/12/3/033014)

120



Bibliography

[1] A. K. Geim, “Graphene: Status and Prospects,” Science, vol. 324, no. 5934,

pp. 1530–1534, 2009. 1, 11

[2] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,

“The electronic properties of graphene,” Reviews of Modern Physics, vol. 81,

pp. 109–161, 2009. 1, 11

[3] A. Barth and W. Marx, “Graphene - a rising star in view of scientometrics,”

Tech. Rep. arXiv:0808.3320, Aug 2008. 1, 118

[4] S. Wang and P. R. Buseck, “Packing of C60 molecules and related fullerenes in

crystals: a direct view,” Chemical Physics Letters, vol. 182, pp. 1–4, jul 1991. 2

[5] H. Kroto, J. Heath, S. O’Brien, R. Curl, and R. Smalley, “C60: Buckminster-

fullerene,” Nature, vol. 318, pp. 162–163, 1985. 2

[6] H.-P. Boehm, R. Setton, and E. Stumpp, “Nomenclature and terminology of

graphite intercalation compounds (IUPAC Recommendations 1994),” Pure Appl.

Chem., vol. 66, no. 9, pp. 1893–1901, 1994. 1

[7] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon

Nanotubes. Imperial College Press, 1998. 1, 5, 7, 19

[8] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634,

May 1947. 1, 3, 5

[9] G. S. Painter and D. E. Ellis, “Electronic band structure and optical properties

of graphite from a variational approach,” Phys. Rev. B, vol. 1, pp. 4747–4752,

Jun 1970. 1

121



BIBLIOGRAPHY

[10] J. W. McClure, “Band structure of graphite and de haas-van alphen effect,” Phys.

Rev., vol. 108, pp. 612–618, Nov 1957. 3

[11] J. C. Slonczewski and P. R. Weiss, “Band structure of graphite,” Phys. Rev.,

vol. 109, pp. 272–279, Jan 1958. 3

[12] D. P. DiVincenzo and E. J. Mele, “Self-consistent effective-mass theory for in-

tralayer screening in graphite intercalation compounds,” Phys. Rev. B, vol. 29,

no. 4, pp. 1685–94, 1984. 3, 9, 10

[13] L. D. Landau, “Zur Theorie der Phasenumwandlungen II.,” Phys. Z. Sowjetunion,

vol. 11, p. 2635. 3

[14] A. J. van Bommel, J. E. Crombeen, and A. van Tooren, “LEED and Auger Elec-

tron Observations of the SiC(0001) Surface,” Surface Science, vol. 48, pp. 463–

472, 1974. 3, 12, 77

[15] F. Himpsel, K. Christmann, P. Heimann, D. Eastman, and P. J. Feibelman,

“Adsorbate band dispersions for C on Ru(0001),” Surface Science, vol. 115, no. 3,

pp. L159 – L164, 1982. 3, 15, 62

[16] R. Rosei, M. De Crescenzi, F. Sette, C. Quaresima, A. Savoia, and P. Perfetti,

“Structure of graphitic carbon on Ni(111): A surface extended-energy-loss fine-

structure study,” Phys. Rev. B, vol. 28, pp. 1161–1164, Jul 1983. 3, 15, 97

[17] N. Kholin, E. Rut’kov, and A. Tontegode, “The nature of the adsorption bond

between graphite islands and iridium surface,” Surface Science, vol. 139, no. 1,

pp. 155 – 172, 1984. 3

[18] K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, Y. Zhang, S. V. Dubonos,

I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon

films,” Science, vol. 306, p. 666, 2004. 3, 4, 10, 11

[19] J. C. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, “The

structure of suspended graphene sheets,” Nature, vol. 446, pp. 60 – 63, March

2007. 3

122



BIBLIOGRAPHY

[20] R. C. Thompson-Flagg, M. J. B. Moura, and M. Marder, “Rippling of graphene,”

EPL (Europhysics Letters), vol. 85, no. 4, p. 46002, 2009. 3

[21] K. S. Novoselov, E. McCann, S. V. Morosov, V. Fal’ko, M. I. Katsnelson,

U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Two-dimensional gas of mass-

less dirac fermions in graphene,” Nature, vol. 438, pp. 192–200, 2005. 3, 10,

11

[22] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V.

Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Nat. Acad.

Sci., vol. 102, no. 30, pp. 10451–10453, 2005. 3, 10

[23] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N.

Marchenkov, E. H. Conrad, P. N. First, and W. A. deHeer, “Ultrathin Epitaxial

Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Na-

noelectronics,” J. Phys. Chem. B, vol. 108, no. 52, pp. 19912–19916, 2004. 4, 11,

12, 77, 88

[24] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation

of the quantum hall effect and berry’s phase in graphene,” Nature, vol. 438,

pp. 201–204, 2005. 4, 10

[25] A. Bostwick, T. Ohta, J. L. McChesney, K. V. Emtsev, T. Seyller, K. Horn, and

E. Rotenberg, “Symmetry breaking in few layer graphene films,” New J. Phys,

vol. 9, p. 385, 2007. 9, 12, 14, 57, 62, 63, 65, 66, 72, 73, 74

[26] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mechanique Quantique. 1977. 9
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Abstract

Graphen gilt auf Grund seiner außerordentlichen elektrischen, optischen und

mechanischen Eigenschaften als eines der vielversprechendsten Materialen

für eine vielzahl von zukunftstechnologischen Anwendungen. Dabei wird

Graphen in jeder Art von Zukunftstechnologie immer im Kontakt mit an-

deren Materialien stehen. Weiterhin ist es in der Graphenforschung von zen-

traler Bedeutung, unterschiedliche Herstellungsmethoden auszuprobieren.

In dieser Doktorarbeit werden drei verschiedene Herstellungsmethoden für

Graphenschichten angewandt und die Wechselwirkung von Graphen mit un-

terschiedlichen Substraten mit Hilfe der winkelaufgelösten Photoemissions-

spektroskopie (ARPES) untersucht.

Bei der Segregationsmethode auf Ru(001) lassen sich kontrolliert Schicht-

dicken bis zu drei qualitativ hochwertigen Monolagen erstellen. Die er-

ste Graphenlage wechselwirkt stark mit dem Substrat und die Graphen

π-Bänder hybridisieren mit den Ru4d-Bändern. Die darauffolgende Lage

verhält sich wie freistehendes Graphen mit 500 meV n-Dotierung. Eine

Monolage Gold zwischen einer Graphenlage und der Ru(001)-Oberfläche

führt zu einer Bandlücke von 200 meV am Diracpunkt.

Die Diffusion von Nickelatomen in den SiC-Kristall führt zu der Bildung von

θ-Ni2Si, welches dann das Substrat für das Graphen bildet. Die Graphen

π-Bänder sind stark hybridisiert mit den Nickel d-Bändern. Die zweite

Graphenschicht wächst in Inseln mit unterschiedlichen Orientierungen.

Auch bei Graphen, hergestellt durch chemisches Aufdampfen auf Ni(111),

sind die π-Bänder stark d-hybridisiert. Die Hybridisierung der Bänder in

diesem System wurde im Zuge dieser Arbeit detailliert untersucht.



Abstract

Graphene’s extraordinary electrical, optical, and mechanical properties ren-

der it one of the most promising materials for a variety of future techno-

logical applications. However, in any future device, graphene will be in

direct contact with other materials. Moreover, a current focus of graphene

research is the investigation of different growth mechanisms for graphene

layers.

In this thesis, three different graphene growth methods are demonstrated

and the interaction of graphene with different substrates is studied using

angular-resolved photoemission spectroscopy (ARPES).

With the segregation method on Ru(001), one can grow graphene layers

of controlled thicknesses of up to three monolayers. The first graphene

layer interacts strongly with the substrate and the graphene π-bands are

hybridized with the Ru4d-bands. The subsequent layer behaves like free-

standing graphene with 500 meV electron doping. The intercalation of gold

underneath the first graphene layer leads to a gap-opening of 200 meV at

the Dirac point.

The diffusion of nickel atoms in a SiC crystal leads to the formation of

θ-Ni2Si, which then serves as a substrate for graphene. The π bands are

strongly hybridized with the nickel d bands. The second graphene layer

grows with different orientations.

Also in the case of graphene grown by chemical vapor deposition (CVD) on

Ni(111), the π bands are strongly hybridized with the nickel d bands. The

hybridization is studied in detail in this thesis.


