
Quasilocal formalism and thermodynamics of asymptotically flat black objects

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Class. Quantum Grav. 27 165004

(http://iopscience.iop.org/0264-9381/27/16/165004)

Download details:

IP Address: 194.94.224.254

The article was downloaded on 30/08/2012 at 12:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/27/16
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 27 (2010) 165004 (22pp) doi:10.1088/0264-9381/27/16/165004

Quasilocal formalism and thermodynamics of
asymptotically flat black objects

Dumitru Astefanesei1, Robert B Mann2,3, Maria J Rodriguez1

and Cristian Stelea4

1 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm, Germany
2 Perimeter Institute for Theoretical Physics, Ontario N2J 2W9, Canada
3 Department of Physics, University of Waterloo Waterloo, Ontario N2 L 3G1, Canada
4 Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada

E-mail: dumitru@aei.mpg.de, mann@avatar.uwaterloo.ca, maria.rodriguez@aei.mpg.de and
stelea@phas.ubc.ca

Received 25 February 2010, in final form 24 May 2010
Published 29 June 2010
Online at stacks.iop.org/CQG/27/165004

Abstract
We study the properties of five-dimensional black objects by using the
renormalized boundary stress tensor for locally asymptotically flat spacetimes.
This provides a more refined form of the quasilocal formalism, which is useful
for a holographic interpretation of asymptotically flat gravity. We apply this
technique to examine the thermodynamic properties of black holes, black rings
and black strings. The advantage of using this method is that we can go beyond
the ‘thin ring’ approximation and compute the boundary stress tensor for any
general (thin or fat) black ring solution. We argue that the boundary stress
tensor encodes the necessary information to distinguish between black objects
with different horizon topologies in the bulk. We also study in detail the susy
black ring and clarify the relation between the asymptotic charges and the
charges defined at the horizon. Furthermore, we obtain the balance condition
for ‘thin’ dipole black rings.

PACS numbers: 04.50.Gh, 04.70.Dy

1. Introduction

A remarkable development in theoretical physics was the discovery of a close relationship
between the laws of thermodynamics and certain laws of black hole physics. The black hole
represents the equilibrium end state of gravitational collapse, so on general grounds we might
expect it to be the state of maximum entropy for a self-gravitating system. The relationship
between thermodynamic entropy and the area of an event horizon is one of the most robust
and surprising results in gravitational physics.
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In a very basic sense, gravitational entropy can be regarded as arising from the Gibbs–
Duhem relation applied to the path-integral formulation of quantum gravity [1]. In the
semiclassical limit, this yields a relationship between gravitational entropy and other relevant
thermodynamic quantities, such as mass, angular momentum and other conserved charges.

This relationship was first explored in the context of black holes by Gibbons and
Hawking [2], who argued that the thermodynamical potential is equal to the Euclidean
gravitational action multiplied by the temperature. In this approach, the partition function
for the gravitational field is defined by a sum over all smooth Euclidean geometries with a
period β in imaginary time. The integral is computed by using the saddle-point approximation.

When applying this method to the Schwarzschild black hole, the calculation is purely
gravitational (no additional ‘matter’ fields are present) and the entropy is one-fourth of the
horizon area. Therefore, this result confirms that the entropy is an intrinsic property of black
holes.

It is well known that, due to the equivalence principle, a local definition of energy in
gravity theories is meaningless. One of the most fruitful approaches in computing conserved
quantities has been to employ the quasilocal formalism [3]. The basic idea of Brown and York
was to define a quasilocal energy. That is to enclose a given region of spacetime with some
surface and to compute the energy5 with respect to that surface.

For an asymptotically flat spacetime, it is possible to extend the quasilocal surface to
spatial infinity without difficulty, provided one incorporates appropriate boundary terms
(counterterms) in the action to remove divergences [7–9]. This method was inspired by
the holographic renormalization method in AdS spacetimes [10] (see, e.g., [11, 12] for
counterterms in more general theories) and the counterterms were obtained by considering the
flat space limit (the AdS radius is infinite).

Subsequently, the authors of [13] proposed a renormalized stress tensor for a general
class of stationary spacetimes which are locally asymptotic to flat space—it was computed by
varying the total action (including the counterterms) with respect to the boundary metric. The
conserved quantities can be constructed from this stress tensor via the algorithm of Brown and
York [3]. As an example, this method was applied in [13] to understand the thermodynamics
of the dipole ring [14].

However, there are subtleties in taking the flat spacetime limit and the references [7–9]
did not present a rigorous justification for considering these counterterms6.

In flat spacetime the usual gravity covariant action supplemented with the boundary
Gibbons–Hawking term does not satisfy a valid variational principle. Mann and Marolf have
constructed a valid covariant variational principle by adding an appropriate local boundary
term [16] (see, also, [17, 18]). This counterterm makes direct contact with the background
subtraction procedure. They have also demonstrated that the conserved quantities related to
the boundary stress tensor agree with the usual ADM definitions7 [20] (see, also, [21]). In
particular, this work provides a rigorous justification for the proposal of the renormalized
stress tensor of [13].

In the asymptotically flat case, the only neutral static black hole is the five-dimensional
Schwarzschild–Tangherlini solution [22]. The rotating case is more involved and includes
both Myers–Perry black holes [23] and black rings [24, 25].

In this paper we apply the method of [13] in a systematic way to study the thermodynamics
of asymptotically flat black objects. We will restrict our considerations to five dimensions,

5 In fact, one can compute all relevant thermodynamic quantities [4–6].
6 One problem with the flat spacetime is that its holographic description seems to be nonlocal [15].
7 The conserved quantities defined in this way also generalize the usual definitions to allow, e.g., non-vanishing NUT
charge in four-dimensions—see, also, [19] for a different approach to compute the NUT charge.
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although a similar formalism should be valid for any spacetime dimension (see [18] for a
similar analysis in four dimensions).

At this point we pause to explain the advantages of using this method. First, computations
of the ADM stress tensor have been carried out just in the ‘thin ring’ approximation (see [25]
and references therein). In this paper we go beyond this approximation, computing the
complete boundary stress tensor for any (fat or thin) black ring solution.

Furthermore, while there is a computation of the asymptotic charges within the ADM
formalism, there is no computation of the action. Indeed, to the best of our knowledge, there
is no known background subtraction calculation for black rings. In this sense, the analysis of
thermodynamics in the grand-canonical ensemble that is presently found in the literature is
incomplete. However, we explicitly compute the thermodynamic potential and recover some
of the previous results. For concreteness, we also provide the associated phase diagrams based
on the Gibbs potential—these plots have not appeared earlier in the literature.

Another noteworthy application of our work is in understanding how the quasilocal
formalism applies to theories with a Chern–Simons term. We present a detailed study of the
susy black ring, which is helpful for clarifying the relation between the asymptotic charges
and the charges computed at the horizon in this case.

An outstanding question concerning black rings is how an asymptotic observer can
distinguish between a black ring and a black hole with the same asymptotic charges. In
this paper, our modest purpose is merely to point out some tools to address this situation: we
argue that the required information is encoded in the quasilocal stress tensor.

Due to the significant promise that the quasilocal formalism (supplemented with
counterterms) has for further applications, we have designed our paper to be self-contained,
with concrete examples—it can also be considered as an introduction to the subject.

The remainder of this paper is organized as follows. Section 2 contains a review of the
results of [3, 13] and also the complex instanton method [26, 27]. In section 3, we investigate
in detail the thermodynamic properties of a neutral black ring (with one angular momentum)
and a black hole in the grand-canonical ensemble. In section 4 we examine a few charged black
objects including the susy black ring. In particular, we present a discussion of the balance
condition for the thin dipole-charged black rings within the quasilocal formalism. Section 5
concludes with a comprehensive discussion and some observations about our results.

2. General method

In this section we review the basic framework that we will use to study the thermodynamics
of asymptotically flat black objects. First, we present an overview of the quasilocal formalism
and the counterterm method. Then, we discuss the complex instanton method and the role of
the quasi-Euclidean section in understanding black ring thermodynamics.

2.1. Quasilocal formalism

The action functional for general relativity contains a contribution IG[g] from the gravitational
field gμν and a contribution IM [�; g] from the matter fields, which we collectively denote as
�. In the early days of studying the path integral for gravity, the gravitational action for some
region M was written as a sum of a Hilbert term IH [g], a term evaluated on its boundary ∂M ,
IB[g] and a nondynamical term Iref[gref]:

IG[g] ≡ IH [g] + IB[g] − Iref[gref]

= 1

16πG

∫
M

R
√−g d5x +

ε

8πG

∫
∂M

(K − K0)
√−h d4x. (1)
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Here, K is the extrinsic curvature of ∂M , ε is equal to +1 where ∂M is timelike and −1
where ∂M is spacelike, and h is the determinant of the induced metric on ∂M .

The existence of a boundary term in the gravitational action is an atypical feature of
field theories—it appears due to the fact that R, the gravitational Lagrangian density, contains
second derivatives of the metric tensor. This term is required so that upon employing the
variational principle with metric variations fixed at the boundary, the action yields the Einstein
equations.

Let us elucidate now the role of Iref. Clearly it affects the numerical value of the action
but not the equations of motion. The main observation is that even at the tree level, the
gravitational action contains divergences that arise from integrating over the infinite volume
of spacetime. Hence one should regularize the action to get finite results.

One way to do this is by subtracting a new term Iref[gref, �ref] from the action [3]. The
action and conserved quantities are calculated with respect to this reference spacetime which
is interpreted as the ground state of the system. An important difficulty with this approach
is that it is not always possible to embed a boundary with a given induced metric into the
reference background [28].

Fortunately, there is a second way [8, 9, 13, 16] to regularize the gravitational action and
the stress–energy of gravity. Namely, one supplements the quasilocal formalism of Brown
and York [3] by including boundary counterterms. This method was inspired from the stringy
AdS/CFT correspondence [10], where the infrared divergences of the gravity in the bulk (due
to integration over infinite volumes) are dual to ultraviolet divergences in the dual boundary
conformal field theory. These divergences can be removed by adding additional boundary
terms that are geometric invariants of the induced boundary metric, leading to a finite total
action.

The counterterms are built up by curvature invariants of the boundary ∂M (which is sent
to infinity after the integration) and thus, obviously, they do not alter the bulk equations of
motion. Rather than employing the counterterm proposal in reference [16], for asymptotically
flat solutions (on the Euclidean section)8 we consider the following counterterm expression:

Ict [h] = − c

8πG

∫
∂M

d4x
√−h

√
R, (2)

where R is the Ricci scalar of the induced metric on the boundary hij. The constant c that enters
the above relation depends on the boundary topology—one finds c = √

3/2 for a boundary
topology S3 × S1 and c = √

2 for an S2 × R × S1 topology. This choice of boundary term
yields an action that is stationary on solutions, so long as the spatial cut-off induces a boundary
of the form Sn × R

d−n−1 [16].
Varying the total action, I = IH [g] + IB[g] + Ict [h], with respect to the boundary metric

hij, we compute the divergence-free boundary stress tensor [13]

τij ≡ 2√−h

δI

δhij
= 1

8πG
(Kij − hijK − �(Rij − Rhij ) − hij�� + �;ij ), (3)

where � = c√
R .

The boundary metric can be written, at least locally, in the ADM-like form

hij dxidxj = −N2 dt2 + σab (dya + Na dt)(dyb + Nb dt), (4)

where N and Na are the lapse function and the shift vector respectively and the ya are the
intrinsic coordinates on the closed surfaces �.

8 The action is computed on the Euclidean section but the stress tensor can be computed on the Lorentzian section.
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Provided the boundary geometry has an isometry generated by a Killing vector ξ i , a
conserved charge

Qξ =
∮

�

d3y
√

σni τij ξ j (5)

can be associated with a closed surface � (with normal ni). Physically this means that a
collection of observers on the hypersurface whose metric is hij all observe the same value of
Qξ provided this surface has an isometry generated by ξ i [6, 29]. For example, if ξ = ∂/∂t

then Q is the conserved mass/energy M.
One of the appealing features of this approach is that it provides elegant ‘natural’

definitions of quasilocal energy and angular momentum.
Gravitational thermodynamics is then formulated via the Euclidean path integral

Z =
∫

D[g]D[�] e−I [g,�] � e−I ,

where one integrates over all metrics and matter fields between some given initial and final
Euclidean hypersurfaces, taking τ to have some period β. The period is determined by
requiring the Euclidean section to be free of conical singularities. Semiclassically, the total
action is evaluated from the classical solution of field equations, yielding an expression for
the entropy

S = β(M − μiCi ) − I, (6)

upon application of the Gibbs–Duhem relation to the partition function [1] (with chemical
potentials Ci and conserved charges μi). The first law of thermodynamics is then

dS = β(dM − μidCi ). (7)

2.2. Complex instanton

The thermodynamic properties of a dipole black ring were derived by using the counterterm
method [13]. Also, using the Gibbs–Duhem relation, a non-trivial check of the entropy/area
relationship for the dipole ring was obtained.

However, a key point regarding one’s intuition about the Euclidean section does not apply
to black rings. Naively, one expects to find a real Euclidean section for a black ring solution.
However it was shown in [13, 30] that the situation is more subtle: there is no real non-singular
Euclidean section in this case. Nevertheless, as argued in [27], these configurations can still
be described by a complex geometry and a real action9.

As in [13], we adopt the ‘quasi-Euclidean’ method of [27] in which the Wick
transformations affect the intensive variables, such as the lapse and shift (N → −iN and
Nk → −iNk), but for which the extensive variables (such as energy) remain invariant. It is
worth mentioning that the Cauchy data and the equations of motion remain invariant under
this complexification.

Now, let us recapitulate the general formalism from [26, 27]. We begin with the standard
ADM decomposition: first, select an arbitrary foliation of spacetime by specifying the lapse
function N and the shift vector Na. Defining γij to be the induced metric on the spacelike
hypersurfaces of constant time, the full spacetime metric is given by

ds2 = gμν dxμ dxν = −N2 dt2 + γij (dxi + Ni dt)(dyj + Nj dt). (8)

Next we choose initial values for the tensor fields γij and Kij, where Kij is the extrinsic curvature
of the spacelike hypersurfaces. The initial values must be solutions of the constraint equations

9 This method was also used in [29].
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and so the choice is not entirely arbitrary. Then, the appropriate complexification that preserves
the constraints and the dynamical equations of motion of stationary spacetimes is given by
replacing N with −iN and also changing the shift vector Ni and the gauge potential A0 from
real to imaginary. The complex Euclidean metric becomes

ds2 = N2 dτ 2 + γij (dyi − i Ni dτ)(dyj − i Nj dτ). (9)

The key point is that the energy, angular momentum and electric charge are defined by surface
integrals of the Cauchy data and so they remain real with their physical values.

Armed with this formalism, we will be able to investigate the thermodynamics of black
rings. To check consistency, we shall also apply this method to other examples.

2.3. Temperature and angular velocity

An asymptotically flat spacetime is stationary if and only if there exists a Killing vector field,
ξ , that is timelike near spatial infinity—it can be normalized such that ξ 2 → −1. It has been
shown that stationarity implies axisymmetry [31] and so the event horizon is a Killing horizon.

The general stationary metric10 with an ‘axial’ vector Killing, ∂
∂φ

, can be written as

ds2 = gtt (�x) dt2 + 2gtφ(�x) dt dxφ + gij (�x) dxi dxj . (10)

A stationary spacetime is static, at least near spatial infinity, if it is also invariant under time
reversal (i.e. gtφ(�x) = 0).

We rewrite the metric (10) in the ADM form (8), and so we obtain

N2 = (gtφ)2

gφφ

− gtt , Nφ = gtφ

gφφ

, γij = gij . (11)

The shift vector evaluated at the horizon reproduces the angular velocity of the horizon

�
φ

H = −Nφ

∣∣∣∣
H

= − gtφ

gφφ

∣∣∣∣
H

. (12)

To compute the temperature, we should eliminate the conical singularity in the (τ, r) sector.
Let us define a new radial coordinate R =

√
N2. Thus we have dR = 1

2 (N2)−1/2(N2)′ dr and
we get

ds2 = N2 dτ 2 + grr dr2 = grr

4N2

[(N2)′]2

[
dR2 +

[(N2)′]2R2

4N2grr

dτ 2

]
.

Hence, in the vicinity of r = rH , we see that R = 0 is like the origin of the polar coordinates
provided that we identify τ with the period �τ given by

(N2)′

2
√

N2grr

∣∣∣∣∣
H

�τ = 2π,

and so the temperature is

T = 1

�τ
= (N2)′

4π
√

N2grr

∣∣∣∣∣
H

. (13)

The lapse N and shift Nφare not dynamical quantities—they can be specified freely and
correspond to the arbitrary choice of coordinates. It is important to emphasize that the lapse
determines the slicing of spacetime and the choice of shift vector determines the spatial
coordinates.

Note that, with this foliation of spacetime, the black hole horizon is at N2 = 0.

10 We use the conventions and compute the temperature and the angular velocity as in [32].
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3. Vacuum solutions

In this section we apply the counterterm method to five-dimensional vacuum solutions of
Einstein gravity. We explicitly show how to compute the action and the conserved charges
for the Myers–Perry black hole and for the black ring. By using the action computed on the
quasi-Euclidean section we also present a detailed analysis of the thermodynamic stability in
canonical and grand-canonical ensembles.

3.1. The model

The existence of non-spherical horizon topologies in dimensions higher than four implies that
the notion of black hole uniqueness is very much weaker in higher dimensions. In fact, the
existence of a black ring with the same conserved charges as the black hole is a counterexample
to a straightforward extension of the four-dimensional black hole uniqueness theorems.

We start by discussing the spinning vacuum solutions of Einstein field equations: the
black hole [23] and the black ring [24]—a detailed discussion of black ring physics can be
found in [25].

Using the conventions in [33] we can write a general line element representing both
solutions as follows:

ds2 = −F(x)

F (y)
(dt + R

√
λ ν (1 + y) dψ)2

+
R2

(x − y)2

[
−F(x)

(
G(y) dψ2 +

F(y)

G(y)
dy2

)
+ F(y)2

(
dx2

G(x)
+

G(x)

F (x)
dφ2

)]
(14)

with

F(ξ) = 1 − λξ, G(ξ) = (1 − ξ 2)(1 − νξ). (15)

R, λ and ν are parameters whose appropriate combinations give the mass and angular
momentum.

The variables x and y take values in

−1 � x � 1, −∞ < y � −1, λ−1 < y < ∞. (16)

As shown in [33], in order to balance forces in the ring, one must identify ψ and φ with equal
period:

�φ = �ψ = 4π
√

F(−1)

|G′(−1)| = 2π
√

1 + λ

1 + ν
. (17)

This eliminates the conical singularities at the fixed-point sets y = −1 and x = −1 of the
Killing vectors ∂ψ and ∂φ , respectively.

However there is still the possibility of conical singularities at x = +1. These can be
avoided in either of the two ways. Fixing

λ = λc ≡ 2ν

1 + ν2
(black ring) (18)

makes the circular orbits of ∂φ close-off smoothly also at x = +1. Then (x, φ) parametrize a
two-sphere, ψ parametrizes a circle and the solution describes a black ring. Alternatively, if
we set

λ = 1 (black hole), (19)

then the orbits of ∂φ do not close at x = +1. Then (x, φ,ψ) parametrize an S3 at the constant
t, y. The solution is the same as the spherical black hole of [23] with a single rotation

7
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parameter. Both for black holes and black rings, |y| = ∞ is an ergosurface, y = 1/ν is the
event horizon, and the inner, spacelike singularity is reached as y → λ−1 from above.

The parameters ν and λ have the range

0 � ν < λ < 1. (20)

As ν → 0 we recover a non-rotating black hole, or a very thin black ring. At the opposite
limit, ν → 1, both the black hole and the black ring get flattened along the plane of rotation,
and at ν = 1 approach the same solution with a naked ring singularity.

Asymptotic spatial infinity is reached as x → y → −1.

3.2. Boundary stress tensor and conserved charges

To evaluate asymptotic expressions at spacelike infinity, it is convenient to introduce
coordinates in which the asymptotic flatness of the solutions becomes manifest. Our choice
for this transformation is

x = 1 − 2 α2 r2

α2 r2 + R2 cos2 θ
, y = 1 − 2(α2 r2 + R2)

α2 r2 + R2 cos2 θ
, α =

√
1 + ν

(1 + λ)
, (21)

r corresponding to a normal coordinate on the boundary, 0 � r < ∞, 0 � θ � π/2. In these
coordinates, the black ring approaches asymptotically the Minkowski background

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dψ2 + cos2 θ dφ2), (22)

where φ and ψ are angular coordinates rescaled according to (17).
The mass and angular momentum can be computed by employing the quasilocal formalism

and we obtain from equation (3) the relevant boundary stress–tensor components

τtt = 1

8πG

(
−3R2λ(1 + λ)

1 + ν

1

r3
+ F0

cos 2θ

r3
+ O(1/r5)

)
,

τtψ ≡ τψt = 1

8πG

(
−4 R3

√
λν(1 + λ)5/2

(1 + ν)2

sin2 θ

r3
+ O(1/r5)

)
,

(23)

where

F0 = −R2(1 + λ)(5 + 13ν − 17λ − 9νλ)

3(1 + ν)2
. (24)

Note that the term in τtt containing F0 will make no contribution once integrated over the
closed surface �. New non-trivial contributions will appear at subleading order O(1/r5) and
correspond to the dipole.

Thus, the mass and angular momentum of this solution are

M = 3πR2

4G

λ(λ + 1)

1 + ν
, J = πR3

2G

√
λν(λ + 1)5/2

(1 + ν)2
. (25)

As expected, the mass and angular momentum computed from the boundary stress tensor
according to (5) agree with the standard ADM expressions [24].

3.3. Pseudo-Euclidean section and thermodynamic stability

As discussed in section 2.2, the analytic continuation t → −iτ leads to a complex Euclidean
metric. After performing this action on the line element (14), the lapse function is

N2 = F(x)

F (y)

[
G(y)F (y)

λν(1 + y)2(x − y)2 − G(y)F (y)

]
, (26)

8
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and the shift vector is

Nψ = 1

R

√
λν(1 + y)(x − y)2

λν(1 + y)2(x − y)2 − G(y)F (y)
. (27)

The angular velocity at the horizon reads

� = 1 + ν√
1 + λ

�
ψ

H = 1

R

√
ν

λ(1 + λ)
, (28)

where �
ψ

H is obtained from equation (12). Using the results in section 2.3 it is straightforward
to prove that the temperature and the horizon area are given by

A = 8π2R3 λ1/2(1 + λ)(λ − ν)3/2

(1 + ν)2(1 − ν)
, T = 1

4πR

1 − ν

λ1/2(λ − ν)1/2
. (29)

Now, we would like to compute the renormalized action that is related to the free energy
of the system. The scalar curvature R vanishes so only the surface terms give a contribution to
the action. To evaluate these terms, it is convenient to use the (r, θ) coordinate system. One
finds that

lim
r→∞

√−h

(√
3

2
R − K

)
= R2(1 + λ)(λ(1 + ν) − 4(λ + ν + 2λν) cos 2θ) sin 2θ

2(1 + ν)2
+ O(1/r2),

which is finite. The expression for the total action is

I = π2R3

G

λ3/2(1 + λ)(λ − ν)1/2

(1 − ν2)
. (30)

It can be verified that

I = β(M − �J) − A
4 G

, (31)

with M,�, J and AH given above, while β = 1/T . Therefore, the entropy of this solution
is the event horizon area divided by 4 G, as expected. Also, the first law of thermodynamics,
dM = T dS + � dJ , is satisfied.

To study the phase structure and stability of black objects we must analyze the potentials
and the response functions in different thermodynamic ensembles. We will briefly describe
the potentials, response functions and stability conditions in the canonical and grand-canonical
ensembles. Previous related studies can be found in [13, 30, 36].

In the grand-canonical ensemble (i.e. for fixed temperature, angular velocity and gauge
potential), by using the definition of the Gibbs potential G[T ,�] = I/β and the expression
for the angular velocity, we obtain

G[T ,�] = M − �J − T S. (32)

As expected, G[T ,�] is indeed the Legendre transform of the energy M[S, J ] with respect
to S, J—the Legendre transform simply exchanges the role of the variables associated with
the control and response of the system. A detailed discussion of thermodynamic stability in
different ensembles is given in [35] (we respect the conventions in this book)—a nice review
of different methods in the context of black hole objects is given in [36].

The physical implication of the stability conditions is that they constrain the response
functions of the system. In analogy with the definitions for thermal expansion in the liquid–
gas systems, the specific heat at constant angular velocity, the isothermal compressibility and
the coefficient of thermal expansion at the horizon are defined respectively as follows:

C� = T

(
∂S

∂T

)
�

= −T

(
∂2G
∂T 2

)
�

, εT =
(

∂J

∂�

)
T

, α =
(

∂J

∂T

)
�

. (33)

9



Class. Quantum Grav. 27 (2010) 165004 D Astefanesei et al

The conditions for the stability of a thermodynamic configuration in the grand-canonical
ensemble are

C� > 0, εT > 0, (34)

as well as

C� εT − α2 T > 0. (35)

On the other hand, when considering a canonical ensemble, the variables are the
temperature T and angular momenta J. The potential is the Helmholtz free energy defined
as

F [T , J ] = M − T S, (36)

and the entropy is S = − (∂F/∂T )J . In this case, one finds the expressions for the response
functions for the specific heat at constant angular momentum

CJ = T

(
∂S

∂T

)
J

= −T

(
∂2F

∂T 2

)
J

, (37)

and also the inverse of the isothermal compressibility and the coefficient of thermal expansion
defined for the grand-canonical ensemble. The stability conditions in the canonical ensemble
have the same consequences on the constraints on the response functions as in the grand-
canonical ensemble. This is due to the equivalence between the heat capacities that follow
from the mathematical relations derived from the basic thermodynamic laws

CJ = C� − T ε−1
T α2. (38)

Using (35) one can easily obtain that CJ > 0.

3.3.1. Black hole. A regular black hole solution with one angular momentum corresponds
to setting λ = 1 in (14). Thus, the Gibbs potential is given by

G[T ,�] = π

8G�2

(
1 +

4π2T 2

�2

)−1

, (39)

and the specific heat is

G�3C� = π2x(1 − 3x2)

2(1 + x2)3
, (40)

where x = 2πT/�. Thermodynamic stability, C� > 0, restricts T/� < (2π
√

3)−1 � 0.092
which in turn implies ν > 3/5 � 0.6. Although the solution is singular when ν → 1, in the
extremal limit the heat capacity tends to zero, C� → 0, as shown in figure 1.

The compressibility can be shown to be

GT 4 εT = 1 − 3x̄2

64π3(1 + x̄2)3
, (41)

where x̄ = �/(2π T ). In figure 1 we show the compressibility as a function of the angular
velocity for a fixed value of temperature. Therefore, it is positive for (�/T ) > 2π/

√
3 � 3.63

that corresponds to a constraint on the parameters of the solution so that ν < 1/7 � 0.14. As
for the limit of � → 0 corresponding to the Schwarzschild black hole it is observed that the
compressibility is positive11.

The response functions are positive for different values of the parameters implying no
region of the parameter space where both are simultaneously positive. Therefore, the black
hole is thermally unstable in both the grand-canonical and canonical ensembles.
11 It is well known that the heat capacity for a Schwarzschild black hole is negative and so it heats up as it radiates (it
is not thermodynamically stable). However, since the compressibility is positive, it is stable against perturbations in
the angular velocity.

10
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Figure 1. On the right, the heat capacity C� as a function of temperature T (at a fixed value of �) is
shown and on the left, the compressibility εT as a function of the angular velocity � (at a fixed value
of T) of a five-dimensional singly spinning black hole is shown. The heat capacity is positive in the
region where (T /�) < (2π

√
3)−1 � 0.092 (or equivalently for ν > 0.6) and the compressibility

is positively defined in the region where (T /�) >
√

3/(2π) � 0.276 (or for ν < 0.14) implying
the instability of the black hole in the canonical and grand-canonical ensembles. The heat capacity
tends to zero when approaching the singular extremal black hole solution with T = 0.

3.3.2. Black ring. We consider now the dynamical equilibrium condition λ = 2ν/(1 + ν2)

that corresponds to a regular black ring with one angular momentum.
The Gibbs potential can be written as a function of the temperature and the angular

velocity as follows:

G[T ,�] = π

4G�2

(
1 +

√
1 +

16π2T 2

�2

)−1

. (42)

A straightforward computation leads to

G�3 C� = π2x(1 +
√

1 + x2 − 2x2
√

1 + x2)

(1 + x2)3/2(1 +
√

1 + x2)3
, (43)

where x = 4πT/�. It turns out that solutions with T/� < (4π

√
2/

√
3)−1 � 0.074 are

stable against thermal fluctuations, C� > 0. It is also important to note that in the extremal
limit where T → 0 or ν → 1, the heat capacity goes to zero as shown in figure 2. This
behavior for the heat capacity is expected and can be drawn from the Nernst theorem.

Similarly the compressibility can be computed as

GT 4 εT = − 2 + 3x̄2

1024π3x̄3(1 + x̄2)3/2
, (44)

where x̄ = �/(4πT ) and so, for any value of the parameters, it is always negative. Therefore,
the black ring is also thermodynamically unstable in the grand-canonical and canonical
ensembles.

4. Charged black objects

In this section we compute the stress tensor of charged five-dimensional black objects.
In particular, we discuss the Reissner–Nordstrom black hole, a supersymmetric black ring
solution and black string solutions in Einstein–Maxwell–dilaton theories. We also obtain the
equilibrium condition for the black string solutions that are obtained as a limit of black rings
in [14].

11
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Figure 2. Plot of the heat capacity C� as a function of temperature T for a given angular velocity
(left) and the compressibility εT as a function of the angular velocity � for a given temperature
(right) for a singly spinning black ring. The black ring is unstable in the canonical and grand-
canonical ensembles: the compressibility is always negative and the heat capacity is only positive

when T/� < (4π

√
2/

√
3)−1 � 0.074. In the extremal limit (T = 0) the heat capacity of the

black ring is zero.

4.1. Reissner–Nordstrom black hole in five dimensions

As a warm-up exercise, we begin by analyzing the Reissner–Nordstrom black hole. The static
black hole solution of Einstein–Maxwell field equations has the following line element:

ds2 = −V (r) dt2 +
dr2

V (r)
+ r2 d�2

3, (45)

where

V (r) = 1 − m

r2
+

q2

r4
. (46)

The parameters (m, q) are related to the mass and electric charge respectively. The coordinates
range between 0 � θ < π/2 and 0 � φ,ψ < π .

Using the counterterm method we find the relevant stress energy component

τtt = 1

8πG

(
−3

2

m

r3
+

(
9m2

8
+

3q2

2

)
1

r5
+ O(1/r7)

)
.

As expected, the charge contribution is subleading in the τtt component of the stress tensor.
From (5) we can then calculate the conserved mass associated with the closed surface �:

M ≡
∮

�

d3y
√

σni τij ξ
j
t = 3 m

8 G
,

where the the normalized Killing vector associated with the mass is ξt = ∂t , matching the
ADM computation.

4.2. The supersymmetric black ring

This is the solution of the bosonic sector of five-dimensional minimal supergravity with an
action principle

I0 = 1

16πG

∫
M

d5x

(√−g(R − F 2) − 8

3
√

3
F ∧ F ∧ A

)
− 1

8πG

∫
∂M

K
√−h d4x, (47)

12
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and field equations

Rμν − 1

2
Rgμν = 2

(
FμσF σ

ν − 1

4
gμνF

2

)
, (48)

DμFμν = 1

2
√

3
√−g

ενμσλτFμσFλτ , (49)

where F = dA.
The line element of the black ring solution is given by [37] (see also [25, 38–40])

ds2 = −f 2(dt + ω)2 + f −1 ds2
4 , (50)

with the flat space metric written in ring coordinates

ds2
4 = R2

(x − y)2

[
dy2

y2 − 1
+ (y2 − 1) dψ2 +

dx2

1 − x2
+ (1 − x2) dφ2

]
, (51)

where

f −1 = 1 +
Q − q2

2R2
(x − y) − q2

4R2
(x2 − y2), ω = ωψ dψ + ωφ dφ (52)

and

ωφ = − q

8R2
(1 − x2)[3Q − q2(3 + x + y)], (53)

ωψ = 3

2
q(1 + y) +

q

8R2
(1 − y2)[3Q − q2(3 + x + y)]. (54)

The gauge potential is

A =
√

3

2

[
f (dt + ω) − q

2
((1 + x) dφ + (1 + y) dψ)

]
. (55)

The coordinates have ranges −1 � x � 1 and −∞ < y � −1, and φ,ψ have period 2π . The
black ring has an event horizon at y = −∞. Q and q are positive constants, proportional to
the net charge and to the dipole charge of the ring, respectively. The electric charge relevant
for thermodynamics is Q = √

3Q/2.
The same counterterm approach can be used to compute the asymptotic conserved charges.

In this computation, it is convenient to use the (r, θ) coordinates, defined by (21) with α = 1.
The relevant components of the boundary stress tensor are

τtt = 1

8πG

(
−3Q

r3
− 5

3
R2 cos 2θ

r3
+ O(1/r5)

)
,

τtφ = 1

8πG

(
−q(3Q − q2)

cos2 θ

r3
+ O(1/r5)

)
,

τtψ = 1

8πG

(
−q(6 R2 + 3Q − q2)

sin2 θ

r3
+ O(1/r5)

)
,

τθθ = 1

8πG

(
2

3
R2 cos 2θ

r
+ O(1/r3)

)
, (56)

τφφ = 1

8πG

(
2

3
R2(1 + 2 cos 2θ)

cos2 θ

r
+ O(1/r3)

)
,

τψψ = 1

8πG

(
2

3
R2(−1 + 2 cos 2θ)

sin2 θ

r
+ O(1/r3)

)
.

13
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Therefore, the mass and angular momentum as computed from the counterterms are the same
as the ADM values

M = 3πQ

4G
, Jϕ = π

8G
q(3Q − q2), Jψ = π

8G
q(6 R2 + 3Q − q2).

For this supersymmetric solution, the surface gravity and the angular velocities of the
event horizon vanish. Despite this, the horizon area is finite and depends on both the global
and dipole charges. We present more details on the role of the charges and the thermodynamics
of the supersymmetric black ring in section 5.

4.3. Black string and balance condition

In this section we discuss the five-dimensional charged boosted black string solutions in
Einstein–Maxwell–dilaton theory [14] by using the counterterm method. The action is

I = 1

16πG

∫
d5x

√−g

(
R − 1

2
(∂φ)2 − 1

4
e−αφF 2

)
. (57)

It is convenient to express the dilaton coupling as in [14]

α2 = 4

N
− 4

3
, 0 < N � 3. (58)

We will obtain the relevant components of the stress tensor and discuss the balance
condition12.

The solution, with the boost parameter σ and the event horizon r = r0, is

ds2 = − f̂

hN/3

(
dt − r0 sinh σ cosh σ

rf̂
dz

)2

+
f

hN/3f̂
dz2 + h2N/3

(
dr2

f
+ r2 d�2

2

)
, (59)

where the (magnetic) charge is parametrized by γ .
The gauge potential and the dilaton for the magnetic13 solution are, respectively,

Aφ =
√

N r0 sinh γ cosh γ (1 + cos θ), eφ = hNα/2, (60)

and

f = 1 − r0

r
, f̂ = 1 − r0 cosh2 σ

r
, h = 1 +

r0 sinh2 γ

r
. (61)

The black string solutions that are obtained as a limit of black rings should also satisfy
the equilibrium condition. The equilibrium condition is a constraint on the parameters of the
unbalanced ring solution (14) that is equivalent with the removal of all conical singularities in
the metric.

A nice physical interpretation was given in [14]: the absence of conical singularities is
equivalent with the equilibrium of the forces acting on the ring. A black ring can be obtained
by bending a boosted black string. Thus, the linear velocity along the string becomes the
angular velocity of the black ring. The equilibrium of centrifugal and gravitational forces
imposes a constraint on the radius of the ring R, the mass and the angular momentum. In this
way one can see that, indeed, just two parameters are independent in the solution of the neutral
black ring.

Applying the same procedure as before we find that the relevant component of the
boundary stress tensor is

τzz = 1

8πG

(
r2

0

2
(1 − sinh2 σ + N sinh2 γ )

1

r2
+ O(1/r3)

)
. (62)

12 A more detailed discussion of the equilibrium condition for thin neutral black rings within the quasilocal formalism
and also the generalization to ‘fat’ black ring solutions is presented in [41].
13 The expressions for the two-form potential and dilaton of the dual electric solutions are given in [14].
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From a more general definition of Carter [42], in the absence of external forces, the
equations of motion of brane-like objects obey Kρ

μνT
μν = 0, which implies that the component

of the stress tensor in the z-direction (the pressure) vanishes Tzz = 0.
Thus, asymptotically, this equality (at first order) constrains the values of the boost

parameter with the charge (parameterized by γ ) in the following manner:

sinh2 σ = 1 + N sinh2 γ, (63)

that is, in agreement with the regularity constrains in [14] and the equilibrium condition found
in [43] for thin black rings.

By direct integration of the stress energy components, the conserved charges, mass and
angular momentum match exactly those from the ADM definition, namely

M = π

8G
R r0 cosh 2σ, J = − π

8G
R2r0 cosh σ sinh σ. (64)

5. Discussion

In this paper we have systematically applied the counterterm method for asymptotically
flat spacetimes to five-dimensional black objects. In this way, we have derived various
thermodynamic relations for several stationary black objects.

We hope that our unified treatment of black holes, black rings and black strings with
an emphasis on the role of the quasi-Euclidean section for thermodynamics is useful to the
reader.

On the Quasi-Euclidean method. The notion of asymptotic flatness of isolated systems is
intimately related to the possibility of defining the total stress–energy tensor that characterizes
the gravity system [20]. It is well known that a spacetime is asymptotically flat if it is possible
to attach to its corresponding manifold a boundary in null directions (I)—since null rays reach
(I) for an infinite value of their affine parameter, this is called null infinity. Spatial infinity, ι0

(the part of infinity that is reached along spacelike geodesics), is represented by one point in
the Penrose diagram of conformal compactification for Minkowski space.

It is important to emphasize that it is also possible to foliate the spacetime with spacelike
foliations: spacelike surfaces can be constructed that extend through null infinity. Such
surfaces are called hyperboidal as their asymptotic behavior is similar to standard hyperboloids
in Minkowski spacetime. In this context, it is better to visualize ι0 as the hyperboloid of
spacelike directions (it is isometric to the unit four-dimensional de Sitter space).

From a physical point of view, ι0 can be interpreted as the place where an observer ends
up when shifted to larger and larger distances. However, for studying holography in stationary
flat spacetimes, it seems more natural to impose boundary conditions at ι0 rather than I.14

Therefore, the renormalized ‘boundary’ stress tensor we used in this paper is assigned to
spatial infinity ι0 of asymptotically flat spacetimes.

A key point is that one’s intuition about Euclidean sections does not apply to black
rings—there is no real non-singular Euclidean section in this case. Therefore, a black ring
should be described by a complex Euclidean geometry [27] and its associated real action
(‘thermodynamic action’)15.

Consequently we employed the quasi-Euclidean method [6, 29], which was applied to
black rings for the first time in [13]. The properties of the black ring interior become encoded

14 A nice discussion on the role of conformal boundary and boundary conditions for holography can be found in [15].
15 A real Euclidean metric associated with the vacuum Kerr black hole was obtained by supplementing the analytic
continuation t → −iτ by a further transformation in the moduli space of the parameter space, J → iJ . However, as
argued by some authors [27], the resulting metric has little to do with the physical (Lorentzian) Kerr black hole.
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in a set of conditions at the ‘bolt’ of the complex geometry. Thus, the partition function
computed as a functional integral is extremized by a certain stationary complex black ring
metric.

A natural question that arises is if the physical system described by this partition function
is a real Lorentzian black ring. The answer is yes, precisely because the stress tensors for
the complex black ring and for the related Lorentzian black ring coincide. For example, in
the zero-loop approximation, the expectation value of energy from the partition function will
coincide with the energy of the complex black ring calculated from the boundary stress tensor;
in turn, the latter characterizes the energy of the real Lorentzian black ring.

Further support for using quasi-Euclidean instantons to construct gravitational partition
functions was given in [36]. In this work, the authors discuss the thermodynamic instabilities of
several spinning black objects in the grand-canonical ensemble. They found that the partition
functions of neutral spinning black holes and black rings in flat spacetime possess negative
modes at the perturbative level.

A central result in our work is the computation of the renormalized action (31) on the
quasi-Euclidean section. The black ring solutions have been shown to satisfy the first law of
black hole mechanics, thus suggesting that their entropy is one-quarter of the event horizon
area. We have made this more precise by computing the gravitational action to check the
quantum statistical relation as well as the first law of thermodynamics. Our computation can
be considered as an independent check that the entropy/area relation applies also for the black
rings.

On the thermodynamics. The thermodynamics of black rings in different ensembles has
been previously presented in the literature [13, 30, 36]. For completeness, we also present a
discussion of thermodynamic stability within quasilocal formalism.

Four-dimensional black holes are highly constrained objects. That is, an isolated
electrovac black hole can be characterized, uniquely and completely, by just three macroscopic
parameters: its mass, angular momentum and charge. Thus, all multipole moments of the
gravitational field are radiated away in the collapse to a black hole, except the monopole and
dipole moments [44]—they cannot be radiated away because the graviton has spin 2.

There are no black objects with an electric dipole in four dimensions. The black holes
have ‘smooth’ horizons (there are no ripples or higher multipoles) and are classically stable.
Moreover, for asymptotically flat solutions, the event horizons of non-spherical topology are
forbidden.

For vacuum Einstein gravity in more than four dimensions there is no uniqueness since a
richer range of regular black objects inhabit the space. These include not just black holes [23]
with spherical SD−2 horizon geometry but also black rings [43] with S1 ×SD−3 and blackfolds
[46] with topological, i.e. Sp+2 × SD−p−4 when p � D − 7, horizon geometries.

Many studies on the thermodynamics (some reviews [25, 48–50]), ergoregions [47]
and combinations of black objects leading to more sophisticated solutions [51] uphold the
exciting richness of black objects. And moreover, as we present here, new insights into
the thermodynamics remain to be unveiled. Perhaps because of the tight contact with the
string theory, the most widely employed scheme to explore the thermodynamics of black
holes in five [24, 45] and higher spacetime dimensions [43] seems to be the microcanonical
ensemble.

In this paper, to study the stability of five-dimensional black holes, we have carried
out the thermodynamic analysis mainly in the canonical and grand-canonical ensembles.
Not only the thermodynamic stability but also the phase structure depends on the chosen
ensemble.
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(a) (c)

(b) (d)

j

Figure 3. The phase diagrams of a singly spinning black hole (dashed) and a black ring (solid) in
different thermodynamic ensembles: (a) microcanonical, (b) enthalpy, (c) grand canonical and (d)
canonical.

Already in our case, of the canonical f versus t and grand-canonical g versus t ensembles,
some significant differences can directly be noticed from the structure of these phase
diagrams16 for the black hole (dashed line) and the black ring (solid line) in figure 3.

The single phases, one for each, of the black hole and ring in the grand-canonical ensemble
contrast the three phases, two for the black hole and a single one for the black ring, of the
canonical ensemble. The entropy S[M,�] = A/(4 G) and the enthalpy, H [M,�] = M−�J

are also shown for comparison. For a fixed mass, in the microcanonical ensemble a swallowtail
structure is found for the two black ring phases with a single phase for the black hole. Leaving
the mass fixed, yet a different structure is found: for the h versus ω each of the single black
hole and black ring phases joins at a maximum value of the angular velocity. The plots we

16 We use (25), (28) and (29) for the black hole/ring to define dimensionless reduced quantities for the plots. In the

microcanonical ensemble, for a fixed value of the mass, the entropy is defined as s = 3
√

3
8 π

S√
G5 M3

and the angular

momenta j = 27π
32 G5

J 2

M3 . In the grand-canonical ensemble, for a fixed value of the angular velocity, the Gibbs potential

is defined as g = G5�
2G and the temperature as t = T/�. In the canonical ensemble, for a fixed value of the

temperature, the free energy is defined as f = 32πG5 T 2 F and the angular momenta as j = 256π2G5J T 3. And in
the diagram for the enthalpy, for a fixed value of the mass, h = HM and the angular velocity as ω = 2√

3π

√
G5M �.
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present here are new although the discussions comparing the different structures of the phase
diagrams can also be found in [30].

On the nature of charges. Another case where the classical uniqueness results do not apply
is for gravity theories with scalar fields non-minimally coupled to gauge fields. Due to the
non-minimal coupling, a black hole solution in Einstein–Maxwell–dilaton gravity can also
carry a scalar charge and the first law gets modified [52]17.

The scalar charge is not protected by a gauge symmetry and so it is not conserved. Since it
depends on the other conserved charges it does not represent, though, a new quantum number
associated with the black hole—this kind of charge is called secondary hair. Furthermore,
this charge is not localized and exists outside the horizon.

In section 4, we studied a supersymmetric ring solution in minimal supergravity. Since
it is an extremal black object a computation of the action is not possible (the periodicity of
the ‘Euclidean time’ cannot be fixed). However, one can compute the entropy by using the
entropy function formalism for spinning extremal black holes [54].

Due to the attractor mechanism the entropy does not depend on scalar charges, but it
depends on both the global charge and the dipole. Since the dipole is a non-conserved charge,
one may be tempted to make an analogy with the scalar charge. However, there is an important
difference: unlike the scalar charge, the dipole charge is a localized charge. Thus, it can be
measured by flux integrals on surfaces linked to the black ring’s horizon [14] and it has a
microscopic interpretation (brane wrapping contractible cycles of CY).

One important question emerges: what is the interpretation of the dipole within the
quasilocal formalism? In other words, can an asymptotic observer distinguish between a
black hole or a black ring with the same conserved charges? The answer is obviously yes:
analogous to an electric dipole whose moments can be read off from a multipole expansion at
infinity, the subleading terms in the boundary stress tensor should encode the information
necessary to distinguish between black objects with different horizon topologies in the
bulk18.

There is, though, another subtlety we would like to discuss in detail now. Due to the
existence of the Chern–Simons interaction in the Lagrangian, the equation of motion for the
gauge field is modified. Therefore, the topological density of gauge field itself becomes
the source of electric charge. Consequently, even if it is conserved, the usual Maxwell charge
of a black ring seems to be diffusely distributed throughout the spacetime. Thus, the ‘Maxwell
charge’ in this case is gauge invariant and conserved but not localized.

The resolution of this problem was provided in [55, 56]: the correct charges that appear
in the entropy are the ‘Page charges’. These charges are conserved and localized but not
gauge invariant (see [57, 58] for a discussion of different kinds of charges). It was shown in
[55] that once the entropy function is expressed in terms of these physical five-dimensional
charges it becomes manifestly gauge invariant (due to a spectral flow symmetry of the
theory).

The near-horizon geometry of a black hole should capture the complete information about
its microscopic degeneracy. However, if a black hole does have ‘hair’ (degrees of freedom
living outside the horizon), there are subtle distinctions between the asymptotic charges and
the charges entering in the CFT [59].

17 However, this result should be taken with caution: in string theory the asymptotic values of the moduli ‘label’
different ground states (vacua) of the theory and so it is necessary for an infinite amount of energy to change the state
of the system in this way—see [53] for a more detailed discussion.
18 In the supersymmetric case, unlike the black ring, the black hole should have both angular momenta equal.
Therefore, an asymptotic observer has to compare just the angular momenta to find out what is in the bulk.
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In the case of the susy black ring, one angular momentum is generated by degrees of
freedom living outside the horizon in the form of crossed electric and magnetic supergravity
fields [38, 60].

However, for the supersymmetric black ring, the microscopic angular momentum density
is not equal to the angular momentum at infinity. Interestingly enough, the ‘Page’ angular
momentum [56] is in fact the intrinsic angular momentum of the susy black ring and our
arguments support the point of view in [61].

While our discussion has focussed on stationary solutions, it will be interesting to
investigate whether similar methods can be useful as well for studying the time-dependent
backgrounds given in [62]. These solutions are obtained by a simple analytic continuation of
a black hole geometry. At a first look, it seems that the stress tensor of these time-dependent
solutions should be somehow related to the stress tensor of the ‘seed’ black hole solution.
However, this case is more subtle since the energy–momentum carried away by gravitational
radiation is associated with null infinity.

Finally, we want to mention that the counterterm method can also be useful in investigating
the thermodynamics of the black rings obtained in [63] (e.g. [64]).
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