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Abstract

The Einstein Telescope, a third-generation gravitational-wave detector under a
design study, could detect millions of binary neutron star inspirals each year. A
small fraction of these events might be observed as gamma-ray bursts, helping
to measure both the luminosity distance Dy to and redshift z of the source.
By fitting these measured values of Dy and z to a cosmological model, it
would be possible to infer the dark energy equation of state to within 1.5%
without the need to correct for errors in Dy, caused by weak lensing. This
compares favourably with 0.3—10% accuracy that can be achieved with the
Laser Interferometer Space Antenna (where weak lensing will need to be dealt
with) as well as with dedicated dark energy missions that have been proposed,
where 3.5-11% uncertainty is expected.

PACS numbers: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Standard candles are used to measure the geometry and dynamics of the Universe. A standard
candle is a source whose intrinsic luminosity L can be inferred from the observed properties
such as its spectral content, time variability of the flux of the radiation it emits, etc. Since the
observations also measure the apparent luminosity F, one can deduce the luminosity distance
Dy to a standard candle from 4 Df = L/F. If the redshift z to the source is known, then
from a population of such sources it will be possible to measure the cosmological parameters
since the luminosity distance is related to the redshift, in a flat Universe, via

_c(l+z) [F (1 +z)732d7
Di(z) = Ho /0 [Qum + QA (1 +7)3w]1/2 ’ M
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where Hj is the Hubble constant, )y and €2, are the dark matter and dark energy densities,
respectively, at the present time and w is the dark energy equation-of-state parameter.

There is no unique standard candle in astronomy that works for all distances. A distance
scale is built by using several candles, each of which works over a limited range of distance.
For instance, the method of parallax can determine distances of a few kpc, Cepheid variables
up to 10 Mpc, the Tully—Fisher relation up to tens of Mpc, the D,—oc relation up to hundreds
of Mpc and type Ia supernovae up to only a few redshifts [1]. This way of building a distance
scale has been referred to as the cosmic distance ladder. For cosmography, a proper calibration
of distances to high redshift galaxies is based on the mutual agreement between the different
rungs of this ladder. It is critical that each of the rungs is calibrated with an error as small as
possible.

2. Self-calibrating standard sirens of gravity

Cosmologists have long sought standard candles that can work over large distance scales
without being dependent on the lower rungs of the cosmic distance ladder. In 1986, it was
discovered [2] that gravitational astronomy can provide such a candle, or, more appropriately,
a standard siren, in the form of an inspiraling compact binary consisting of neutron stars
(NSs) and black holes (BHs). This method needs no calibration at all, relying purely on the
modelling of the two-body problem in general relativity. Gravitational-wave observations,
therefore, provide not only a powerful distance measuring tool but also a useful check on other
distance ladders.

In simple terms, in the inspiral phase of a compact binary, the amplitude of gravitational
waves depends on the ratio of a certain combination of the component masses called the chirp
mass and the luminosity distance. Both of these can be measured for a chirping signal—a signal
whose frequency increases by a measurable amount during its observation. For such sources
one can directly infer the luminosity distance. In reality, the response of an interferometer to
such a signal, in an approximation that keeps only the dominant signal harmonic at twice the
orbital frequency, is given by

4A(0, ¢, ¥, )WM[TMF (t)]3 cos ® (1)

h(t) = DL

?)
Here, 0 < A < 1 is a numerical factor that depends on the location of the binary on the
sky and its orientation relative to the detector; M and v are, respectively, the binary’s total
mass and symmetric mass ratio; ®(¢) and F(¢) are the signal’s phase and frequency; Dy is
the luminosity distance; (6, ¢) gives the source’s location on the sky; ¢ is the orientation of
the system relative to the line of sight; and i is the wave’s polarization angle. In the case
of non-spinning binaries in quasi-circular orbits, an inspiral signal is characterized by nine
parameters in all (M, v, 1y, ©o, 6, ¢, ¥, ¢, Dr). Here, fy and @ are the fiducial parameters
defining the epoch when the signal’s frequency reaches a certain value and its phase at that
epoch. In this approximation, the signal amplitude depends only on the chirp mass M defined
by M = 135 M and not separately on the two mass parameters.

The signal’s phase has been computed to high order in post-Newtonian theory [3] and
depends only on the two mass parameters; here we go to 3.5 PN. One can therefore employ
matched filtering to extract the signal and to measure the two mass parameters (M, v) as well as
the two fiducial parameters (#y, ®¢). Note that for a source at a redshift z the signal’s frequency
will be redshifted to F — F/(1 + z) but the mappings M — (1 +z)M and Dy, — (1 +z)Dr
leave the signal invariant. Thus, a source of intrinsic total mass M; will appear to be a binary
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of total mass M = (1 + z) M;. One must optically identify the host galaxy and measure its
redshift to deduce its intrinsic mass M;.

3. Multi-messenger cosmology with binary neutron stars and GRBs

In general, the response of a single interferometer will not be sufficient to disentangle the
luminosity distance from the angular parameters. An optical identification of the source can
determine the direction to the source (and its redshift), leaving three unknown parameters
(¥, t, Dr). Additionally, if the signal is associated with a gamma-ray burst (GRB), then the
source’s orbital plane will be perpendicular to the line of sight, implying that ¢ >~ 0 and y» =~ 0.
Thus, for inspirals detected in coincidence with GRBs, a single detector is good enough to
measure the luminosity distance. Multi-messengers like GRBs can, therefore, make precision
cosmography possible, without the need to build a cosmic distance ladder.

For signals not associated with a GRB, Dy can be measured if the source lasts long enough
to cause a modulation in the signal’s frequency due to the motion of the detector relative to the
source, as would be the case for the Laser Interferometer Space Antenna (LISA). If the signal
lasts for only a short time, as would be the case for ground-based detectors, one would need a
network of three detectors to measure Dy .

Over the next two decades GW detectors could provide a new tool for cosmology. The
Laser Inteferometer Gravitational-Wave Observatory (LIGO) in the USA and Virgo in Europe
have reached design goals for their initial operation. Recent science runs of LIGO and Virgo
have begun to impact our understanding of astrophysical sources and phenomena. Both are
now getting ready to upgrade to advanced sensitivities by 2014 and are expected to detect ~40
binary neutron star (BNS) mergers each year [4, 5]. Redshift could be measured to a (small)
number of events associated with GRBs and might allow the measurement of the expansion
rate of the Universe in the ~500 Mpc range, where optical data is scarce [6, 7]. Observation by
the LISA of extreme mass ratio inspirals could measure the Hubble constant pretty accurately
[8]. The LISA will also observe binary super-massive BH mergers with signal-to-noise ratios
(SNRs) of several thousands at z ~ 1, enabling the measurement of the dark energy equation
of state to within several percent [9, 10].

In the rest of this paper we will discuss how well it might be possible to constrain
cosmological parameters with the Einstein Telescope (ET)—a third-generation ground-based
interferometer that is currently under a design study [11, 12]. The ET is envisaged to be
ten times more sensitive in amplitude than the advanced ground-based detectors, covering a
frequency range of 1-10* Hz. Achieving the sensitivity of the ET will pose challenges in
mitigating gravity gradient, thermal and quantum noises but careful analysis shows that the
technology might be within reach in the next decade [13]. One possible topology for the ET
could be an equilateral triangle, 10 km on a side, allowing the operation of three V-shaped
interferometers at a single site [14, 15]. A network of such detectors might be available over
the next 15-20 years, but we will explore how accurately it might be possible to measure the
cosmological parameters with a single such ET.

3.1. Distance reach of the ET for neutron star binaries and event rates

For a fixed SNR py, the distance up to which an inspiral signal could be detected in the ET is
given by

A@, @, 1, Yy)MC [ Fio £=7/3 }1/2
D = d ’
L ” r s
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Figure 1. Range of the ET for inspiral signals from binaries as a function of the intrinsic (red
solid line) and the observed (blue dashed line) total mass. We assume that a source is visible if it
produces an SNR of at least 8 in the ET.

where Sy, (f) is the one-sided noise power spectral density (PSD), which we take to be the
‘ET-B’ PSD as in figure 1 of [15]; we also assume the 10 km triple Michelson setup as
explained in that reference. Fj is a frequency below which the accumulated SNR is negligible
because the PSD rises far faster than the signal spectrum and F, is the signal frequency
corresponding to the last stable orbit of the binary, taken to be Fi,, = 1/(6>?7M). The
quantity A’ is an appropriate combination of the function A in equation (2) and the antenna
pattern functions of the three independent Michelson interferometers. In computing the
distance reach of the ET one can take an average of A’ over sky position and set t = ¥ = 0,
again assuming relatively strong beaming of GRBs; the corresponding root-mean-square (rms)
value is A] « = \/2/75A;pt, where A( is the value for an optimally oriented and positioned
system [16]. However, we note that GRBs may have beaming angles up to ~40°, i.e. t ~ 20°
[17]. If one averages over all angles (6, ¢, ¥, 1) but with the constraint ¢ < 20°, then the
rms value becomes Ay, = oAy, with o > 0.614, which is barely different from the case
t = ¢ = 0. The distance up to which the ET might detect signals from an inspiraling BNS
with an SNR of 8 is shown in figure 1 as a function of the observed total mass (blue dashed
lines). We assume a cosmological model in which Hy = 70 km s~! Mpc‘l, Qu = 0.27,
Qp = 0.73 and w = —1, which allows us to convert distances to redshifts by inverting
equation (1), and which we have used to convert from the observed masses in figure 1 to the
intrinsic masses (red solid lines).

By extrapolating the rate of BNS inspirals expected in advanced detectors to the ET,
whose distance reach for a BNS is z ~ 2 or D, ~ 16 Gpc, one might expect 4 x 107 events
per year. Of course, this naive extrapolation does not give the correct rate as it does not include
the cosmological evolution of compact binaries. For our purposes, however, even if the rate
is an order of magnitude lower it does not matter. As an aside, legitimate concern has been
raised that this high event rate may lead to a confusion background [18]. As it turns out, the
PSD-weighted signals are actually quite short and will not tend to have significant overlap
with each other [19].

As noted earlier, in order for BNS inspirals to be useful for cosmography, it is essential
that their location on the sky and redshift are determined separately. If, as suspected, BNSs are

4



Class. Quantum Grav. 27 (2010) 215006 B S Sathyaprakash et al

progenitors of short-hard GRBs [17], then it might be possible to make a coincident detection
of a significant subset of the events in GW and electromagnetic (EM) windows.

Since GRBs are believed to be beamed with beaming angles of order 40°, we assume that
only a small fraction (~1073) of binary coalescences will have a GRB or other EM afterglows
that will help us to locate the source on the sky and measure its redshift. Eventually, we will
be limited by the number of short-hard GRBs observed by detectors that might be operating
at the time. As a conservative estimate, we assume that about 1000 BNS mergers will have
EM counterparts over a 5 year period. For definiteness, we consider only BNS mergers and
take these to have component masses (1.4, 1.4)Mg.

3.2. Measurement accuracy of cosmological parameters

How well would we measure cosmological parameters with a catalogue of such sources? To
answer this question we simulated 5190 realizations of the catalogue containing 1000 BNS
coalescences with known redshift and sky location, but with the luminosity distance subject
to statistical errors from GW observation and weak lensing. We assumed that all sources were
in the redshift range 0 < z < 2, distributed uniformly (i.e. with constant comoving number
density) throughout this redshift range. The luminosity distance to the source was computed by
assuming an FRW cosmological model with Hy = 70 kms~! Mpc™!, Qy = 0.27, Q5 = 0.73
and w = —1, but the measured distance was drawn from a Gaussian distribution whose
width op, was determined by the quadrature sum of the errors due to weak lensing and
GW observation. Weak lensing error in D, was assumed to be 5% at z = 1 [20] and linearly
extrapolated to other redshifts. The GW observational error was estimated from the covariance
matrix Cy,, of the parameter space of the unknown signal parameters py:

_ oh
kni’ Akm = (hk’ hm>’ hk = 8_}7k

Here, the angular brackets denote the scalar product, which, for any two functions a(¢) and
b(t), is defined as

Cim = A 4

[ df
, by = 4N ——A B* , 5
(a. b) fo S AE ) 5)

where A and B are the Fourier transforms of the functions a(¢) and b(¢), respectively, and
Sn(f) is the ET noise PSD. In computing the covariance matrix, we made a distinction between
the following two cases.

o If the beaming is so strong that one can assume ¢ = ¥ = 0 for all practical purposes, then
the parameters to be estimated are

pr = (M, v, ty, &g, Dp). (6)

At a given redshift, the resulting rms uncertainty on Dy was then averaged over sky
position.

o Allowing for beaming angles as wide as ¢ ~ 20°, the binary’s orientation (y, ¢) also needs
to be taken into account:

Pk = (M9 v, tOv CDO’ DL? 1/[’ L)' (7)

In this case the rms errors were averaged over all angles (6, ¢, ¥, ¢) but with the constraint
L < 20°.

We then fitted each realization of the source catalogue to the cosmological model given
in equation (1), using the Levenberg—Marquardt algorithm [21, 22], in order to find a set of
best fit parameters. It turns out that a catalogue of 1000 sources is not quite enough for an
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Figure 2. The plot shows the distribution of errors in 2y, 24 and w, obtained by fitting 5190
realizations of a catalogue of BNS merger events to a cosmological model of the type given in
equation (1), with three free parameters. The fractional 1-o widths of the distributions o,/ 2m,
0q, /2 and oy, /|w|, respectively, are 18%, 4.2% and 18% (with weak lensing errors in Dy, left
panels) and 14%, 3.5% and 15% (if weak lensing errors can be corrected, right panels).

accurate determination of all the parameters. However, assuming that Hj is known accurately,
the algorithm gave the best fit parameters in (2, €24, w) for each of the 5190 realizations.
By the time ET is operational, a network of advanced detectors will have been active over a
number of years, possibly measuring Hy down to a percent or better over such a time span
[7]. Using extreme mass ratio inspirals seen in the LISA, one can also measure Hj to better
than a percent [8], or down to a fraction of a percent judging from relative distance errors for
supermassive binary BH coalescences [10]. Taking Hj to be the only free parameter and with
only 50 sources up to a redshift of z = 0.5, the ET itself would achieve an accuracy of 0.55%
(using the kind of estimation explained here). For sufficiently low-redshift sources, the rest
of cosmology is not very important. Having determined Hj in this way, the higher redshift
sources can then be used to explore the cosmological parameter space more fully. In this way,
GW astronomy will provide an independent measure of cosmography.

Thus, the ET itself can use sources in the low-redshift Universe to measure H, with an
error that is negligible compared to the uncertainties on the other parameters obtained from
all sources combined, as we will see below. For the purposes of this paper we will consider
Hj essentially known.

Let us first discuss some results in the case of strong beaming (¢« = ¢ = 0); in the next
section we will relax this assumption. The distributions P of the parameters obtained in the
way we described above are shown in figure 2, where the vertical line is at the true value of the
relevant parameter. Figure 3 shows a scatter plot of the recovered values of the dark energy
density and dark energy equation of state when not correcting for weak lensing errors.

The relative 1-o errors in Q2,, €2\ and w are 4.2%, 18% and 18% (with weak lensing) and
3.5%, 14% and 15% (with weak lensing errors corrected). Although P(w) is quite symmetric,
P(2ym) and P(£2,) are both skewed and their mean values are slightly off the true values. The
medians, however, are coincident with the true values.
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Figure 3. Scatter plot of the retrieved values for (25, w), with 1-0, 2-0 and 3-0 contours, in the
case where weak lensing is not corrected.

In addition to Hy if €2, is also known (or, equivalently, if Q2y + 24 = 1), then one can
estimate the pair (2y, w) more accurately, with 1-o errors in Q) and w of 9.4% and 7.6%
(with weak lensing) and 8.1% and 6.6% (with lensing errors corrected). Finally, if w is the
only parameter unknown, it can be measured to an even greater accuracy with 1-o errors of
1.4% (with weak lensing) and 1.1% (with lensing errors corrected)”.

3.3. Effect of unknown orientation and polarization

In the previous section our study neglected the effect of different inclinations of the orbit to
the line of sight. Varying the inclination has two distinct effects. On the one hand, as noted
in [7], due to the strong correlation between the luminosity distance and the inclination, the
estimation of the luminosity distance could get corrupted. On the other hand, binaries that
are not face-on are, in general, elliptically polarized and have a non-zero polarization angle.
Since the polarization angle is correlated with the luminosity distance, there could be further
degradation in the estimation of the luminosity distance.

In this section we relax the condition that the inclination of the orbit is precisely known.
However, we will restrict the inclination of the binary’s angular momentum with the line of
sight to be within 20°. We will also assume that the radiation is described by an arbitrary
polarization angle. Since the sky position is still assumed to be known, this gives us a 7 x 7
covariance matrix with arevised estimate for the error in the luminosity distance. As before, we
construct catalogues of binary coalescence events but with the luminosity distance now drawn
from a Gaussian distribution with revised widths. We fit each catalogue to a cosmological
model and then repeat the exercise 5190 times to estimate the accuracy with which the various
cosmological parameters can be measured.

As expected, the parameter measurements get worse if we assume two or more parameters
to be unknown. For instance, errors in the estimation of €2,,, Q24 and w are, respectively,

4 At this point we note that in contemporary cosmology, w is determined mainly through SNIa observations using
CMB data as prior to ‘fix’ the other parameters. The CMB constraint on w is extremely weak. If one were to use
CMB results as a prior for GW measurements, one would obtain an independent measurement of w. We stress once
again that, unlike supernovae, GW standard sirens do not need any external calibration. A detailed discussion will be
presented in forthcoming work [23].
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more than 100%, 24% and 47% with weak lensing and more than 100%, 21% and 43%, if
weak lensing can be corrected. Similarly, if €2, is assumed to be known, then the errors in the
estimation of ), and w are, respectively, 12% and 9.5% if weak lensing is uncorrected for
and 11% and 9.2% if weak lensing can be corrected. However, the results are more or less the
same if dark energy parameter w is the only unknown quantity. Even when the inclination and
polarization angles are taken as free parameters, but the inclination angle is restricted to within
20°, the error in the estimation of w is 1.4% with weak lensing and 1.3% if weak lensing can
be corrected.

3.4. Comparison with other experiments and space missions

These results are better than what could be achieved with the LISA, which in estimating
w as a single free parameter may reach an accuracy of 0.3-10% depending on the systems
available, but under the condition that weak lensing effects can at least partially be subtracted
[10], otherwise LISA’s error will be much larger (in the order of 20%). Our results where
multiple parameters are estimated at once are also competitive with what is deemed possible
with proposed dedicated dark energy missions; see, e.g., the report of the Dark Energy Task
Force [24], who expect to see w errors between 3.5% and 11%.

In the above, we computed uncertainties for at most three free parameters. When
(Hy, Qm, 24, w) are all estimated at the same time, the relative 1 — o errors come out
to be 13%, 37%, 36% and 23%, respectively. We stress once again that the ET can use
a relatively small number of sources at low redshifts to obtain H, with almost negligible
uncertainty; this parameter can then be considered fixed to study (2y, 24, w) over a much
larger redshift range where the dynamical history of the Universe truly comes to bear.

4. Conclusions

In this study, we have shown that using a population of BNSs, the ET can measure the dark
energy equation-of-state parameter w (assuming this is the only unknown parameter) to within
about 1.5%. This precision is achievable even if it is not possible to correct for the errors in
the luminosity distance caused by weak lensing and the unknown inclination and polarization
angles of the binary.

The results of our simulation are quite encouraging but further work is needed to confirm
the usefulness of GW standard sirens in precision cosmology. Let us mention some that are
currently being pursued. Spins of component stars can be legitimately neglected in the case of
NSs (and hence in BNSs) but not for BHs. The modulation in the signal caused by the spin of
the black hole can improve parameter estimation accuracies [25]. We assumed, for simplicity,
that all our sources are BNS systems with masses (1.4, 1.4) M. In reality, the catalogue will
consist of a range of NS and BH masses. A more realistic Monte Carlo simulation would
draw binaries from the expected population rather than the same system, some of which (e.g.
more massive systems) would lead to better, but others to worsened, parameter accuracies.
The signal contains additional features, such as other harmonics of the orbital frequency than
the second harmonic considered in this work, and the merger and ringdown signals. These
are important for heavier systems and could potentially reduce the errors. Also, a recent study
[26] has shown that weak lensing effects on the measurement of the luminosity distance could
be reduced by 50% , which should make for improved parameter accuracies.

These factors are currently being taken into account to get a more reliable estimation of
the usefulness of the ET in precision cosmography.
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