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Abstract
We consider the head-on collision of equal-mass neutron stars boosted towards
each other and we study the behaviour of such systems near the threshold of
black-hole formation. In particular, we confirm the previous findings by Jin
K J et al (2007 Phys. Rev. Lett 98 131101) that a type I critical phenomenon
can be observed by fine-tuning the initial mass of the two neutron stars. At the
same time, we argue against the interpretation that the critical solution is not a
perturbed spherical star and show instead that the metastable star corresponds
to a (perturbed) equilibrium solution on the unstable branch of the equilibrium
configurations. As a result, the head-on collision of two neutron stars near
the critical threshold can be seen as a transition in the space of configurations
from an initial stable solution over to a critical metastable one which can either
migrate to a stable solution or collapse to a black hole. The critical exponent
for this process shows a fine structure which was already observed in the case
of the critical collapse of scalar fields but never before for perfect fluids.

PACS numbers: 04.25.Dm, 04.40.Dg, 04.70.Bw, 95.30.Lz, 97.60.Jd

1. Motivation and introduction

In 1993, Choptuik [2] considered the one-parameter families of solutions, S[P ], of the
Einstein–Klein–Gordon equations for a massless scalar field in spherical symmetry, such
that for every P > P �, S[P ] contains a black hole and for every P < P �, S[P ] is a solution
not containing singularities. He studied numerically the behaviour of S[P ] as P → P � and
found that the critical solution, S[P �], is universal, in the sense that it is approached by all
nearly critical solutions regardless of the particular family of initial data considered. He also
found that S[P ] exhibit discrete self-similarity and that, for supercritical solutions (P > P �),
the mass of the black hole satisfies MBH = c|P − P �|γ , with γ being a universal constant, i.e.
not depending on the particular family of initial data.

0264-9381/10/235016+16$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0264-9381/27/23/235016
mailto:kellerma@aei.mpg.de
http://stacks.iop.org/CQG/27/235016


Class. Quantum Grav. 27 (2010) 235016 T Kellerman et al

After Choptuik’s seminal work, similar transitions were discovered for a wide range of
systems, including massive scalar fields and ultra-relativistic fluids, see [3] for a recent review.
All these phenomena have the common property that, as P approaches P �, S[P ] approaches a
universal solutionS[P �] and that all the physical quantities ofS[P ] depend only on |P−P �|. In
analogy with critical phase transitions in statistical mechanics, these transitions in gravitational
collapse were later classified as ‘type I’ critical phenomena, with static or periodic critical
solutions and discontinuous transitions in the vicinity of the critical point, or ‘type II’ critical
phenomena, with self-similar critical solutions and continuous transitions in the vicinity of the
critical solution [3].

The study of critical phenomena in neutron star (NS) collapse started with the work by
Evans and Coleman [4] on radiation fluids and was later extended to more general ultra-
relativistic equations of state (EOS) [5, 6] and ideal-gas EOS [7–9]. In all these studies
the collapse was triggered using strong perturbations and a type II critical phenomenon was
found. Type I critical phenomenon in the collapse of unstable configuration under very small
perturbations was instead studied only very recently [10, 11].

The first study of critical phenomena, the head-on collision of NSs, was instead carried
out by Jin and Suen in 2007 [1]. In particular, they considered a series of families of equal
mass NSs, modelled with an ideal-gas EOS, boosted towards each other and varied the mass of
the stars, their separation, velocity and the polytropic index in the EOS. In this way they could
observe a critical phenomenon of type I near the threshold of black-hole formation, with the
putative solution being a nonlinearly oscillating star. In a successive work [12], they performed
similar simulations but considering the head-on collision of Gaussian distributions of matter.
Also in this case they found the appearance of type I critical behaviour, but also performed a
perturbative analysis of the initial distributions of matter and of the merged object. Because
of the considerable difference found in the eigenfrequencies in the two cases, they concluded
that the critical solution does not represent a system near equilibrium and in particular not a
perturbed Tolmann–Oppenheimer–Volkoff (TOV) solution [1].

In this paper we study the dynamics of the head-on collision of two equal-mass NSs
using a setup which is as similar as possible to the one considered in [1]. While we
confirm that the merged object exhibits a type I critical behaviour, we also argue against
the conclusion that the critical solution cannot be described in terms of the equilibrium
solution. Indeed, we show that, in analogy with what found in [11], the critical solution is
effectively a perturbed unstable solution of the TOV equations. Our analysis also considers a
fine structure of the scaling relation of type I critical phenomena and we show that it exhibits
oscillations in a similar way to the one studied in the context of scalar-field critical collapse
[13, 14].

The remainder of this paper is organized as follows. In section 2 we describe the numerical
settings of the simulations, the properties of the used initial data and we define some of the
quantities that we analysed. In section 3 we show in details our results, while section 4 is
dedicated to conclusions and discussion. Finally, in the appendix, we presented a study of the
compactness of the metastable solution and a comparison with its ‘hoop radius’. The work
reported is closely related to the analysis carried in a companion paper (hereafter paper I)
about critical phenomena in linearly unstable nonrotating NS models [11]. Because of the
logical affinity between the two works we will often refer the reader to the results obtained
in [11]. We use a spacelike signature (−, +, +, +), with Greek indices running from 0 to 3,
Latin indices from 1 to 3 and the standard convention for the summation over repeated indices.
Unless explicitly stated, all the quantities are expressed in the system of dimensionless units
in which c = G = M� = 1.
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2. Numerical setup and initial models

In what follows we briefly describe the numerical setup used in the simulations and the
procedure followed in the construction of the initial data.

2.1. Numerical setup

The numerical setup used in our simulations is identical to the one presented in [11]. In
particular, we use the axisymmetric code Whisky2D, which has been described in detail
in [15] (but also see the more extended discussion in paper I) and is based on the three-
dimensional code Whisky [16–18], to solve in two spatial dimensions the full set of Einstein
and relativistic-hydrodynamics equations. The axisymmetry of the spacetime is imposed
exploiting the ‘cartoon’ technique introduced in [19], while the hydrodynamics equations
(which are written in first-order form and thus do not require double spatial derivatives) are
written explicitly in cylindrical coordinates (see [15] to read about the advantages of this
formulation).

All the simulations presented here have been performed using an ideal-gas EOS,
p = (� − 1)ρε, where ρ is the baryonic density and ε the specific internal energy in the
rest frame of the fluid3. The discretization of the spacetime evolution equations is carried
out using fourth-order finite-differencing schemes, while we use high-resolution shock-
capturing (HRSC) methods with a piecewise-parabolic method (PPM) reconstruction for
the hydrodynamics equations. The time-stepping is done with a third-order total-variation
diminishing (TVD) Runge–Kutta scheme and despite the use of higher order methods, the
convergence order drops to about 1 after the two NSs have merged and large shocks develop
(see [20] for a discussion on the convergence order in relativistic-hydrodynamics simulations).

The spatial discretization is carried out using a grid with uniform resolution, which we
have taken to be either h = 0.1 M� or h = 0.08 M�. Furthermore, as long as nonspinning
NSs are considered, the head-on collision also possesses a symmetry across the plane midway
between the two stars and orthogonal to the colliding direction. As a result, the problem needs
to be solved only for one star and suitable boundary conditions be applied across the symmetry
plane. The outer boundary of the computational domain is set at 60 M� and thus rather close
to the two stars. However, this is adequate since we are not interested here in extracting
gravitational waveforms and since we have verified that the violation of the constraints at the
outer boundaries are not larger than elsewhere in the computational domain.

As a final remark we note that we use the same gauges as those employed in [21] and thus
the slicing is sufficiently ‘singularity-avoiding’ that it is not necessary to perform an excision of
the field variables when following the evolution of a supercritical solution. However, because
of the very high resolution used, the rapid growth of the rest-mass density is not compensated
by the intrinsic numerical dissipation as instead happens in [21] or in [18]. As a result we
excise the solution of the hydrodynamical quantities only as discussed in [17, 22] in order to
obtain a stable, long-term solution.

2.2. Initial data

Our initial data consist of two equal-mass nonrotating NSs having initial coordinate separation,
computed as the coordinate distance between the two stellar centres, of 20 M�. Following [1],
we construct these stars using a polytropic EOS, p = Kρ� , with adiabatic exponent � = 2
and polytropic constant K = 80, which is equivalent to K = 0.002 98 c2/ρn, and where

3 We recall that an ideal-gas EOS and a polytropic one are identical for fluids undergoing isoentropic evolutions.
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Table 1. Equilibrium models used for the collision (model A) or that are discussed in figure 5
(models B and C). Listed are the values of the gravitational (ADM) mass, the total rest mass, the
radius of the star, the central rest-mass density and the polytropic constant K. For each model we
also report the maximum allowed ADM and rest masses for a TOV having the same polytropic
constant.

Model MADM Mb R (km) ρc K MADM,max Mb,max

A 0.732 0.760 14.761 0.000 58 80 1.464 1.609
B 1.505 1.514 9.135 0.009 63 145 1.972 2.166
C 1.460 1.547 19.003 0.000 55 155 2.038 2.240

ρn = 2.3 × 1014 g cm−3 is approximately the nuclear density. The stars in the neighbourhood
of the critical solution have a radius of R = 14.7 km, a baryon/gravitational (ADM) mass of
0.760/0.732 M�. The main properties of the critical solution are reported in table 1, where
they are indicated as model ‘A’.

Note that the maximum baryon/gravitational mass for the chosen value of the polytropic
constant is 1.609/1.464 M� and thus the object produced by the collision will have a
baryon/gravitational mass which is above such maximum mass. However, as we will discuss
below and in contrast with the claim made in [1], this can still lead to the equilibrium solution
for a TOV star.

The stars constructed in this way are then boosted towards each other along the z-axis with
a velocity v0 = 0.15, which is similar to the free-fall velocity as computed from the Newtonian
expression for a point particle. With these choices the only remaining free parameter needed
to characterize the initial data is the central rest-mass density of the two NSs, ρc, which we use
as our critical parameter. (We note that the value chosen for the initial velocity does influence
qualitatively the results obtained and indeed it can act as a critical parameter in a sequence at
constant ρc [1].)

2.3. Entropy of the critical solution

A convenient way to study the properties of the critical solution is to characterize its
thermodynamical properties and in particular its entropy. The basic idea is that the
metastable (critical) solution is simply an equilibrium solution on the unstable branch of
TOV configurations and thus that by measuring its entropy it is possible to relate it to the
corresponding equilibrium polytropic model. Following [23], we express the second law of
thermodynamics as

S = S0 + CV ln(T ) − R ln(ρ), (1)

where S0 is an integration constant that we set to zero and where

CV =
(

dε

dT

)
v

(2)

is the specific heat capacity at constant pressure. R is the gas constant. In the case of an ideal
gas, R is related to the specific heat capacities through the relation

R = Cp − CV =
(

dh

dT

)
p

−
(

dε

dT

)
v

, (3)

where h = 1 + ε + p/ρ is the specific enthalpy. Recalling that ε = CVT and � = Cp/CV, the
second law of thermodynamics (1) for a polytropic EOS is simply given by

S = CV ln

(
K

CV(� − 1)

)
, (4)
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or equivalently

K = R exp

(
S

CV

)
. (5)

Stated differently, the polytropic constant reflects all of the changes in the entropy of the system,
so that expression (5) allows a simple connection between the entropy of the critical solution,
which we measure as proportional to K = p/ρ� , and the properties of a corresponding
equilibrium TOV model.

In practice the polytropic constant can change enormously across the star especially after
the collision and since we are interested only in global quantities, we use a volume-averaged
polytropic constant

〈K〉 =
∫
�

p/ρ� dV∫
�

dV
, (6)

and perform the volume integration not across the whole star but over a volume � where
the rest-mass density is larger than 10% of the initial central one. This choice removes the
difficulties with possible divergences near the stellar surface and we have verified that it is
robust against different values of the threshold density.

3. Results

We next discuss the dynamics of the collision and the properties of the critical solution as they
appear from our numerical simulations.

3.1. Dynamics of the collision

The basic dynamics of the process is rather simple to describe. As the two NSs are accelerated
towards each other by the initial boost and the mutual gravitational attraction, they collide,
leading to a merged object which is wildly oscillating and with a mass which is above the
maximum mass of the initial configuration. Depending on whether the initial central density
is larger or smaller than the critical one, the metastable solution either collapses to a black
hole (supercritical solutions) or expands to a new stable stellar solution (subcritical solutions).

Before entering the details of the discussion it may be useful to remark that the simulation
of the head-on collision of two NSs in the neighbourhood of the critical solution is a very
demanding calculation, even for modern general-relativistic hydrodynamical codes. This is
because adaptive mesh refinements do not provide any significant speed up and, at the same
time, rather high level of resolutions are needed to capture the dynamics faithfully. In spite
of these computational difficulties mentioned above, using the Whisky2D code we are able to
identify the critical value for ρc with an accuracy of 11 significant digits, a level of precision
never achieved before in the study of NS head-on collisions. More specifically, we have
measured the critical central density

ρ�
c = (5.790 998 966 725 ± 0.000 000 000 03) × 10−4, (7)

as the midpoint between the largest central rest-mass density among the subcritical models and
the smallest central rest-mass density among the supercritical ones. In other words, binaries
with ρc > ρ�

c have been simulated to collapse to a black hole, while binaries with ρc < ρ�
c

have been computed to expand to a stable star.
As pointed out by Jin et al [1], this value will ultimately depend on the numerical

resolution used and the other discretization parameters. Nevertheless, given a set of initial
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Figure 1. Evolution of the maximum rest-mass density of the most massive subcritical model
with initial value ρc = 0.000 579 099 896 670 (black solid line) the least massive supercritical
model with initial value ρc = 0.000 579 099 896 675 (red dashed line). Also highlighted are the
four different phases of the dynamics. The first one corresponds to the initial configuration of the
system (labelled as ‘A’). After the collision, a new metastable solution is created during which
the central density exhibits violent oscillations (labelled as ‘B’); the subcritical and supercritical
solutions are essentially indistinguishable during this stage. Finally the subcritical and supercritical
solutions separate, with the first one relaxing to a stable expanded configuration (labelled as ‘C’),
while the second collapses to a black hole (labelled as ‘D’).

data and numerical setup, equation (7) gives a precise measure of how close we are able to get
to the critical solution.

Compressed in figure 1 is a considerable amount of information about the criticality of
the head-on collision. More specifically, we show the time evolution of the central rest-mass
density of the heaviest subcritical model (black solid line) and lightest supercritical model (red
dashed line) computed. Overall, we can distinguish three different phases of the dynamics. In
the first one (marked with ‘A’ in the figure) the central density increases from its initial value
to a maximum one reached, which is attained when the stellar cores merge.

The second phase (marked with ‘B’) starts from t ∼ 0.4 ms and is characterized by strong
oscillations around the metastable equilibrium. During these first two phases, the subcritical
solution and the supercritical one are essentially indistinguishable, but at the end of the second
phase, i.e. at t ∼ 1.2 ms, the different nature of the two solutions emerges and the evolutions
of the rest-mass density differ. More specifically, during the third phase (marked with ‘C’ and
‘D’), the supercritical solution shows an exponential increase in the central rest-mass density
as a result of the collapse to a black hole. The subcritical solution, on the other hand, shows
a violent expansion and the central density settles to a value which is about one tenth of the
maximum one attained during the second phase. Clearly, the most interesting part is obviously
the one corresponding to the second phase, during which the merged object is a metastable
solution in which the central density has strong, non-harmonic oscillations (see the inset of
figure 1).

6



Class. Quantum Grav. 27 (2010) 235016 T Kellerman et al

In order to better describe the dynamics of the system, we show in figures 2 and 3 the
evolution of colour-coded contours of the rest-mass density of the supercritical and subcritical
solutions, respectively, when shown at representative times in the (x, z) plane. The first row of
panels in figure 2 shows the initial configuration of the system at time t = 0 and a subsequent
stage, at time t = 0.394 ms, corresponding to when the first maximum in the rest-mass density
is reached (cf figure 1). This time also represents the one at which the two stellar cores enter
in contact and thus marks the beginning of the metastable equilibrium. During this stage, two
strong shock waves propagate along the z-direction, ejecting part of the matter as shown in the
third panel at time t = 0.788 ms. Most of this matter is still gravitationally bound and falls
back onto the central object creating a new shock wave (cf fourth panel at t = 1.182 ms). This
process is then repeated multiple times and results in a sequence of bounces until the object
finally collapses to a black hole, as shown in the last panel at time t = 2.759 ms and which
marks the fate of the supercritical solution.

Similarly, figure 3, reports the representative stages of the evolution of the subcritical
solution. A rapid inspection of the first five panels of figure 2 indicates that they are very
similar to the corresponding ones in figure 2. Indeed, the supercritical and subcritical solutions
are the same to the precision at which we measure the critical solution (cf equation (7)) and
we have reported the panels here exactly to remark the similarity during the first two stages
of the evolution. However, being a subcritical solution, the metastable evolution does not end
with a black hole formation but, rather, with a new stable stellar solution. This is shown in
the sixth panel of figure 3 and refers to a time t = 2.759 ms, after the metastable star has
expanded violently and when it has reached a new quasi-spherical configuration.

With the exception that we are able to get closer to the critical solution, much of what
is reported here confirms what was found by Jin and Suen in [1]. In the following section,
however, we discuss how and why our conclusions about the properties of the critical solutions
differ from those discussed in [1] and subsequently in [12].

3.2. Nearly critical solutions

The scope of this section is to show that, in contrast to what suggested in [1, 12], the metastable
object can be interpreted rather simply as the perturbation of a new equilibrium configurations
of linearly unstable spherical stars. To provide evidence that this is the case, we have computed
the evolution of the average entropy of the system for a subcritical solution as computed via
the volume-averaged polytropic constant (6). This is shown in figure 4, where we report both
〈K〉 and the central density ρc during the metastable equilibrium or stage ‘B’ (left panel) and
when the metastable solution has expanded to recover a stable solution or stage ‘3’ (right
panel).

Clearly, the two panels show that two quantities are correlated and indeed in phase
opposition—entropy increases when the density decreases and vice versa—as one would
expect from the first law of thermodynamics

T dS = p dV + dQ = p dV, (8)

where the second equality comes from assuming adiabatic transformations.
Using the results shown in figure 4, it is then possible to compute a time-averaged value of

〈K〉 and of the central density, i.e. 〈K〉, ρc, and thus equilibrium polytropic models with such
polytropic constant and central density. These equilibrium models can be constructed either
relative to the metastable stage or relative to the final stable stage of the subcritical solutions.

The results of this procedure are summarized in figure 5, which reports the equilibrium
sequences of TOV stars with fixed polytropic constant in a standard (ρc,MADM) plane. In
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Figure 2. Isodensity contours in the (x, z) plane of the least massive supercritical solution
(ρc = 0.000 579 099 896 675). The corresponding times are shown at of each panel, while the
colour-code for the rest-mass density is indicated to the right. The isolines are shown for the values
of ρ = 1012.6, 1012.7, 1013.2, 1013.7, 1014.2 and 1014.7 g cm−3. The second frame (t = 0.394 ms)
is taken during the merge process. The next five frames illustrate the star during the metastable
equilibrium. Finally, the last frame (t = 2.759 ms) shows the solution after the formation of a
black hole, whose apparent horizon is shown with a thick black dashed line.
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Figure 3. The same as figure 2, but for the most massive subcritical model (ρc =
0.000 579 099 896 670). The first five frames are similar (although not identical) to the
corresponding ones in figure 2 since they refer to the metastable evolution when the two solutions
are essentially indistinguishable. The last frame (t = 2.759 ms) shows a new NS produced from
the migration of the metastable object to the stable branch of the equilibrium solutions.

particular, the black solid line refers to a sequence with K = 80 and the black triangle therefore
marks the initial critical solution (i.e. model ‘A’ in table 1). Similarly, the red long-dashed line
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Figure 4. Left panel: evolution of the central rest-mass density and of the effective polytropic
constant 〈K〉 for the most massive subcritical model during the metastable equilibrium phase of
the dynamics. Right panel: the same as in the left panel but during the relaxation to a stable
configuration.

Figure 5. Equilibrium sequences of TOV stars with a fixed polytropic constant in a standard
(ρc,MADM) plane. The black solid line refers to a sequence with K = 80 and the black triangle
marks the initial critical solution (i.e. model ‘A’ in table 1). The red long-dashed line to a
sequence with 〈K〉 = 145 and the red square shows the equilibrium model having as central
density the time-averaged central density of the metastable solution (i.e. model ‘B’ in table 1).
Finally, the blue dashed line refers to a sequence with 〈K〉 = 155 and the blue pentagon shows
the equilibrium model having as central density the time-averaged central density of the stable
solution (i.e. model ‘C’ in table 1). All models ‘A, B, C’ have the same rest mass to a precision of
0.4% and the arrows show how the collision corresponds to a number of transition in the space of
configurations.

refers to a sequence with a polytropic constant 〈K〉 = 145, which therefore coincides with
the time averaged value of K during the metastable state and as deduced from figure 4. The
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Table 2. Eigenfrequencies of the modes of the critical solution during the metastable phase of the
dynamics as computed from the evolution of the central rest-mass density. Also indicated are the
first overtones of the fundamental mode for a TOV star constructed with K and ρc equal to
the time-averages of 〈K〉 and 〈ρc〉 during the metastable phase. Despite the large uncertainty due
to the very short integration time, the match between the two set of eigenfrequencies is very good.

Mode Observed freq. (kHz) TOV freq. (kHz)

H1 4.8 ± 1.2 3.95
H2 7.2 ± 1.2 6.86
H3 9.6 ± 1.2 9.42
H4 12.0 ± 1.2 11.85

red square shows therefore the equilibrium model having as central density the time-averaged
central density of the metastable solution (i.e. model ‘B’ in table 1). Finally, the blue dashed
line refers to a sequence with a polytropic constant 〈K〉 = 155, which therefore coincides
with the time averaged value of K during the stable stage of the subcritical solutions (cf figure
4). The blue pentagon shows therefore the equilibrium model having as central density the
time-averaged central density of the stable solution (i.e. model ‘C’ in table 1). It is important
to remark that because models ‘A, B, C’ are determined after fixing the polytropic constant
and the central rest-mass density, they are not guaranteed to have the same total baryon mass.
In practice, however, they do have the same rest mass with a precision of 0.4% (of course
2Mb,A � Mb,B � Mb,C). This is not a coincidence but clear evidence of the common link
among the three models.

What is eloquently shown in figure 5 can also be stated and summarized as follows. The
head-on collision of two NSs near the critical threshold can be seen as series of transitions in
the space of configurations from an initial stable model ‘A’ over to a metastable model ‘B’
which has the same rest mass but larger gravitational mass as a result of the conversion of
the kinetic energy into internal energy via large shocks. Because model ‘B’ is on the linearly
unstable branch of the equilibrium configurations, it can exhibit a critical behaviour (this was
shown in great detail in paper I) and thus subcritical solutions will expand and move the stable
branch of equilibrium solutions (model ‘C’), while supercritical solutions will collapse to a
black hole (solution ‘D’).

In the light of this interpretation, the conclusion drawn by Jin and Suen [1], that the
merged object is far from being a TOV because it promptly collapses even though its total
rest mass is smaller than the corresponding maximum mass, does not appear to be the correct
one. Indeed, the transition highlighted in figure 5 clearly shows that even a sub-massive TOV
can be brought over the stability threshold to collapse to black hole by simply increasing its
gravitational mass, namely by increasing its internal energy.

Additional evidence that the merged object is indeed a perturbed TOV comes from
analysing the oscillation frequencies measured over the metastable stage. Despite that the
latter is rather short and the eigenfrequencies are consequently not very accurate, they agree
well with the ones obtained from the linear perturbation theory for the corresponding TOV
model. This is reported in table 2, which collects the oscillation frequencies as computed from
a Fourier analysis of the central rest-mass density of the largest subcritical solution. Because
these frequencies with their error-bars are within the expected ones, we cannot confirm the
claim made in [12] that the frequencies of the critical solution are one or two orders of
magnitude smaller than the corresponding equilibrium ones. Rather, we conclude that the
metastable critical solution is indeed only a perturbed TOV star.
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Figure 6. Left panel: survival time of the metastable solution plotted against the logarithm of the
difference between the initial central density of the stars and the critical one. The red triangles
represent the data points obtained with a grid resolution of h = 0.1 and the blue squares represent
the ones obtained with h = 0.08. The black dashed line represents the expected power-law
scaling. Right panel: harmonic fluctuations in the critical exponent γ as obtained after subtracting
the power-law scaling from the data points computed with h = 0.1 (red triangles). Indicated with
a blue dashed line is the fitting sine function.

3.3. On the critical exponent and its fluctuations

The theory of critical phenomena predicts a precise scaling relation between the survival time
of the nearly critical solutions, namely the time over which a metastable equilibrium exists,
and the distance from the critical solution. At the lowest order this scaling relation is a simple
power law of the type

τeq � −γ ln |ρc − ρ�
c | + const. (9)

Following [1], we measure the survival time by considering the function ζ(t) =
(α − α�)/α�, where α is the lapse function at the coordinate origin of a given simulation
and α� is the lapse of the best numerical approximation of the critical solution. We set τeq to
be the first (coordinate) time at which ζ(τeq) � 0.05; as discussed in [1], the determination
of the critical exponent does not depend sensitively on this cut-off time. Finally, we compute
γ performing a linear least-squares fit of (9) on the data points. The results of this process
are shown in the left panel of figure 6, where we report with red triangles the values of τeq

as computed from about 60 simulations having different initial central density. As we will
discuss below, such a large number of data points is necessary not only to measure accurately
the exponent γ , but also to determine whether nonlinear corrections to expression (9) should
be considered. In this way we have computed the critical exponent to be γ = 10.004, which
agrees within 8.4%, with the value computed by [1]. As a further validation, we have computed
the critical exponent also for a (smaller) set of simulations carried out at a higher resolution
(i.e. h = 0.08 versus h = 0.1) and these are shown as blue squares. These higher resolution
simulations predict a critical exponent of 10.303, thus with a difference of 2.9% from the
lower resolution ones.

A more careful analysis of the data for the survival time reveals that relation (9) is well
reproduced by the data, but also that the latter show additional, fine-structure features which
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are not accounted for in (9). In particular, it is apparent already at a visual inspection that
the critical exponent also shows a periodic change as the solution approaches the critical one.
This is highlighted in the right panel of figure 6, where we show the deviations of the data
from relation (9), and where it is apparent that these deviations are essentially harmonic in the
range in which data are available (for simplicity and to increase the precision of the fit, we
have considered only the low-resolution data, for which more simulations are available). As
a result, we can correct the scaling relation (9) with a simple expression of the type

τeq � −γ ln |ρc − ρ�
c | + c1 sin(c2 ln |ρc − ρ�

c | + c3) + const, (10)

where c1 � 2.0, c2 � 1.2 and c3 � 0.8. Interestingly, this fine structure of the time-scaling
relation has been observed also in the critical collapse of scalar fields [13, 14], but has never
been reported before for perfect fluids, although it may be present also in the data of [1] (cf
their figure 4). Because the scaling relation (9) is derived after performing a linear analysis
near the critical solution [5], the additional oscillation captured in expression (10) is a purely
nonlinear effect which has not been yet fully explained.

4. Conclusions

Critical phenomena are ubiquitous in many different branches of physics and are of great
interest in general relativity where they are associated with phase transition of the families of
solutions. With the goal of studying the occurrence of type I critical collapse, we considered
the head-on collision of equal mass, nonrotating NSs boosted towards each other. After fixing
the initial velocity of the stars, we evolved numerically a great number of configurations with
different initial central rest-mass density using the 2D general relativistic hydrodynamical
code Whisky2D.

Overall, the basic dynamics of the process is rather simple: as the two NSs are accelerated
towards each other, they collide leading to a merged object which is wildly oscillating and with
a gravitational mass which is above the maximum mass of the initial configuration. Depending
on whether the initial central rest-mass density is larger or smaller than the critical one, the
metastable solution either collapses to a black hole (supercritical solutions) or expands to a
new stable stellar solution (subcritical solutions). Exploiting the accuracy of the code and the
large set of initial configurations considered, we were able to identify the critical value for the
central density with an accuracy of 11 significant digits, a level of precision never achieved
before in this type of study.

Although overall more accurate, much of the results reported here about the critical
behaviour coincide and confirm those found by Jin and Suen in [1, 12]. However, they do
differ and significantly when it comes to the interpretation of the critical solutions. More
specifically we have shown that the head-on collision of two NSs near the critical threshold
can be seen as series of transitions in the space of configurations from an initial stable model
over to a metastable one with the same rest mass but larger gravitational mass as a result of the
conversion of the kinetic energy into internal energy via large shocks. The metastable solution
is on the linearly unstable branch of the equilibrium configurations and thus it can exhibit
a critical behaviour (see paper I) and either move the stable branch of equilibria (subcritical
solutions), or will collapse to a black hole (supercritical solutions). Hence, the critical solution
is indeed a (perturbed) TOV solution, in contrast with the conclusions drawn in [1, 12].

Finally, we have also computed the critical exponent of the scaling relation of type I
critical phenomena and found it to agree well with the one computed by [1]. However, we
have also found that, superimposed with the standard power law, the scaling law shows a fine
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structure in terms of a periodic fluctuation. These wiggles in the critical exponent have already
been observed in the case of type II critical collapse of massless scalar fields [13, 14], but were
never reported before in the case of perfect fluids.
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Appendix. Metastable solutions and the hoop conjecture

As discussed in the main text, near the critical solution and during the metastable stage, the
evolution of all the hydrodynamical and field variables is essentially the same (to a precision
which is proportional to the distance from the critical solution) for both subcritical and
supercritical solutions. It is therefore natural to ask whether the metastable solution, which
can either produce a black hole or an expanded star, is ever compact enough to violate the
hoop conjecture. We recall that the conjecture states that a black hole is formed if and only if
a ‘mass’ M of matter is confined in a hoop of radius which in every direction is smaller than or
equal to the corresponding Schwarzschild radius. Stated differently, a black hole is expected
to form if the matter is enclosed in a hoop of proper circumference C � 4πM .

The hoop conjecture, as was originally formulated, is not meant to be a precise
mathematical statement [24], even though it can be made precise under particular
circumstances [25–27]. Most importantly, it is meant mostly as a qualitative description
of the gravitational collapse due to the compression of matter. In particular, the conjecture
leaves much freedom in the definition of both C and M. In view of this freedom, we have
taken C to be the proper circumference of a coordinate circle enclosing 95% of the mass of the
system (in order to exclude the extended low-density regions) and used the ADM mass within
C as a local measure of the mass. (This use of the ADM mass is strictly speaking incorrect
as such a mass is well defined only at spatial infinity; however, it provides an approximation
which is adequate for the quality of the arguments made here.)

In figure A1 we show in a spacetime diagram the worldlines of the proper stellar radius
for either a subcritical solution Rsubcrit. (black solid line) or for a supercritical solution Rsupercrit.

(red dashed line). Both quantities are expressed in units of twice the ADM mass, so that the
vertical dotted line at 1 represents the threshold below which the hoop conjecture would be
violated (the time coordinate is the proper time of an observer comoving at R). Also indicated
with a blue long-dashed line is the worldline of the apparent horizon which is relevant to the
case of the supercritical solution. Quite clearly the metastable solution is always outside its
‘hoop’ (indeed about twice as large) and when the supercritical solution crosses it is to produce
a black hole as the conjecture predicts. It remains unclear how these worldlines would evolve
if we had considered stars with larger boosts or that are far from the critical solution. These
questions will be addressed in our future work on the subject.

As a final remark we note that if we had used the interpretation of the head-on collision
as a transition between a stable and a metastable TOV solution (i.e. the one summarized in
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Figure A1. Spacetime diagram showing the worldlines of the proper stellar radius for either a
subcritical solution Rsubcrit. (black solid line) or for a supercritical solution Rsupercrit. (red dashed
line). Both quantities are expressed in units of twice the ADM mass, so that the vertical dotted
line at 1 represents the threshold below which the hoop conjecture would be violated (the time
coordinate is the proper time of an observer comoving at R). Also indicated with a blue long-
dashed line is the worldline of the apparent horizon which is relevant to the case of the supercritical
solution. Note that the metastable solution is always outside its ‘hoop’.

figure 5), then it would have been rather obvious that the hoop conjecture cannot be violated:
a TOV star has a surface which is always outside its Schwarzschild radius.
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