On the fermionic T-duality of the $A d S_{4} \times \mathbb{C} P^{3}$ sigma-model

Ido Adam, ${ }^{a}$ Amit Dekel ${ }^{b}$ and Yaron Oz^{b}
${ }^{a}$ Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Golm, Germany
${ }^{b}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv 69978, Israel
E-mail: idoadam@aei.mpg.de, amitde@post.tau.ac.il, yaronoz@post.tau.ac.il

Abstract: In this note we consider a fermionic T-duality of the coset realization of the type IIA sigma-model on $A d S_{4} \times \mathbb{C} P^{3}$ with respect to the three flat directions in $A d S_{4}$, six of the fermionic coordinates and three of the $\mathbb{C P}^{3}$ directions. We show that the Buscher procedure fails as it leads to a singular transformation and discuss the result and its implications.

Keywords: Duality in Gauge Field Theories, String Duality

ArXiv EPRINT: 1008.0649

Contents

1 Introduction and summary 1
2 T-dualizing $A d S_{4} \times \mathbb{C} P^{3} \quad 2$
3 Discussion 5
A The $\operatorname{osp}(6 \mid 4)$ superalgebra 5

1 Introduction and summary

Since the $\mathcal{N}=6$ superconformal Chern-Simons theory with matter was proposed by ABJM [1] as a dual to M-theory on $A d S_{4} \times S^{7} / \mathbb{Z}_{k}$, which reduces in a certain limit to the type IIA superstring on $A d S_{4} \times \mathbb{C P}^{3}$, much work has been devoted to understanding the properties of the ABJM field theory.

Several tree-level scattering amplitudes of the ABJM theory were computed [2] and were shown to possess a Yangian symmetry, which includes the non-local charges and the dual superconformal symmetry [3]. Some light-like polygonal Wilson loops in the ABJM theory were computed in [4] and hinted that the ABJM theory may have a scattering amplitudes/Wilson loop duality, which would further support the case in favor of the existence of dual superconformal symmetry. Additionally, a contour integral reproducing the known tree-level amplitudes has been recently proposed and was shown to have a Yangian symmetry [5]. Furthermore, a differential representation of a dual superconformal symmetry at tree-level has been constructed [6]. This representation involves variables dual to the ones parameterizing part of the R-symmetry in addition to the ones dual to the bosonic and fermionic momenta.

The corresponding findings in $\mathcal{N}=4 \mathrm{SYM}$ in four dimensions were explained from the point of view of string theory on $A d S_{5} \times S^{5}$ by a combination of bosonic and fermionic Tdualities, which is exact at the string tree-level [7, 8] (see [9] for a short review). Hence, it is interesting to see whether that is also the case for type IIA strings on $A d S_{4} \times \mathbb{C P}^{3}$. Previously, it was found that the sigma-model for $A d S_{4} \times \mathbb{C P}^{3}$, realized as the coset $\operatorname{OSp}(6 \mid 4) /(\mathrm{SO}(2,1) \times \mathrm{U}(3))$ constructed in $[10,11]$, was not self-dual under T-duality involving both three directions in $A d S_{4}$ and six fermionic coordinates [12, 13]. In fact, one could not perform a fermionic T-duality in six fermionic isometries which together with the dualized bosonic ones form an Abelian subgroup of the whole isometry group.

In this note, in light of a suggestion that T-dualizing three isometries of $\mathbb{C P}^{3}$ is also required [3] and the new evidence $[5,6]$ from the field theory, we consider the fermionic T-duality along the three flat $A d S_{4}$ coordinates, three complex Killing vectors in $\mathbb{C P}^{3}$ (each one of real dimension one) as well as six of the fermionic coordinates, whose corresponding
tangent-space vectors generate an Abelian subgroup of the isometry group. We show that as in the case of dualizing just in $A d S_{4}$ and the fermions, the Buscher procedure fails as it leads to a singular transformation [12].

The outline of this note is as follows: in section 2 we apply the Buscher procedure for Tduality to the $\operatorname{OSp}(6 \mid 4) /(\mathrm{SO}(2,1) \times \mathrm{U}(3))$ Green-Schwarz sigma-model describing type IIA strings on $A d S_{4} \times \mathbb{C P}^{3}$ in a certain partial gauge-fixing and show that it fails. In section 3 we discuss the implications of the result. The $\operatorname{osp}(6 \mid 4)$ algebra is given in appendix A.

2 T-dualizing $A d S_{4} \times \mathbb{C P}^{3}$

We attempt to T-dualize $A d S_{4} \times \mathbb{C P}^{3}$ along the directions corresponding to $P_{a}, Q_{l \alpha}, R_{k l}$, which form an Abelian subalgebra of the isometry group.

We assume that κ-symmetry can be partially gauge-fixed to set the six coordinates corresponding to \hat{S}_{α}^{l} to zero and choose the coset representative

$$
\begin{equation*}
g=e^{x^{a} P_{a}+\theta^{l \alpha} Q_{l \alpha}+y^{k l} R_{k l}} e^{B}, \quad e^{B}=e^{\hat{\theta}_{l}^{\alpha} \hat{Q}_{\alpha}^{l}+\xi^{l \alpha} S_{l \alpha}} y^{D} e^{\hat{y}_{k l} \hat{R}^{k l}}, \tag{2.1}
\end{equation*}
$$

where the indices $a=0,1,2$ run over the flat directions of $A d S_{4}, \alpha=1,2$ are $A d S_{4}$ spinor indices and $l=1,2,3$ are $\mathrm{U}(3)$ fundamental representation indices (see appendix A for further details). The Maurer-Cartan one-form is

$$
\begin{equation*}
K=J+j, \quad J=e^{-B}\left(d x^{a} P_{a}+d \theta^{l \alpha} Q_{l \alpha}+d y^{k l} R_{k l}\right) e^{B}, \quad j=e^{-B} d e^{B} . \tag{2.2}
\end{equation*}
$$

Examining the algebra, one finds that the current J takes values in the space spanned by $\left\{P_{a}, Q_{l \alpha}, R_{k l}, \hat{Q}_{\alpha}^{l}, \lambda_{k}^{l}, \hat{R}^{k l}\right\}$, while j is valued in $\operatorname{span}\left\{\hat{Q}_{\alpha}^{l}, S_{l \alpha}, \hat{S}_{\alpha}^{l}, D, M_{a b}, \lambda_{k}^{l}, \hat{R}^{k l}\right\}$.

Denoting the decomposition of K into the \mathbb{Z}_{4}-invariant subspaces by $K_{i} \in \mathcal{H}_{i}$, the Green-Schwarz action takes the form

$$
\begin{align*}
S=\frac{R^{2}}{4 \pi \alpha^{\prime}} \int d^{2} z & \left\{-\frac{1}{2} \eta_{a b} J_{P_{a}} \bar{J}_{P_{b}}-j_{D} \bar{j}_{D}-2 J_{R_{k l}}\left(\bar{J}_{\hat{R}^{k l}}+\bar{j}_{\hat{R}^{k l}}\right)-2 \bar{J}_{R_{k l}}\left(J_{\hat{R}^{k l}}+j_{\hat{R}^{k l}}\right)-\right. \\
& \left.-\frac{i}{2} C_{\alpha \beta}\left[J_{Q_{l \alpha}}\left(\bar{J}_{\hat{Q}_{\beta}^{l}}+\bar{j}_{\hat{Q}_{\beta}^{l}}\right)-\left(J_{\hat{Q}_{\alpha}^{l}}+j_{\hat{Q}_{\alpha}^{l}}\right) \bar{J}_{Q_{l \beta}}-j_{S_{l \alpha}} \bar{j}_{\hat{S}_{\beta}^{l}}+j_{\hat{S}_{\alpha}^{l}} \bar{j}_{l_{l \beta}}\right]\right\} .(2 . \tag{2.3}
\end{align*}
$$

We attempt to T-dualize the action by using the Buscher procedure [14, 15] by introducing the new fields $A^{a}, A^{l \alpha}, A^{k l}, \bar{A}^{a}, \bar{A}^{l \alpha}$ and $\bar{A}^{k l}$ such that the current now reads

$$
\begin{equation*}
J=e^{-B}\left(A^{a} P_{a}+A^{l \alpha} Q_{l \alpha}+A^{k l} R_{k l}\right) e^{B} \tag{2.4}
\end{equation*}
$$

while j, which does not contain x^{a}, $\theta^{l \alpha}$ and $y^{k l}$, remains unmodified. In addition, the following Lagrange multiplier terms are added to the action:

$$
\begin{equation*}
S_{\mathrm{L}}=\frac{R^{2}}{4 \pi \alpha^{\prime}} \int d^{2} z\left[\tilde{x}_{a}\left(\bar{\partial} A^{a}-\partial \bar{A}^{a}\right)+\tilde{\theta}_{l \alpha}\left(\bar{\partial} A^{l \alpha}-\partial \bar{A}^{l \alpha}\right)+\tilde{y}_{k l}\left(\bar{\partial} A^{k l}-\partial \bar{A}^{k l}\right)\right], \tag{2.5}
\end{equation*}
$$

where $\tilde{x}_{a}, \tilde{\theta}_{l \alpha}$ and $\tilde{y}_{k l}$ are Lagrange multipliers.

The T-duality is performed by integrating out the gauge fields, whose equations of motion are

$$
\begin{align*}
0= & -\frac{1}{2} \eta_{b c}\left[e^{-B} P_{a} e^{B}\right]_{P_{b}} J_{P_{c}}+\frac{i}{2} C_{\alpha \beta}\left[\left[e^{-B} P_{a} e^{B}\right]_{Q_{l \alpha}}\left(J_{\hat{Q}_{\beta}^{l}}+j_{\hat{Q}_{\beta}^{l}}\right)-\right. \\
& \left.-\left[e^{-B} P_{a} e^{B}\right]_{\hat{Q}_{\alpha}^{l}} J_{Q_{l \beta}}\right]-2\left[e^{-B} P_{a} e^{B}\right]_{R_{k l}}\left(J_{\hat{R}^{k l}}+j_{\hat{R}^{k l}}\right)-2\left[e^{-B} P_{a} e^{B}\right]_{\hat{R}^{k l}} J_{R_{k l}}+\partial \tilde{x}_{a}, \\
0= & -\frac{1}{2} \eta_{b c}\left[e^{-B} Q_{l \alpha} e^{B}\right]_{P_{b}} J_{P_{c}}+\frac{i}{2} C_{\beta \gamma}\left[\left[e^{-B} Q_{l \alpha} e^{B}\right]_{Q_{k \beta}}\left(J_{\hat{Q}_{\gamma}^{k}}+j_{\hat{Q}_{\gamma}^{k}}\right)-\right. \\
& \left.-\left[e^{-B} Q_{l \alpha} e^{B}\right]_{\hat{Q}_{\beta}^{k}} J_{Q_{k \gamma}}\right]-2\left[e^{-B} Q_{l \alpha} e^{B}\right]_{R_{p q}}\left(J_{\hat{R}^{p q}}+j_{\hat{R}^{p q}}\right)-2\left[e^{-B} Q_{l \alpha} e^{B}\right]_{\hat{R}^{p q}} J_{R_{p q}}- \\
& -\partial \tilde{\theta}_{l \alpha} \\
0= & -\frac{1}{2} \eta_{b c}\left[e^{-B} R_{k l} e^{B}\right]_{P_{b}} J_{P_{c}}+\frac{i}{2} C_{\alpha \beta}\left[\left[e^{-B} R_{k l} e^{B}\right]_{Q_{p \alpha}}\left(J_{\hat{Q}_{\beta}^{p}}+j_{\hat{Q}_{\beta}^{p}}\right)-\right. \\
& \left.-\left[e^{-B} R_{k l} e^{B}\right]_{\hat{Q}_{\alpha}^{p}} J_{Q_{p \beta}}\right]-2\left[e^{-B} R_{k l} e^{B}\right]_{R_{p q}}\left(J_{\hat{R}^{p q}}+j_{\hat{R}^{p q}}\right)-2\left[e^{-B} R_{k l} e^{B}\right]_{\hat{R}^{p q}} J_{R_{p q}}+ \\
& +\partial \tilde{y}_{k l} \tag{2.6}
\end{align*}
$$

for the holomorphic fields and

$$
\begin{align*}
0= & -\frac{1}{2} \eta_{b c}\left[e^{-B} P_{a} e^{B}\right]_{P_{b}} \bar{J}_{P_{c}}-\frac{i}{2} C_{\alpha \beta}\left[\left[e^{-B} P_{a} e^{B}\right]_{Q_{l \alpha}}\left(\bar{J}_{\hat{Q}_{\beta}^{l}}+\bar{j}_{\hat{Q}_{\beta}^{l}}\right)-\left[e^{-B} P_{a} e^{B}\right]_{\hat{Q}_{\alpha}^{l}} \bar{J}_{Q_{l \beta}}\right]- \\
& -2\left[e^{-B} P_{a} e^{B}\right]_{R_{k l}}\left(\bar{J}_{\hat{R}^{k l}}+\bar{j}_{\hat{R}^{k l}}\right)-2\left[e^{-B} P_{a} e^{B}\right]_{\hat{R}^{k l}} \bar{J}_{R_{k l}}-\bar{\partial} \tilde{x}_{a}, \\
0= & -\frac{1}{2} \eta_{b c}\left[e^{-B} Q_{l \alpha} e^{B}\right]_{P_{b}} \bar{J}_{P_{c}}-\frac{i}{2} C_{\beta \gamma}\left[\left[e^{-B} Q_{l \alpha} e^{B}\right]_{Q_{k \beta}}\left(\bar{J}_{\hat{Q}_{\gamma}^{k}}+\bar{j}_{\hat{Q}_{\gamma}^{k}}\right)-\right. \\
& \left.-\left[e^{-B} Q_{l \alpha} e^{B}\right]_{\hat{Q}_{\beta}^{k}} \bar{J}_{Q_{k \gamma}}\right]-2\left[e^{-B} Q_{l \alpha} e^{B}\right]_{R_{p q}}\left(\bar{J}_{\hat{R}^{p q}}+\bar{j}_{\hat{R}^{p q}}\right)-2\left[e^{-B} Q_{l \alpha} e^{B}\right]_{\hat{R}^{p q}} \bar{J}_{R_{p q}}+ \\
& +\bar{\partial} \tilde{\theta}_{l \alpha}, \\
0= & -\frac{1}{2} \eta_{b c}\left[e^{-B} R_{k l} e^{B}\right]_{P_{b}} \bar{J}_{P_{c}}-\frac{i}{2} C_{\alpha \beta}\left[\left[e^{-B} R_{k l} e^{B}\right]_{Q_{p \alpha}}\left(\bar{J}_{\hat{Q}_{\beta}^{p}}+\bar{j}_{\hat{Q}_{\beta}^{p}}\right)-\right. \\
& \left.-\left[e^{-B} R_{k l} e^{B}\right]_{\hat{Q}_{\alpha}^{p}} \bar{J}_{Q_{p \beta}}\right]-2\left[e^{-B} R_{k l} e^{B}\right]_{R_{p q}}\left(\bar{J}_{\hat{R}^{p q}}+\bar{j}_{\hat{R}^{p q}}\right)-2\left[e^{-B} R_{k l} e^{B}\right]_{\hat{R}^{p q}} \bar{J}_{R_{p q}}- \\
& -\bar{\partial} \tilde{y}_{k l} \tag{2.7}
\end{align*}
$$

for the anti-holomorphic ones. (The complexity of the equations arises from the fact that, unlike in the $\operatorname{AdS} S_{5} \times S^{5}$ case, J is valued in a space larger than the one that is actually dualized.)

For the purpose of solving these equations, the properties of the field-dependent grouptheoretic factors must be understood. In particular, it should be checked whether the coefficients of the gauge fields have non-trivial kernels.

In order to do so, we resort to explicitly expressing the currents in terms of the coordinates. We denote $C \equiv \hat{\theta}_{l}^{\alpha} \hat{Q}_{\alpha}^{l}+\xi^{l \alpha} S_{l \alpha}$ and examine the commutators

$$
\begin{align*}
{\left[P_{a}, C\right] } & =-\frac{i}{\sqrt{2}} \gamma_{a \alpha}{ }^{\beta} \xi^{l \alpha} Q_{l \beta} \equiv \Xi_{a}^{P l \beta} Q_{l \beta}, \\
{\left[Q_{l \beta}, C\right] } & =\frac{1}{\sqrt{2}}\left(\gamma^{a} C\right)_{\beta \alpha} \hat{\theta}_{l}^{\alpha} P_{a}+\frac{1}{\sqrt{2}} C_{\beta \alpha} \xi^{k \alpha} R_{l k} \equiv \Theta_{l \beta}^{Q a} P_{a}+\Xi_{\beta}^{Q k} R_{l k} \equiv M_{l \beta} \\
{\left[R_{k l}, C\right] } & =-\frac{i}{\sqrt{2}}\left(\hat{\theta}_{l}^{\alpha} \delta_{k}^{p}-\hat{\theta}_{k}^{\alpha} \delta_{l}^{p}\right) Q_{p \alpha} \equiv \Theta_{k l}^{R p \alpha} Q_{p \alpha} \tag{2.8}
\end{align*}
$$

We further define

$$
\begin{equation*}
N_{l \alpha}^{k \beta}=\Theta_{l \alpha}^{Q a} \Xi_{a}^{P k \beta}+\Xi_{\alpha}^{Q p} \Theta_{p l}^{R k \beta} \tag{2.9}
\end{equation*}
$$

and note that $\left[M_{l \alpha}, C\right]=N_{l \alpha}{ }^{k \beta} Q_{k \beta}$ and $\left[Q_{l \alpha}, C\right]=M_{l \alpha}$. Using the formula $e^{-B} A e^{B}=$ $A+[A, B]+\frac{1}{2!}[[A, B], B]+\ldots$, we get

$$
\begin{align*}
& e^{-C}\left(d x^{a} P_{a}+d \theta^{l \alpha} Q_{l \alpha}+d y^{k l} R_{k l}\right) e^{C}=d x^{a} P_{a}+d y^{k l} R_{k l}+ \\
& \quad+\left(d x^{a} \Xi_{a}^{P l \alpha}+d y^{p q} \Theta_{p q}^{R l \alpha}\right)\left[\left(\frac{\cosh \sqrt{N}-1}{N}\right)_{l \alpha}^{k \beta} M_{k \beta}+\left(\frac{\sinh \sqrt{N}}{\sqrt{N}}\right)_{l \alpha}^{k \beta} Q_{k \beta}\right]+ \\
& \quad+d \theta^{l \alpha}\left[\left(\frac{\sinh \sqrt{N}}{\sqrt{N}}\right)_{l \alpha}^{k \beta} M_{k \beta}+(\cosh \sqrt{N})_{l \alpha}^{k \beta} Q_{k \beta}\right] . \tag{2.10}
\end{align*}
$$

Finally, conjugating with $y^{D} e^{\hat{y}_{k l}} \hat{R}^{k l}$ yields the current

$$
\begin{align*}
J= & \frac{d x^{a}}{y} P_{a}+d y^{k l}\left(R_{k l}+2 i \sqrt{2} \hat{y}_{k q} \lambda_{l}^{q}+2 \hat{y}_{k q} \hat{y}_{l n} \hat{R}^{q n}\right)+ \\
& +\left[\left(d x^{a} \Xi_{a}^{P l \alpha}+d y^{p q} \Theta_{p q}^{R l \alpha}\right)\left(\frac{\cosh \sqrt{N}-1}{N}\right)_{l \alpha}^{k \beta}+d \theta^{l \alpha}\left(\frac{\sinh \sqrt{N}}{\sqrt{N}}\right)_{l \alpha}^{k \beta}\right] \times \\
& \times\left[\tilde{M}_{k \beta}+i \sqrt{2} \Xi_{\beta}^{Q m}\left(\hat{y}_{k q} \lambda_{m}^{q}-\hat{y}_{m q} \lambda_{k}^{q}\right)+\Xi_{\beta}^{Q r}\left(\hat{y}_{k q} \hat{y}_{r n}-\hat{y}_{r q} \hat{y}_{k n}\right) \hat{R}^{q n}\right]+ \\
& +\frac{1}{y^{1 / 2}}\left[\left(d x^{a} \Xi_{a}^{P l \alpha}+d y^{p q} \Theta_{p q}^{R l \alpha}\right)\left(\frac{\sinh \sqrt{N}}{\sqrt{N}}\right)_{l \alpha}^{k \beta}+d \theta^{l \alpha}(\cosh \sqrt{N})_{l \alpha}^{k \beta}\right] \times \\
& \times\left(Q_{k \beta}+i \sqrt{2} \hat{y}_{p k} \hat{Q}_{\beta}^{p}\right), \tag{2.11}
\end{align*}
$$

where $\tilde{M}_{k \beta} \equiv y^{-D} M_{k \beta} y^{D}=\frac{1}{y} \Theta_{l \alpha}^{Q a} P_{a}+\Xi_{\alpha}^{Q l} R_{k l}$.
Unfortunately, j is even more complicated. However, before plunging into its computation in a closed form it is worthwhile to examine it to the lowest order in $\hat{\theta}_{l}^{\alpha}$ and $\xi^{l \alpha}$. Doing so yields,

$$
\begin{equation*}
j=\frac{d \hat{\theta}_{l}^{\alpha}}{y^{1 / 2}} \hat{Q}_{\alpha}^{l}+y^{1 / 2} d \xi^{l \alpha} S_{l \alpha}-i \sqrt{2} y^{1 / 2} \hat{y}_{k l} d \xi^{l \alpha} \hat{S}_{\alpha}^{k}+\frac{d y}{y} D+d \hat{y}_{p q} \hat{R}^{p q}+O\left(\hat{\theta}_{l}^{\alpha}, \xi^{l \alpha}\right) \tag{2.12}
\end{equation*}
$$

Having the currents, we can take a look at the action to lowest order in $\hat{\theta}_{l}^{\alpha}$ and $\xi^{l \alpha}$:

$$
\begin{align*}
S= & \frac{R^{2}}{4 \pi \alpha^{\prime}} \int d^{2} z\left\{-\frac{1}{2} \eta_{a b} \frac{\partial x^{a} \bar{\partial} x^{b}}{y^{2}}-\frac{\partial y \bar{\partial} y}{y^{2}}-2 \partial y^{k l}\left(2 \hat{y}_{p k} \hat{y}_{q l} \bar{\partial} y^{p q}+\bar{\partial} \hat{y}_{k l}\right)-\right. \tag{2.13}\\
& -2 \bar{\partial} y^{k l}\left(2 \hat{y}_{p k} \hat{y}_{q l} \partial y^{p q}+\partial \hat{y}_{k l}\right)-\frac{i}{2 y} C_{\alpha \beta}\left[\partial \theta^{l \alpha}\left(i \sqrt{2} \hat{y}_{k l} \bar{\partial} \theta^{k \beta}+\bar{\partial} \hat{\theta}_{l}^{\beta}\right)-\right. \\
& \left.\left.-\left(i \sqrt{2} \hat{y}_{k l} \partial \theta^{k \alpha}+\partial \hat{\theta}_{l}^{\alpha}\right) \bar{\partial} \theta^{l \beta}\right]+\frac{i}{2} y C_{\alpha \beta}\left(-i \sqrt{2} \hat{y}_{l k} \partial \xi^{l \alpha} \bar{\partial} \xi^{k \beta}+i \sqrt{2} \hat{y}_{l k} \partial \xi^{k \alpha} \bar{\partial} \xi^{l \beta}\right)\right\} .
\end{align*}
$$

The term quadratic in the $\theta^{l \alpha}$ derivatives is multiplied by a three-dimensional antisymmetric matrix, whose rank is two, and the higher order terms in $\hat{\theta}_{l}^{\alpha}$ and $\xi^{l \alpha}$ cannot make
the matrix's kernel trivial. Thus the term quadratic in the fermionic gauge fields in the dualized action will be multiplied by a singular matrix and the fermionic gauge fields will be multiplied by a singular matrix in the equations of motion - one cannot T-dualize all the six fermionic coordinates.

Since the obstruction to T-dualizing the fermionic coordinates is at the zeroth order in the spectator fermions, it appears that modifying the κ-symmetry gauge-fixing of these fermionic degrees of freedom would not change the above conclusion.

3 Discussion

We showed that the application of the Buscher T-duality procedure to the coset $\operatorname{OSp}(6 \mid 4) /(\operatorname{SO}(2,1) \times \mathrm{U}(3))$ fails when dualizing along the $A d S_{4}$ flat directions, three of the (real) $\mathbb{C P}^{3}$ directions and six fermionic directions. There are several ways to explain this apparent tension between the field theory tree-level evidence and the sigma-model analysis.

The simplest and most obvious explanation is that the dual superconformal symmetry exists only in the weakly-coupled field theory description and breaks down at the strong-coupling regime, which is described by the string theory dual. A second possibility is that in this case the dual superconformal symmetry is not related to the ordinary superconformal symmetry by a T-duality transformation but in a more intricate way.

A third possibility is that the coset formulation does not capture the entire superstring description. The coset is obtained by a partial gauge-fixing of the κ-symmetry of the full $A d S_{4} \times \mathbb{C P}^{3}$ sigma-model [16] by setting the fermionic coordinates corresponding to the eight broken supersymmetries to zero. However, as noted in [16], this gauge-fixing is not compatible with all the possible string configurations. Thus, it does not have a representation for certain field theory operators, which might amount to a (possibly inconsistent) truncation of the field theory that does not preserve the dual superconformal symmetry. A way to resolve this issue could be to use a better gauge-fixing of the κ-symmetry as proposed in $[13,16]$.

Acknowledgments

We would like to thank Y-t. Huang and A. E. Lipstein for sharing a draft of their paper [6] with us before its publication. I.A. is supported in part by the German-Israeli Project cooperation (DIP H.52) and the German-Israeli Fund (GIF).

A The osp(6|4) superalgebra

The $\operatorname{osp}(6 \mid 4)$ algebra's commutation relations in the so $(1,2) \oplus u(3)$ basis are given by

$$
\begin{align*}
{\left[\lambda_{k}{ }^{l}, \lambda_{m}{ }^{n}\right] } & =\frac{i}{\sqrt{2}}\left(\delta_{m}{ }^{l} \lambda_{k}{ }^{n}-\delta_{k}{ }^{n} \lambda_{m}{ }^{l}\right), \tag{A.1}\\
{\left[\lambda_{k}{ }^{l}, R_{m n}\right] } & =\frac{i}{\sqrt{2}}\left(\delta_{m}{ }^{l} R_{k n}-\delta_{n}{ }^{l} R_{k m}\right), \quad\left[\lambda_{l}{ }^{k}, \hat{R}^{p q}\right]=-\frac{i}{\sqrt{2}}\left(\delta_{l}^{p} \hat{R}^{k q}-\delta_{l}^{q} \hat{R}^{k p}\right) \tag{A.2}\\
{\left[R_{m n}, R_{k l}\right] } & =0, \quad\left[R_{m n}, \hat{R}^{k l}\right]=\frac{i}{\sqrt{2}}\left(\delta_{m}{ }^{k} \lambda_{n}{ }^{l}-\delta_{m}{ }^{l} \lambda_{n}{ }^{k}-\delta_{n}{ }^{k} \lambda_{m}{ }^{l}+\delta_{n}{ }^{l} \lambda_{m}{ }^{k}\right) \tag{A.3}
\end{align*}
$$

$$
\left.\left.\begin{array}{rlrl}
{\left[P_{a}, P_{b}\right]} & =0, & {\left[K_{a}, K_{b}\right]=0,} & {\left[P_{a}, K_{b}\right]}
\end{array}\right)=\eta_{a b} D-M_{a b}\right)
$$

The indices take the values $k, l=1, \ldots, 3$, the $\mathbf{3} u(3), a, b=0,1,2$ are the $\mathbf{3}$ of so(1,2) and $\alpha, \beta, \ldots=1,2$ are the $\operatorname{so}(2,1)$ spinors, and $\eta=\operatorname{diag}(-,+,+)$. The generators satisfy the following relations under complex conjugation $R_{k l}^{*}=\hat{R}^{k l}, \lambda_{k}{ }^{l}=\lambda_{l}^{* k}, \hat{Q}_{\alpha}^{l}=\left(Q_{l \alpha}\right)^{*}$ and $\hat{S}_{\alpha}^{l}=\left(S_{l \alpha}\right)^{*}$. The $\left(\gamma_{a}\right)_{\alpha}^{\beta}$ are the Dirac matrices of $\operatorname{so}(1,2)$, and $\gamma_{a b}=\frac{i}{2}\left[\gamma_{a}, \gamma_{b}\right]$. We raise and lower spinor indices using $C_{\alpha \beta}=\epsilon_{\alpha \beta}, \psi_{\alpha}=\psi^{\beta} \epsilon_{\beta \alpha}, \psi^{\alpha}=\epsilon^{\alpha \beta} \psi_{\beta}$, where $\epsilon_{12}=-\epsilon_{21}=\epsilon^{12}=-\epsilon^{21}=1$.

The bilinear forms are given by

$$
\begin{align*}
\operatorname{Str}\left(R_{k l}, \hat{R}^{p q}\right) & =\delta_{k}^{q} \delta_{l}^{p}-\delta_{k}^{p} \delta_{l}^{q} \\
\operatorname{Str}\left(\lambda_{k}^{l}, \lambda_{p}^{q}\right) & =-\delta_{k}^{q} \delta_{l}^{p} \\
\operatorname{Str}\left(Q_{l \alpha}, \hat{S}_{\beta}^{k}\right) & =i \delta_{l}^{k} C_{\alpha \beta} \\
\operatorname{Str}\left(S_{l \alpha}, \hat{Q}_{\beta}^{k}\right) & =-i \delta_{k}^{l} C_{\alpha \beta} \tag{A.21}\\
\operatorname{Str}\left(P_{a}, K_{b}\right) & =-\eta_{a b} \\
\operatorname{Str}(D, D) & =-1 \\
\operatorname{Str}\left(M_{a b}, M_{c d}\right) & =\eta_{a c} \eta_{b d}-\eta_{a d} \eta_{b c}
\end{align*}
$$

The \mathbb{Z}_{4} subspaces with the invariant locus of $\mathrm{U}(3) \times \mathrm{SO}(3,1)$ which gives the semisymmetric space $A d S_{4} \times \mathbb{C P}^{3}$ are

$$
\begin{align*}
& \mathcal{H}_{0}=\left\{P_{a}-K_{a}, M_{a b}, \lambda_{k}^{l}\right\}, \\
& \mathcal{H}_{1}=\left\{Q_{l \alpha}-S_{l \alpha}, \hat{Q}_{\alpha}^{l}-\hat{S}_{\alpha}^{l}\right\}, \\
& \mathcal{H}_{2}=\left\{P_{a}+K_{a}, D, R_{k l}, \hat{R}^{k l}\right\}, \tag{A.22}\\
& \mathcal{H}_{3}=\left\{Q_{l \alpha}+S_{l \alpha}, \hat{Q}_{\alpha}^{l}+\hat{S}_{\alpha}^{l}\right\} .
\end{align*}
$$

References

[1] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, $\mathcal{N}=6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].
[2] A. Agarwal, N. Beisert and T. McLoughlin, Scattering in mass-deformed $N \geq 4$ Chern-Simons models, JHEP 06 (2009) 045 [arXiv:0812.3367] [SPIRES].
[3] T. Bargheer, F. Loebbert and C. Meneghelli, Symmetries of tree-level scattering amplitudes in $\mathcal{N}=6$ superconformal Chern-Simons theory, Phys. Rev. D 82 (2010) 045016 [arXiv:1003.6120] [SPIRES].
[4] J.M. Henn, J. Plefka and K. Wiegandt, Light-like polygonal Wilson loops in 3D Chern-Simons and ABJM theory, JHEP 08 (2010) 032 [arXiv:1004.0226] [SPIRES].
[5] S. Lee, Yangian invariant scattering amplitudes in supersymmetric Chern-Simons theory, arXiv:1007. 4772 [SPIRES].
[6] Y.-T. Huang and A.E. Lipstein, Dual superconformal symmetry of $\mathcal{N}=6$ Chern-Simons theory, arXiv:1008.0041 [SPIRES].
[7] N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].
[8] N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from $A d S_{5} \times S^{5}$ superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].
[9] N. Beisert, T-duality, dual conformal symmetry and integrability for strings on $\operatorname{AdS} S_{5} \times S^{5}$, Fortsch. Phys. 57 (2009) 329 [arXiv:0903.0609] [SPIRES].
[10] B. Stefanski jr., Green-Schwarz action for type IIA strings on $A d S_{4} \times \mathbb{C P}^{3}$, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].
[11] G. Arutyunov and S. Frolov, Superstrings on $A d S_{4} \times \mathbb{C P}^{3}$ as a coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].
[12] I. Adam, A. Dekel and Y. Oz, On integrable backgrounds self-dual under fermionic T-duality, JHEP 04 (2009) 120 [arXiv:0902.3805] [SPIRES].
[13] P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in $A d S_{4} \times \mathbb{C P}^{3}$ superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [SPIRES].
[14] T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].
[15] T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [SPIRES].
[16] J. Gomis, D. Sorokin and L. Wulff, The complete $A d S_{4} \times \mathbb{C P}^{3}$ superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].

