
Emerging beam effects in out-of-plane grating

diffraction of He atom beams

Bum Suk Zhao‡, Gerard Meijer and Wieland Schöllkopf
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1. Introduction

The term emerging beam resonance, also known as threshold resonance, refers to a

general wave diffraction phenomenon that occurs in coherent scattering from a periodic

surface. The effect is revealed by abrupt intensity variations of outgoing diffraction

beams (including the specular beam) which occur when conditions (i.e. wavelength and

incidence angle) are such that another diffracted beam just emerges parallel to the

surface. This phenomenon was first observed with visible light by Robert Wood in

1902 [1] and subsequently analyzed by Lord Rayleigh [2]. Therefore, in classical optics,

the effect and the conditions for its occurrence are known as Rayleigh-Wood anomaly

and Rayleigh conditions (Rayleigh wavelength λR and Rayleigh incidence angle θR),

respectively (see e.g. ref. [3]).

Emerging beam resonances have been predicted by theory to occur for diffraction

of atom beams from crystal surfaces [4, 5, 6, 7]. When the incidence angle fulfills the

Rayleigh condition, i.e. θin = θR, the increase of the emerging beam intensity (as a

function of incidence angle) is predicted (i) to be of infinite slope and (ii) to perturb the

other diffraction beam intensities, In(θin). Here n and θin denote the diffraction order

and the incidence angle, respectively. Thus, the emerging beam resonance is manifested

by abrupt intensity variations of outgoing beams, namely, discontinuities of the slope

of In at the Rayleigh angle of incidence. Emerging beam resonances were expected to

occur within an incidence angular range of less than 100 µrad [6]. Under conventional

experimental conditions, however, the incident atomic beam divergence is on the order

of a few mrad. As a result, the emerging beam effect is smeared out over an incidence

angle interval which is more than an order of magnitude wider than the width of the

resonance. This experimental constraint was, therefore, identified as one of the main

hurdles to experimentally observe emerging beam resonances [6].

Recently, we observed emerging beam resonances in an atom optical experiment, in

which a highly collimated helium atom beam is diffracted at grazing incidence from a

plane ruled reflection grating of 20 µm period [8]. The high collimation of the incident

atom beam and the relatively large grating period allowed us to resolve emerging beam

resonances. By varying the incidence angle we observed the resonances precisely at the

Rayleigh incidence angles as abrupt variations in the intensities of the diffraction beams

and the specular beam.

Here, we report an experimental study of emerging beam effects using a much finer

diffraction grating with a period of 0.42 µm. As in the previous experiment, the atom

beam impinges upon the grating at grazing incidence. Unlike in the previous experiment,

however, the azimuth angle between the plane of incidence and the grating grooves is

extremely small. Hence, we observe essentially out-of-plane diffraction. Under these

conditions the angular range of the emerging beam resonances increases to more than

500 µrad. As a result, their effect on the diffraction peak intensities is less pronounced.

However, in this geometry emerging beam resonances cause anomalous variations of the

peak-shapes of the outgoing diffraction beams, which are observed to be correlated with
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the progressive emergence of a new diffraction beam.

This paper is organized as follows. The out-of-plane diffraction geometry used in

this work is discussed in detail in Section 2, and the experimental apparatus is described

in Section 3. The observations are presented and discussed in Section 4, followed by a

summary in Section 5.

2. Out-of-plane diffraction geometry

The geometry of the grating and its orientation with respect to the incident atom beam

is sketched in Fig. 1(a). The plane of incidence is defined by the incident beam axis

and the grating normal. The two essential features of this configuration are: (i) the
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Figure 1. (Color online) (a) Orientation and geometry of the plane ruled diffraction
grating. The dashed and dotted lines are parallel and perpendicular to the grating
surface, respectively. The grating azimuth angle φ (drawn strongly exaggerated) is
the angle between the blaze arrow (thick dashed arrow) and the y axis. The detector
entrance slit (slit 3) is indicated by the gray bar crossing the semi-circle. For the sake
of visibility slit 3, which is parallel to the y axis, is drawn parallel to the blaze angle.
(b) Scheme of the experimental setup (top view). In both figures the chosen coordinate
system is indicated.
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grating is oriented at grazing incidence; and (ii) the grating grooves are close to parallel

to the plane of incidence, resulting in out-of-plane diffraction. This mounting geometry

has been referred to as conical diffraction mount in extreme ultraviolet spectroscopy

[9], and it was first applied to grating diffraction of an atom beam in 1996 [10]. The

name conical mount relates to the half cone formed by the diffracted wave vectors, as

illustrated in Fig. 1(a). Recently, this geometry was employed in scattering of high-

energy atomic and molecular beams (kinetic energy ' 1 keV) from crystal surfaces

[11, 12]. In those experiments the semi circle sketched in Fig. 1(a) can be directly

visualized by two-dimensional imaging of the fast-atom diffraction spots [13].

The angle of incidence θin is defined as the angle between the incident beam axis

and the grating surface plane. In the experiments presented here θin ≤ 10 mrad. The

grating can be rotated by the azimuth angle φ around the z axis, where the plane of

incidence and the grating normal are chosen as the xz plane and z axis, respectively. As

indicated in Fig. 1, the y axis is perpendicular to the plane of incidence. We define φ

to be positive when the blaze arrow of the grating is rotated counterclockwise from the

y axis as shown in Fig. 1(a). The blaze arrow is illustrated in the inset of Fig. 1(a); it

is perpendicular to the grating normal and to the grating grooves, and makes an angle

smaller than 90◦ with the facet normal.

The incident He atom beam is characterized by an incident wave vector ki (ki ≡
|ki| = 2π/λ, λ is the de Broglie wavelength of the atoms) which is indicated in Fig. 1(a)

(solid vector). It decomposes into a component K with magnitude K = ki cos θin parallel

to the surface, and a component kiz with magnitude kiz = ki sin θin perpendicular to the

surface. Similarly, the outgoing wave vector is denoted by kG = (KG, kGz). For elastic

scattering kG = ki and, hence, kGz = ki sin θn, where θn is the nth-order diffraction angle,

defined with respect to the grating surface. By momentum conservation KG = K + G,

which is illustrated in the figure. G is a reciprocal grating vector whose magnitude is

given by G = n2π/d. Here, the diffraction order n is defined positive (negative) when

θn is larger (smaller) than θ0. Hence, diffraction beams that are closer to the grating

surface than the specular beam are assigned negative orders, whereas positive-order

diffraction beams are further away from the surface than the specular beam.

The incoming and outgoing wavevectors are related by energy conservation and

satisfy k2
Gz = k2

i − |K + G|2, which can be rearranged as

k2
Gz − k2

iz = −2KG cos(
π

2
+ φ)−G2 . (1)

Since ki = kG = 2π/λ, this equation can be rewritten in the following form

sin2 θn − sin2 θin = 2| sin φ| cos θin
nλ

d
−

(
nλ

d

)2

, (2)

where the artificial introduction of the modulus for sin φ is necessary due to our sign

convention of n. When |nλ/d| ¿ | sin φ|, this equation can be simplified further to
nλ

(d/| sin φ|) ≈ cos θin − cos θn, which corresponds to the in-plane grating equation [14]

with an effective period deff = d/| sin φ|. This simplified in-plane grating equation,

which was used successfully in our previous work [8], however, cannot be applied in the
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present configuration, since nλ/d = n× 0.83× 10−3 can not be neglected compared to

sin φ = 5× 10−3.

Note that, as a result from Eq. (2), the out-of-plane divergence of the incidence

beam, δ⊥, which could be ignored in previous in-plane helium atom grating diffraction

experiments, affects the diffraction patterns in the out-of-plane diffraction geometry. At

grazing incidence the out-of-plane divergence causes the azimuth angle to be distributed

over an interval of width ∆φ ≈ δ⊥ centered at the nominal azimuth angle φ. This results

in a broadening of the diffraction beams (except for the specular peak with n = 0). The

finite width of the Rayleigh angle, ∆θR,m, for the emergence of the mth-order diffraction

beam, is also affected by the out-of-plane divergence of the incident beam, as will be

detailed in Section 4.2.

3. Experimental setup

The diffraction apparatus has been described elsewhere before [8, 15, 16]. The

continuous helium atom beam is formed by free-jet expansion of 4He gas (99.999%

purity) from a source cell (stagnation temperature T0 and pressure P0) through a 5-µm-

diameter orifice into high vacuum (see Fig. 1(b)). In this work, source conditions are

either T0 = 8.7 K and P0 = 0.5 bar or T0 = 300 K and P0 = 31 bar, resulting in a

mean velocity (and a corresponding de Broglie wavelength) of the helium atoms of 300

m/s (0.33 nm) or 1760 m/s (0.056 nm), respectively. The relative width of the velocity

distribution amounts to less than 1% at T0 = 8.7 K and to about 9% at T0 = 300 K

[17].

After passing through a conical skimmer of 500 µm diameter, the beam is collimated

by two 20-µm-wide, 5-mm-high vertical slits (slit 1 and slit 2) separated by 100 cm along

the beam axis. These slits limit the horizontal (in-plane) beam divergence δ‖ to δ‖ < 50

µrad. At a distance of 78 cm downstream from the second slit there is a third vertical

slit (slit 3), which is the 25-µm-wide, 5-mm-high detector-entrance slit. The observed

angular width (full width at half maximum) of the atom beam is 120 µrad, resulting

from a convolution of slit 3 with the divergence-limited beam width. In addition, there

is also a 2-mm-high aperture (slit v), located 95 cm downstream from the orifice. This

aperture determines the out-of-plane (vertical) divergence δ⊥ ≈ 2 mrad.

The detector is a non-commercial mass spectrometer, in which the neutral helium

atoms are ionized by electron impact (120 eV electron energy); the ions are accelerated

by 1 kV, mass selected by a magnetic 90◦-sector field and detected by an electron

multiplier tube. The detector, together with slit 3, is mounted on a frame which can

be precisely rotated as indicated in Fig. 1(b). The grating is positioned such that the

detector pivot axis is parallel to the grating surface and passes through its center. Hence,

the pivot axis (vertical) is parallel to the y axis of the reference frame. The detection

angle θ is measured with respect to the grating surface plane. Diffraction patterns are

obtained by rotating the detector, namely varying θ, and measuring the He signal at

each angle. Given the orientation of slit 3 (perpendicular to the plane of incidence) the
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high angular resolution of the detector only applies to in-plane scattering.

The grating is a commercial plane ruled grating (Newport 20RG2400-240-1) with

2400 grooves/mm, corresponding to a period d = 417 nm, and a blaze angle α = 16.8◦

(≈ 293 mrad) (see the inset of Fig. 1(a)). It is made out of 6 mm thick glass with an

aluminum coating and has a surface area of 5× 5 cm2.

4. Results and discussion

4.1. Diffraction patterns

Diffraction patterns of a helium atom beam at T0 = 8.7 K and φ = 5 mrad are shown

in Fig. 2 for various incidence angles. As the right-hand-side of Eq. (2), at grazing

incidence, is approximately independent of θin and θn, the observed angular spectra are

plotted as a function of sin2 θ− sin2 θin. Plotted this way, the diffraction peak positions

are independent of the incidence angle and, hence, peaks of a given diffraction order

appear at the same abscissa position. The abscissa variable, sin2 θ− sin2 θin, is identical

to the kinetic energy change of the He atoms along the grating normal expressed in

units of the incident kinetic energy of the atoms.
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Figure 2. (Color online) Measured angular distributions at T0 = 8.7 K and φ = 5.0
mrad for various incidence angles plotted as a function of sin2 θ− sin2 θin. The vertical
bands indicate the angular spread for n = −2,−1, 1, 2 calculated for the azimuth angle
range 4 < φ < 6 mrad. For n ≥ 3 the calculated spreads are depicted by bars in the
upper right of the graph. The incidence angle θin is (a) 3.51, (b) 4.01, (c) 4.34, (d)
4.68, (e) 4.84, and (f) 5.34 mrad.
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To account for the azimuth angle spread, given by ∆φ ≈ δ⊥ = 2 mrad centered at

φ = 5 mrad, we calculate the diffraction peak positions for the interval 4 < φ < 6 mrad.

According to Eq. (2), the spread ∆φ results in a broadening of the peaks in Fig. 2 by

∆φ2|n|λ
d

. Thus, the angular spread δ⊥ does not affect the specular peak (n = 0), but

it broadens the other diffraction peaks increasingly with increasing |n|. The calculated

peak widths are indicated by bars and vertical bands in Fig. 2. In each band the sides

close to and far from the specular peak correspond to the calculated peak center for

φ = 4 and 6 mrad, respectively.

It is noteworthy that there is a maximum value for sin2 θ − sin2 θin, above which

no helium signal is found in the spectra of Fig. 2. It is inferred from Eq. (2) that

sin2 θn − sin2 θin has a maximum value of sin2 φ cos2 θin (≈ sin2 φ for grazing incidence),

thereby confining the abscissa range of the diffraction spectra. The vertical dashed line

in Fig. 2 corresponds to this maximum value for φ = 6 mrad, which agrees well with the
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Figure 3. (Color online) Diffraction angle θn− θ0 as a function of the incidence angle
θin. Experimental measurements are denoted by filled squares for n = −3 to 2, while
solid curves are theoretical calculations for n = −3 to 8 and φ = 5.0 mrad.
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experimental observations. The width-indicating bar for n = 7 and 8 span up to this

maximum. The physics underlying the maximum is the conservation of kinetic energy in

the plane perpendicular to the grating grooves, i.e. the plane spanned by the blaze arrow

and the z axis. The kinetic energy parallel to the grooves is invariant due to translational

symmetry. Eq. (1) can be modified to k2
Gz−k2

iz = K2 sin2 φ−(K| sin φ|−G)2, which says

that the increase of the kinetic energy along the z axis (left hand side) corresponds to a

decrease of the kinetic energy along the direction of the blaze arrow, which is identical

to the direction of G (right hand side). Therefore, the maximum increase of the former,

proportional to sin2 θn − sin2 θin, is set by the initial value of the latter (i.e. K2 sin2 φ).

In the pictorial representation of conical diffraction shown in Fig. 1(a), this maximum

corresponds to the apex of the semi-circle.

4.2. Diffraction angles

Fig. 3 shows diffraction angles as a function of the incidence angle θin. The diffraction

angle is defined as the angular separation between the nth and the 0th-order diffraction

peaks, θn − θ0. Squares represent experimental data for n = −3 to 2, which have been

determined by analyzing a multitude of diffraction patterns (including those plotted in

Fig. 2). The peak positions θn are determined by fitting a Gaussian to each individual

peak of a given diffraction pattern plotted as a function of detection angle θ. The

incidence angle θin is determined from the specular peak position θ0.

We determine the azimuth angle φ by analyzing the data shown in Fig. 3. To this

end, Eq. (2) is fitted to the observed 1st-order diffraction angles, with φ being the only

fitting parameter. The best fit is found for φ = 5.0 mrad. The other solid curves in

Fig. 3 are diffraction angles calculated by Eq. (2) for this azimuth angle.

For each diffraction beam of negative order a threshold incidence angle is found

below which the beam is diffracted ’into the surface’. This angular region is depicted

by the gray shaded area. The threshold angle is the Rayleigh angle θR,m, indicated by a

vertical line in the figure for m = −1, where m is the diffraction order of the emerging

beam. Furthermore, as shown in the inset, at a given incidence angle the diffraction

angles increase until the 6th order, and then start to decrease again from the 7th order

on. This reflects the appearance of a maximum diffraction angle in the out-of-plane

configuration, as discussed in the previous section.

Discrepancies between theory and experiment are found (i) for the 2nd-diffraction-

order in the region around θin = 3 mrad and (ii) for the negative orders, which deviate

from the theoretical lines near their respective Rayleigh angle θR,m. The reason for

deviation (i) can be seen in Fig. 2, where the angular range of the 3rd order is found to

overlap with the one for the 2nd order. This overlap of the peaks causes inaccuracies in

the fitting procedure, namely a shift of the fitted peak center towards larger diffraction

angles. Deviation (ii) is attributed to the fact that, for incidence angles close to θR,

only a part of the emerging beam has emerged yet, while another part is still below

the grating surface [18]. The angular spectrum at θin = 4.34 mrad shown in Fig. 2(c)
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exemplifies this effect for the −2nd-order peak, which is at the emerging stage with a

peak width clearly smaller than the width found once the peak has completely emerged,

e.g. at θin = 4.68 mrad (Fig. 2(d)). Due to this partial emergence, the fitted peak center

position is shifted towards smaller diffraction angles [18].

We define the angular width ∆θR,m as the incidence-angle interval over which the

mth-order peak gradually emerges. There are three contributions to ∆θR,m: (i) the

in-plane divergence δ‖; (ii) the out-of-plane divergence δ⊥; and (iii) the de Broglie

wavelength spread in the helium atom beam. Considering Eq. (2) these contributions

are effective through variations of (i) the incidence angle θin, (ii) the azimuth angle φ,

and (iii) the wavelength λ, respectively. For T0 = 8.7 K the relative wavelength spread

is just about 1%, and, hence, the effect of (iii) is negligible. The contribution from δ‖
is directly seen in the width of the specular peak, shown in Fig. 2, since the right-hand

side of Eq. (2) vanishes for n = 0. For n 6= 0 the dominant contribution to ∆θR,m comes

from the out-of-plane divergence δ⊥, discussed above. In Fig. 3 the calculated intervals

∆θR,m are indicated by horizontal lines for the −1st and −2nd diffraction orders. These

intervals are seen to coincide well with the regions where discrepancies between the

observed and calculated diffraction angles appear.

4.3. Diffraction efficiencies

Diffraction efficiencies, defined as the intensity of the nth-order diffracted beam divided

by the incident beam intensity, are plotted in Fig. 4 for three azimuth angles, φ = −19,

−6.3, and 5.0 mrad. The beam intensities are determined by analyzing the peak areas in

diffraction patterns plotted as a function of detection angle θ. In Fig. 4 Rayleigh angles

θR,m, calculated for each φ, are indicated by vertical black solid lines. Around θR,m

the mth-order peak suddenly emerges and a steep increase of the diffraction efficiency

within the incidence-angle interval ∆θR,m, also indicated in the figure, is observed.

The diffraction efficiencies of the other beams exhibit minima or at least dips

(minima in the first derivative) at or close to the Rayleigh angles. In some cases a kink

in the efficiency curve is observed (e.g. in the −1st-order curve for φ = −19 mrad at

the −2nd-order emergence). In general these kinks are, however, much less pronounced

than those that have been observed previously as a typical fingerprint of emerging beam

resonances [8]. We attribute this smoothing-out to the increased ∆θR,m interval, which

is about 0.5 mrad in the present experiment as estimated in Figs. 3 and 4. In our

previous work it was less than 0.05 mrad due to the small value of nλ/d with the same

beam geometry δ⊥ [8].

Before the onset of the −1st-order emergence (i.e. to the left of the ∆θR,−1 interval)

the specular efficiency decreases for all three azimuth angles. During −1st-order

emergence the specular efficiency behaves differently for different |φ|. For φ = −19

mrad, the specular efficiency increases, although there are only two data points within

∆θR,−1. For φ = −6.3 and 5.0 mrad, on the other hand, the specular efficiency decreases

within the range ∆θR,−1. This indicates a constructive interference effect on the specular



Emerging beam effects in out-of-plane grating diffraction of He atom beams 10

beam for φ = −19 mrad, but a destructive one for φ = −6.3 and 5.0 mrad. Once the

−1st-order beam has fully emerged (to the right of the ∆θR,m interval) the specular

efficiency stays about constant for φ = −6.3 and 5.0 mrad, resulting in a kink in the

diffraction efficiency curves at the upper end of the ∆θR,−1 interval.

In the ideal situation, when ∆θR,m = 0 as in plane wave diffraction, only one kink

in the diffraction efficiency curve is expected at θin = θR,m, representing the emerging

beam resonance. Due to the experimental constraint, however, a new diffraction order

emerges within the finite width of incidence angle ∆θR,m, thereby smoothing out the

emerging beam resonance and make it appear less pronounced.
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Figure 4. (Color online) Diffraction efficiencies measured at three azimuth angles: (a)
φ = −19 mrad; (b) φ = −6.3 mrad; and (c) φ = 5.0 mrad as a function of incidence
angles θin for T0 = 8.7 K. The black vertical lines indicate the position of the Rayleigh
angles of incidence where the −1st and −2nd order beams emerge. The boundaries of
∆θR,m are indicated by pairs of colored vertical lines.
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Figure 5. (Color online) Diffraction patterns observed for T0 = 300 K at an azimuth
angle φ = 5.0 mrad. The incidence angle is increased from 1.929 mrad (top) to 2.234
mrad (bottom) with an average step size of 0.034 mrad. For diffraction orders n = −3,
−2, −1, and 0 the vertical bands illustrate the diffraction-angle spread that results for
the given azimuth angle spread of ∆φ = 2 mrad according to Eq. (2). The dashed line
indicates a dip marching through the −2nd-order peak while the −3rd-order peak is
emerging.

4.4. Emerging beam resonances manifested in peak shapes

Although the kinks in the diffraction efficiency curves are less pronounced than the

ones observed previously [8], the present diffraction geometry allows us to observe the

effect of emerging beam resonances directly in the angular patterns. Fig. 5 shows a

series of diffraction patterns at the emergence of the −3rd-order peak for an azimuth

angle of φ = 5.0 mrad. Here, different stagnation conditions, namely T0 = 300 K and

P0 = 31 bar, were used. In going from the top to the bottom, the incidence angle

is increased from 1.93 to 2.23 mrad. As the −3rd-order peak is emerging from the

right to the left within the n = −3 band, the −2nd-order peak is first slightly skewed

to the left, exhibits a dip moving in the same direction, and is then skewed towards

the right. In other words, while the −3rd-order peak is emerging, a clear dip marches

through the −2nd-order peak as indicated by the dashed line in Fig. 5. We attribute

this dip to a destructive interference within the −2nd-order diffraction beam caused by

the emerging beam resonance. This significant variation in peak shape is, therefore,
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another manifestation of the emerging beam resonance. It is, in fact, reminiscent of the

first observation of the emerging beam resonance effect in 1902 by Robert Wood. Wood

observed dark bands (corresponding to the dip found here) in diffraction patterns of

light reflected from a ruled grating [1]. In Wood’s setup the diffraction beams were wide

because he was using a broadband light source, whereas in our setup the widening of

the diffraction beams is due to the divergence of the incident beam.

It is remarkable that the diffraction peak shape reflects the resonance already before

the onset of emergence of another diffraction beam. This pre-emergence effect can be

seen in the diffraction patterns shown in Fig. 6. These angular scans correspond to the

data points shown above in Fig. 4(b) (φ = −6.3 mrad) for incidence angles close to the

−2nd-order Rayleigh angle. The blue vertical lines in Fig. 4(b) indicate the incidence-

angle window of −2nd-order beam emergence between θin = 4.46 mrad and 5.03 mrad.

The corresponding diffraction patterns are plotted by thick blue lines in Fig. 6. Between

these two incidence angles the −2nd-order beam emerges, accompanied by an intensity

decrease of the −1st-order peak. Interestingly, already before the first appearance of

the −2nd-order peak, i.e., at incidence angles smaller than 4.46 mrad, we find variations

in the −1st-order peak shape. For instance, at θin = 4.09 mrad (red curve) this peak

exhibits a small dip near the top at the right. This dip gets more pronounced when the
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Figure 6. Diffraction patterns observed for T0 = 8.7 K at an azimuth angle φ = −6.3
mrad for various incidence angles. The helium ion signal is plotted as a function of
sin2 θ − sin2 θin, at the Rayleigh condition for n = −2.
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incidence angle is increased to 4.46 mrad, where the −2nd-order peak starts to appear.

This small dip is possibly caused by the −2nd-order evanescent wave. Before

emerging above the grating surface, a diffraction beam is present in the form of an

evanescent wave. An evanescent wave is characterized by wave propagation parallel to

the surface and an asymptotic exponential amplitude decay along the surface normal

direction. Evanescent waves can scatter diffusely from surface defects [19], thereby

contributing to a decrease of the coherent surface reflectivity in our experiment. In

addition, the evanescent wave (here the −2nd order) can influence the intensities of

other outgoing diffraction beams (here the −1st order) through interference. Thus, the

dip in the −1st order peak might result from destructive interference with the −2nd

order evanescent wave.

5. Summary

In this work diffraction patterns of He atom beams scattering at grazing incidence from

a plane ruled blazed grating are presented. The grating is arranged in the conical

diffraction mount, i.e., the grating grooves are almost parallel to the plane of specular

scattering. The observed diffraction patterns exhibit characteristic features when plotted

as a function of the change in the atom’s kinetic energy along the surface normal

direction. For instance, the diffraction peak width appears to increase substantially with

increasing diffraction order, and a maximum possible energy increase along the normal

direction is found. These observations are in quantitative agreement with predictions of

the conical diffraction model.

The observed diffraction patterns exhibit emerging beam resonances when the

incidence angle is close to a Rayleigh angle of incidence, at which another diffraction

beam emerges from the grating surface. The emerging beam resonances are manifested

as kinks and dips in the diffraction efficiency curve at the Rayleigh angles. Compared

to previous measurements with a grating of larger period, however, the kinks are less

pronounced. This smearing out of the emerging beam resonances can be attributed to

the out-of-plane divergence of the helium atom beam. This divergence causes an effective

spread of the grating azimuth angle which, in turn, results in an angular spread of both,

the Rayleigh angles and the diffraction angles. Consequently, the diffraction peaks

are broadened and the Rayleigh condition is fulfilled for only a part of a diffraction

peak. The observation of a dip, marching through a diffraction peak while a new

diffraction beam is emerging, represents a clear manifestation of this effect. Peculiarities

in the diffraction peak shapes are observed even before the onset of emergence of a new

diffraction beam. This pre-emergence effect is attributed to the evanescent wave that

describes a diffraction beam before its emergence above the surface. Interference between

the evanescent wave and the incident beam can affect the intensity and shape of the

outgoing diffraction beams.



Emerging beam effects in out-of-plane grating diffraction of He atom beams 14

Acknowledgments

We thank J.R. Manson for fruitful discussions. B.S.Z. acknowledges support by the

Alexander von Humboldt Foundation and by the Korea Research Foundation Grant

funded by the Korean Government (KRF-2005-214-C00188).

References

[1] R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum.
Phil. Mag., 4(19-24):396–402, 1902.

[2] Lord Rayleigh. Note on the remarkable case of diffraction spectra described by Prof. Wood. Phil.
Mag., 14(79-84):60–65, 1907.

[3] R. Petit, editor. Electromagnetic Theory of Gratings. Springer, Berlin, 1980.
[4] N. Cabrera and J. Solana. Proc. Int. School of Physics, Enrico Fermi, page 530. Compositori,

Bologna, 1974.
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[19] D. Faŕıas, M. Patting, K.-H. Rieder, and J. R. Manson. Scattering of He atoms from surface

defects by grazing-angle diffraction beams. Phys. Rev. B, 65(16):165435, 2002.


