日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Setting the frame: The human brain activates a basic low-frequency network for language processing

MPS-Authors
/persons/resource/persons19821

Lohmann,  Gabriele
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19727

Hoehl,  Stefanie
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Psychology, University of Heidelberg, Germany;

/persons/resource/persons19570

Brauer,  Jens
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19563

Bornkessel-Schlesewsky,  Ina
Max Planck Research Group Neurotypology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Germanic Linguistics, University of Marburg, Germany ;

/persons/resource/persons19544

Bahlmann,  Jörg
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20055

Turner,  Robert
Department Neurophysics, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19643

Friederici,  Angela D.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Lohmann, G., Hoehl, S., Brauer, J., Danielmeier, C., Bornkessel-Schlesewsky, I., Bahlmann, J., Turner, R., & Friederici, A. D. (2010). Setting the frame: The human brain activates a basic low-frequency network for language processing. Cerebral Cortex, 20(6), 1286-1292. doi:10.1093/cercor/bhp190.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-27EB-C
要旨
Low-frequency fluctuations (LFFs) are a major source of variation in fMRI data. This has been established in numerous experiments-particularly in the resting state. Here we investigate LFFs in a task-dependent setting. We hypothesized that LFFs may contain information about cognitive networks that are specific to the overall task domain without being time locked to stimulus onsets. We analyzed data of 6 fMRI experiments, 4 of which belonged to the language domain. After regressing out specifics of the experimental design and low-pass filtering (< 0.1 Hz), we found that the 4 language experiments produced a correlational pattern that was not present in the 2 nonlanguage studies. Specifically, a region in the posterior part of the left superior temporal sulcus/gyrus was consistently correlated with both the left Brodmann's area 44 and the left frontal operculum in all 4 language studies, whereas this correlation was not found in the 2 other experiments. This finding indicates the existence of a basic network that acts as a general framework for language processing. In contrast to networks obtained by a conventional conjunction analysis of activation maps, this network is independent of experimental specifics such as stimulus onsets and exists in the low-frequency range.