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To be diagnostically useful, structural MRImust reliably distinguish Alzheimer’s disease (AD) fromnormal aging
in individual scans. Recent advances in statistical learning theory have led to the application of support vector
machines to MRI for detection of a variety of disease states.The aims of this study were to assess how success-
fully support vectormachines assigned individual diagnoses and to determinewhether data-sets combined from
multiple scanners and different centres could be used to obtain effective classification of scans.We used linear
support vector machines to classify the grey matter segment of T1-weighted MR scans from pathologically
proven AD patients and cognitively normal elderly individuals obtained fromtwo centreswith different scanning
equipment. Because the clinical diagnosis of mild AD is difficult we also tested the ability of support vector
machines to differentiate control scans from patients without post-mortem confirmation. Finally we sought to
use these methods to differentiate scans between patients suffering from AD from those with frontotemporal
lobar degeneration.Up to 96% of pathologically verified AD patients were correctly classified using whole brain
images.Data from different centres were successfully combined achieving comparable results from the separate
analyses. Importantly, data from one centre could be used to train a support vector machine to accurately dif-
ferentiate AD and normal ageing scans obtained from another centre with different subjects and different scan-
ner equipment. Patients with mild, clinically probable AD and age/sex matched controls were correctly
separated in 89% of cases which is compatible with published diagnosis rates in the best clinical centres.
This method correctly assigned 89% of patients with post-mortem confirmed diagnosis of either AD or fronto-
temporal lobar degeneration to their respective group. Our study leads to three conclusions: Firstly, support
vector machines successfully separate patients with AD from healthy aging subjects. Secondly, they perform
well in the differential diagnosis of two different forms of dementia. Thirdly, the method is robust and can
be generalized across different centres. This suggests an important role for computer based diagnostic image
analysis for clinical practice.
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Introduction
Alzheimer’s disease (AD), the commonest cause of demen-
tia, is a neurodegenerative disorder. Definitive diagnosis
can only be made with histopathological confirmation of
amyloid plaques and neurofibrillary tangles, usually at
autopsy. Early detection of AD is seen as important because
treatment may be most efficacious if introduced as early as
possible. In practice, a diagnosis is largely based on clinical
history and examination supported by neuropsychological
evidence of the pattern of cognitive impairment (Blennow
et al., 2006). However, the reality is that only about half
of those with probable dementia are actually recognized
in the primary care setting (Valcour et al., 2000; Solomon
and Murphy, 2005). When time-consuming criteria such as
those published by the National Institute of Neurological
and Communicative Disorders and Stroke/Alzheimer’s
disease and related Disorders Association (NINCDS-
ADRDA) (McKhann et al., 1984) are used, the diagnostic
accuracy is improved. Based on a review of 13 studies using
neuropathological confirmation, a probable AD diagnosis
using NINCDS-ADRDA or the Diagnostic and Statistical
Manual, 3rd edition, revised (DSM-IIIR) (American
Psychiatric Association, 1987) criteria has an average
sensitivity of 81% (range 49–100%) and specificity of
70% (range 47–100%) when patients are followed to
autopsy (Knopman et al., 2001).

Historically, brain imaging, e.g. MRI, has largely been
used to rule out alternative causes of dementia. This
approach is consistent with established diagnostic consensus
criteria such as those published by the NINCDS-ADRDA
(McKhann et al., 1984). More recently, there has been a
realization that MRI may add positive predictive value to
a diagnosis of Alzheimer’s disease (Fox and Schott, 2004).
Several studies demonstrate that using MRI to evaluate
atrophy of temporal lobe structures can contribute to
diagnostic accuracy (Barnes et al., 2004; Wahlund et al.,
2005), but these findings have yet to be applied to routine
clinical radiological practice, let alone the general practice
setting (Wahlund et al., 2005). Manual measurements of
these structures on MR images (Jack et al., 1992) are time-
consuming and do not capture the full pattern of atrophy.
The few studies of temporal lobe structures which utilize
ante-mortem clinical data and structural MR in subjects
where there is histopathological verification of AD also
show hippocampal volume to be a sensitive marker for
pathological AD stage (Gosche et al., 2002; Jack et al., 2002;
Csernansky et al., 2004). If clinical MR scans are to be
useful in the diagnosis of dementia, non-expert dependent,
automated methods are needed that perform equally
well or better than those seen in clinical practice so far.
Furthermore, a method that has the capacity to utilize
information from the whole brain will be more likely
to distinguish among the dementias than techniques that
rely solely on small regions, e.g. the medial temporal lobe,
since hippocampal atrophy is present in other forms of

dementia as well as AD (Chan et al., 2001; Jack et al.,
2002).

There has been recent interest in machine-learning
techniques such as support vector machines (SVMs) to
categorize individual structural or functional brain images
by differentiation of images from two groups (e.g. male/
female or patient/control) (Lao et al., 2004; Fan et al., 2005;
Mourao-Miranda et al., 2005; Kawasaki et al., 2007).
Machine learning based pattern recognition techniques are
multivariate and take into account specific inter-regional
dependencies characteristic of different distributed pathol-
ogies, using such information to help categorize scans
(Lao et al., 2004; Fan et al., 2005). SVMs are trained using
a specific algorithm on well-characterized data (e.g. AD or
normality). New scans can be tested against trained sets and
in turn categorized as members of a particular clinical
group (e.g. AD). Such categorization methods potentially
satisfy the requirements of a diagnostic tool. The feasibility
of such an approach using MR scans has recently been
shown by automatic gender-based classification (Lao et al.,
2004) and by detection of a variety of diseases (Fan et al.,
2005; Kawasaki et al., 2007). In AD, automatic image
classification has previously been used in functional imag-
ing and cortical thickness measurements (deFigueiredo
et al., 1995; Herholz et al., 2002; Lerch et al., 2006) to
differentiate scans from patients with dementia and con-
trols. More recently, pattern recognition methods applied
to structural MRI were reported for the separation of mild
cognitive impairment (MCI) from cognitively normal
individuals (Davatzikos et al., 2006; Teipel et al., 2007).

To date, the application of SVM to structural MR scans
for the purpose of AD diagnosis has not been demonstrated
using pathologically confirmed cases for training data, nor
to differentiate different forms of dementia. We applied
SVM classification to examine various sets of MR brain
scans from AD patients and elderly normal persons. In the
first set, AD patients were largely from a community-based
setting and all AD diagnoses were confirmed with neuro-
pathology. The second set consisted of neuropathologically
confirmed AD patients and controls from a quaternary
referral centre allowing us to test how well results can be
generalized and data-sets combined from different centres
and scanners. The third set consisted of probable AD
patients limited to 80 years of age or younger with Mini
Mental State Examination (MMSE) scores 520 and age/sex
matched cognitively normal controls. Finally, a dataset of
subjects with neuropathologically proven frontotemporal
lobar degeneration (FTLD) having comparable MMSE
scores with the first two groups were included to explore
whether SVMs can further distinguish between AD and
FTLD. FTLD is characterized by frontal and temporal lobe
atrophy with corresponding cognitive and behavioural
deficits. Nonetheless, FTLD is sometimes difficult to
distinguish from AD clinically. Although pathologically
heterogeneous, FTLD can be neuropathologically separated
from AD (McKhann et al., 2001; Cairns et al., 2007).
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Materials and Methods
Subjects
Group I consisted of 20 patients and 20, age and gender matched
cognitively normal controls from a community and referral based
sample in Rochester, Minnesota, USA (see Table 1 for details).
Cases had an ante-mortem MRI and an autopsy as part of a
long-term research program in which the AD was confirmed
neuropathologically. Neuropathological diagnosis was made
according to criteria formulated by a working group of the
National Institute on Aging and the Reagan Institute of the
Alzheimer’s Association (NIA-RIA, 1997). Subjects were excluded
from analysis if their scans revealed gross structural abnormalities
other than atrophy. Diagnostic assignation was based on the
combined results of medical history, clinical examination,
psychometry and neuropathology. Criteria for the diagnosis of
normal cognition were as follows: (i) independently functioning
community membership, with (ii) no active neurological
or psychiatric disorder, (iii) no psychoactive medication,
(iv) a normal neurological examination, (v) no ongoing medical
problem and (vi) no associated treatment that might interfere
with cognitive function (Jack et al., 2004). Enrolled controls had
an MMSE score 527 and a delayed paragraph recall score
(Wechsel, 1987)410 for those with 16 or more years of education,
46 for those with 8–15 years of education, and 44 for those with
7 or fewer years of education.

Group II consisted of 14 patients and 14 age and gender
matched cognitively normal controls from the Dementia Research
Centre, University College London (see Table 1 for details). The
patients all fulfilled NINCDS-ADRDA criteria for ‘definite AD’ in
that the clinical diagnosis of AD was confirmed histopathologically
either from cerebral biopsy or at autopsy (McKhann et al., 1984)
according to CERAD (Mirra et al., 1991) and NIA-RIA criteria
(NIA-RIA, 1997). They tended to be younger than AD patients
from group I. No strong family history was present in any of the
subjects. Controls were determined to be cognitively normal either
by subsequent clinical exam in follow-up or through pathological
confirmation.

Group III consisted of 33 patients with probable mild AD and
57 age and gender matched cognitively normal controls from a
community and referral based sample in Rochester, Minnesota,
USA. The diagnosis of probable AD was made according to the
DSM-III-R (American Psychiatric Association, 1987) and
NINCDS-ADRDA criteria for AD (McKhann et al., 1984).

Subjects were excluded from analysis if their scan revealed gross
structural abnormalities other than atrophy. Diagnostic assigna-
tion was based on the combined results of medical history, clinical
examination and psychometry. Controls were selected using the
same criteria as outlined for group I and age/sex matched to AD-
patients. Patients with MMSE scores from 20–30 were considered
in the mild stage of AD (Morris et al., 1989; Wolfson et al., 2002;
Perneczky et al., 2006). In an attempt to restrict the group to
typical patients from this largely community based sample for
which diagnosis is both more critical and difficult, patients were
included if they were 80 years old or younger with MMSE scores
520 at the time of scanning (see Table 1).

To test the ability to differentiate different forms of dementia
we included an additional group of 19 subjects with pathologically
confirmed FTLD (group IV, see Table 1). All the patients were
diagnosed during life into one of the three FTLD subtypes
according to consensus criteria (Neary et al., 1998): 9 patients had
behavioural variant FTLD, 8 had semantic dementia and 2 had
progressive non-fluent aphasia. In total there were 8 patients with
tau-positive pathology and 11 patients with ubiquitin-positive,
tau-negative pathology, diagnosed according to consensus patho-
logical criteria (McKhann et al., 2001): behavioural variant FTLD
(5 tau-positive, 4 ubiquitin-positive), semantic dementia (2 tau-
positive, 6 ubiquitin-positive), progressive non-fluent aphasia
(1 tau-positive, 1 ubiquitin-positive). Patients in this group
tended to be younger than AD-group II but not significantly so
(P= 0.1).

Differentiation of FTLD from AD on clinical or neuropsycho-
logical grounds can sometimes be difficult and, in particular,
the MMSE is rarely helpful.

Consent was obtained according to the Declaration of Helsinki,
and the study was approved by the Mayo Clinic Institutional
Review Board and the Local Research Ethics Committee in
London. All subjects gave written informed consent.

MR imaging
For groups I and III, MR scans were collected over a period of
about 10 years with a total of 13 different scanners. Several
software updates occurred at different times for different scanners.
However, a closely followed quality control program ensured
uniformity over time. All scanners were monitored with daily
phantom quality checks which calibrated the gradients to within
+/� 1 mm over a 200 mm volume centered on the iso-center,

Table 1 Demographic information on groups I, II, and IV with post-mortem confirmation of AD obtained at different centres

Group I Group II Group III Group IV

Group (n) AD (20) controls (20) AD (14) controls (14) AD (33) Controls (57) AD (18) FTLD (19)

Sex (F/M) 11/9 10/10 5/9 5/9 10/23 16/41 6/12 8/11
Age at MRI-scan

(mean, range)
81.0 (51^102) 79.5 (55^91) 65.0 (53^85) 63.0 (51^81) 73.1 (61^80) 71.9 (61^80) 66.0�� (53^85) 61.7�� (46^73)

MMSE ^ score
(mean, range)

16.7 (7^29) 29.0 (27^30) 16.1� (10^20) 29.2 (28^30) 23.5 (20^28) 29.1 (27^30) 16.2� (5^29) 18.0 (0^26)

Years from
MRI-scan to
death (mean,
range)

1.7 (0.2^3.4) NA 3.6 (0.3^7.2) NA NA NA 3.5 (0.3^7.2) 5.8 (1.3^11.0)

AD=Alzheimer’s disease; FTLD= frontotemporal lobar degeneration; MMSE=Folstein Mini Mental State Examination; �=MMSE scores
obtained around the time of scanning only available from12 subjects; ��P=0.1.
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monitored signal to noise and radio frequency transmit gain.
All scans were done on the same platform, General Electric Signa
1.5T scanners (T1-weighted image parameters: TR = 23 to 27 ms,
TE = 6 to 10 ms, flip angle 25� or 45�, voxel size 0.86 mm�

0.86 mm� 1.6 mm or 0.94 mm� 0.94 mm� 1.6 mm, matrix
dimensions 256� 192). The major hardware elements (body
resonance module, gradient coil and birdcage head transmit-
receive volume coil) were unchanged throughout time and across
all scanners. Importantly, there was no evidence that the effect of
the different scanners or upgrades interacted with the effect
of disease (Stonnington et al., 2007).

For Groups II and IV, data was acquired from three different
1.5 T scanners. Image parameters were TR = 35 or 15, TE = 5 or 5.4
or 7, flip angle 35� or 15�. Scanners and scanning parameters were
balanced across groups and within groups as well as between AD
patients from group II and FTLD patients (group IV). This was
ensured by excluding four AD subjects from group II when
compared to their control group. Because the mix of scanners
used was different for normal elderly controls and FTLD subjects,
the same four AD subjects were included for comparison between
AD and FTLD subjects of group IV to maintain an equal balance
of scanners between groups.

Image processing
Images were visually inspected for artefacts or structural abnor-
malities unrelated to AD or FTLD. Images were firstly segmented
into grey matter (GM), white matter and cerebro-spinal fluid using
SPM5 (Wellcome Trust Centre for Neuroimaging, Institute of
Neurology, UCL, London UK—http://www.fil.ion.ucl.ac.uk/spm).
Then, GM segments were further normalized to the popula-
tion templates generated from all the images in each group and
the combined images of groups I and II as well as of patients from
group II and IV using an in-house implementation of a diffeo-
morphic registration algorithm (Ashburner, 2007). This non-linear
warping technique minimizes structural variation between
subjects. A separate ‘modulation’ step (Ashburner and Friston,
2000) was used to ensure that the overall amount of each tissue class
remained constant after normalization. No spatial smoothing was
performed.

Support vector classification
A support vector machine (SVM) is an example of a supervised,
multivariate classification method. SVMs are supervised in the
sense that they include a training step to learn about differences
between groups to be classified. The method has previously been
applied to neuroimaging data (Lao et al., 2004; Fan et al., 2005;
Mourao-Miranda et al., 2005; Kawasaki et al., 2007). Data for this
method need not satisfy assumptions of Random field theory,
making additional smoothing unnecessary.

Here we describe an SVM intuitively to help readers understand
the concept without recourse to technical detail. In the context of
machine learning, individual MR images are treated as points
located in a high dimensional space. Figure 1 illustrates this
procedure in an imaginary 2D space: in this example the two
groups to be classified (A and B) are represented by circles and
squares. It can be seen that the groups cannot be separated on the
basis of values along 1D only and that only a combination of the
two leads to adequate separation. The space used for classifying
image data is of much higher dimension; the total number of

dimensions is determined by the numbers of voxels in each MR

image.
In practical terms, a linear kernel matrix is created from

normalized grey matter segmented images. To this end, each MRI

scan undergoes a pair wise multiplication with all other scans.

Each element in the kernel matrix is therefore a dot product of

two images. Intuitively, the kernel matrix can be viewed as a

similarity measure among subjects belonging to a characterized

group. The voxels are effectively treated as coordinates of a high

dimensional space and their location is determined by the inten-

sity value at each voxel. The images do not span the whole high

dimensional space, but rather cluster in subspaces containing

images that are very similar. This is one reason why image

normalization into a standard space is an important pre-

processing step. Good normalization will tighten clustering and

reduce dimensionality.
The use of an SVM for image classification is an example of a

linear discrimination. In the basic model it is a binary classifier,

which means it divides the space into which the MR images are

distributed into two classes by identifying a separating hyper-

plane. In a simple 2D space, the boundary is represented by a line,

but is called a hyperplane in higher dimensional space. Fisher’s

linear discriminate analysis or linear perceptrons can both identify

linear discriminant hyperplanes. However, the motivation behind

using an SVM is that it uses the principle of ‘structural risk

minimization’, which aims to find a hyperplane that maximizes

the distance between training classes (see Fig. 1). Intuitively, it can

be seen that the optimal separating hyperplane (OSH) produced

by an SVM is defined by those voxels that are closest to the

separating boundary between them, i.e. the voxels that are most

ambiguous. These voxels are called the ‘support vectors’. Voxels

that are further away from a separating boundary are distinctively

different, hence are not used to calculate the OSH. This fact

suggests that adding more images to a training set will have little

effect on an OSH if they are distant from it.
After training, an OSH contains learned differences between

classes—in our case, AD and control images. That information is

Fig. 1 Illustration of the concept used in support vector machines.
The algorithm tries to find a boundary that maximizes the dis-
tance (d) between groups. The figure reduces the problem to two
groups and two dimensions for the purpose of illustration only.
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then used to assign any new image to its appropriate class (leave-

one-out method). This procedure iteratively leaves successive

images out of training for subsequent class assignation until each

has been used in this way. This validation procedure ensures that
a trained SVM can generalize and be used on scans that have

never been presented to the SVM algorithm previously.
In addition to identification of an OSH we determined what

voxels contributed most to classification and their distribution in

the brain. During training an SVM assigns a specific weight to

every scan reflecting its importance to group separation.
This weight is multiplied by a label vector indicating which

group the scan belongs to (e.g. �1 for AD and +1 for controls).

Each scan is then multiplied by the product of weight and label

and summed, resulting in a value for each voxel indicating its

importance for group discrimination.
For technical information on SVMs, interested readers are

referred to the following textbooks (Vapnik, 1998; Bishop, 2006).
In order to test whether scan data from different centres can be

aggregated to provide generic SVMs we investigated using one

pathologically confirmed image set for training and another for
testing. We also combined data-sets from groups I and II with the

leave-one-out method described above. The aim of this procedure

was to show generalizability, of great importance to the introduc-

tion of these methods into clinical radiological practice.
Mild AD affects the hippocampus and immediately adjacent

cortex primarily (Braak and Braak, 1991). For classification of

group III we therefore performed a standard whole-brain analysis

and then also attempted classification using data from a
hippocampus centred volume of interest (VOI: dimensions 12,
16 and 12 mm in x,y,z directions, respectively equivalent to x, y,
z =�17, �8, �18 and 16, �9, �18 in MNI-space) (Hirata et al.,
2005). We created a separate kernel matrix from the whole brain
and from the brain within the VOI from group III. These kernels
were used separately and in combination.

In order to test how well SVMs can differentiate different forms
of dementia we created a separate kernel from subjects with
pathologically confirmed FTLD and confirmed AD-patients, both
acquired with the same scanning hardware and sequence.

Results
Confirmed AD-patients versus controls
Subjects from group I were correctly assigned to the
appropriate diagnostic category in 95.0% of trials with the
leave-one out method using whole brain images (sensitivity
95.0%, specificity 95.0%). One 89 year old AD patient with
an MMSE of 29 and one 86 year old control were mis-
classified. Fig. 2 displays regions that were most influential
in making the binary classification between AD and normal
when the grey matter of the whole brain was used for
analysis.

Subjects from group II were correctly assigned in 92.9%
of trials with the leave-one out method using whole brain

Fig. 2 Voxels most relevant for classification of patients from group I after SVM training with the data from group I (upper panel).
The blue and green areas indicate higher grey matter volume increasing the likelihood of classification into normal. Red and yellow show
regions where higher grey matter volume indicates the opposite. The lower panel depicts relevant areas for the separation from AD
from FTLD. Blue and green indicate areas where lower grey matter volume indicates FTLD. Results are overlaid on the mean grey
matter compartment image from all subjects.
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images (sensitivity 100%, specificity 85.7%). The two oldest
controls were misclassified.

When group I and group II were combined in a single
data-set, patients were correctly assigned to the appropriate
group in 95.6% of trials with the leave-one out method
using whole brain images (sensitivity 97.1%, specificity
94.1%).

Finally, when group I was used to train the data and
group II was used to test, 96.4% of patients were correctly
assigned to the appropriate group (sensitivity 100%,
specificity 92.9%). Conversely, when group II was used to
train and group I to test, 87.5% of patients were correctly
assigned to the appropriate group (sensitivity 95.0%,
specificity 80.0%).

Mild AD versus controls
Subjects from group III were correctly assigned to the
appropriate group in 81.1% of trials using whole brain
images (sensitivity 60.6%, specificity 93.0%). A further
improvement to 85.6% (sensitivity 75.8%, specificity
91.2%) was obtained when analysis was restricted to the
medial temporal lobe region defined in the methods
section. Combining the matrix kernels from the whole
brain and medial temporal lobe region improved the overall
classification to 88.9%.

AD versus FTLD
AD and FTLD subjects were correctly assigned to the
appropriate group in 89.2% of trials using whole brain
images (sensitivity 94.7% specificity 83.3%; three AD and
one FTLD subject misclassified). There were no identifiable
associations with age or MMSE in misclassified subjects.
The misclassified FTLD had the behavioural variant of the
disease. Tables 2 and 3 summarise all classification results
with and without the antero-medial region of interest.

Discussion
Our results indicate that supervised machine learning
techniques can aid the clinical diagnosis of AD. The analy-
tical technique presented here promises to distinguish
disease-specific atrophy from that of normal aging in a
standard T1 weighted structural MRI scan. Furthermore,
the study provides evidence that the method can be
developed to correctly differentiate between different
forms of dementia.

Before comparing the method to other approaches and
a discussion of translation into clinical practice with
prospects for future studies, we discuss some methodolo-
gical aspects.

We used linear SVMs. They allow a localization of voxels
relevant to separation of scans into two groups. The voxels
which a whole brain SVM classification of AD from
controls depended on most were clustered around the
parahippocampal gyrus and parietal cortex (Fig. 2, upper
panel). A similar distribution was found for all the
classifications of AD from normal scans we report here.
Classification of FTLD from AD depended on voxels in
frontal as well as parietal areas (Fig. 2, lower panel) for
group assignation. A recent study using cortical thickness
also found parietal areas important in differentiating these
two dementia types (Du et al., 2007). Figure 2 also shows
cortical voxels scattered throughout the brain without any
regionally specific pattern. They are however specific in the
sense that they also contributed to a differentiation between
two groups. It can therefore be argued that they too reflect
differences in overall brain shape resulting from degenera-
tion of specific structures. We tested the performance of
non-linear kernels (such as radial-basis functions) but these
failed to improve performance suggesting a linear approach
is both valid and adequate. The excellent results obtained
using scans for training and testing from different centres
that used different scanners shows that linear SVMs
generalize well.

The results we obtained are comparable or better than
other classification methods described in the literature
based on MR images (Gosche et al., 2002; Jack et al., 2002;

Table 2 Results of SVM classification using grey matter
from the whole brain for image analysis

Group Correctly
classified (%)

Sensitivity
(%)�

Specificity
(%)�

AD and controls Group I 95.0 95.0 95.0
AD and controls Group II 92.9 100 85.7
AD and controls Group III 81.1 60.6 93.0
Dataset I for training, set II
for testing

96.4 100 92.9

Dataset II for training, set I
for testing

87.5 95.0 80.0

Group I+ II 95.6 97.1 94.1
AD from Dataset II and
FTLD Group IV

89.2 83.3 94.7

�Considering a correctly identified AD case as a true positive.

Table 3 Results of SVM classification using only grey matter
of antero-medial lobe volume of interest for analysis

Group Correctly
classified (%)

Sensitivity
(%)�

Specificity
(%)�

AD and controls Group I 90.0 85.0 95.0
AD and controls Group II 92.9 92.9 92.9
AD and controls Group III 85.6 75.8 91.2
Dataset I for training, set II
for testing

71.4 50 92.9

Dataset II for training,
set I for testing

70.0 95.0 45.0

Group I+ II 94.1 97.1 91.2

�Considering a correctly identified AD case as a true positive.
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Barnes et al., 2004; Csernansky et al., 2004; Wahlund et al.,
2005), most of which restrict analysis to temporal lobe
structures. Our method also performs as well as or better
than the average reported diagnostic accuracy of clinicians
using clinical exam, history, neuropsychological testing and
classical image reporting as outlined in NINCDS-ADRDA
or DSM-III-R (Knopman et al., 2001). However, to make
this conclusion, a formal comparison with modern
conventional clinical assessment is required. The construc-
tion of a ‘library’ of SVM’s for all dementia types can be
envisaged to help differentiate other conditions that can be
confused with AD e.g. vascular dementia, FTLD, Lewy body
disease, etc. The preliminary result from our attempt to
separate FTLD and AD is very promising because FTLD is a
group of degenerative diseases that also affect frontal and
temporal lobes but differ in extent and neuropathological
characteristics. AD and FTLD can be difficult to separate
clinically and patients with confirmed AD pathology have
been shown to present with a focal clinical syndrome.
A recent postmortem study found that up to 30% of
patients diagnosed with the language subtype of FTLD
(progressive non-fluent aphasia or semantic dementia) had
AD pathology (Knibb et al., 2006). One limitation of our
FTLD versus AD classification is that we did not test pure
pathological subtypes of FTLD separately. It is possible that
the performance of a suitably trained SVM classifier will be
better for distinguishing certain subtypes of FTLD from AD
than others. Our sample size is too small to explore this
question further.

Unlike methods that include an expert-dependent
hippocampal tracing step (Jack et al., 1992), the SVM
technique is fully automated and can use all the informa-
tion in a brain scan. Automation eliminates observer/
experimenter bias completely, generates totally reproducible
results with the same image set and makes the method
much less labour-intensive. These are important character-
istics for a method proposed for clinical use.

Our findings warrant application of the proposed
methods to larger image sets such as those being collected
for the Alzheimer’s Disease Neuroimaging Initiative
(ADNI—Mueller et al., 2005) for several reasons. The
cases from group I are more typical of community based
samples, with a later age of onset, whereas cases from group
II are more typical of referral centres with greater numbers
of early onset cases. That we could get comparable results
and even use one scanner’s images to train and another to
test suggests the technique will generalize for use in clinical
settings. However, it is clear that when the relatively
younger subjects from group II are used for training,
specificity goes down; a result attributable to the fact that
group II included more early onset AD who may show a
somewhat different patterns of degeneration, i.e. relatively
more parietal involvement (Schott et al., 2006; Frisoni et al.,
2007). Because of their younger age, subjects from group II
are also less likely to have co-morbidity (e.g. subtle vascular
changes) but possibly more AD related atrophy for the

same MMSE. A limitation of the population used in
Group III is that the clinical diagnoses were likely not 100%
accurate as no pathological verification was available for
this group. Previous studies have shown that a clinical
diagnosis is inaccurate, compared to pathological diagnosis,
in about 11% of mild cases in which similar diagnostic
criteria to those in our sample were used (Salmon et al.,
2002). We therefore speculate that some of the misclassi-
fication is in fact due to misdiagnosis in mildly affected
AD-patients. The ability to generalize across image-sets
from different centres is very important in this respect as it
could facilitate the generation of SVMs for rarer forms of
dementia based on reliable diagnoses.

It will be a matter of judgement and empirical
verification whether to use whole brain or partial data or
a combination of the two for diseases other than AD. We
recommend an exploratory whole brain approach as a
necessary initial step for the time being. We expect that the
earlier the stage or more localized a disease, the more a
well-placed VOI will improve categorization. In group III,
classification by SVM improved substantially by restricting
analysis to medial temporal lobes because non-contributory,
noisy brain areas were excluded from analysis. However,
reduction of the brain volume analysed risks excluding
potentially important differential image features. Therefore,
combined kernels from whole brain and VOI serve to retain
information obtained from the whole brain while weighting
the classification to the area of brain most relevant at early
stages of disease. The implication for more generalized
diseases is that the opposite will be true. In this perspective
we tested groups I and II using a medial temporal area
analysis and found that classification was slightly worse for
leave-one-out and much worse when using one data-set
to train and another to test (Table 3). As many forms of
dementia involve hippocampal atrophy, accurate differential
classification of the dementias may well need whole brain
analysis.

A goal of machine learning based automated MR image
analysis that we believe achievable, is better sensitivity
and specificity of ante-mortem diagnosis than is currently
possible. The method we have described clearly has
potential in achieving more accurate dementia diagnosis
in clinical practice. Although the processing and prepara-
tion of a training dataset is relatively time consuming
(around a week for all data-sets in this study on a standard
PC at 2.4 MHz), this is unlikely to be a limiting factor.
Firstly, this represents computer processing time without
user interaction. Secondly, once a training dataset is
prepared, spatial normalization and classification of any
new scan can be done in a matter of minutes. The time
required is likely to shorten further with the advent of
faster computers. The current implementation still requires
a user to check intermediate results for misregistration. This
step can be further automated by the introduction of
thresholds to alert an operator to check image quality.
Although it has been suggested that MRI is likely to help
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diagnosis in specialty clinics only (Wahlund et al., 2005),
we see no reason why the method cannot be translated to a
more general setting, since a training set of pathologically
confirmed cases can come from a specialist centre and
because the method is computer-based, automated and
does not require expert anatomical knowledge.

Future studies will focus on the application of SVMs to
aid differential diagnosis in situations where more than two
diagnoses are possible. Stratification of patients by anato-
mical severity can be envisaged. The limits of sensitivity, for
example in predicting which MCI patients will transform
into AD also need definition. Encouraging results with
other multivariate classification methods have recently been
reported (Teipel et al., 2007).
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