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1 Introduction and summary

Since the N/ = 6 superconformal Chern-Simons theory with matter was proposed by
ABJM [1] as a dual to M-theory on AdSy x S7/Zy, which reduces in a certain limit to
the type IIA superstring on AdS; x CP3, much work has been devoted to understanding
the properties of the ABJM field theory.

Several tree-level scattering amplitudes of the ABJM theory were computed [2] and
were shown to possess a Yangian symmetry, which includes the non-local charges and the
dual superconformal symmetry [3]. Some light-like polygonal Wilson loops in the ABJM
theory were computed in [4] and hinted that the ABJM theory may have a scattering am-
plitudes/Wilson loop duality, which would further support the case in favor of the existence
of dual superconformal symmetry. Additionally, a contour integral reproducing the known
tree-level amplitudes has been recently proposed and was shown to have a Yangian sym-
metry [5]. Furthermore, a differential representation of a dual superconformal symmetry
at tree-level has been constructed [6]. This representation involves variables dual to the
ones parameterizing part of the R-symmetry in addition to the ones dual to the bosonic
and fermionic momenta.

The corresponding findings in N’ = 4 SYM in four dimensions were explained from the
point of view of string theory on AdSs x S° by a combination of bosonic and fermionic T-
dualities, which is exact at the string tree-level [7, 8] (see [9] for a short review). Hence, it
is interesting to see whether that is also the case for type IIA strings on AdS; x CP3.
Previously, it was found that the sigma-model for AdS; x CP3, realized as the coset
OSp(6]4)/(SO(2,1) x U(3)) constructed in [10, 11], was not self-dual under T-duality in-
volving both three directions in AdS4 and six fermionic coordinates [12, 13]. In fact, one
could not perform a fermionic T-duality in six fermionic isometries which together with
the dualized bosonic ones form an Abelian subgroup of the whole isometry group.

In this note, in light of a suggestion that T-dualizing three isometries of CP3 is also
required [3] and the new evidence [5, 6] from the field theory, we consider the fermionic
T-duality along the three flat AdSs coordinates, three complex Killing vectors in CP3 (each
one of real dimension one) as well as six of the fermionic coordinates, whose corresponding



tangent-space vectors generate an Abelian subgroup of the isometry group. We show that
as in the case of dualizing just in AdS4 and the fermions, the Buscher procedure fails as it
leads to a singular transformation [12].

The outline of this note is as follows: in section 2 we apply the Buscher procedure for T-
duality to the OSp(6]4)/(SO(2,1) x U(3)) Green-Schwarz sigma-model describing type ITA
strings on AdSy x CP3 in a certain partial gauge-fixing and show that it fails. In section 3

we discuss the implications of the result. The osp(6]4) algebra is given in appendix A.

2 T-dualizing AdS,; x CP3

We attempt to T-dualize AdS,; x CP3 along the directions corresponding to P,, Qa, R,
which form an Abelian subalgebra of the isometry group.

We assume that k-symmetry can be partially gauge-fixed to set the six coordinates
corresponding to 5‘& to zero and choose the coset representative

g= emapa+‘9lana+ykleleB ’ eB = eéf‘QloﬂrﬁlaSlayDerlel , (2.1)
where the indices a = 0, 1,2 run over the flat directions of AdSy, a = 1,2 are AdS, spinor
indices and [ = 1,2,3 are U(3) fundamental representation indices (see appendix A for

further details). The Maurer-Cartan one-form is
K=J+j, J= efB(dxaPa + d6' Q. + dyklel)eB . j=eBdeP . (2.2)

Examining the algebra, one finds that the current J takes values in the space spanned by
{Ps, Qo Rii, Qg, Akl,Rkl}, while j is valued in span{QAfl, Slas S'fl, D, My, Akl,Rkl}.

Denoting the decomposition of K into the Z4-invariant subspaces by K; € H;, the
Green-Schwarz action takes the form

R2

4o/

S /dzz{ - 277abJPaJPb —JDJD — QJRH(JRM +]Rkl) - QJRH(JRM +]Rkl) -
7: T 7. . T . 7. . 7.
— 5Cap [JQM(J% +igy) = (o g )i —Isidgt +J§gﬂsm] } (2.3)

We attempt to T-dualize the action by using the Buscher procedure [14, 15] by intro-
ducing the new fields A%, A, AR A Al and AF' such that the current now reads

J=eP(AP, + AQy + A¥ Ryy)e? | (2.4)

while j, which does not contain z%, #'* and y*, remains unmodified. In addition, the

following Lagrange multiplier terms are added to the action:

R2
St =

4o/

/ 2z [gza(éAa — AY) + O (FA — QA1) + (DA — aﬁkl)] . (2.5)

where %4, 0, and §x; are Lagrange multipliers.



The T-duality is performed by integrating out the gauge fields, whose equations of
motion are

1 _B B ) -B B 1

- [eiBPaeB]QAaJQlﬁ] - 2[eiBPaeB]Rkl(JRkl + ijl) - 2[67313@63]]%,@[ JRkl + ai’a 5
1 _B B i -B B ;
0= _277bc[e Qlae ]PbJPC + 20[3'\/ |:[€ Qlae ]Qkﬁ(‘]:@ +]Qf§) -
- [eiBQlaeB]QgJQk—y} - 2[eiBQlaeB]qu(Jqu + jﬁpq) - 2[eiBQlaeB]f{pq Jqu -
- aéloz )
1 _ 1 _ .
0=~ ele " Ryae”)p, Jp. + o Cas [[6 BRMBB]QM(JQ% +igr) —
— [eiBRkleB]Qg JQP,B] — 2[eiBRkl€B]Rm(Jqu + jqu) - 2[efBRkl€B]qu Jqu +
+ OYki (2.6)

for the holomorphic fields and

1

_ __ _ _ _ .
0=~ lhele Bp.ePlp, Jp, — QCag[[e BPaeB]Qla(JQlﬁ +Jg) — e PPl Jqu

- 2[6_BpaeB]Rkl(ijl + 5Rkl) - 2[6_BpaeB]Rkl jRM - 5i’a )
1 —B B T i —B B T =
0= _277bc[e Qlae ]PbJPC - 20[3'\/ |:[€ Qlae ]Qkﬁ(‘]:@ +]Q’l§) -

- [eiBQlaeB]Qg ij'y:| - 2[eiBQlaeB]qu(Jf{pq + jRP‘Z) - 2[eiBQlaeB]f{pq jqu +

+ 59~lo¢ )
1 _ - 1 _ - -
0= — el P RyieP)p, Jp. — o Cas [[6 BRkleB]Qpa(JQg +ign) —
— [eiBRkleB]Qg jQpB} — 2[eiBRkl€B]Rm(jqu + jqu) - 2[eiBRkl€B]qu jqu —
— O (2.7)

for the anti-holomorphic ones. (The complexity of the equations arises from the fact that,
unlike in the AdSs x S° case, J is valued in a space larger than the one that is actually
dualized.)

For the purpose of solving these equations, the properties of the field-dependent group-
theoretic factors must be understood. In particular, it should be checked whether the
coefficients of the gauge fields have non-trivial kernels.

In order to do so, we resort to explicitly expressing the currents in terms of the coor-
dinates. We denote C = éf‘@la + §l°‘Sla and examine the commutators

i -
[Pa,C] = —\/Q%aﬁﬁlaQw ==8Qu,
1 A 1 ap | =
Qs C1 =, (" Chsalf Pat ) O™ Rux = O3 Pa+ Z5" Ru = Mg,
i no no le%
(R, C] = — ¢2(91 & = 026" Qpa = O1*Qpor - (2.8)



We further define

Nt = ©peElts 4 2gre it (2.9)
and note that [M;,,C| = NlakﬁQw and [Qj,C] = Mj,. Using the formula e~ B AeP =
A+[A B+ 5[[A, B],B] +..., we get

e~ C(dzP, + 0 Qi + dy*' Ryy)e® = dz®P, + dy* R+

kB kB
_ cosh VN — 1 sinh v N
+ (da"ZF" + dyrrefi) ( N ) My + < JN ) Qrp| +
la l

kB

inh v N k

+ dg'e <Sm Wg ) My + (cosh V)i Qus | (2.10)
l

Finally, conjugating with y” e i yields the current

dx® ) . ..
J = } P, + dy™ (Ryy + 20V 201N + 20001 RT") +

k3 kB
cosh VN — 1 sinh VN
+ (dxaEPloz + dypq(_)Rloz) + daloz %
’ " N la \/N la

X |:Mk6 + Z\/Qggm (gkq)\mq - gmq)‘kq) + Egr(@kq@rn - grqgkn)}?qn] +

kB
1 sinh vV N kB
+ dxezlle 4 gyraglile + d0"(cosh VN) | x
12 ( va) ), ( )
X (Qrp + V20 Q%) (2.11)

Y — —Ql
where ng =Y DngyD = ;@%apa + :g Rkl-
Unfortunately, j is even more complicated. However, before plunging into its compu-
tation in a closed form it is worthwhile to examine it to the lowest order in éf‘ and &,
Doing so yields,

o doy , ) o d o )
j= yle QL +y'/2dE" Sy — iV 2y pade*Sh + ny + dipRP+ 002, €%) . (2.12)
Having the currents, we can take a look at the action to lowest order in éf‘ and &'

R? 2 1 02%92®  0Oydy . _
7= tra / a Z{ Tl o T~ 2007 0kl Oy™ + O) = (2.13)

1

— 200" (20,191 0y"! + O91s) — 2

o [aala(wzgkléekﬁ +007) —
— (V20,00 + aé;x)éelﬁ] + ;ycaﬁ(—imgmaglaégkﬂ + Nlekagméglﬁ)}.

The term quadratic in the 6'® derivatives is multiplied by a three-dimensional antisym-
metric matrix, whose rank is two, and the higher order terms in 6;* and ¢l cannot make



the matrix’s kernel trivial. Thus the term quadratic in the fermionic gauge fields in the
dualized action will be multiplied by a singular matrix and the fermionic gauge fields will
be multiplied by a singular matrix in the equations of motion — one cannot T-dualize all
the six fermionic coordinates.

Since the obstruction to T-dualizing the fermionic coordinates is at the zeroth order
in the spectator fermions, it appears that modifying the x-symmetry gauge-fixing of these
fermionic degrees of freedom would not change the above conclusion.

3 Discussion

We showed that the application of the Buscher T-duality procedure to the coset
OSp(6]4)/(SO(2,1) x U(3)) fails when dualizing along the AdSy flat directions, three of the
(real) CP? directions and six fermionic directions. There are several ways to explain this
apparent tension between the field theory tree-level evidence and the sigma-model analysis.

The simplest and most obvious explanation is that the dual superconformal symmetry
exists only in the weakly-coupled field theory description and breaks down at the
strong-coupling regime, which is described by the string theory dual. A second possibility
is that in this case the dual superconformal symmetry is not related to the ordinary
superconformal symmetry by a T-duality transformation but in a more intricate way.

A third possibility is that the coset formulation does not capture the entire superstring
description. The coset is obtained by a partial gauge-fixing of the k-symmetry of the
full AdS,; x CP3 sigma-model [16] by setting the fermionic coordinates corresponding to
the eight broken supersymmetries to zero. However, as noted in [16], this gauge-fixing
is not compatible with all the possible string configurations. Thus, it does not have
a representation for certain field theory operators, which might amount to a (possibly
inconsistent) truncation of the field theory that does not preserve the dual superconformal
symmetry. A way to resolve this issue could be to use a better gauge-fixing of the
k-symmetry as proposed in [13, 16].
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A The osp(6|4) superalgebra

The osp(6[4) algebra’s commutation relations in the so(1,2)®u(3) basis are given by

i
Akl A"] = ﬂ(émlw — 0k Am), (A.1)
M B = (O R — 0 Rem), F, BP0) = — (0P RN — 57 b A2
[Ak ] \/2( k km) Y ] \/2( ! (R (A2)

1

Rmna R = 0, Rmna Rkl =

(O At = 0N F = 8. F AL+ 6,0 0F) (A.3)



[Paa Pb] — 0) [Ka,Kb] = 0) [Pa)Kb] = nab-D - Mab (A4)
[Map, Meq] = NacMpa+mbaMac —Nad Mpe —Nbe Mad (A.5)
[Maba Pc] = "7ach - nbcPaa [Mab, KC] = nach - chKa (AG)
[D,Pa] =P, [D,Ka] =—-K,, [D,Mab] =0 (A.?)
1 1
[D, Qla] = Qlou [D, Sloz] = - Sla (A8)
2 2
[Paa Qla] = 0, [Ka’ Sloz] =0 (Ag)
7 7
[Py, Sia] = ~ (Va)o Qus, [Ka, Qi = V2 (Va)oSip (A.10)
7 7
[Maba Qla] = - 9 ('Yab)aﬁQlB7 [Mab7 Sla] = - 2 (7ab)a65l6 (All)
. 7 A 7
(R, Q0] = \/2(5sz/§@—5ka1&), [Ry1, S = _\/2(5lp5ka_5kpsla)
(A.12)
[Rklana] = _\/2 (6plQ§_6kaloz)’ [Rkl’spa] = \/2 (6171 g_épk (l)z)
(A.13)
7 7
[)‘kla Qpa] = \/2 6pleow [)‘k;la Spa] = \/2 5plSkOé (A14)
Q8 = = 67 QL M SE) = = BPSL (A1)
A 1
{Qi0, Qip} =0, {Qua., QY = _\/25lk('7ac)aﬁpa
(A.16)
A 1
{Sta, Sks} = 0, {Sia, S} = _\/25lk('7ac)aﬁ[(a
(A.17)
1 A7 oA 1 N
{Q1a; Skp} = ~ Cap R, {QL, 55} = ~ /o CopR'* (A.18)
. 1 1, 1
{Qua, S5} = —225lk<0a5D +i, (v bc)aﬁMab> + \/QCaﬁ)‘lk (A.19)
. 1 1, 1
{Q, Spp} = 125,J (CaﬁD —i,(y bC)aﬁMab> + ﬂcaﬁA,J (A.20)

The indices take the values k,l = 1,...,3, the 3 u(3), a,b = 0,1,2 are the 3 of so(1,2)
and «, 3,... = 1,2 are the so(2,1) spinors, and n = diag(—, +,+). The generators satisfy
the following relations under complex conjugation R}, = }?kl, et = )\?k, Qla = (Qia)*
and S) = (Siu)*. The (74)o” are the Dirac matrices of so(1,2), and 74 = 2 [Yay 18]

We raise and lower spinor indices using Cog = €n8, Yo = 1/)5650“ P = eaﬁ¢5, where

€19 = —€91 = 612 = —621 =1.



The bilinear forms are given by

Str(Rpy, RPY) = 6,96," — 6,769,
Str(\g!, ) = q6l ,
Str(Qua, 55) = 161" Cap,
Str(Sia, Q) = —zék Cop) (A.21)
Str(Pu, Ky) = —7ab,
Str(D, D) =

Str(Map, Meca) = Nachbd — Tadbe-
The Z4 subspaces with the invariant locus of U(3) x SO(3,1) which gives the semi-
symmetric space AdSy x CP? are
Ho = {Pa = Ka, Map, \i'}
Hi = {Qia — Sia: @, — 5L},
Hz = {Pu + Ka, D, Ry, B*},
Hs = {Qia + Siar QL + S5}

(A.22)
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