
The particle interpretation of N = 1 supersymmetric spin foams

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Class. Quantum Grav. 27 225022

(http://iopscience.iop.org/0264-9381/27/22/225022)

Download details:

IP Address: 194.94.224.254

The article was downloaded on 16/03/2011 at 12:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/27/22
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 27 (2010) 225022 (30pp) doi:10.1088/0264-9381/27/22/225022

The particle interpretation of N = 1 supersymmetric
spin foams

Valentina Baccetti1,4, Etera R Livine2 and James P Ryan3

1 Dipartimento di Fisica ‘E. Amaldi’, Università degli Studi Roma Tre, Via della Vasca Navale
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Abstract
We show that N = 1-supersymmetric BF theory in 3D leads to a
supersymmetric spin foam amplitude via a lattice discretization. Furthermore,
by analysing the supersymmetric quantum amplitudes, we show that they
can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman
diagrams.

PACS numbers: 04.60.Pp, 04.65.+e, 04.60.Kz, 04.60.Nc

1. Introduction

Whilst supergravity theories go a certain way to tame the infinities of their non-supersymmetric
cousins, they also generalize these theories by coupling fermionic degrees of freedom to the
original gravity theory. One can easily see this at the continuum classical level. We want
to investigate this issue in the discrete quantum case. Thus, in this paper, we shall analyse
a rather simplified model: Riemannian supergravity in three dimensions. As is well known,
the conventional metric-dependent action may be recast as a particular gauge theory action,
which is dependent on the triad and the spin connection: BF theory. Extensive work on the
discretization and quantization of this theory, with SU(2) chosen as the gauge group, arises
in the literature (see [1, 2] and references therein). One can see that the theory maintains its
topological nature once quantized, and the discrete quantum model is the Ponzano–Regge
model. Several approaches to coupling matter within spin foams were embarked upon
[2–7] (see also [8–10] which use the group field theory formalism for spin foams). The most
tractable and indeed most successful of these procedures embedded the Feynman diagrams
of the field theory into the spin foam. Remarkably, summing over the gravitational degrees
of freedom, the effective matter amplitudes were seen to arise as the Feynman diagrams of
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a non-commutative field theory [11]. To add to this position, it was shown that an explicit
second quantized theory of this gravity-matter theory could be provided by group field theory,
while later the non-commutative field theory was seen to arise as a phase arising when one
perturbs around a classical solution of a related group field theory [12]. Of course, one
may approach the subject with the view that one should discretize the matter field directly
on the spin foam, since in the continuum theory, we expect that this field has a non-trivial
energy–momentum tensor and should affect the state sum globally. This method has yielded
to a succinct initial quantization for Yang–Mills and fermionic theories [4–6], but due to the
non-topological nature of the resulting amplitudes, further calculations proved unwieldy. Now
it was not our intention that our work in this paper would or should settle this debate, but we
find that the analysis of this supersymmetric theory is more in line with the arguments of the
first (embedded Feynman diagram) approach.

The path we follow in our analysis is to start from continuum BF theory with gauge group
UOSP(1|2), discretize and quantize. Once this lattice gauge theory quantization has been
completed, we Fourier transform to uosp(1|2) representation space. Owing to its algebraic
structure, there is an su(2) structure embedded within uosp(1|2) [13–15]. We may rewrite
the amplitudes to make this dependence explicit. The aim of the game is then to give an
accurate interpretation of these amplitudes in terms of matter coupled to gravity. To do so,
we Fourier transform again, but this time to functions on the group SU(2). In this form,
we can identify within the state sum Feynman diagrams of a massless spin- 1

2 fermionic field.
Therefore, we arrive at a lattice discretization of gravity coupled to a fermionic field where
the supersymmetric nature of the theory is hidden.

2. The super Ponzano–Regge model

In 3D, we can rewrite the gravity action (with zero cosmological constant) as an SU(2) gauge
theory:

S[E,W ] =
∫
M

tr(E ∧ F [W ]), (1)

where E is the triad, W is the connection, while F [W ] = dW +W ∧W is the curvature. Both E
and W are 1-forms valued in su(2), and tr is the trace over the Lie algebra: tr(LiLj ) = − 1

2δij .5

In this paper, we update the analysis to 3D supergravity with zero cosmological constant:

S[B,A] =
∫
M

Str(B ∧ F[A]), (3)

where B is the supertriad, A is the superconnection, while F[A] = dA + A ∧ A is the
supercurvature. Str is its supertrace. The minimal supersymmetric extension of 3D gravity is
to take the gauge algebra: uosp(1|2). This type of theory was first conceived in the context of
non-zero cosmological constant where it is equivalent to a super Chern–Simons theory devised
by Achúcarro and Townsend [16].

The supergravity fields written in terms of generators of the algebra are

B = EiJi + φAQA, A = WiJi + ψAQA, (4)

5 The su(2) algebra has generators satisfying [Li, Lj ] = −εijkLk , and in the fundamental representation has the
form

L1 = i

2

(
0 1
1 0

)
, L2 = i

2

(
0 −i
i 0

)
, L3 = i

2

(
1 0
0 −1

)
. (2)

2
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where E and W are the triad and connection, while φ and ψ represent the fermion field.
A ∈ {±} and i ∈ {1, 2, 3}. The action may be rewritten in terms of these variables as

SN=1[E,W, φ,ψ] =
∫
M

Str(E ∧ (F [W ] + ψ ∧ ψ) + φ ∧ dWψ), (5)

where F(W) = dW + W ∧ W is the gravitational curvature, and we define the operator as
dW = d + W∧. This action describes a fermion field propagating on a manifold M endowed
with a dynamical geometry.

Let us conclude our classical analysis by saying a few words on the equations of motion.
In the supersymmetric form they are

F[A] = 0 and dAB = 0. (6)

Thus, they record that the classical solutions satisfy the condition that the superconnection is
super-flat and super-torsion-free. Breaking this up into components we see that

F [W ]i +
i

2
(σ i)ABψA ∧ ψB = 0, (7)

dψA +
i

2
(σi)B

AWi ∧ ψB = 0, (8)

dWEi +
i

2
(σ i)ABψA ∧ φB = 0, (9)

dφA +
i

2
(σi)B

AWi ∧ φB +
i

2
(σi)B

AEi ∧ ψB = 0, (10)

where (σi)A
B are the Pauli matrices. Going in the descending order, we see that the curvature

of the su(2) connection is non-vanishing, it picks up a contribution from the matter sector (7).
Furthermore, the fermion field, acting as a source for the curvature, is covariantly constant
with respect to the su(2) connection (8). Equation (9) states that the su(2) connection is not
torsion free, while (9) and (10) together show that any change in the triad is compensated by
a change in the fermionic fields. This complementary viewpoint shall come into play later in
section 3.

The aim of the game is to rigorously define the path integral

ZM =
∫

DADB eiSN=1[B,A] ‘=’
∫

DA δ(F[A]). (11)

In order to embark upon our course of discretization and quantization, we must first introduce
a number of structures.

• We replace the manifold M by a simplicial manifold � of the same topology. Since
BF theory is a topological field theory and does not have any local degrees of freedom,
we expect that this substitution will preserve the information contained in the continuum
theory. In three spacetime dimensions, we can triangulate any manifold. We label the 0-,
1-, 2- and 3-subsimplices as v, e, f and t, respectively.

• Another important constituent is the topological dual �∗ to the simplicial complex. We
label sub-elements of this structure as v∗, e∗, f ∗ and t∗, respectively. Furthermore, the
dual 2-skeleton �∗

2 ⊂ � is defined to be {v∗, e∗, f ∗}.
• We subdivide the dual 2-skeleton �∗

2. The edges e∗ ∈ �∗ intersect the triangles f ∈ �.
We label these points of intersection by v∗

f . Likewise, the edges e ∈ � intersect the
faces f ∗ ∈ �∗. We label these points of intersection by v∗

e . Changing viewpoints, the
vertices v∗

f split the edges e∗ into two parts, which we label e∗
t . Furthermore, we join v∗

f

to v∗
e with an edge labelled by e∗

e,f . This allows us to demarcate the wedges w∗ ⊂ f ∗

3
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which are circumscribed by a combination of edges e∗
t and e∗

e,f —the details are drawn in
figure 1. To summarize, a wedge is that part of a face f ∗ contained in the interior of a
single tetrahedron.

v∗

e∗

v
e

w∗ e∗t
v∗e

v∗f
e∗e ,f

Figure 1. The various elements of the simplicial complex and its dual.

The fields B and A are replaced by configurations that are distributional with support on
subsimplices of � and its topological dual �∗. We integrate these fields over the appropriate
subsimplices. The definition of the integrated fields is

B → Bw∗ =
∫

e∼w∗
B ∈ uosp(1|2),

A → ge∗ = Pe
∫
e∗ A ∈ UOSP(1|2),

F[A] → Gw∗ =
∏

e∗⊂∂w∗
g

ε(e∗,f ∗)

e∗ ∈ UOSP(1|2),

(12)

where ε(e∗,f ∗) = ±1 depending the relative orientation of e∗ and f ∗. The super-flatness
constraint F[A] = 0 translates into the triviality of holonomies: Gw∗ = I. At the discrete
level, we expect to replace the δ(F[A]) constraint by δ(Gw∗) constraints, with the discrete
Bw∗ variables still playing the role of the Lagrange multipliers. Following [2], the action on
the simplicial manifold then reads6

S�

[
Bw∗ , ge∗

t
, ge∗

e,f

] =
∑

w∗∈�∗
Str(Bw∗Gw∗). (14)

An important factor in rigorously defining the path integral is the measure

DA →
∏
e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

where dg = 1

π2

(
1 − 1

4
η�η

)
sin2 θ sin ψ dθ dψ dφ dη� dη,

DB →
∏
w∗

dBw∗ where dB = db1 db2 db3 db� db,

(15)

6 Remember that

Str(BG) = bipi + b�p� + bp, where �p = − 1

2

(
1 − 1

8
η�η

) ⎛⎜⎝ i(u32 + u23)

u32 − u23

i(u22 − u33)

⎞⎟⎠
and p = − 1

4
(η� + η�u22 + ηu23), (13)

and the definitions of uij are given in appendix A.3.

4
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where η�, η, b�, b are odd Grassmann variables while the rest are even and parameterize
the SU(2) sub-group (we refer to appendix A.3 for more details). Thus, the path integral for
a discrete manifold takes the form

Z�,UOSP(1|2) =
∫ ∏

e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

∏
w∗

dBw∗ e
iS�[Bw∗ ,ge∗t ,ge∗

e,f
]
. (16)

Our next step is to integrate over the supertriad

Z�,UOSP(1|2) =
∫ ∏

e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

∏
w∗

(p�
w∗pw∗)δ3(�pw∗)

=
∫ ∏

e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

∏
w∗

[
δ(p�

w∗)δ(pw∗)δ3(�pw∗)
]

=
∫ ∏

e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

∏
w∗

[
−1

8
η�

w∗ηw∗(cos θw∗ + 1)

]
δ3(sin θw∗ �nw∗), (17)

where sin θ �n is the vector parameterizing the SU(2) subgroup. By inspection, we find that the
above integrand is peaked on Gw∗ = I, with the correct numerical factor. This is in marked
contrast with the SU(2) case, where one must insert an appropriate Gw∗ -dependent observable
to kill a second peak for which the SU(2) part of the holonomy is equal to −I instead of +I.7

The fact that the path integral of the discrete supersymmetric action automatically kills the
second peak in the group element is a noticeable improvement on the standard SU(2) discrete
path integral which leads to a δ-function over SO(3) thus peaked on both +I and −I from
the SU(2) viewpoint [2]. This could only be resolved by adding suitable measure factors in
the path integral in order to remove this second peak by hand (e.g. see [17]). Here, in our
supersymmetric framework, it is the presence of matter itself that takes care of this issue.
Intuitively, the equation of motion (8) imposes that the fermionic field ψ has a trivial parallel
transport, and thus distinguishes between +I and −I holonomies since we are dealing with
spinors. Maybe such a feature can be generalized beyond the supersymmetric theory and we
could conjecture that the SU(2) holonomy is necessarily peaked on +I whenever fermions are
present in the theory. The partition function may be written as

Z�,UOSP (1|2) =
∫ ∏

e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

∏
w∗

δ(Gw∗). (18)

As an aside, we note that we integrate with respect to the ge∗
e,f

variables, we in essence glue
the wedges within a face together and the amplitude becomes

Z�,UOSP (1|2) =
∫ ∏

e∗
dge∗

∏
f ∗

δ(Gf ∗). (19)

7 In fact, even here, the delta function over the even sector of UOSP(1|2) has two peaks. The other peak is:

Ĩ =
⎛⎝1 0 0

0 −1 0
0 0 −1

⎞⎠ .

Fortuitously, the delta-function over the odd sector contains a factor (cos θ + 1) which kills the second peak. Such a
factor was introduced by hand for the SU(2) Ponzano–Regge model in [17] in order to kill this same second peak.

5
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For UOSP(1|2), there also exists a Plancherel measure, with respect to which the δ-function
may be decomposed as

δ(G) =
∑

j∈ 1
2 N0

Sdimj Sχj (G), (20)

where Sdimj = (−1)2j is the superdimension, N0 = {0, 1, 2, . . .} and Sχj (G) is the
supercharacter, that is, the supertrace of the representation matrix j T (k m)

(l n)(G) (see appendix
A.2 for details).

Having performed the Peter–Weyl decomposition on each δ-function, we are left to
manipulate the representation functions and integrate with respect to the group variables.
This is necessarily an arduous task in the supergroup case since permuting matrix elements
may introduce factors of (−1) if the matrix element is an element of the even or odd sector
of the Grassmannian algebra. Fortunately, there exists an efficient method to manage the
bookkeeping of such factors. This is a graphical calculus prevalent in some approaches to
braided monoidal categories and presented for the supergroup case in [3]. We shall not review
it in all its glory here, but shall give just a bare bones description.

First of all, let us draw the template upon which we shall illustrate a sample of all
our subsequent amplitudes. Consider a triangle in the simplicial complex along with the
faces dual to its three edges. Moreover, consider the wedges which constitute each of these
faces.

g
e ∗
e , f

g
e ∗
t

jw ∗

Figure 2. Sample of the labelling of the simplicial complex and its topological dual.

As we see from (18), the edges of the wedge are labelled by group elements ge∗
t

and
ge∗

e,f
. Also a representation jw∗ labels each wedge. As for the amplitude itself, to each

supercharacter in (18), we note that there is a loop labelled with the representation jw∗ and the
holonomy around the wedge. (Since the factor Sdimjw∗ is actually the supercharacter of the
identity element, we should include another loop with trivial argument for each wedge, but
to simplify the illustration, we include this implicitly.) Importantly, we can see that several
wedges may share the same group element. The ultimate power of this formalism is that one
can manipulate the diagrams using the rule described in figures 3 and 4.

6
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( l1 n 1 )(k 1 m 1 )

( l r n r )(k r m r )

j1

jr

g =

( l1 n 1 )(k 1 m 1 )

( l r n r )(k r m r )

j1

j1 j1

jrjr

jr

Figure 3. Diagrammatic rule to convert representation functions to intertwiners.

where

Ij1
(k 1 m 1 )

. . .

. . .
jr
(k r m r ) =

j1

jr

(k 1 m 1 )

(k r m r )

Figure 4. Graphical representation of intertwiner.

I is an intertwiner on the representation space of UOSP(1|2).8 Applying this rule
everywhere possible we find that representations attached to the wedges within a given face
f ∗ are forced to coincide leaving just one which we shall denote je = jf ∗ . On top of this, the
diagram factorizes as follows:

ZΔ ,UOSP (1|2) =
{j} f ∗ e∗ v∗

-1

Thus, it is just a matter of evaluating these subdiagrams. We do this explicitly in appendix
D and to conclude, the amplitude is roughly a product of supersymmetric {6j}-symbols and
takes the following form:

Z�,UOSP (1|2) =
∑
{j}

∏
e

(−1)2je

∏
f

(−1)	je1 +je2 +je3 
f

∏
t

[
je1 je2 je3

je4 je5 je6

]
t

. (21)

3. Analysis of N = 1 supersymmetric BF theory

We continue the investigation of N = 1 supersymmetric spin foams, initiated in [3]. In
section 2, we derived the UOSP(1|2) spin foam model directly from a discrete path integral.
Ultimately, the amplitude takes the form given in (21). Considering the amplitudes of the sub-
simplices of � individually, the edges, triangles and tetrahedra carry the weights (−1)2je (the
superdimension), (−1)	je1 +je2 +je3 
f (the normalisation of the supersymmetric {3j}-symbol)
and the supersymmetric {6j}-symbol, respectively. Moreover, given a fixed triangulation
�, the sum ultimately includes all admissible configurations of irreducible UOSP(1|2)

representations attached to the edges of the triangulation. These configurations are labelled

8 There is a computational subtlety in producing the above rule explicitly in terms of objects in the representation
theory of UOSP(1|2), which we describe in appendix E.

7
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{je}
(
je ∈ N0

2

)
. To be an admissible configuration, the representations must satisfy triangle

inequalities but the familiar closure condition is relaxed. That is to say, if e1, e2, e3 ∈ ∂f , then

|ja − jb| � jc � ja + jb, where a, b, c are a permutation of e1, e2, e3

but
je1 + je2 + je3 ∈ N0 or je1 + je2 + je3 ∈ N0 + 1

2 .

(22)

The spin foam amplitude is a function of these representations as is conventional.
From the classical standpoint, we derived this quantum amplitude beginning with an

action displaying supersymmetric gauge invariance. But since the gauge group UOSP(1|2)

is built upon the familiar SU(2) Lie group, there is a nice SU(2) structure nested inside this
overarching supersymmetric one. As we uncovered in section 2, upon making this SU(2)

structure explicit, one sees that this theory is one describing gravity coupled to Grassmann-
valued spin- 1

2 fields. Now that we have the quantum amplitude in a well-defined discrete
setting, we expect that within the supersymmetric partition function lie amplitudes pertaining
to gravity coupled to these spin- 1

2 fermionic fields. Indeed, our main aim in this paper is to
clarify this correspondence.

Perhaps some intuition for what might occur can be gained by examining a generic
parallel transport matrix in a given representation je, namely jeT (keme)

(lene)(ge∗). Since each
tetrahedron contains its own frame of reference, this matrix describes the change in certain
properties pertaining to the edge e ∈ � as one moves from one tetrahedron to the next along
e∗ ∈ �∗. One such property is the length of the edge, e, as seen in each tetrahedron, which
is given by the SU(2) sub-module (labelled by ke, le) pertaining each tetrahedron. To spell it
out, jeT (keme)

(lene)(ge∗) : V le → V ke , so that the length of the edge as viewed from the initial
tetrahedron is le + 1

2 , while from the final tetrahedron it seems that the edge has length ke + 1
2 .9

At a hand-waving level, the fact that different observers (here tetrahedra) see different lengths
for the same edge comes from a non-vanishing torsion in the theory. Since both ke, le can
take the values je, je − 1

2 freely, the length of the edge may change from reference frame
to reference frame. Note, however, that the matrix elements fall into two classes. On the
one hand there are the cases where the edge length does not change: jeT (je me)

(je ne)(ge∗) and
jeT (je− 1

2 me)
(je− 1

2 ne)
(ge∗). For example, let us examine

jeT (je me)
(je ne)(ge∗) = (

1 − 1
4je η�

e∗ηe∗
)

jeDme
ne

(
e∗), (23)

where 
 = {ψ, θ, φ}. Each element is even in the Grassmann algebra. We propose that
the O((η�

e∗ηe∗)0) term corresponds to no-fermion propagation, while the O((η�
e∗ηe∗)1) term

corresponds to the propagation of both a fermion and an anti-fermion, which together yield
a bosonic contribution. On the other hand, there are the cases where the edge length does
change: jeT (je me)

(je− 1
2 ne)

(ge∗) and jeT (je− 1
2 me)

(je,ne)(ge∗). This time, let us examine

jeT (jeme)
(je− 1

2 ne)
(ge∗) = [− 1

2

√
je + ne + 1

2 η�
e∗

jeDme

ne+
1
2
(
e∗)

− 1
2

√
je − ne + 1

2 ηe∗ jeDme

ne− 1
2
(
e∗)

]
. (24)

Note that each term is linear in an odd Grassmann variable, so we shall interpret this as the
propagation of a fermion or an anti-fermion. Albeit a somewhat loose description of what
is happening, it is essentially correct and once we describe this in terms of an SU(2) lattice
gauge theory coupled to Grassmann fields, we shall see this prescription become more precise.

9 In pure gravity, the length and edge of the spin foam is given by
dimke

2 = ke + 1
2 .

8
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Let us begin to analyse the quantum amplitudes directly. We shall first make the embedded
SU(2) substructure explicit at the level of representations by expanding the UOSP(1|2) {6j}-
symbols in terms of SU(2) {6j}-symbols (C.4):[
j1 j2 j3

j4 j5 j6

]
=

∑
ki

1�i�6

(−1)
∑6

a=1 2(ja−ka)(λa+1)B
j1j2j3
k1k2k3

B
j5j6j1
k5k6k1

B
j6j4j2
k6k4k2

B
j4j5j3
k4k5k3

{
k1 k2 k3

k4 k5 k6

}
,

where we choose the parity λa = 2ja and we sum over ki = ji or = ji − 1
2 . Since each

triangle is shared by two tetrahedra, we may repartition the amplitude as follows:

Z�,UOSP (1|2) =
∑
{j,k}

∏
e

(−1)2je

∏
f

[
(−1)	je1 +je2 +je3 
B

je1 je2 je3
ke1 ke2 ke3

B
je1 je2 je3
k′
e1

k′
e2

k′
e3

]
f

×
∏

t

[
(−1)

∑6
a=1 2(jea −kea )(2jea +1)

{
ke1 ke2 ke3

ke4 ke5 ke6

}]
t

, (25)

where the appropriate definitions are given in appendix B. Let us insist that although we
sum over one label je per edge, we are also summing over one label ke,t per edge e and per
tetrahedron t � e to which the edge belongs.

For future reference, let us scrutinize the triangle amplitude:

A
{j}
f ((ke1 , ke2 , ke3; k′

e1
, k′

e2
, k′

e3
) = [

(−1)	je1 +je2 +je3 
B
je1 je2 je3
ke1 ke2 ke3

B
je1 je2 je3
k′
e1

k′
e2

k′
e3

]
f
. (26)

There are a number of forms this can take depending on the values of ke and k′
e. But there

are certain basic forms that they follow. To save space, let us denote the element k = j by
↑ and k = j − 1

2 by ↓. Thus, A
{j}
f (je1 , je2 , je3; je1 − 1

2 , je2 − 1
2 , je3) = A

{j}
f (↑,↑,↑; ↓,↓,↑).

We also note that the amplitudes are symmetric with respect to the interchange of {k1, k2, k3}
and {k′

1, k
′
2, k

′
3}. The possible configurations are (up to flipping entirely {k1, k2, k3} with

{k′
1, k

′
2, k

′
3})

je1 + je2 + je3 ∈ N0

A
{j}
f (↑,↑,↑; ↑,↑,↑) = (−1)J (je1 + je2 + je3 + 1)

A
{j}
f (↑,↓,↓; ↑,↓,↓) = (−1)J (−je1 + je2 + je3)

A
{j}
f (↓,↑,↓; ↓,↑,↓) = (−1)J (je1 − je2 + je3)

A
{j}
f (↓,↓,↑; ↓,↓,↑) = (−1)J (je1 + je2 − je3)

A
{j}
f (↑,↑,↑; ↑,↓,↓) = (−1)J+(2je1 +1)

√
(je1 + je2 + je3 + 1)(−je1 + je2 + je3)

A
{j}
f (↑,↑,↑; ↓,↑,↓) = (−1)J+(2je2 +1)

√
(je1 + je2 + je3 + 1)(je1 − je2 + je3)

A
{j}
f (↑,↑,↑; ↓,↓,↑) = (−1)J+(2je3 +1)

√
(je1 + je2 + je3 + 1)(je1 + je2 − je3)

A
{j}
f (↑,↓,↓; ↓,↑,↓) = (−1)J+(2je1 +1)+(2je2 +1)

√
(−je1 + je2 + je3)(je1 − je2 + je3)

A
{j}
f (↑,↓,↓; ↓,↓,↑) = (−1)J+(2je3 +1)+(2je1 +1)

√
(−je1 + je2 + je3)(je1 + je2 − je3)

A
{j}
f (↓,↑,↓; ↓,↓,↑) = (−1)J+(2je2 +1)+(2je3 +1)

√
(je1 − je2 + je3)(je1 + je2 − je3)

(27)

and

je1 + je2 + je3 ∈ N0 + 1
2

A
{j}
f (↓,↓,↓; ↓,↓,↓) = (−1)

J− 1
2

(
je1 + je2 + je3 + 1

2

)
A

{j}
f (↓,↑,↑; ↓,↑,↑) = (−1)

J− 1
2

(−je1 + je2 + je3 + 1
2

)
9
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A
{j}
f (↑,↓,↑; ↑,↓,↑) = (−1)

J− 1
2

(
je1 − je2 + je3 + 1

2

)
A

{j}
f (↑,↑,↓; ↑,↑,↓) = (−1)

J− 1
2

(
je1 + je2 − je3 + 1

2

)
A

{j}
f (↓,↓,↓; ↓,↑,↑) = (−1)

J− 1
2 +(2je1 +1)

√(
je1 + je2 + je3 + 1

2

) (−je1 + je2 + je3 + 1
2

)
A

{j}
f (↓,↓,↓; ↑,↓,↑) = (−1)

J− 1
2 +(2je2 +1)

√(
je1 + je2 + je3 + 1

2

) (
je1 − je2 + je3 + 1

2

)
A

{j}
f (↓,↓,↓; ↑,↑,↓) = (−1)

J− 1
2 +(2je3 +1)

√(
je1 + je2 + je3 + 1

2

) (
je1 + je2 − je3 + 1

2

)
A

{j}
f (↓,↑,↑; ↑,↓,↑)= (−1)

J− 1
2 +(2je1 +1)+(2je2 +1)

√(−je1 + je2 + je3 + 1
2

) (
je1 − je2 + je3 + 1

2

)
A

{j}
f (↓,↑,↑; ↑,↑,↓)= (−1)

J− 1
2 +(2je3 +1)+(2je1 +1)

√(−je1 + je2 + je3 + 1
2

) (
je1 + je2 − je3 + 1

2

)
A

{j}
f (↓,↓,↑; ↑,↑,↓)= (−1)

J− 1
2 +(2je2 +1)+(2je3 +1)

√(
je1 − je2 + je3 + 1

2

) (
je1 + je2 − je3 + 1

2

)
(28)

where J = je1 + je2 + je3 . There are 32 configurations in total (20 are shown here and the
other 12 are obtained by utilizing the symmetry given above). These configurations split into
two subsets depending on whether J ∈ N0 or J ∈ N0 + 1

2 . Thus, 16 are admissible at any
instance. Following on from what we mentioned just a little earlier, if the first three arrows
do not differ from the second three, then the amplitude contributes to the even or ‘bosonic’
sector of the theory, while if there are two flips, then the amplitude contributes to the fermionic
sector. Remember that there cannot be one or three flips due to the parity condition for the
existence of SU(2) intertwiners. Thus, the top four listed in each subset above are ‘bosonic’
amplitudes while the rest are ‘fermionic’ amplitudes.

Let us examine a bosonic amplitude

A
{j}
f (↑,↑,↑; ↑,↑,↑) = (−1)J (je1 + je2 + je3 + 1). (29)

The amplitude comes about from the coupling of je1 T (je1 me1 )
(je1 ne1 )(ge∗), je2 T (je2 me2 )

(je2 ne2 )(ge∗)

and je3 T (je3 me3 )
(je3 ne3 )(ge∗). Therefore, as we can see from (23), in the product of these three

factors, that the coefficient of
(
η�

e∗ηe∗
)

is (je1 + je2 + je3 + 1) (remembering that there is a(
η�

e∗ηe∗
)

term in the measure). In fact, we interpret that this coefficient gets contributions
from four different sources. There may be no-fermion propagation or fermion–anti-fermion
propagation on the edge e1 or the edge e2 or the edge e3 (which contribute the 1, je1 , je2 , je3

pieces, respectively).
Now for a fermionic amplitude

A
{j}
f (↑,↑,↑; ↑,↓,↓) = (−1)J− 1

2 +(2je1 +1)
√

(je1 + je2 + je3 + 1)(−je1 + je2 + je3). (30)

Once again we see that this arises from coupling je1 T (je1 me1 )
(je1 ne1 )(ge∗),

je2 T (je2 me2 )
(je2 − 1

2 ne2 )(ge∗) and je3 T (je3 me3 )
(je3 − 1

2 ne3 )(ge∗). It is not possible to see how the

coefficient of η�
e∗ηe∗ comes about directly, but for our interpretational purpose here, the

coefficient gets a contribution from a fermion or anti-fermion propagation on both edges e2

and e3 while there is no-fermion propagation on edge e1.
To conclude this section, while all the tetrahedra sharing an edge are coloured with the

same UOSP(1|2) representation je, they need not necessarily share the same SU(2) label
ke. This is to be expected since the SU(2)-modules lie within larger UOSP(1|2)-modules.

10
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Heuristically, we can divide the triangle amplitudes into two classes, differentiated by the
condition kea

= k′
ea

for each edge of the triangle (keeping in mind that the triangle belongs
to two tetrahedra). Those which satisfy this condition are ‘bosonic’, while those triangles for
which this condition is not satisfied are ‘fermionic’. We shall now make this interpretation
precise, by Fourier transforming to the space of functions on SU(2). It is rather difficult to do
this succinctly, but we shall circumvent some of the clumsiness by jumping to the other side
of the computation and working back. Indeed, it is more instructive to do so.

3.1. SU(2) spin foam amplitudes

The SU(2) Ponzano–Regge state sum amplitudes have the same fundamental building blocks
as their UOSP(1|2) counterparts. In terms of lattice gauge theory variables, one can write
the amplitude as in (19):

Z�,SU(2) =
∫ ∏

e∗
dge∗

∏
f ∗

δ(gf ∗). (31)

After integration, we once again see a diagram-like figure 2 but this time it is labelled by
irreducible representations and group elements of SU(2). As usual, after manipulation using
an analogous rule to figure 3, the amplitude factorizes and we arrive at

ZΔ ,SU (2) =
{k} f ∗ e∗ v∗

-1

Upon evaluating the corresponding diagrams, one gets the familiar Ponzano–Regge amplitude:

Z�,SU(2) =
∑
{k}

∏
e

(−1)2ke (2ke + 1)
∏
f

(−1)(ke1 +ke2 +ke3 )f
∏

t

{
ke1 ke2 ke3

ke4 ke5 ke6

}
t

. (32)

To make a connection with supersymmetric amplitudes, we must first rewrite this amplitude
more appropriately to the supersymmetric context. As pointed out in [3], one has some
freedom in the properties of the representations occurring in the decomposition of functions
over the group. For a start, one may endow the representations with a Z2-grading, so that
vectors in V ke , ke ∈ N0 + 1

2 , are odd and vectors in V ke , ke ∈ N0 are even. Moreover, one
can choose the inner product on an irreducible representation to be either positive definite or
negative definite. None of these possibilities affects the decomposition of the δ-function. Let
us denote the usual characters by χ and the grades ones by χ± where ± labels the choice of
inner product; then,

dimk χk(g) = dimk,± χk,±(g), (33)

where dimk,± := χk,±(I). So, we may write

δ(g) =
∑

k

dimk χk(g) =
∑

k

dimk,± χk,±(g)

= 1

2

∑
j∈N0+ 1

2

(
dimj,+ χj,+(g) + dimj− 1

2 ,+ χj− 1
2 ,+(g)

)
+

1

2

∑
j∈N0

(
dimj,+ χj,+(g) + dimj− 1

2 ,− χj− 1
2 ,−(g)

)
. (34)

11
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Thus, instead of viewing the decomposition as a sum over irreducible representations Vk, one
can view it as decomposed over the representations Rj = V j⊕V j− 1

2 , where the representations
are graded, and the inner product on V j ⊂ Rj is positive for all j , while that on V j− 1

2 ⊂ Rj

is positive for j ∈ N0 + 1
2 and negative for j ∈ N0. This choice is compatible with the

tensor product operation and mimics the structure in the supersymmetric theory. Thus, the
SU(2) Ponzano–Regge spin foam amplitude may be recast as an amplitude depending on Rj.
Upon integration of the group elements in (31), we obtain the same diagrams as before, but
the evaluation of the loop, theta and tetrahedral diagrams depends on the grading and inner
product, and we find that we can write the amplitude as

Z�,SU(2) =
∑
{j}

∑
{k}

∏
e

(−1)2je (2ke + 1)
∏
f

(−1)
∑3

a=1[2(jea −kea )(2jea +1)+kea ]f

×
∏

t

[
(−1)

∑6
a=1 2(jea −kea )(2jea +1)

{
ke1 ke2 ke3

ke4 ke5 ke6

}]
t

. (35)

We must stress, however, that although the amplitude looks different, it is merely
a repartitioning of the original state-sum. We evaluate the diagrams explicitly in
appendix D.

Let us insist also on the fact that both the je’s and ke’s depend only on the chosen edge: it
is the same ke all around the corresponding plaquette and it does not change from tetrahedron
to tetrahedron. The fluctuations of ke around the plaquette that occur in the supersymmetric
theory will come in when we insert fermions in the model, as explained below.

3.2. Coupling matter: massless spinning fields

Of course, looking at the SU(2) theory from the lattice gauge theory perspective, a group
element cannot map between different irreducible representations. In other words, the edge
length cannot change as we move from tetrahedron to tetrahedron. Thus, the non-trivial matter
is to allow for a change in the edge length and this is where we expect the fermionic degrees
of freedom to come into play. We wish to insert fermionic observables into (35) so as to get
contributions to Z�,UOSP (1|2). This section will be concerned with the construction of these
observables.

Noticing that the odd generators of UOSP(1|2) carry a spin- 1
2 representation of SU(2),

we follow that argument to its natural conclusion and trace a spin- 1
2 representation through the

spin foam. Furthermore, remembering the points expounded earlier, we expect that it should
be embedded at the gluing point of two tetrahedra, and that if there is no change in the edge
length then there are either zero or two fermionic lines, while if the edge length changes then
there is a single fermionic line embedded there. Indeed, this is how things turn out in the
end.

To begin, we need to have a wedge formulation in terms of holonomies and representations
Rj. One might expect that this is a trivial manipulation of (31), but maintaining the Rj structure
requires us to navigate certain subtleties. Consider two adjacent wedges within a face w∗

1

and w∗
2 . Each has an assigned reducible representation R

jw∗
1 and R

jw∗
2 . Whether a fermion

observable is inserted or not, we wish wedges to couple only if jw∗
1
= jw∗

2
. This is naturally the

case for irreducible representations of SU(2), but not for reducible ones. To see this, one only
need to note that V jw∗ is contained in Rjw∗ and Rjw∗ + 1

2 . Therefore, R
jw∗

1 and R
jw∗

2 will couple
for jw∗

2
= jw∗

1
, jw∗

1
± 1

2 . We can cure this ambiguity by inserting a projector into the holonomy

12
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matrix attached to each wedge. It projects onto the highest weight state for V j ⊂ Rj and onto
the lowest weight state for V j− 1

2 ⊂ Rj . This projector is illustrated by

±,kw ∗
= |kw ∗ ,±kw ∗ (−1)2(jw ∗−kw ∗ )(2jw ∗ + 1) kw ∗ ,±kw ∗ |

and it is inserted at the point v∗
e in figure 1.

In effect, when one integrates over the ge∗
e,f

variables, one gets a factor of δjw∗
2
,jw∗

1
± 1

2
= 0

from the projectors. Only the jw∗
1

= jw∗
2

term survives. Now we insert the fermionic
observables OF :

Z�,SU(2),OF =
∫ ∏

e∗
t

dge∗
t

∏
e∗
e,f

dge∗
e,f

∏
w∗

∑
{j}

Aw∗(gw∗ , jw∗) OF ({g}, {j}). (36)

So let us proceed to the definition of these observables. Diagrammatically, we shall denote a
segment of the fermionic observable by a dashed line. Furthermore, we shall need to introduce
the projector onto the spin-up and spin-down states:

±
= 1

2
,±1

2
1
2
,±1

2

One would expect this projection to occur as part of the propagator for spin- 1
2 fermions

[2, 18]. These projectors are inserted into the diagram once again at the points v∗
e and are

joined by parallel transport matrices, which closely follows the procedure for the insertion of
matter observables in [2]. This charts the progress of the particle in the spin foam formulation.
We shall examine more clearly the geometric spacetime interpretation of this fermionic path
shortly. The dashed line runs along between the wedges, since we want to allow for a change
in the edge length by 1

2 as we move between tetrahedra. Furthermore, the fermionic observable
knows about the gravity sector. We must insert an operator to extract various factors of edge-
length: dimk

2 . We shall denote this graphically by a clasp joining the fermion projector and the
gravity projector:

±,kw ∗

We give some motivation as to why one would expect such factors of edge length in the
observable. Although the matter theory is massless, if one analyses the classical field theory,
one sees that the matter sector has a non-trivial energy–momentum tensor. In fact, the
Hamiltonian for the system is

H = 1

2

ei
ae

j

b√
eiei

εijk

(
F [W ]kab +

i

2
(σ k)ABψA

a ψB
b

)
where ei = 1

2
εijkε

abej
ae

k
b. (37)

We note at this point that the e-dependent prefactor has dimensions of length. So from this
argument, it comes as no surprise that the presence of matter should mean the insertion of a
factor of length (that is, a factor linear in k) multiplying the holonomy.

Of course, there are many possible combinations of insertion, but if we break them down
into segments, then there are essentially three basic building blocks. We are ready to draw
these.

13
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Figure 5. Sample of the fermionic Feynman diagram insertions.

We begin with the no-fermion case in the top left part. In going to the wedge formulation
of the amplitude we actually already started to the process of modifying the amplitudes.
The gravity projectors remove the factor of dimension in Ae since they project just onto
the highest/lowest weight state and therefore kill the sum. Furthermore, the factors of
(−1)2(j−k)(2j+1) occurring in the projectors kill the same factors occurring in the triangle
amplitudes Af. Note that the gravity projectors are all at the centre of the face. This is to
ensure that the final amplitude for the edges e is correct. The amplitudes for the various
sub-simplices are now

Ae = (−1)2ke , Af = (−1)(ke1 +ke2 +ke3 )f

At =
[
(−1)

∑6
a=1 2(jea −kea )(2jea +1)

{
ke1 ke2 ke3

ke4 ke5 ke6

}]
t

.
(38)

Then there is the fermionic loop insertion, which also contributes to the bosonic sector of
the theory, and which is illustrated in the top right part. The fermionic line traces a loop which

14
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is inserted between two wedges in one face. Thus, the insertion does not map between SU(2)

modules. In fact, using the standard retracing identity, we can remove the fermionic line
altogether, but the non-trivial part is the clasp which extracts a factor of (−1)2(j−k)+1(2k + 1)

for V k ⊂ Rj . Thus, the only difference between the no-fermion amplitude and the amplitude
containing this fermion loop is the amplitude for one triangle:

Af = (−1)(ke1 +ke2 +ke3 )(−1)2(je1 −ke1 )+1(2ke1 + 1), (39)

where the loop was inserted around edge e1. Let us take a specific example, say kea
= jea

for all a, and let us sum up the four contributions: the no-insertion and the loop insertions on
e1, e2, e3. The resulting amplitude is exactly −A

{j}
f (↑,↑,↑; ↑,↑,↑). For the triangle given

above, ultimately the amplitude arising from summing over the no-insertion and the three
possible loop insertions will lead to all possible bosonic amplitudes depending on whether the
edges are in the upper or lower modules.

Let us move onto the fermionic contributions, which rely on non-trivial propagation of
the fermion along edges of the simplicial complex. There is essentially one type of diagram,
variations of which give the other 23 possibilities occurring in (27) and (28). We displayed the
insertion in the centre bottom part of figure 5. We shall reproduce the following amplitude:
A

{j}
f (↑,↑,↑; ↑,↓,↓). This triangle amplitude is made up from several sub-diagrams:

j2

j3

j1

j2 − 1
2

j3 − 1
2

−1

−1

−1 −1

1
2

1
2

1
2

1
2

= (−1)j1 + j2 + j3 + (2j1 + 1) (j1 + j2 + j3 + 1)(−j1 + j2 + j3 ) (40)

which we note is just minus the amplitudes for which we were hoping. We stress that the
diagrams in this equation all contribute to the triangle amplitude Af. We get a tetrahedral
diagram, because we have coupled an extra spin- 1

2 between the wedges. The square root
of the loops come from factors of dimension which we saw, in the gravity case, arise upon
decomposition of the δ-functions. Therefore, we have successfully reproduced the triangle
amplitudes, which was our goal at the outset.

Thankfully, this allows for a thorough description of all the supersymmetric amplitudes.
All we need is to take the pure gravity amplitudes and insert all the possible fermionic
observables consistent with the above rules and as such we arrive at the supersymmetric
amplitude.

As promised, we conclude with a description of the geometric properties of the fermionic
observables. Consider two adjacent wedges. Their intersection is an edge e∗

e,f , joining the
centre of a triangle f ⊂ � with the midpoint of an edge e ⊂ �. The path of the fermion in
the spin foam, the dashed line, contains only such edges (see figure 6 for details). The obvious
spacetime picture is that the particle propagates along the edges e which are intersected by the
e∗
e,f . This is a perfectly self-consistent propagation and gives a nice geometric viewpoint to

the amplitude.
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−→

Figure 6. From spin foam to spacetime picture.

At the end of the day, for the purposes of characterizing the properties of a propagating
fermion, one only need to examine insertions illustrated by the bottom diagram in figure 5. In
the partition function, let us consider a contribution which consists of a closed loop of such
insertions. This loop in the spin foam is mirrored by a graph embedded in the triangulation.
This is the fermionic Feynman diagram. More precisely, one arrives at sets of closed loops
of edges, such that two consecutive edges on a loop belong to a same triangle. Equivalently,
this means that we can think of the fermionic loop as a closed sequence of triangles (once
again, a loop in the spinfoam complex). Then, let us consider an edge e upon which a fermion
propagates. The plaquette f ∗, to which it is dual, consists of wedges that are labelled by SU(2)

representations kw∗ . Corresponding to the propagation of this fermion along e, there arises a
non-matching of kw∗ once the wedges are glued. (In pure gravity, the kw∗ all equal after group
integration.) In fact, the fermion propagation triggers a 1

2 -shift between two adjacent kw∗ , and
this occurs twice around the plaquette, once by a + 1

2 -shift, once by a − 1
2 -shift. For example,

starting with kw∗ = je, the − 1
2 -shift will send it to kw∗ = je − 1

2 and then the + 1
2 -shift will

bring it back to kw∗ = je. Vice versa, starting with kw∗ = je − 1
2 , the + 1

2 -shift will increase it
to kw∗ = je while the − 1

2 -shift will bring it back to its initial value kw∗ = je − 1
2 . Furthermore,

the intersection of two wedges picks out a triangle in the triangulation, and the two 1
2 -shifts

coincide with the two triangles of the Feynman diagram sharing the edge e. We can have an
arbitrary number of fermionic loops in the Feynman diagram and they can actually share the
same edges, since there is no fermionic interaction term here. Thus, the only interactions are
between the fermionic field(s) and the gravitational degrees of freedom. In general, there can
be several pairs of ± 1

2 -shifts as one goes around a plaquette, each corresponding to a separate
fermionic Feynman diagram. The last step is to sum over all possible Feynman diagrams in
order to reconstitute the full supersymmetric spinfoam amplitude.

This picture is finally slightly different from the one initially envisioned in [3]. In this
work, we have clearly identified the Feynman diagram for the fermionic degrees of freedom.

4. Conclusions

Starting from the topological spinfoam model for N = 1 supergravity in 3D gravity, we have
analysed in detail the structure of these spinfoam amplitudes. We have first shown how to
derive these spinfoam amplitudes from a discretized BF action on a triangulation by extending
the standard bosonic construction of a discretized action for the SU(2) Ponzano–Regge model
[2] to include for fermionic degrees of freedom in the connection and triad. In particular, this
showed how including fermions can resolve the standard ambiguity that the usual discretized
action leads to SU(2)/Z2 ∼ SO(3) and not exactly to SU(2).
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Then we explicitly decomposed all supersymmetric amplitudes into a superposition of the
standard SU(2) amplitudes. This is done by decomposing UOSP(1|2) representations into
irreducible representations of SU(2). The most striking result is that although a single spin
je is associated with each edge of the triangulation, the actual length of that edge is a priori
different seen from the viewpoint of each tetrahedron to which it belongs: it can be either
ke = je or ke = je − 1

2 depending whether a fermion is travelling through this tetrahedron or
not. Pushing this decomposition into SU(2) amplitudes as far as possible, we finally showed
that the supersymmetric amplitude can be seen as the coupling of fermionic Feynman diagrams
to the gravitational background. Let us emphasize that the geometry is not static but when a
fermionic line is inserted, it creates length shifts as mentioned previously.

If we were to go further in the understanding of these N = 1 supersymmetric spinfoam
models, we could analyse the asymptotics of the susy {6j}-symbol and see how the Regge
action and the fermionic fields appear in the large spin limit [19]. We should also compare
our approach to the standard insertion of particles with spin in the Ponzano–Regge model [2]
(the actual difference is that our framework takes into account explicitly the feedback of the
fermionic fields on the gravitational fields) and to the more recent gravity+fermions models
developed in [4, 5]. The Feynman diagrams for the fermionic field derived in the latter work
[4, 5] are not exactly the same as the ones that we obtained from our supersymmetric model
and the comparison between the two formalisms is not straightforward but would be a key
point to study in details in future work.

Finally, the most interesting application to our formalism would be to study the insertion of
actual physical non-topological fermionic fields. Starting in 3D, in this work, we have tracked
from the initial continuum action down to the final discretized spinfoam amplitude how the
explicit fermionic Feynman diagrams get inserted in the spinfoam amplitude. These fermionic
observables come with precise weights (see e.g. equations (39)–(40)). These weights are fine-
tuned so as to ensure that the full model ‘gravity+fermions’ is topological. That shows that
these spinfoam amplitudes provide the correct quantization for our supersymmetric theory and
that they have the correct (semi-)classical limit as transition amplitudes of the superymmetric
N = 1 3D supergravity. As soon as we modify these weights, we would get non-topological
amplitudes and it would be interesting to see how we could modify them in order to
insert more physical fermionic fields. More precisely, comparing with other works such as
[4, 5], we do not discretize the fermionic field in an arbitrary chosen way, but we follow
the standard discretization procedure for topological BF theory, which ensures that we obtain
the correct transition amplitudes at the quantum level. Therefore, we actually derive—and
we do not assume—what are the Feynman diagrams for the fermionic field coupled to the
gravitational/geometrical fields. Thus the natural generalization to non-topological fermionic
fields would be to keep the same structure for the Feynman diagrams, with the torsion and
the fermionic degrees of freedom encoded in ± 1

2 shifts of spin around plaquettes, and change
the particular spinfoam weights associated with these shifts in order to obtain non-topological
fermions. This way, we would also control the degree to which the fermions are non-
topological. Then, we hope to apply the same procedure to the four-dimensional case by
first deriving the spinfoam quantization of supersymmetric BF theory and studying how the
fermions are coupled to the spinfoam background, and then seeing how this structure is
maintained or deformed when we introduce the (simplicity) constraints on the B-field in order
to go from the topological BF theory down back to proper gravity.

Another interesting outlook is to push our analysis to N = 2 supersymmetric BF theory,
already in three spacetime dimensions, following the footsteps of [7]. Indeed, such a
theory already includes a spin-1 gauge field, and we could study in more detail how the
full supersymmetric amplitudes decomposes into Feynman diagrams for the fermions and

17
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spin-1 field inserted in the gravitational spinfoam structure. Then we would see how it is
possible to deform this structure in such a way that the spin-1 field represents standard gauge
fields. This road would provide an alternative way to coupling (Yang–Mills) gauge fields to
spinfoam models, which we could then compare to the other approaches developed in this
direction [6].
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Appendix A. Mathematical preliminaries

A.1. Grassmann algebra

A Grassmann algebra G, with N generators ξ1, . . . , ξN , satisfies ξiξj + ξj ξi = 0. (N may be
both finite and infinite.) The element

α =
∑
m�0

∑
i1<···<im

αi1···imξi1ξim (A.1)

is called even if only the coefficients with even m are non-zero and odd if only the coefficients
with odd m are non-zero. The sets of even and odd elements are denoted by G0 and G1,
respectively, and G = G0 ⊕ G1.

The parity function λ(α) is defined on G as

λ(α) =
{

0 if α ∈ G0,

1 if α ∈ G1.
(A.2)

We define a complex conjugation operation, �, on G with the following properties:

(αβ)� = α�β�, (cα)� = c̄α�, (α�)� = (−1)λ(α)α, (A.3)

where α, β ∈ G and c ∈ C and c̄ denotes standard complex conjugation on C. There are a
number of ways to define such an operation on a Grassmann algebra, so one must pick one
and adhere to it.

We can define an integration theory for functions f : G → G. First of all, analytic
functions on C have a natural extension to superanalytic functions on G:

f (α) =
∑
n�0

f (n)(α∗)
n!

(α − α∗)n, (A.4)

where α∗ is known as the body of α in DeWitt’s terminology [20]. It is the m = 0 term in
(A.1) (while the remainder α − α∗ is its soul). We can define a measure to integrate functions
on G. For even elements, the body plays a special role:

α = α∗ +
∑
m�2

∑
i1<···<im

αi1···imξi1 · · · ξim . (A.5)

Then, the measure is∫
dα :=

∫
dα∗, (A.6)
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where one also replaces α by α∗ in the integrand. Clearly, odd elements have no body. Thus,
we need a different definition of the measure. The most general superanalytic function of an
odd element is f (α) = (c1 + c2α). For odd elements, the measure is defined as∫

dα (c1 + c2α) = c2, which means that
∫

dα αf (α) = f (0), (A.7)

where δ(α∗) is the standard distributional one on C. Hence, we can define a delta function on
G. For the functions on G0:∫

dα f (α)δ(α) :=
∫

dα∗ f (α∗)δ(α∗) = f (0), (A.8)

and for functions on G1, we can see that δ(α) := α, as can be seen in (A.7).

A.2. Super Lie algebra osp(1|2)

The algebra osp(1|2) is a super Lie algebra [13, 14]. There is a parity function defined on
osp(1|2) which divides its elements into even and odd subsets:

λ(X) =
{

0 if X ∈ osp(1|2)0

1 if X ∈ osp(1|2)1.
(A.9)

The set osp(1|2)0 ∼ su(2) contains three generators J1, J2, J3, while the set osp(1|2)1

contains two generators Q±.
We define a bracket on this algebra by

[X1, X2] = (−1)λ(X1)λ(X2)+1[X2, X1] (A.10)

and which satisfies a super Jacobi identity10. Altogether, the generators satisfy the algebra

[J3, J±] = ±iJ±, [J+, J−] = 2iJ3,

[J3,Q±] = ± i

2
Q±, [J±,Q±] = 0, [J±,Q∓] = iQ±,

[Q±,Q±] = ∓ i

2
J±, [Q±,Q∓] = i

2
J3.

(A.12)

We define a supertranspose operation ‡ on osp(1|2; C), which has the properties

(c1X1 + c2X2)
‡ = c̄1X

‡
1 + c̄2X

‡
2, [X1, X2]‡ = (−1)λ(X1)λ(X2)

[
X

‡
2, X

‡
1

]
,

(X‡)‡ = (−1)λ(X)X‡,
(A.13)

where Xi ∈ osp(1|2) and ci ∈ C. There are two such operations for the generators of osp(1|2):

J
‡
i = −Ji, Q‡

+ = (−1)εQ−, Q
‡
− = (−1)ε+1Q+, (A.14)

for ε = 0, 1.
We define a grade adjoint operation † on osp(1|2;G) = osp(1|2;G0)0 ⊕ osp(1|2;G1)1:

(α1X1 + α2X2)
† = α�

1 X
‡
1 + α�

2 X
‡
2. (A.15)

For our purposes, we confine to a subalgebra G̃ ⊂ G, such that every element of
uosp(1|2) := osp(1|2; G̃) satisfies X† = −X. Therefore, depending on the choice of the
grade adjoint operation, the elements are of the form

X = α1J1 + α2J2 + α3J3 + (−1)εα�Q+ + αQ−, (A.16)

where α�
i = αi and (α�)� = −α.

10 The super Jacobi identity is

(−1)λ(X1)λ(X3)[X1, [X2, X3]] + (−1)λ(X2)λ(X1)[X2, [X3, X1]] + (−1)λ(X3)λ(X2)[X3, [X1, X2]] = 0. (A.11)
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Primarily, the representations of uosp(1|2) are labelled by a half-integer j and a parity
λ ∈ {0, 1}. One has a certain freedom as to the inner product one chooses for a given
representation, which is parametrized by two more numbers ρ, τ ∈ {0, 1}. We shall denote
such a representation by Rj,λ,ρ,τ . These representations can be decomposed over the even
subalgebra: uosp(1|2)0 � su(2). Each representation Rj,λ,ρ,τ of uosp(1|2) comprises the
direct sum of two representations of su(2):

Rj,λ,ρ,τ = V j,λ,ρ,τ ⊕ V j− 1
2 ,λ+1,ρ,τ . (A.17)

A generic basis element is |j ; k,m〉, where k ∈ {j, j − 1
2 }, m ∈ {−k,−k + 1, . . . , k} and

we have suppressed the labels λ, ρ, τ for simplicity. The action of the operators on the
representation Rj,λ,ρ,τ is

J3|j ; k,m〉 = im|j ; k,m〉,
J±|j ; j,m〉 = i

√
(j ∓ m)(j ± m + 1)|j ; j,m ± 1〉,

J±
∣∣j ; j − 1

2 ,m
〉 = i

√(
j − 1

2 ∓ m
)(

j + 1
2 ± m

)∣∣j ; j − 1
2 ,m ± 1

〉
,

Q±|j ; j,m〉 = ∓ 1
2

√
j ∓ m

∣∣j ; j − 1
2 ,m ± 1

2

〉
,

Q±
∣∣j ; j − 1

2 ,m
〉 = − 1

2

√
j + 1

2 ± m
∣∣j ; j,m ± 1

2

〉
,

(A.18)

where J± := Ji ± iJ2 and |j ; k,m〉 has parity λ + 2(j − k). The inner product, �(ρ,τ)( · , · ),
on such a representation is defined by

�(ρ,τ)(|j ; k,m〉, |j ; k′,m′〉) := (−1)2(j−k)ρ+τ δkk′
δm

m′ = (−1)ϕδkk′
δm

m′ , (A.19)

where we define ϕ := 2(j − k)ρ + τ for later convenience. One can show that there is a
consistency relation among ε, λ and ρ:

ε + λ + ρ + 1 ≡ 0 (mod 2). (A.20)

Therefore, once two of these parameters are chosen, the final one is fixed. From a spin-
statistics viewpoint, we would like to endow the integer representations with even parity and
the half-odd-integer representations with odd parity, that is, λ ≡ 2j (mod 2). Furthermore,
in the near future, we shall wish to define a measure on the supergroup that can be used to
integrate all representation functions. Thus, we must have just one definition of grade adjoint;
we shall choose ε = 0. We conclude that ρ ≡ 2j + 1 (mod 2). Ultimately, we are free with
our choice of the overall sign τ , but we must include both choices. The reason for this will
appear shortly when we consider tensor products of representations. In fact, these choices
mean that for integer representations, one does not acquire a positive definite inner product on
the representation space:

〈j, τ ; k,m|j, τ ; k′,m′〉 = (−1)ϕδkk′
δm

m′ =
{
(−1)2(j−k)+τ δkk′

δm
m′ for j ∈ N0,

(−1)τ δkk′
δm

m′ for j ∈ N0 + 1
2 .

(A.21)

Furthermore, the tensor product of two representations of uosp(1|2) satisfies a rule analogous
to that of su(2) except that the sum over j goes in half-integer steps

Rj1,τ1 ⊗ Rj2,τ2 =
⊕

|j1−j2|�j3�j1+j2

Rj3(j1,j2),τ3(τ1,τ2). (A.22)

Using the properties of the inner product on the representation space, we find that

τ3(τ1, τ2) = τ1 + τ2 + 2(j1 + j2 + j3)λ3 + λ1λ2. (A.23)
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Thus, we see our initial requirement that we include both values of τ is justified; we cannot
restrict to one particular choice of τ since we will obtain both under tensor composition. We
also choose that in the matrix realization
j,τ T (km)

(ln)(X): = 〈j, τ ; k,m|X|j, τ ; l, n〉

=
(

uosp(1|2)0 ← uosp(1|2)0 uosp(1|2)0 ← uosp(1|2)1

uosp(1|2)0 ← uosp(1|2)1 uosp(1|2)1 ← uosp(1|2)1

)
. (A.24)

The supertrace of a matrix operator j,τM(km)
(ln) (in the representation Rj,τ ) is defined as

Str(j,τM) =
∑
k,m

(−1)λ+2(j−k) j,τM(km)
(km) =

∑
k,m

(−1)2k j,τM(km)
(km). (A.25)

This means that the supertrace of the identity operator is Str(j,τ I) = (−1)2j . With
these choices, the matrix elements of the generators in the fundamental representation
R

1
2 ,0 = V 0 ⊕ V

1
2 are

J1 = i

2

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠ , J2 = i

2

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠ , J3 = i

2

⎛⎝0 0 0
0 1 0
0 0 −1

⎞⎠ ,

Q+ = 1

2

⎛⎝ 0 0 −1
−1 0 0
0 0 0

⎞⎠ , Q− = 1

2

⎛⎝ 0 1 0
0 0 0

−1 0 0

⎞⎠ .

(A.26)

The supertrace in the fundamental representation is11

Str(JiJj ) = 1
2δij , Str(JiQA) = 0, Str(QAQB) = 1

2εAB. (A.27)

The measure over the algebra is

dB = db1 db2 db3 db� db, (A.28)

where B = biJi + b�Q+ + bQ−.

A.3. Super group UOSP(1|2)

Elements of UOSP(1|2) have the form

g = uξ, where u = eθ �n·�J and ξ = eη�Q++ηQ− , (A.29)

and �n = (sin ψ cos φ, sin ψ sin φ, cos ψ). More explicitly

u =

⎛⎜⎜⎜⎝
1 0 0

0 cos θ +
i

2
sin θ cos ψ

i

2
sin θ sin ψe−iφ

0
i

2
sin θ sin ψ eiφ cos θ − i

2
sin θ cos ψ

⎞⎟⎟⎟⎠

and ξ =

⎛⎜⎜⎜⎜⎜⎝
1 +

1

4
η�η

1

2
η −1

2
η�

−1

2
η� 1 − 1

8
η�η 0

−1

2
η 0 1 − 1

8
η�η

⎞⎟⎟⎟⎟⎟⎠ . (A.30)

11 The spinor indices follow the northwest convention so that φA = εABφB and φA = φBεBA. The metric on the
spinor space is the anti-symmetric tensor εAB with ε+− = ε+− = 1. This implies εABεBC = −δA

C .
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Thus, we arrive at

g =

⎛⎜⎜⎜⎝
1 +

1

4
η�η

1

2
η −1

2
η�

g21
(
1 − 1

8η�η
)
u22

(
1 − 1

8η�η
)
u23

g31
(
1 − 1

8η�η
)
u32

(
1 − 1

8η�η
)
u33

⎞⎟⎟⎟⎠ with
g21 = − 1

2η�u22 − 1
2ηu23,

g31 = − 1
2η�u32 − 1

2ηu33,
.

(A.31)

Interestingly, elements of group UOSP(1|2) satisfy the relations g†g = gg† = I and
g‡ζg = ζ , where ζ := diag(I1x1, ε2x2).12 From the second relation, we can see that the
origin of the description is orthosymplectic.

The representation matrices of the group elements are denoted as j,τ T (k m)
(l n)(g) =

j,τ T (k m)
(l n)(
, η�, η), where 
 = {ψ, θ, φ} and have elements

j,τ T (jm)
(jn)(g) = (−1)τ

(
1 − 1

4
jη�η

)
jDm

n(
),

j,τ T (jm)
(j− 1

2 n)(g) = (−1)τ
[− 1

2

√
j + n + 1

2 η� jDm
n+ 1

2
(
) − 1

2

√
j − n + 1

2 η jDm
n− 1

2
(
)

]
,

j,τ T (j− 1
2 m)

(jn)(g)= (−1)ρ+τ
[− 1

2

√
j − n η� (j− 1

2 )Dm

n+
1
2
(
) + 1

2

√
j + nη (j− 1

2 )Dm
n− 1

2
(
)

]
,

j,τ T (j− 1
2 m)

(j− 1
2 n)(g) = (−1)ρ+τ

(
1 + 1

4

(
j + 1

2

)
η�η

)
(j− 1

2 )Dm
n(
), (A.33)

where ρ = 2j + 1 and Dj(
) is the j th representation of the SU(2) group element pertaining
to 
. Matrix multiplication, complex conjugation and the grade adjoint operation satisfy the
following relations:

j,τ T (km)
(ln)(g) = j,τ T (km)

(ln)(g1g2) = j,τ T (km)
(k′m′)(g1)

j,τ T (k′m′)
(ln)(g2)

j,τ T (km)
(ln)(g)� = j,τ T (km)

(ln)(g
�) = j,τ T(km)

(ln)(g)

j,τ T (km)
(ln)(g)† = j,τ T (km)

(ln)(g
†) = j,τ T (ln)

(km)(g).

(A.34)

Indices are raised and lowered using a metric and its inverse:

j,τ r(km)(ln) = (−1)2(j−k)(2j+1)+k−m δklδm+n,0,

j,τ r(km)(ln) = (−1)2(j−l)(2j+1)+l−n δklδm+n,0.
(A.35)

The representation functions are orthogonal:∫
UOSP (1|2)

dg j1,τ1T (k1m1)
(l1n1)(g) j2,τ2T(k2m2)

(l2n2)(g)

= δj1j2δτ1τ2 j1,τ1δ(k1m1)
(k2m2)

j1,τ1δ(l1n1)
(l2n2). (A.36)

12 The grade adjoint and supertranspose are

g† =

⎛⎜⎜⎝
1 + 1

4 η�η g31 −g21

1
2 η� (1 − 1

8 η�η)u33 −(1 − 1
8 η�η)u23

1
2 η −(1 − 1

8 η�η)u32 (1 − 1
8 η�η)u33

⎞⎟⎟⎠ and

g‡ =

⎛⎜⎜⎝
1 + 1

4 η�η −g21 −g31
1
2 η (1 − 1

8 η�η)u22 (1 − 1
8 η�η)u32

− 1
2 η� (1 − 1

8 η�η)u23 (1 − 1
8 η�η)u22

⎞⎟⎟⎠ . (A.32)

22



Class. Quantum Grav. 27 (2010) 225022 V Baccetti et al

Appendix B. Super {3j}-symbols

We can derive the Clebsch–Gordan coefficients quite easily from relations given above [15].
The UOSP(1|2) coefficients are defined as

|j3(j1, j2), τ3(τ1, τ2); k3,m3〉 = Ĩ
j1

(k1m1)

j2

(k2m2)

(k3m3)
j3

[|j1, τ1; k1,m1〉 ⊗ |j2, τ2; k2,m2〉], (B.1)

where the coefficients are

Ĩ
j1

(k1m1)

j2

(k2m2)

(k3m3)
j3

= B̃
j1j2j3
k1k2k3

C̃k1
m1

k2
m2

m3
k3

, (B.2)

where C̃k1
m1

k2
m2

m3
k3

:= (〈k1,m1| ⊗ 〈k2,m2|)|k3,m3〉 defines SU(2) Clebsch–Gordan coefficients

and B̃
j1j2j3
k1k2k3

are factors given by

j1 + j2 + j3 ∈ N0︷ ︸︸ ︷ j1 + j2 + j3 ∈ N0 + 1
2︷ ︸︸ ︷

B̃
j1j2j3
j1j2j3

=
√

j1 + j2 + j3 + 1

2j3 + 1
,

B̃
j1j2j3

j1j2− 1
2 j3− 1

2
= (−1)λ1

√−j1 + j2 + j3

2j3
,

B̃
j1j2j3

j1− 1
2 j2j3− 1

2
=

√
j1 − j2 + j3

2j3
,

B̃
j1j2j3

j1− 1
2 j2− 1

2 j3
= (−1)λ1+1

√
j1 + j2 − j3

2j3 + 1
,

B̃
j1j2j3

j1− 1
2 j2j3

= (−1)λ1+1

√
−j1 + j2 + j3 + 1

2

2j3 + 1
,

B̃
j1j2j3

j1j2− 1
2 j3

=
√

j1 − j2 + j3 + 1
2

2j3 + 1
,

B̃
j1j2j3

j1j2j3− 1
2

= (−1)λ1+1

√
j1 + j2 − j3 + 1

2

2j3
,

B̃
j1j2j3

j1− 1
2 j2− 1

2 j3− 1
2

=
√

j1 + j2 + j3 + 1
2

2j3
.

(B.3)

This means that[〈j1, τ1; k1,m1| ⊗ 〈j2, τ2; k2,m2|
] |j3(j1, j2), τ3(τ1, τ2); k3,m3〉

= (−1)(λ1+2(j1−k1))(λ2+2(j2−k2))+ϕ1+ϕ2 Ĩ
j1

(k1m1)

j2

(k2m2)

(k3m3)
j3

. (B.4)

These objects do not have simple transformation properties under permutation. On the other
hand, the {3j}UOSP(1|2)-symbols do (by definition):

I
j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
:= B

j1j2j3
k1k2k3

Ck1
m1

k2
m2

k3
m3

, where (B.5)

(B.6)

B
j1j2j3
k1k2k3

:= (−1)(λ3+1)(2(j2−k2)+2(j1+j2+j3))
√

2k3 + 1B̃
j1j2j3
k1k2k3

, (B.7)

Ck1
m1

k2
m2

k3
m3

:= (−1)k1−k2−m3

√
2k3 + 1

C̃k1
m1

k2
m2

k3−m3
, (B.8)

and Ck1
m1

k2
m2

k3
m3

are the {3j}SU(2)-symbols. Under permutation, they satisfy

I
jσ(1)

(kσ(1)mσ(1))

jσ(2)

(kσ(2)mσ(2))

jσ(3)

(kσ(3)mσ(3))
= (|σ |)

∑3
a(2(ja−ka)(2ja+1)+ka)I

j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
, (B.9)
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where |σ | = ±1 is the signature of the permutation and is similar to the SU(2) case. Reversing
the magnetic indices, we find

I
j1

(k1−m1)

j2

(k2−m2)

j3

(k3−m3)
= (−1)k1+k2+k3I

j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
. (B.10)

Also we can raise and lower indices using the invariant metric on the representation space Rj,τ

provided by

[〈j1, τ1; k1,m1| ⊗ 〈j2, τ2; k2,m2|]|0, 0; 0, 0〉
= (−1)2(j1−k1)(2j1+1)+k1−m1δj1j2δk1k2δm1−m2 . (B.11)

This has been mentioned already in (A.35). Additionally, they satisfy a pseudo-orthogonality
relation∑

k1 ,k2
m1 ,m2

(−1)(λ1+2(j1−k1))(λ2+2(j2−k2))+ϕ1+ϕ2 I
j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
I

j1

(k1m1)

j2

(k2m2)

j ′
3

(k′
3m

′
3)

= (−1)ϕ3(ϕ1,ϕ2) δj3j
′
3δk3k

′
3
δm3m

′
3
, (B.12)

where ϕ3(ϕ1, ϕ2) := 2(j3 − k3)ρ3 + τ3(τ1, τ2). This implies∑
k1 ,k2 ,k3

m1 ,m2 ,m3

(−1)� I
j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
I

j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
= 1, (B.13)

where

� := (λ1 + 2(j1 − k1))(λ2 + 2(j2 − k2)) + 2(j3 − k3) + ϕ1 + ϕ2 + ϕ3(ϕ1, ϕ2). (B.14)

As expected, � is invariant under permutation13.

Appendix C. Super {6j}-symbols

The supersymmetric 6j -symbol is defined as the matrix relating two ways of coupling three
representations:

Rj1,τ1 ⊗ Rj2,τ2 ⊗ Rj4,τ4 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

j3+j4⊕
j5=|j3−j4|

j1+j2⊕
j3=|j1−j2|

Rj5(j3(j1,j2),j4),τ5(τ3(τ1,τ2),τ4)

j1+j3⊕
j5=|j1−j3|

j2+j4⊕
j3=|j2−j4|

Rj5(j1,j3(j2,j4)),τ5(τ1,τ3(τ2,τ4))

. (C.1)

The states are related by

|j5(j1, j6(j2, j4)), τ5(τ1, τ6(τ2, τ4)); k5,m5〉 =
∑
j3

(−1)(I+1)I2,4+λ1I2,4+λ4I1,2+	 I
2 


×
[
j1 j2 j3

j4 j5 j6

]
|j5(j3(j1, j2), j4), τ5(τ3(τ1, τ2), τ4); k5,m5〉, (C.2)

13

� ≡
3∑

a=1

(λa + 2(ja − ka))(λa+1 + 2(ja+1 − ka+1)) + λaλa+1 + 2(ja − ka)(λa + 1),

≡
3∑

a=1

4kaka+1 + λaλa+1 + 2(ja − ka)(2ja + 1). (B.15)
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where

I = 2(j1 + j2 + j4 + j5),
I1,2 = 2(j1 + j2 + j3), I1,6 = 2(j1 + j6 + j5),

I2,4 = 2(j2 + j4 + j6), I3,4 = 2(j3 + j4 + j5),
(C.3)

and 	 I
2 
 is the integer part of I

2 . This means that

[
j1 j2 j3

j4 j5 j6

]
:=

∑
ki ,mi

1�i�6

(−1)
∑6

a=1[(ka−ma)+2(ja−ka)(λa+1)]

× I
j1j2j3

(k1m1)(k2m2)(k3m3)
I

j5j6j1

(k5−m5)(k6m6)(k1−m1)
I

j6j4j2

(k6−m6)(k4m4)(k2−m2)
I

j4j5j3

(k4−m4)(k5m5)(k3−m3)
,

=
∑

ki
1�i�6

(−1)
∑6

a=1 2(ja−ka)(λa+1)B
j1j2j3
k1k2k3

B
j5j6j1
k5k6k1

B
j6j4j2
k6k4k2

B
j4j5j3
k4k5k3

{
k1 k2 k3

k4 k5 k6

}
. (C.4)

The SU(2) {6j}-symbol is{
k1 k2 k3

k4 k5 k6

}
:= (−1)[

∑6
a=1(ka−ma)]Ck1k2k3

m1m2m3
C

k5k6k1−m5m6−m1
C

k6k4k2−m6m4−m2
C

k4k5k3−m4m5−m3
. (C.5)

One finds that the supersymmetric {6j}-symbol has the same symmetry properties as its SU(2)

counterpart.

Appendix D. Diagram evaluation

We have seen in the main text that a spin foam diagram generically factorizes upon integration
of the group variables and that we can evaluate the amplitude by considering simpler diagrams.
First of all, let us introduce some basic elements of the diagrammatic calculus, without
justification, for general vector spaces V, W . We denote their duals by V ∗, W ∗, respectively.
A map f : V → W and its dual map f ∗ : W ∗ → V ∗ are denoted by

V

V

V

V

VV

VV

W

WW

W

f f∗

A diagram is always read from top to bottom. We note the direction of the arrows on the
diagram: downward arrows map to and from the vector spaces, while upward arrows pass to
and from the duals. Composition of maps follows as one would expect. The identity maps
IV : V → V ; v �→ v and IV ∗ : V ∗ → V ∗;φ �→ φ are also drawn above. Finally, we mention
the crossing map �V,W : V ⊗ W → W ⊗ V .
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In our case, we must define evaluation and coevaluation maps along with their duals:

coevV : → V ⊗ V ∗ ; 1 →
m

em ⊗ fm ,

evV : V ∗ ⊗ V → ; fm ⊗ en → fm (en ) = δm n ,

= coev∗V : V ⊗ V ∗ → ; coev∗V := evv ◦ ΨV ,V ∗ ,

= ev∗V : → V ∗ ⊗ V ; ev∗V := ΨV ∗ ,V ◦ coevV ,

where em is a basis for V with fm its dual basis.
We are interested in orthogonal and symplectic vector spaces, that is, vector spaces

endowed with either an orthogonal (symmetric, non-degenerate) metric or or a symplectic
(anti-symmetic, non-degenerate) metric sr:

o r : V ⊗ V → ;
o r

o r

= s r : V ⊗ V → ;
s r

s r

= −

where the diagrams demonstrate the (anti-)symmetry. The existence of a non-degenerate
metric allows us to define maps between the vector spaces and their duals, namely, the raising
and lowering operators. The raising operator is given by

� : V → V ∗; v �→
{

or(v, .),

sr(v, .),
(D.1)

while the lowering operator � is defined such that � ◦ � = IV and � ◦ � = IV ∗ . Thus from a
map f : V → W , we can form another map f � : V ∗ → W ; f � := f ◦ �. Moreover, once
such a metric has been defined, there is a natural definition for the crossing map

�V,W (v ⊗ w) = (−1)|v||w|w ⊗ v, where |v|, |w| =
{

0 for V orthogonal,
1 for V symplectic.

(D.2)

Thus, we can now give a more explicit definition of the dual evaluation and coevaluation maps:

coev∗
V (em ⊗ f n) = (−1)|em||f n|f n(em) = (−1)|em||f n|δn

m,

ev∗
V (1) =

∑
m

(−1)|em||f m|f m ⊗ em.
(D.3)
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Now, let us specialize to the representation spaces of SU(2) and UOSP(1|2). It has been
shown in [1] that in order to obtain a topological state-sum in the SU(2) case (the Ponzano–
Regge model), one must choose the carrier spaces Vk, k ∈ N0, to be symplectic and the Vk,
k ∈ N0 + 1

2 , to be symplectic. The representation spaces for UOSP(1|2) fit nicely in with this
choice, since the Rj are endowed with an orthosymplectic metric osr , that is, it is orthogonal
on V k ⊂ Rj , k ∈ N0, and symplectic on V k ⊂ Rj , k ∈ N0 + 1

2 . The metric and its inverse for
the vector spaces of SU(2) in their standard bases are

krmn = (−1)k−m δm+n,0,

krmn = (−1)k−n δm+n,0.
(D.4)

Note that the orthogonal and symplectic nature of the metric is taken care of implicitly in the
definition and we can drop the subscripts. In the course of this work, we must at some point
consider the irreducible representations of SU(2) within the larger reducible representations
Rj, and we also may change the inner product on Vk by an overall sign

j,k r̃mn = (−1)2(j−k)(2j+1)+k−m δm+n,0,

j,k r̃mn = (−1)2(j−k)(2j+1)+k−n δm+n,0.
(D.5)

We have already stated the metric for UOSP(1|2) in (A.35).

D.1. Simple loop

= coev∗V ◦ coevV .

We are ready to evaluate this diagram in the three different contexts: for SU(2) with
the standard irreducible representations, for SU(2) with the altered inner product (denoted by
S̃U(2) in the following) and for UOSP(1|2). We shall compute the SU(2) case explicitly:

coev∗
V k ◦ coevV k : 1 �→ kem ⊗ kf m �→

∑
m

(−1)|
kem||kf m|kf m(kem) = (−1)2k(2k + 1). (D.6)

Completing an identical calculation yields again (−1)2k(2k + 1) for S̃U(2) and (−1)2j for
UOSP(1|2).

Once we start coupling matter, we start seeing the appearance of loops on S̃U(2) with
projector maps: ke±k

kf ±k : v �→ ke±k
kf ±k(v) = ke±k v±k .

± = coev∗V ◦ (k e±k
kf±k ⊗ V ∗) ◦ coevV ; 1 → (−1)2k

Moreover, it is a projector so it does not matter how many times it occurs in a loop, the
result is the same.

D.2. Theta

This amplitude labels the triangles. This involves the definition of a new map:

Ck 1 k 2 k 3 : V k 1 ⊗ V k 2 ⊗ V k 3 → ,
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with components Ck1
m1

k2
m2

k3
m3

. Dualizing and applying the lowering operator, one arrives at a map

Cj3 j2 k 1 : →V k 1 ⊗ V k 2 ⊗ V k 3 ,

which, in our cases, we know has components C̃
m3
k3

m2
k2

m1
k1

= C
m3
k3

m2
k2

m1
k1

. Thus, the amplitude for
the theta diagram is

SU(2) : Ck 1
m 1

k 2
m 2

k 3
m 3 C

m 3
k 3

m 2
k 2

m 1
k 1

= (−1)k 1 + k 2 + k 3 ,

SU(2) : Ck 1
m 1

k 2
m 2

k 3
m 3 C

m 3
k 3

m 2
k 2

m 1
k 1

= (−1)
3
a = 1 [2(ja −ka )+ ka ] ,

UOSP(1|2) : Ij1
(k 1 m 1 )

j2
(k 2 m 2 )

j3
(k 3 m 3 ) I

(k 3 m 3 )
j3

(k 2 m 2 )
j2

(k 1 m 1 )
j1

= (−1) j1 + j2 + j3 .

(D7)

When one embeds the fermion diagrams, some edge amplitudes are no longer labelled by
a loop but by a certain type of theta diagram. Such an example is as follows:

+ − = (−1)2j+1 (2j + 1) C j
j

1
2

− 1
2

(j− 1
2 )

(−j+ 1
2 )

C
(−j+ 1

2 )

(j− 1
2 )

− 1
2
1
2

j
j = (−1)2j

since

C
j

j

1
2

− 1
2

(j− 1
2 )

(−j+ 1
2 )

= (−1)2j+1

√
1

2j + 1
. (D.8)

So we see that the clasp is just to counteract the factor of 1
2k+1 in the denominator of the

{3j}-symbol. There is also further types of diagram contributing to the bosonic sector:14

+
= (−1)2(j−k )(2j+ 1) (−1)2k (2k+1)

D.3. Tetrahedron

The tetrahedral diagram turns out to be rather simple contraction of four intertwiners:

SU(2) :
k1 k2 k3

k4 k5 k6

SU(2) : (−1)
6
a = 1 (2(ja −ka )(2ja +1)) k1 k2 k3

k4 k5 k6

UOSP(1|2) :
j1 j2 j3

j4 j5 j6

14 Remember that the fermion lines are missing due to the retracing identity.
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Following the trend set so far, when we couple fermionic Feynman diagrams, we find that
some triangle amplitudes are in the form of a tetrahedral graph. For example

k 2

k 3

k 1

k 2 − 1
2

k 3 − 1
2

= (−1)2k 1 + 2(j1 −k 1 )(2k 1 + 1) k1 k2 k3
1
2 k3 − 1

2 k2 − 1
2

occurs when we pass from representations in the upper module on the right to the lower on
the left. Furthermore, given that{

k1 k2 k3

1
2 k3 − 1

2 k2 − 1
2

}
= (−1)k1+k2+k3

√
(k1 + k2 + k3 + 1)(−k1 + k2 + k3)

(2k3 + 1)(2k3)(2k2 + 1)(2k2)
(D.9)

we can see from the numerator that we are starting to get the amplitude A
{j}
f (↑,↑,↑; ↑,↓,↓)

state explicitly in (30). There are factors of the square root of various dimensions, but there are
factors of dimension multiplying each wedge at the beginning (before integration) and there
is exactly the correct factor left over to deal with this denominator.

Appendix E. The integration of three representation functions

We mentioned in the main text that there was a non-trivial step in passing from a product of
representation functions to intertwiners on the space of representations. One examines the
representation functions occurring in the integral

Ae∗
t
=

∫
UOSP(1|2)

dge∗
t

T
j1,τ1

(k1m1),(l1n1)
(ge∗

t
) T

j2,τ2

(k2m2),(l2n2)
(ge∗

t
) T

j3,τ3

(k3m3),(l3n3)
(ge∗

t
), (E.1)

for each choice of ki and li as given in (A.33). Integrating with respect to η, η� and 
, one
should arrive at

Ae∗
t
= I

j1

(k1m1)

j2

(k2m2)

j3

(k3m3)
I

j1

(l1n1)

j2

(l2n2)

j3

(l3n3)
, (E.2)

as stated in the text. The subtlety becomes clearer when one realizes that on the right-hand
side of (A.33), there is no concept of change of the SU(2) module. Fortunately, there exist
relations between the SU(2) {3j}-symbols, which provide the missing link between (E.2)
from (E.1):[(

−j1 + j2 + j3 +
1

2

) (
j1 − j2 + j3 +

1

2

)] 1
2

C
j1− 1

2 j2j3
n1n2n3

= −
[(

j1 + n1 +
1

2

)
(j2 + n2)

] 1
2

C
j1j2− 1

2 j3

n1+ 1
2 n2− 1

2 n3

−
[(

j1 − n1 +
1

2

)
(j2 − n2)

] 1
2

C
j1j2− 1

2 j3

n1− 1
2 n2+ 1

2 n3
,

[(j1 + j2 − j3) (j1 + j2 + j3 + 1)]
1
2 C

j1− 1
2 j2− 1

2 j3
n1n2n3

=
[(

j1 + n1 +
1

2

) (
j2 − n2 +

1

2

)] 1
2

C
j1j2j3

n1+ 1
2 n2− 1

2 n3

−
[(

j1 − n1 +
1

2

) (
j2 + n2 +

1

2

)] 1
2

C
j1j2j3

n1− 1
2 n2+ 1

2 n3
,
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[(j1 + j2 − j3) (j1 + j2 + j3 + 1)]
1
2 Cj1j2j3

n1n2n3

= − [(j1 − n1) (j2 + n2)]
1
2 C

j1− 1
2 j2− 1

2 j3

n1+ 1
2 n2− 1

2 n3
+ [(j1 + n1) (j2 − n2)]

1
2 C

j1− 1
2 j2− 1

2 j3

n1− 1
2 n2+ 1

2 n3
.

(E.3)
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