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bInstitut de Ciències de l’Espai (CSIC-IEEC),
Bellaterra, Barcelona, Spain

cDepartment of Physics and Astronomy, Louisiana State University,
Baton Rouge, LA, U.S.A.

E-mail: pau@aei.mpg.de, jbarranc@aei.mpg.de, abernal@aei.mpg.de,
rezzolla@aei.mpg.de

Received August 31, 2010
Accepted October 2, 2010
Published November 4, 2010

Abstract. The existence and detection of scalar fields could provide solutions to long-
standing puzzles about the nature of dark matter, the dark compact objects at the centre
of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly
constrained by astronomical observations, leading to great uncertainties in estimates of the
mass mφ and the self-interacting coupling constant λ of these fields. To counter this, we have
systematically employed available astronomical observations to develop new constraints, con-
siderably restricting this parameter space. In particular, by exploiting precise observations
of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be
explained by a single boson star, we determine an upper limit for the boson star compactness
and impose significant limits on the values of the properties of possible scalar fields. Requir-
ing the scalar field particle to follow a collisional dark matter model further narrows these
constraints. Most importantly, we find that if a scalar dark matter particle does exist, then
it cannot account for both the dark-matter halos and the existence of dark compact objects
in galactic nuclei.
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1 Introduction

A large number of astronomical observations little doubt about the existence of dark mat-
ter (DM) and its dominant role in the matter composition in the Universe [1]. An even
larger number of candidates has been proposed to play the role of this unknown component.
Among those candidates, ultra-light scalar fields have been extensively studied, providing
a robust paradigm for DM particles [2–5] and dark energy [6]. Another scalar field, the
inflaton, is a crucial ingredient in inflationary cosmology [7–9]. The success of cosmolog-
ical and astrophysical models that invoke scalar fields has, in addition, motivated further
studies of self-gravitating systems made of scalar fields, such as non-topological solitons [10],
oscillatons [11–13] and boson stars (BS) [14, 15].

In particular, when considering a BS the scalar field is associated with a spin-zero
boson with mass mφ and self-interacting coupling constant λ. The essentially unconstrained
freedom in choosing the free parameters characterizing the scalar field (namely its mass and
self-coupling constant), allows one to build BS-models that can account for many different
astrophysical objects: from galactic dark matter halos [16–19], to dark compact objects
(DCOs) like MACHOS [20, 21] and black hole candidates [22–24]. Clearly, the only way to
restrict the very large space of parameters spanned by BS models is by exploiting astronomical
observations and use them to set constraints on the properties of the scalar field. This is, in
essence, the goal of this paper.

The recent advances in high-angular resolution instrumentation have provided the pos-
sibility to study the central regions of galaxies with unprecedented precision. Space-borne
telescopes, such as the Hubble Space Telescope, and ground observations using adaptive
optics have opened a new window on the innermost central regions of galactic nuclei. Par-
ticularly striking is the present ability to study the kinematics of stars or gas in regions of
milliparsec scale for the Milky Way [25, 26] and of sub-parsec scale for external galaxies [27–
29]. One of the most intriguing conclusions of these observations is that dark compact objects
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(DCOs), with masses ranging between MDCO ≃ 106 − 109 M⊙, are hosted at the centre of
most non-active galaxies.

In the case of our own galactic centre, the study of the innermost stellar dynamics
has provided very convincing evidence for the existence of a DCO associated with the radio
point source Sagittarius A∗ (Sgr A∗). The closest Keplerian orbits examined are those of the
so-called “S-stars” (also referred to as “SO-stars”). By following the orbit of one of them,
i.e., the star S2 (also referred to as SO2), the mass of Sgr A∗ has been estimated to be about
3.7 × 106 M⊙ within a volume with radius no larger than 6.25 light-hours [26, 30]. More
recent data based on 16 years of observations has reduced the uncertainty and set the mass
of the central DCO to ∼ 4.1 ± 0.6 × 106 M⊙ [31–33].

Assuming that the DCO in Sgr A∗ is a BS, we have used the observational restrictions
on the volume and mass to set substantial constraints on the mass of the scalar field and on
its self-interacting coupling constant. The approach followed using the observational data for
Sgr A∗ can be applied to any other galaxy for which there is an accurate measurement of the
mass and dimensions of the central object. As a result, we have also considered the case of
a nearby galaxy, NGC 4258, obtaining additional constraints, which set much tighter limits
when considered in combination with those of Sgr A∗.

Finally, we have considered several DM candidates and discussed how present astro-
nomical observations can be exploited to set additional limits on the scalar-field properties
invoked by these DM models [2, 16–19]. While some of these constraints overlap with those
obtained when considering BSs, others cover a distinct region of the space of parameters and
thus imply that a scalar field that could explain the rotation curves in nearby galaxies cannot
be the same composing a BS representing the DCOs in galactic nuclei.

The structure of the paper is the following one. In section 2 we briefly review the
properties of BSs in the two regimes of weak and strong self-interaction. Section 3 is instead
dedicated to the issue of the maximum compactness of a BS, where we show that the definition
of an effective maximum compactness for a BS is not only possible, but actually useful when
associating BSs to DCOs in galactic centres. In section 4 we therefore derive our constraints
on the scalar-field properties using both considerations on BSs models and of DM models.
Finally, our conclusions are contained in section 5.

2 Boson star generalities

Boson stars are solutions to the Einstein Klein-Gordon system of equations

Gµν = 8πGTµν ,

(

� − dV

dΦ

)

= 0 , (2.1)

where � ≡ (1/
√−g)∂µ[

√−ggµν∂ν ]. We have adopted natural units ~ = c = 1, and hence
G = 1/m2

P
, where m

P
is the Planck mass. The stress energy tensor Tµν corresponds to a

complex scalar field minimally coupled to gravity and with a scalar potential V (|Φ|2),

Tµν =
1

2
[∂µΦ∗∂νΦ + ∂µΦ∂νΦ

∗] − 1

2
[Φ∗,αΦ,α + V (|Φ|2)] . (2.2)

We will restrict ourselves to the case where the potential of the scalar field is given by
V = 1

2
m2

φ|Φ|2 + λ
4
|Φ|4, where mφ is the mass of the scalar field and λ its self-interaction

coupling constant. Originally BSs were introduced by Kaup [34] and studied later by Ruffini
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and Bonazzola [35], who considered just the mass term in the scalar potential. The case of self-
interacting scalar fields were later discussed by Colpi and collaborators in [36]. If for simplicity
the scalar field is assumed to be spherically symmetric and with a harmonic time dependence,
Φ(r, t) = φ(r)e−iωt, the space-time part is static. Considering spherical symmetry, the line
element can be written as ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ2 and the Einstein Klein-Gordon
equations reduce to a system of ordinary differential equations for the metric functions A
and B̃ ≡ m2

φB/ω2, and for the scalar field φ [36]. Additional quantities appearing in the

equations are σ ≡
√

4π/m2
P
φ, which is related to the density in the Newtonian limit, and

the dimensionless self-interacting coupling constant [36]

Λ ≡
λm2

P

4πm2
φ

. (2.3)

The freedom of choice of λ and mφ is reflected in the freedom of choosing Λ and it has
been shown that even when λ ≪ 1, the resulting configuration may differ significantly from
the non-interacting case [36]. For sufficiently small λ, on the other hand, self-interaction
may only be ignored if λ ≪ m2

φ/m2
P
, that is, if Λ ≪ 1. On the other hand, configurations

with Λ ≫ 1 are interesting as their masses may be comparable to those of their fermion
counterparts if λ ∼ 1. This illustrates the relevance of taking both regimes, Λ ∼ 1 and Λ ≫ 1
in the analysis of BS configurations. In the next two subsections we review them briefly for
completeness and to introduce a notation that will be useful later on.

2.1 Weak self-interaction (Λ3 ≪ 1)

We next we derive equilibrium configurations for the Einstein Klein-Gordon system in the
weak self-interaction regime, i.e., when Λ3 ≡ Λ/1000 ≪ 1, following a procedure similar to the
one discussed before in [14, 15, 23, 24]. In particular, in this case the Einstein Klein-Gordon
system of equations can be solved as an eigenvalue problem for the radial metric function at
the BS’ centre B̃c after specifying a finite but arbitrary value for the “central density” σc.
Additional boundary conditions are those of regularity at the centre, i.e., Ac = 1, σ′

c = 0,
where the prime denotes a derivative with respect to the new dimensionless radial coordinate
x ≡ rmφ, and of asymptotic flatness, i.e., σ(x = ∞) = 0.

The system is solved numerically for different values of σc and Λ using a standard
shooting method (given a σc, there is a unique value of B̃c for which the boundary conditions
are satisfied). Because we use a finite numerical domain, the condition for σ at infinity is
in fact demanded at the outermost point of the domain xout, and the shooting procedure is
performed for different values of xout. As xout increases, the shooting parameter B̃c converges,
and we choose the solution by requiring that the condition σ(xout) = 0 holds within a
prescribed tolerance (i.e., σ(xout) . 10−9).

Once the equilibrium solution is obtained, its mass is computed simply as

M ≡ xout

2

(

1 − 1

A(xout)

)

. (2.4)

We note that since the scalar field σ decays exponentially, the radius of the star is, at least
formally, not finite. In practice, however, we define M99 ≡ 0.99M , that is as 99% of the
total gravitational mass M ; as a result, we also define R99 as the radius containing M99 and
set this to be the “effective radius” of the BS. As a final remark we note that in view of the
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Figure 1. Gravitational mass M99 of equilibrium configurations of BSs for different values of σc and
Λ in the regime Λ3 ≪ 1; black squares indicate configurations with the maximum mass. The left
panel, in particular, shows a three-dimensional view of the space of solutions, while the right panel
offers a view of three slices given values of Λ.

units adopted, both quantities M and R are dimensionless variables. The physical units for
the mass M̂ and radius R̂ can be recovered by using the following relations

M̂ = M
m2

P

mφ
, R̂ = R

~

mφ
. (2.5)

Figure 1 reports the gravitational mass M99 of equilibrium configurations of BSs for
different values of σc and Λ in the regime Λ3 ≪ 1. In particular, the left panel shows a three-
dimensional view of the space of solutions, while the right panel offers a view of three slices
given values of Λ. In both panels, black squares indicate configurations with the maximum
mass, thus distinguishing stable solutions (to the left of the squares) from unstable ones (see
discussion in section 2.3).

2.2 Strong self-interaction (Λ3 ≫ 1)

The solution of the Einstein Klein-Gordon equations is much simpler when considering instead
the strong self-interaction regime, i.e., when Λ3 ≫ 1. In this case, in fact, introducing the
new dimensionless variables [36]

σ∗ = Λ1/2σ , (2.6)

x∗ = Λ−1/2x . (2.7)

and neglecting terms of order O(Λ−1), the Klein-Gordon equation can be solved algebraically
to yield [36]

σ∗ =

(

1

B̃
− 1

)1/2

, (2.8)

so that B̃c = 1/(σ2
∗,c + 1). Furthermore, the full set of the Einstein Klein-Gordon equations

does not depend on Λ at first order and can be solved much more easily. As in the weak
self-interaction regime, equilibrium configurations are obtained solving a set of ordinary dif-
ferential equations with the same boundary conditions. One important difference, however,
is that in this limit the density σ does go to zero at a finite radius xS and, as for ordinary
fluid stars, the gravitational mass M is defined by eq. (2.4) with xout = xS. In analogy with
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Figure 2. Gravitational mass M99 of equilibrium configurations of BSs for different values of σc

in the regime Λ3 ≫ 1. Also in this case the black square indicates the configurations with the
maximum mass.

the previous treatment, we define the effective radius of the BS as R99, namely as the one
containing 99% of the total gravitational mass.1 Finally, because the introduction of the new
variable x∗, see eq (2.6), the physical units can be recovered by using the following relations

M̂ = Λ1/2M
m2

P

mφ
, R̂ = Λ1/2R

~

mφ
. (2.9)

Shown in figure 2 is the gravitational mass M99 of equilibrium configurations of BSs for
different values of σc in the regime Λ3 ≫ 1. Also in this case the black square indicates the
configurations with the maximum mass, thus distinguishing stable solutions (to the left of
the square) from unstable ones (see discussion in section 2.3).

As a final remark, we note that a general analytic expression for the mass and com-
pactness of a BS in the strong self-interaction regime can be given and that fits well the data
presented in the right panel of figure 2. Such expressions are useful as they allow one to
obtain simple estimates to be used in astronomical observations.

2.3 Stability of boson stars

Clearly, the stability of BS configurations is a basic requirement when considering them as
suitable models of astrophysical objects. Numerical [37–39] and analytical [40–42] stability
studies of BSs agree on a general result: nodeless BS configurations are stable under finite
radial perturbations if their scalar field central value σc is smaller than a critical value σcrit;
configurations with σc > σcrit, in fact, either collapse to a BH or disperse at infinity [43].

Note that, for any given value of Λ, the critical density σcrit also marks the maximum
mass of the BS, i.e.,

Mmax(Λ) ≡ M(σc = σcrit,Λ) . (2.10)

In the regime of Λ3 ≪ 1, the maximum mass clearly increases as Λ increases as shown in
the two panels of figure 1. On the other hand, when Λ3 ≫ 1, one can exploit the fact that the

1Note that since in the case Λ3 ≫ 1 the BS has a finite radius, the definition of R99 is strictly speaking
not necessary, but it is nevertheless useful to maintain consistency with the case Λ3 ≪ 1.

– 5 –



J
C
A
P
1
1
(
2
0
1
0
)
0
0
2

system of the Einstein Klein-Gordon equations can be identified with that of a perfect-fluid
star for which the effective equation of state is

p =
4

9
ρ0

[

(

1 +
3ρ

4ρ0

)1/2

− 1

]2

, (2.11)

where

ρ =
1

4

(

3

B̃
+ 1

) (

1

B̃
− 1

)

, (2.12)

and ρ0 = m4
φ/λ. Note that in the limit ρ ≪ ρ0 (which is equivalent to P ≪ ρ i.e., the

Newtonian limit) eq. (2.11) reduces to P = ρ2/(16ρ0), thus representing the equation of
state of an n = 1 polytrope. As a result, the well-known theorems of stability of fluid stars
may be applied to determine the stability of the BSs. In particular, BSs with 1/B̃c smaller
than a critical value 1/B̃crit are stable, while those for which 1/B̃c > 1/B̃crit will either
collapse to a black hole or disperse to infinity. In practice, when Λ3 ≫ 1, the maximum mass
is Mmax ≃ 0.22 and is attained at σcrit ≃ 0.97; this is shown with a black square in figure 2.

3 Maximum compactness for a boson star

Since we are interested in modelling astrophysical DCOs as stable BSs, it is important to
determine whether or not a BS admits a maximum compactness, just as it is the case for an
ordinary relativistic star. At first it may appear that this question is not even well posed as
BSs are in principle infinitely extended and hence always with a zero compactness. However,
even an infinitely extended BS is in practice centrally condensed, i.e., with a finite effective
radius R99. Hence, it is mathematically legitimate and astrophysically reasonable to consider
whether the “effective compactness” of a BS, defined as

C(σc,Λ) ≡ M99(σc,Λ)

R99
, (3.1)

and thus measuring the compactness of a BS with mass M99 in a radius R99, can be nonzero
and is even upper bounded. As we will show in what follows, this is indeed the case and
C(σc,Λ) . 0.16 for all values of Λ.

Before entering the discussion of the different regimes of self-interaction it is interesting
to note that if computed in terms of the physical values for the effective mass M̂99 and
effective radius R̂99, the compactness C is independent of mφ [(cf. eqs. (2.5) and (2.9)].

In the case of weak self-interaction Λ3 ≪ 1, the compactness (3.1) is shown in the left
panel of figure 3 for different values of Λ. Note that the compactness is a growing function
of σc, but also that it has a local maximum. The latter, however, is reached for unstable
configurations, since it refers to BSs whose central density σc > σcrit. Shown in fact with
black squares are the configurations with the maximum mass and these are all to the left of
the local maxima: these models mark therefore the BSs with the maximum compactness for
a given choice of central density and coupling constant, i.e., Cmax(σc,Λ).

A very similar behaviour is shown by the compactness in the right panel of figure 3,
which however refers to the regime of strong self-interaction Λ3 ≫ 1. The obvious difference
in this case is that the compactness does not depend on Λ (and hence on the free parameters of
the scalar field mφ and λ) and attains a maximum value for stable configurations Cmax,Λ∞

=
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Figure 3. Effective compactness C ≡ M99/R99 for a spherical BS shown as a function of the central
density σc. Shown in the left panel are the values in the regime of weak self-interaction Λ3 ≪ 1, while
the right panel reports the values in the regime of strong self-interaction Λ3 ≫ 1. Also in this case
the black squares in both panels indicates the configurations with the maximum mass.

0.158496114 at σcrit ≃ 0.97; this is shown with a black square in the right panel figure 3.2

Interestingly, this maximum compactness is close to that of a typical neutron star with mass
MNS = 1.4M⊙ and a radius of RNS = 12km.

Comparing the two panels of figure 3 it is easy to realize that the maximum compactness
increases with Λ and has as asymptotic value for Λ → ∞ the one given by Cmax,Λ∞

. This is
clearly shown in figure 4, where we report the maximum compactness Cmax as a function of
the coupling constant Λ. Shown with a dashed line is the asymptotic maximum compactness
for a spherical BS Cmax,Λ∞

≃ 0.158, while shown with a dotted and dot-dashed lines are the
maximum compactnesses for a spherical star Cmax,star = 4/9 [44] and the compactness of a
black hole C = 1/2.

Overall, figure 4 shows two important results. The first one is that although BSs are in
principle infinitely extended they can be considered to have an effective compactness which
is upper limited. The second one is that such a maximum compactness is smaller than the
corresponding one for a fluid star and, of course, of a black hole. To the best of our knowledge
neither of these two results was discussed before in the literature.

4 Constraining mφ and λ

In what follows we discuss how to make use of the astronomical observations of galactic
centres (Sgr A∗ and NGC 4258) and of present DM models to constrain the space of possible
parameters for the scalar field mass mφ and self-interaction coupling constant λ. It is however
important to recall that present constraints on mφ and λ are extremely loose. In previous
works that considered BSs as DCOs candidates [23, 24], in fact, neither mφ nor λ were
related to an existing particle or particle candidate. In ref. [22], on the other hand, some
first estimates were presented but not using the astronomical observations considered here.

2Note that although Cmax,Λ∞
does not consider the whole mass, the corresponding compactness

0.158496114 is very close to the maximum one obtained when considering the whole mass and the whole
radius and which is given by MS/RS = 0.159807753.
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4.1 Constraints from Sgr A∗

A first set of constraints can be set by exploiting the observations about the dynamics of the
S-stars around Sgr A∗ and in particular of the smallest measured periastron for this group of
stars. This is attained for the star S2, whose periastron is RS2 ≃ 17 light-hour ≃ 5.9 × 10−4

pc. If a DCO is indeed hosted at the centre of Sgr A∗, then its radius cannot be larger than
RS2 or it would perturb considerably these orbits. Hence its minimum compactness is

Cmin =
MSgr A∗

RS2
≃ 1

3015
, (4.1)

where the second equality has been obtained using the measured mass of Sgr A∗, which has
been estimated to be MSgr A∗ = 4.1 ± 0.6 × 106 M⊙ [45].3 Note that when expressed in terms
of the Schwarzschild radius corresponding to Sgr A∗, i.e., RS = 2MSgr A∗ , the periastron of
the S2 star is RS2 ≃ 1520RS.

The observational evidence that Sgr A∗ is a black hole is indeed very convincing, but
we here assume, for the sake of argument, that it is rather a BS of mass MSgr A∗ . In this
case, its compactness could be in the range

3.32 × 10−4 ≃ Cmin ≤ CBS ≤ Cmax ≃ 0.158 . (4.2)

In other words, by changing mφ and λ it is possible to construct infinite BS models that
would be compatible with the observations of the S-stars and with radii between RS2 and
Rmin ≡ MSgr A∗/Cmax. In this way, the condition (4.2) can be used effectively to constrain
the space of parameters of potential scalar fields.

The procedure adopted in practice to enforce the condition (4.2) is somewhat involved
and, as in the previous sections, we will consider separately the cases of weak and strong

3We note that larger compactnesses (indeed as large as the ones corresponding to a black hole) have been
suggested for Cmin on the basis of radio observations at wavelengths of 3.5 mm and 7 mm [46, 47]. The
measurements are particularly complex and may be contaminated by instrumental errors which are difficult
to remove completely. In view of these uncertainties we prefer to use the more conservative but also more
accurate estimate (4.1).

– 8 –



J
C
A
P
1
1
(
2
0
1
0
)
0
0
2

2e-91 4e-91 6e-91
λ

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

1e-15
m

φ(e
V

)

20 40 60 80 100

Λ

1e-19

1e-18

1e-17

1e-16

m
φ(e

V
)

Allowed by Sgr A*

1e-90 1e-80 1e-70 1e-60 1e-50 1e-40 1e-30 1e-20 1e-10 1
λ

1e-18

1e-15

1e-12

1e-09

1e-06

1e-03

1e+00

1e+03

1e+06

m
φ(e

V
)

1e+07 1e+14 1e+21 1e+28 1e+35 1e+42

Λ

1e-20

1e-15

1e-10

1e-05

1

1e+05

m
φ(e

V
)

Figure 5. Constraints on the possible values of the mass and coupling constant of the complex scalar
field. The left panel refers to the weak self-interaction regime of Λ3 ≪ 1, where the dashed line
refers to the condition (4.3), while the solid one to the condition (4.4). The shaded region is clearly
the union of the inequalities. The right panel is the same as the left one, but refers to the strong
self-interaction regime of Λ3 ≪ 1, so that where the dashed line refers to (4.5), while the solid one
to (4.6). In both panels shown with the insets are the same data but in terms of the dimensionless
self-interacting coupling constant Λ.

self-interaction. In particular, when Λ3 ≪ 1 the maximum value of mφ compatible with the
mass of Sgr A∗ can be set by recalling that the relation between physical and non-physical
masses (2.5) states that the scalar-field mass is proportional to the BS mass for any given
value of the physical mass. Hence, after fixing MSgr A∗ , the mass of the scalar field will have
to satisfy the inequality

mφ ≤ Mmax(Λ)

MSgr A∗

m2
P

. (4.3)

The condition (4.3) when the equality holds is shown as a dashed line in the left panel of
figure 5.

Similarly, a lower limit on mφ can be found by determining, for each Λ, the central
density σ∗

c and the radius R(σ∗
c ) of the BS model having the minimum compactness, Cmin

(we recall that the compactness is a monotonic function of Λ). Defining then the minimum
mass as Mmin(Λ) ≡ CminR(σ∗

c ), we can constrain the mass of the scalar field to satisfy the
inequality

mφ ≥ Mmin(Λ)

MSgr A∗

m2
P

. (4.4)

The condition (4.4) when the equality holds is shown as a solid line in the left panel of
figure 5, while the shaded region is the union of the inequalities (4.3) and (4.4).

In the regime of strong self-interaction Λ3 ≫ 1, on the other hand, we employ a technique
similar to the one discussed above to obtain again upper and lower limits, with the difference
that in this regime there is only a single mass curve (cf. figure 2). In this case, the maximum
mφ is

mφ ≤ mmax
φ =

√

0.22m3
P

MSgr A∗

λ1/4 ≃ 2.9 × 105 λ1/4 eV . (4.5)

The condition (4.5) when the equality holds is shown as a dashed line in the right panel of
figure 5. In addition, also when Λ3 ≫ 1, Cmin allows us to derive the lower limit of mφ with

– 9 –



J
C
A
P
1
1
(
2
0
1
0
)
0
0
2

the difference that the variable parameter now is just B̃c and we do not need to iterate also
on Λ. As a result we obtain

mφ ≥ mmin
φ ≃ 3.7 × 104 λ1/4 eV . (4.6)

The condition (4.6) when the equality holds is shown as a solid line in the right panel of
figure 5, while the shaded region is the union of the inequalities (4.5) and (4.6). The overlap
in the constraints between the two regimes is very good and hence the results obtained for
Λ3 ≫ 1 can be easily extrapolated to the regime Λ3 ≪ 1 by using fitting expressions.

4.2 Constraints from NGC 4258

The procedure discussed above for the Galactic centre can be exploited in principle for any
other galaxy for which there is an accurate measurement of the mass and dimensions of the
central object. As an example, we here consider also NGC 4258, which is a spiral galaxy
at a distance of about 73 − 83 Mpc. In this case, the mass of the central DCO has been
estimated to be MNGC 4258 = 38.1 ± 0.01 × 106 M⊙, while the observations of the rotation
curve require a central density of at least 4× 109 M⊙ pc−3, which implies a maximum radius
Rmax ≃ 36000RS [48].

Restricting our attention to the regime Λ3 ≪ 1, we show in figure 6 as a forward-shaded
area the upper and lower limits for (mφ, λ) as derived from the observations coming from
NGC 4258. Similarly, in the regime Λ3 ≫ 1, the upper limit for the scalar-field mass is

obtained by setting the maximum mass mφ ≤ mmax
φ =

√

0.22m3
P
/MNGC 4258λ

1/4, while the

lower limit comes from the minimum compactness Cmin = 1/72000. The combined constraint
can then be expressed as (not shown in figure 6)

6.3 eV .
mφ

λ1/4
. 9.6 × 104 eV . (4.7)

Combining these constraints with those derived in the previous section for Sgr A∗, we
obtain the following global constraints on the parameter space obtained when modelling the
DCOs as BSs

3.7 × 104 eV .
mφ

λ1/4
. 9.6 × 104 eV . (4.8)

The corresponding region is shown as a double shaded region in figure 6 and clearly sets a
tighter constraint on the possible values of mφ and λ.

4.3 Constraints from Dark-Matter Models

As mentioned in the Introduction, constraints on the properties of the scalar field can be
imposed also exploiting cosmological observations. We recall that the Lambda Cold Dark
Matter model (or ΛCDM as it is usually referred to4) is a standard model of big bang
cosmology, which attempts to explain within a single framework a number of cosmological
constraints and observations. These are, for instance, the existence and properties of the
cosmic microwave background, the abundances of light elements (hydrogen, helium, lithium),
the large-scale structure of the universe in terms of galaxy clusters, and, more recently,
also the accelerating expansion of the universe observed in the light from distant galaxies
and supernovae.

4Note that the Λ here is the cosmological constant and should not be confused with the self-coupling
constant defined in (2.3).
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Figure 6. Constraints for mφ and λ derived from the observations of NGC 4258 in the limit Λ3 ≪ 1
(forward-shaded area). Shown as a double-shaded area is the combination of the constraints coming
from Sgr A∗ and NGC 4258. Shown with the inset is the same data but in terms of the dimensionless
self-interacting coupling constant Λ.

In spite of its many successes, some of the predictions of the ΛCDM scenario are in con-
trast with observations. One example is the so-called “core/cusp problem” [49, 50], where
numerical N-body simulations assuming a ΛCDM cosmology predict the generation of diverg-
ing cusps in the central density of the DM distribution in galaxies, and which are incompati-
ble with observations at galactic scales [51]. Another example is the so-called “dwarf-galaxy
problem” [52], where again the ΛCDM predicts an overproduction of dwarf galaxies in the
local group, which is not corroborated by observations. Some possible solutions to these
problems have been suggested even within the ΛCDM paradigm. For instance, the core/cusp
problem could be alleviated if dynamical friction [53] or stellar feedback [54] are included.
Similarly, for the dwarf-galaxy problem, it was suggested that accretion of gas onto low-mass
halos is not enough to make them observable. Possible reasons of this inefficient accretion
could be supernova feedback [55, 56], photoionization [57] or reionization [58]. It has also
been suggested that this may simply be a problem with our ability to detect the missing
satellite galaxies in the Local Group, or that these are in a region of the sky that has not
been surveyed yet [59]. Alternative solutions suggest instead that DM might be treated as
extremely light bosonic (dark) matter. Some models based on this idea are the so-called
“fuzzy dark matter” [2], or the scalar-field (dark) matter [3–5]. Both suggestions predict flat
density profiles at the centre of galaxies [60] and fit the abundance of dwarf galaxies [3–5].
An alternative suggestion is that the DM particle could have a very strong self-interaction,
but negligible annihilation [61]. In this case, the core/cusp problem is alleviated since the
strong self-interaction increases the scattering among DM particles. The scattering cross
section is then so high that collisions at the centre of galaxies are very so frequent that dark
matter particles scatter out the centre as fast as they are accreted, thus effectively preventing
a growth in the density.

In what follows we briefly summarize the main results of the scalar-field DM and the
“collisional” DM scenarios and discuss how to use the present observations to further con-
straint the space of parameters for a complex scalar field. We recall that the collisional DM
model of [61] is also referred to as “self-interacting” DM because the scattering cross section
is much larger than that of standard WIMPS, that collisions among DM particles are very
frequent. On the other hand, the prototype of a DM candidate consisting of ultra-light scalar
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field is the axion, which has been introduced as a solution to the strong CP problem [62, 63].
The mass of the axion has been estimated to be in the range 10−5 eV . ma . 10−3 eV [64].
However, in order to explain the singular galactic core and suppress the formation of dwarf
galaxies, the axion’s mass should be orders of magnitude smaller. In the absence of self-
interaction, the mass should in fact be mφ ∼ 10−22−10−24 eV, which then gives a reasonable
fit to the rotation curves [16, 17].

At the same time, the cosmological study of the scalar-field DM performed in [3, 65, 66]
for different potentials V (φ) have shown to be able to reproduce all the features of the
standard ΛCDM in the linear regime of perturbations. Furthermore, a DM model with a
complex scalar field having a quartic potential was studied in [19], and the fit of rotational
curves for dwarf galaxies was shown to be robust provided that

2.7 eV .
mφ

λ1/4
. 2.9 eV . (4.9)

This is shown as a thick solid line in figure 7.
A different suggestion has been made in ref. [61], where the DM is proposed to be cold,

non-dissipative and self-interacting with a scattering cross-section per particle mass given by

σ2→2

mφ
= 10−25 − 10−23 cm2

GeV
, (4.10)

and independent of the particle itself. This model solves the small scale problems of ΛCDM
and N−body numerical simulation confirms this [67]. Since the conjecture is made without
assuming a particular model for DM, we can derive the values for (mφ, λ) for a scalar field
with self-interaction. For that, we introduce as the interacting potential V = λφ4/4. Thus,
the scattering matrix element is M(φφ → φφ) = iλ and the resulting cross-section is

σ(φφ → φφ) = σφφ =
λ2

16πs
=

λ2

64πm2
φ

, (4.11)

since the square of the centre of mass energy is s = 4m2
φ. By requiring that the cross-section

of eq. (4.11) has the strength of the collisional DM of eq. (4.10), we find that mφ must be

9.5 × 105 eV .
mφ

λ2/3
. 9.5 × 107 eV . (4.12)

The constraints coming from the different DM models are summarized in figure 7, where we
show with a dashed magenta area the allowed values for mφ and λ coming from the collisional
DM model [cf. eq. (4.10)], while shown with a black region are the corresponding values as
constrained from the measurement of the DM halo [cf. eq. (4.9)].

4.4 Collecting all constraints

We can combine all of the constraints derived so far and conclude that a scalar field which
can account for DM candidate and fulfill the constraints imposed by the observations on the
DCO at the centre of our Galaxy and NGC 4258 must have a mass and a self-interacting
coupling constant in the ranges

6.5 × 10−9 . λ . 4.2 × 10−3 ,

332 eV . mφ . 2.46 × 104 eV . (4.13)
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magenta area the allowed values for coming from the collisional DM model, while shown with a black
region are the corresponding values as constrained from the measurement of the DM halo.
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Figure 8. Constraints on (mφ, λ) based on available stellar kinematic data for Sgr A∗ (narrow upper
stripe filled with solid blue lines), as well as for NGC 4258 (broad lower stripe filled with dashed
orange lines) and their intersection (middle stripe filled with black crosses). The solid magenta stripe
that crosses all other stripes is derived from the requirement of collisional DM and demarcates the
combined restrictions (red solid region). We also show the limits on the parameters derived from the
models of galactic DM halos based on scalar fields (solid black line).

This region is marked as “combined” in figure 8, which reports also the constraints coming
from modelling the DCOs as BSs and discussed in the previous sections.

We also note that although the lower limit of the region constrained from the observa-
tions of NGC 4258 is not too far from the limit set by condition (4.9), the latter is at least
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four orders of magnitude smaller than the region representing the overlap between collisional
DM models and the kinematic constraints from galactic observations. As a result, we con-
clude that a scalar field that could explain the rotation curves in nearby galaxies cannot be
the same composing a BS representing the DCOs in galactic nuclei.

5 Conclusions

We have used the most accurate astronomical observations on the kinematics of galaxy centres
to set constraints on the mass mφ and self-interaction constant λ of complex scalar fields,
which have been employed in the literature to model BSs as DCOs in galactic centres or as
DM candidates on cosmological scales. More specifically, we have used the estimates of the
mass and volume for the nucleus of our Galaxy and of NGC 4258 to limit the possible models
of BSs when these are advocated to account for such observations.

These constraints, together with those obtained by considering possible DM candidates
have allowed us to restrict the possible values of mφ and λ to the ranges

6.5 × 10−9 . λ . 4.2 × 10−3 ,

332 eV . mφ . 2.46 × 104 eV ,

that is to a region that spans six orders of magnitude for λ and one order of magnitude for
mφ. To the best of our knowledge, these constraints for the scalar field are by far tighter than
any other discussed so far in astrophysical or cosmological context. In addition, since the
space of parameters has two non-overlapping constrained regions, we conclude that a scalar
field that could explain the rotation curves in nearby galaxies cannot be the same composing
a BS representing the DCOs in galactic nuclei.

Our analysis here has been limited to the simplest possible scenario in which the DCO
is not a black hole but a BS. However, as long as the presence of a BS at the galactic
centre cannot be ruled out, a more plausible configuration is one in which the BS actually
hosts at its centre a massive black hole of comparable mass, i.e., a hybrid BS. Mixed models
for BS have been proposed in the past, for instance when studying the boundary between
stable and unstable equilibrium configurations of cold boson-fermion stars (see [14, 68] and
references therein).

While we are not suggesting that a hybrid BS hosting a BH at its centre is the most
natural configuration, we do believe it is more appealing than a simple BS and for a number
of reasons. First, as long as the size of the black-hole horizon is much smaller than the scalar-
field Compton length, the accretion of the scalar field onto the black hole is very small [69]
and hence a stationary model can be constructed (if this was not the case the scalar field
would eventually be all accreted by the black hole, as recently suggested in [70]). Second, a
hybrid BS automatically satisfies all the constraints usually set when considering the DCO
as a massive black hole. Finally, by having a black hole at its centre, a hybrid BS does not
need to account for the electromagnetic emission that would be otherwise produced by the
matter condensing and heating-up at the centre of an ordinary BS.

Together with these advantages, however, a hybrid-BS model has the important draw-
back that it may be very difficult to distinguish it from a pure black-hole solution, the differ-
ences being so small that they may be below the present (and possibly future) observational
limits from electromagnetic radiation. In this respect, the gravitational-wave observations
that will be made possible by the space-borne LISA mission, may well be determinant. LISA
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will in fact detect a large number of extreme-mass ratio inspirals or EMRIs (see, [71] for
a recent review) and because the associated gravitational waveforms probe a region of the
spacetime very close to the black hole, they may work as telltale about the presence of a
scalar field surrounding the black hole. Some work on the effects of matter fields on the
gravitational-wave emission from EMRIs has already been done [72, 73], and extending this
question also to scalar fields will be the focus of our future research.
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