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Abstract

We prove that, given a stress-free, axially symmetric elastic body, there exists,

for sufficiently small values of the gravitational constant and of the angular fre-

quency, a unique stationary, axisymmetric solution to the Einstein equations cou-

pled to the equations of relativistic elasticity with the body performing rigid ro-

tations around the symmetry axis at the given angular frequency. © 2009 Wiley

Periodicals, Inc.

1 Introduction
In paper [1], we constructed for the first time static, self-gravitating elastic bod-

ies in general relativity with no symmetries. Here we build on the ideas and tech-

niques introduced in that paper to construct solutions to the Einstein equations de-

scribing steady states of self-gravitating matter in rigid rotation. The matter model

we use is, as in [1], that of a perfectly elastic solid. We make the minimal symmetry

assumptions necessary for a steady state in rigid rotation; namely, we assume that

the reference body has an axis of symmetry. Further, we assume that the elastic

material is isotropic. This condition, which was not needed in the static case, is

necessary for our construction in the case of a rotating body.

The only class of solutions to the stationary Einstein equations with rotating mat-

ter previously known are the rotating perfect fluid solutions constructed by Heilig

[9] for a certain class of equations of state. In the Newtonian theory, existence of

steady states of self-gravitating perfect fluids in rigid rotation was established by

Lichtenstein; see [8] for a modern presentation, and by Beig and Schmidt [5] for

the case of elastic matter. All these solutions, including the ones constructed in the

present paper, are, in addition to being stationary, also axisymmetric.

In Newtonian theory, two families of nonaxisymmetric rotating fluid configura-

tions in explicit form are known; see [15] and references therein. These families
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of solutions are the Dedekind ellipsoids and the Jacobi ellipsoids, which in the

language of general relativity have helical but no stationary or axial symmetry.

One expects asymptotically flat, rotating solutions of the Einstein equations,

which are not axially symmetric, to be radiating and hence nonstationary. However,

if one relaxes the condition that asymptotic flatness holds in the usual sense, it may

be possible to construct helically symmetric solutions of the Einstein equations that

are not axially symmetric. See [2] for a study of helically symmetric solutions in

the special relativistic case. An argument to the effect that axisymmetry necessarily

holds for a rotating fluid in general relativity was given by Lindblom [14], with the

assumption that the fluid is viscous.

Equilibrium states of fluids or collisionless matter play an important role in as-

trophysics, providing the basic models of stars and galaxies. Depending on the

equation of state—or in the case of collisionless matter, on the properties of the

distribution function—a steady state may describe a compact body or a configu-

ration where the matter density is nowhere vanishing. Typically, the objects of

interest are compact.

In addition to fluids and collisionless matter, elastic bodies are of considerable

interest in astrophysics in view of the fact that there are strong theoretical rea-

sons for supposing that neutron stars have a solid crust, modeled by elastic matter;

cf., e.g., [6, 7, 10]. The solutions that have been constructed in the just-mentioned

papers are all spherically symmetric, although perturbation analyses have been car-

ried out, allowing for axial perturbations to break the spherical symmetry [11].

1.1 Rotating Bodies in Elasticity
Elastic matter is, as discussed in Section 2.1 below, described by a map f A

from spacetime to a three-dimensional manifold, called material manifold or body,

whose points label the particles making up the elastic continuum, and which is

taken to be a connected, bounded domain in flat R3.

In considering a rotating steady state, it is important to distinguish between the

microscopic and macroscopic degrees of freedom. The microscopic degrees of

freedom of the elastic matter are described by the configuration f A, while the

macroscopic aspects are described by the stress energy tensor generated by the

matter and the metric of the spacetime containing the body. For a rotating body

in equilibrium, it is the case that the stress energy tensor, as well as the spacetime

metric, are stationary, i.e., invariant under the flow of a Killing vector ��@� D @t ,

called the stationary Killing vector, while the matter particles, described by the

configuration map, are in motion relative to @t .

As mentioned above, the rotating bodies we construct are axially symmetric. In

particular, the spacetime containing the body admits a Killing field ��@� D @� ,

called the axial Killing vector, which commutes with ��. In addition, there is a

constant �, the angular frequency of rotation, such that the matter particles move

along the helical orbits of the Killing vector �� C���; i.e., the configuration f A

is constant along the flow of the helical field.
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It is nevertheless the case, assuming axisymmetry of the configuration and that

the elastic material is isotropic and frame indifferent (cf. Section 2.1) that all space-

time tensors naturally derived from the configuration are both axisymmetric and

stationary. This applies, for example, to the matter flow vector induced by the

configuration, the stress tensor, or, in fact, to the full stress energy tensor.

We now briefly describe the method used in this paper. Consider a Cauchy sur-

faceM transverse to the stationary Killing field. The equations for the gravitational

field variables are derived by imposing the condition of stationarity and restricting

the Einstein equations, reduced in harmonic gauge, to M . No axisymmetry condi-

tion is imposed at this stage.

The Einstein equations imply, via the Bianchi identity, a set of equations for the

matter variables. These equations are derived by considering a configuration that

is comoving with respect to the helical flow and restricting it to M . Here the axial

vector field �� is assumed to be specified in advance. There are, a priori, four

matter equations for the three unknowns f A. We deal with this problem by simply

dropping one of the four equations. It turns out, however, that this supplementary

equation follows from the others when �� is Killing, as is the case for a solution to

the system derived by the above procedure.

The resulting coupled system of equations, assuming standard constitutive con-

ditions for the elastic material, is elliptic for sufficiently small values of �. The

system depends on the parameters G and �. We look for solutions to this sys-

tem for small, nonzero values of G and �, near the background solution given by

taking the spacetime to be Minkowski, the configuration to be stress-free, and the

Newton constant G and � to be both 0.

The boundary between the matter region and the vacuum region depends on

the unknown configuration. To deal with this problem, we write the equations in

material form in a way analogous to [1] and apply the implicit function theorem.

This cannot be done directly due to the failure of the linearized operator to be in-

vertible. This is a standard problem for elasticity with natural boundary conditions,

i.e., vanishing normal stress at the boundary. Following [1], what we actually solve

is a projected version of the field equations such that the implicit function theorem

does apply. One must then show, as in fact turns out to be the case, that the solution

to this projected system is actually a solution to the full system.

So far the vector field �� has been essentially arbitrary except for the condition

that it commute with ��. In order to ensure that �� be a Killing vector, we now

assume that the material manifold is axisymmetric as a subset of Euclidean R3

and that �� is the pullback of the axial vector field on the body under the trivial

configuration. It then follows by uniqueness that the vector field �� is a Killing

vector.

It now remains to show that the solution found by the implicit function argu-

ment satisfies the Einstein equations. In particular, the gauge conditions must be

satisfied and the elastic equation must be valid in its original form. This condi-

tion is equivalent to the condition that a certain linear system of equations coming
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from the Bianchi identities has only the trivial solution. In fact, the linear system

under discussion is homogenous precisely because the Killing nature of �� guar-

antees that the above-mentioned supplementary equation is satisfied, provided that

the main elastic equation is valid. The rest of the argument essentially follows the

pattern of [1], where this is referred to as the equilibration argument, and we shall

use this terminology here as well.

1.2 Outline of the Paper
In Section 2.1, we give some background on relativistic elasticity. Section 2.3

introduces stationary metrics and defines the field variables hik , U , and  i used to

parametrize the spacetime metric. In contrast to the static case, there is a further

component  i of the gravitational field, corresponding to the failure of �� to be

hypersurface orthogonal in general. Next, in Section 2.4, the stationary Einstein

equations are written in terms of the field variables just introduced; this corre-

sponds effectively to performing a Kaluza-Klein reduction.

The field equations imply a set of integrability conditions, which are derived in

Section 2.5. One of these identities is the elasticity equation, which is later used as

one of the set of equations to be solved using the implicit function theorem. The

rotation of the elastic body is introduced in Section 2.6. This is done by choosing

a spacelike vector field ��@� that commutes with the stationary Killing vector ��

and assuming that f A;� .�
� C���/ is 0. It will later turn out that �� is actually

the axial Killing vector.

In Section 2.7, the stress tensor is expressed in terms of the geometric variables

and the configuration f A. In particular, this allows us to write the components of

the stress energy tensor in terms of the field variables and obtain (2.37), the basic

PDE system for hik; U;  i ; f
A. Because some of the equations are not elliptic

we use, as in the static case, harmonic coordinates to extract an elliptic system.

In the stationary case, it is necessary to make explicit use also of the condition

that the time function be harmonic; cf. Section 2.8. Finally, we have reduced the

field equations to an elliptic free boundary value problem in space. In order to

avoid dealing directly with the free boundary aspect of the problem, we move all

equations to the body. This is done in Section 2.9, following closely the procedure

in [1]. The final details needed to completely specify the PDE problem to be solved

are introduced in Section 2.10. There we introduce the relaxed state and a flat

metric on the body. We assume that the shape of the body is axisymmetric and use

the relaxed configuration to define the vector field �i in space. We also introduce

the assumption that the elastic material is isotropic.

As in the static case considered in [1], we must consider a projected system in

order to be able to apply the implicit function theorem. The analytical aspects of

this problem are considered in Section 3. The solution to the projected system is

then shown in Section 4 to be a solution to the full set of field equations in the body

frame and to be axisymmetric. In Section 4.1 we move the projected equations
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and solutions back to space. The vector field �i is proved to be a Killing field in

Section 4.2.

In Section 4.3, we derive some divergence identities that play an essential role

in the equilibration argument. This leads up to the main theorem, Theorem 4.6,

which is stated and proved in Section 4.4. In particular, we prove that the harmonic

coordinate conditions are satisfied for the solution of the reduced system that has

been constructed, and hence that we have solved the full set of field equations.

The spacetimes constructed in Theorem 4.6 have an isometry group R � S1

generated by the commuting Killing fields �� and ��. For spacetimes with two

commuting Killing fields, it was first proved by Papapetrou [17] in vacuum and by

Kundt and Trümper [13] for fluids that orthogonal transitivity holds. Recall that

orthogonal transitivity is the condition that the distribution of 2-surface elements

perpendicular to the generators of the symmetry group is surface-forming. This

condition is used for constructing Weyl-type coordinates, which play a dominant

role in attempts in the exact solution literature to find rotating body solutions; see

[18] and references therein.

In Section 4.5, we establish that for the spacetimes constructed in Theorem 4.6,

the distribution defined by the 2-surface elements orthogonal to the group orbit for

the action of the stationary and axisymmetric Killing vector is integrable. In the

case of a smooth spacetime, where the Frobenius theorem applies directly, this fact

implies that orthogonal transitivity holds, i.e., that there are 2-surfaces perpendicu-

lar to the generators of the symmetry group. In the present case, however, this step

needs further analysis, which we defer to a later paper.

2 Field Equations of a Rotating, Self-Gravitating Elastic Body
2.1 Relativistic Elasticity

Let .M; g��/ be a .3C1/–dimensional spacetime. The body B is a 3-manifold,

possibly with boundary. We shall consider the case when B is a bounded domain in

the extended body R3B. The body domain B is assumed to have a smooth boundary.

In this paper, we shall only consider the case where B is connected. The fields

considered in elasticity are configurations f W M ! B and deformations � W B !
M, with the property that f ı � D idB.

Let t be a time function on M and introduce a .3C 1/ split M D R �M . We

consider coordinates .x�/ D .t; xi / on M, where xi are coordinates on the space

manifold M . On R3B we use coordinates XA. The body B is endowed with metric

ıB and a compatible volume form VABC . We assume that in a suitable Cartesian

coordinate system ıB has components ıAB where ıAB is the Kronecker delta and

V123 D 1.

The configuration f W M ! B is by assumption a submersion. The derivative

of f is assumed to have a timelike kernel; i.e., there is a unit timelike vector field

u� on f �1.B/ with u�u
� D �1 such that

u�f A;� D 0:
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The field u� is the velocity field of the matter and describes the trajectories of the

material particles.

Let ƒ D ƒ.f; @f; g/ be the energy density for the elastic material in its own

rest frame. The Lagrange density for the self-gravitating elastic body now takes

the form

L D �Rg
p�g

16�G
Cƒ

p�g:
The Einstein equations resulting from the variation of the action with respect to

g�� take the form

G�� D 8�GT�� ;

where G�� is the Einstein tensor of g�� and T�� is the stress energy tensor of the

material, given by

T�� D 2
@ƒ

@g��
�ƒg�� :

On the other hand, the canonical stress energy tensor is given by

T�� D @ƒ

@f A;�
f A;� � ı��ƒ:

General covariance implies, by the Rosenfeld-Belinfante theorem, that

T�� D �T�� I
see [12, sec. 7].

Given a configuration f A.x�/, define �AB D f A;�f
B
;�g

�� , and let �AB
be the inverse of �AB . General covariance implies that ƒ is of the form ƒ D
ƒ.f A; �AB/; cf. [12, sec. 7]; see also [4, sec. 4]. A stored energy function of

this form is said to satisfy material frame indifference. If in addition, as we shall

later assume, ƒ depends only on the principal invariants �i , i D 1; 2; 3, of �AB ,

defined as the elementary symmetric polynomials in the eigenvalues of �AB D
�AC .ıB/CB , then the material is called isotropic.

Define

SAB D 2
@ƒ

@�AB
�ƒ�AB :

Then we have

(2.1) T�� D ƒu�u� C S�� ;

where S�� D SABf
A
;�f

B
;� . In particular, S��u

� D 0. The relativistic number

density ng is defined by

n2g D 1

3Š
VABCVA0B 0C 0�AA

0

�BB
0

�CC
0

:

We have ng D .det �AB/1=2 and hence

(2.2)
@ng

@�AB
D 1

2
ng�AB :
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Define the stored energy function � by

(2.3) ƒ D ng�;

and the elastic stress tensor 	AB by

	AB D 2
@�

@�AB
:

With these definitions, SAB takes the form

SAB D ng	AB ;

and we can write

T�� D ng�u�u� C ng	ABf
A
;�f

B
;� :

See [19] for a more explicit expression of T�� in terms of the invariants .�i /.

If material frame indifference holds, then if ƒ is viewed as a functional of

f A; g�� , we have that for any spacetime diffeomorphism 
 ,

ƒŒf ı 
; 
�g� D ƒŒf; g� ı 
;
and hence all spacetime quantities constructed from ƒ, f A, and g�� are covari-

ant under 
 , including ng , u�, and 	ABf
A
;�f

B
;� . In particular, this also holds

for T�� .

Let † be an isometry of .B; ıB/. The matrix .†��/AB is related to �AB by

an orthogonal similarity transform and hence has the same invariants �i as �AB .

Hence, for an isotropic material,

ƒŒ† ı f; g� D ƒŒf; g�:

2.2 Material and Spacetime Isometries
We now introduce the notion of symmetry of a configuration that will play an

important role in this paper. Suppose the spacetime .M; g/ has an isometry 
 .

Then 
 defines a material symmetry of f A if there is an isometry † of .B; ıB/
such that

† ı f D f ı 
:
Thus, in particular, if the configuration is comoving with an isometry, i.e., if u� is

proportional to a Killing vector ��, then the configuration has the flow 
s of �� as

a material isometry with† given by the identity map on B, in which case it follows

that f Aı
s D f A. However, this does not hold for a general one-parameter family

of material isometries. It follows from the last two statements in the previous

subsection that, for an isotropic material, a spacetime isometry 
 that also defines

a material isometry leaves the Lagrangian invariant, i.e., ƒŒf; g� D ƒŒf; g� ı 
 ,

and thus T�� is also invariant under 
 , i.e., 
�T D T .

The following is an example that is relevant to our situation. Suppose we have

two timelike Killing vectors �� and � 0�. In the situation considered here, the inter-

esting case is where �� is the stationary Killing field, while � 0� D �� C ��� is

the helical Killing field. Then one may consider the case where the configuration
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is comoving with respect to � 0� while the flow 
s of �� defines a configuration

symmetry in the sense that there is a one-parameter family of isometries †s of the

body such that

†s ı f A D f A ı 
s:
In this case, †s are rotations of the body. We see from the above that it is possible

for the configuration to explicitly depend on the Killing time t , defined with respect

to ��, although T�� is independent of t .

2.3 Stationary Metrics
We now assume that .M; g/ is stationary; i.e., there is a timelike Killing field

��@� D @t . Further, we assume the space manifold M to be diffeomorphic to R3.

It will sometimes be convenient to denote this space by R3S . Define a function

U D 1
2

ln ���� and a 1-form  D  i dx
i such that e�2U �� dx� D dtC . Then

g can be written in the form

(2.4) g�� dx
� dx� D �e2U .dt C  i dx

i /2 C e�2Uhij dxi dxj ;

where hij dx
i dxj is a metric on the level sets of t , and U ,  i , and hij are time

independent. The inverse metric takes the form

(2.5) g��@�@� D �e�2U @2t C e2Uhij .@i �  i@t /.@j �  j @t /;
where hijhjk D ıi k . The spacetime volume element is given by

(2.6)
p�g D e�2Up

h:

Let �g be the d’Alembertian in .M; g/. The assumption that ��@� D @t is a

Killing vector implies

(2.7) �g t D �e2UDi i ; �gx
i D �e2Uhjk� ijk;

where Di and the Christoffel symbols refer to hij .

2.4 Kaluza-Klein Reduction
Let !ij D @Œi j �. The scalar curvatureRg for a metric of the form (2.4) is given

by

(2.8) Rg
p�g D

p
h
�
Rh C 2
hU � 2jDU j2h C e4U j!j2h

�
:

Here jDU j2
h

D DkUD
kU and similarly for j!j2

h
. Define HAB by

�AB D e2UHAB :

The reduced number density n is defined with respect to HAB ,

n2 D 1

3Š
VABCVA0B 0C 0HAA0

HBB 0

HCC 0

:
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Then we have

@n

@HAB
D 1

2
nHAB ;(2.9)

ng D e3Un;(2.10)

so that with the form (2.4) for g, we have

(2.11) ƒ
p�g D n�eU

p
h:

Taking into account the fact that the term 2
hU in the scalar curvature expression

(2.8) contributes a total divergence to the action and can be dropped, we may now

write the action in the reduced form

L D �
p
h

16�G
.Rh � 2jDU j2h C e4U j!j2h/C �eU

p
h;

where � D n�.

Let Gij D Rij � 1
2
Rhij be the Einstein tensor of hij and define

(2.12) ‚ij D 1

4�G

�
.DiU/.DjU/ � 1

2
hij .DkU/.D

kU/

�

and

(2.13) �ij D 1

4�G
e4U

�
1

4
hij!kl!

kl � !ik!j k
�
:

The reduced field equations now take the form


hU D 4�GeU
�
�C @�

@U

�
�f �1.B/ � e4U!kl!kl ;(2.14a)

Di .e4U!ij / D �8�GeU @�

@ j
�f �1.B/;(2.14b)

Gij D 8�G

�
‚ij C�ij C eU

�
2
@�

@hij
� �hij

�
�f �1.B/

�
:(2.14c)

In (2.14) we have used the indicator function �f �1.B/ of the body to make ex-

plicit the support of �. Define 	 , 	i , and 	ij by

(2.15) T�� D 	.dt C  i dx
i /2 C 2	j dx

j .dt C  i dx
i /C 	ij dx

i dxj :

Then we have the following:

LEMMA 2.1

eU
�
2
@�

@hij
� �hij

�
D 	ij ;(2.16a)

eU
@�

@ i
D �	i ;(2.16b)

eU
�
�C @�

@U

�
D e�4U 	 C 	`

`:(2.16c)
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For the proof of Lemma 2.1, see the appendix. After substituting (2.16) into

(2.14), the reduced field equations take the form1


hU D 4�G�f �1.B/.e
�4U 	 C 	k

k/ � e4U!kl!kl ;(2.17a)

Di .e4U!ij / D 8�G�f �1.B/	j ;(2.17b)

Gij D 8�G.�f �1.B/	ij C‚ij C�ij /:(2.17c)

2.5 Integrability Conditions
The quantities ‚ij and �ij satisfy the identities

(2.18) 8�GDj‚ij D 2.DiU/
hU;

and, by using DŒi!jk� D 0,

(2.19) 8�GDj�ij D 2
�
e4U .DiU/!kl!

kl � !ikDj .e4U!j k/
�
:

In case G ¤ 0, we obtain from (2.17b) the integrability conditions

(2.20) Di	i D 0;

together with the boundary condition

(2.21) 	in
i
ˇ̌
f �1.@B/ D 0:

Further, we have

(2.22) Dj 	ij � 2!ij 	j D �.DiU/.e�4U 	 C 	k
k/

and

(2.23) 	ijn
j
ˇ̌
f �1.@B/ D 0

as a consequence of the contracted Bianchi identities for hij applied to the left-

hand side of (2.17c), together with (2.18), (2.19), and (2.17a).

2.6 Implementing Rotation
Define a vector field �� by

(2.24) ��@� D �i@i :

The scalar product ˛ D g���
��� satisfies

(2.25) e�2U˛ C  j�
j D 0:

Since by assumption .M; g/ is stationary with respect to ��, it holds that �� com-

mutes with �� if and only if �i does not depend on t . In particular, in the case

1 Equation (2.17b) corrects a typo in [3, (2.47)].
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we are considering, the vector field �� is itself a Killing vector if and only if the

equations

L�U D 0;(2.26a)

L� i D 0;(2.26b)

L�hij D 0;(2.26c)

hold. In these expressions the operator L� means the Lie derivative of the respec-

tive object with respect to �k@k . Note that (2.26b) implies

(2.27) 2!ij�
j CDi .e

�2U˛/ D 0:

Define the velocity field u� by

(2.28) u� D b�1.�� C���/;

where� is a real parameter corresponding to the rotation speed, and b is a normal-

izing factor, determined by u�u� D �1 in f �1.B/. It is important to note here

that the rotational field �� C ��� in general will fail to be globally timelike for

nonzero values of �. However, for a suitable range of �, it makes sense to require

�� C��� to be timelike in the body.

We now impose rotation of the body by requiring that the configuration f A

satisfy the condition u�f A;� D 0, i.e.,

(2.29) f A;�.�
� C���/ D 0:

Since T��u
� D ��u�, due to (2.1) the stress energy tensor satisfies the relation

(2.30) uŒ�T���u
� D 0:

It follows from (2.30) that

(2.31) .u0Ti� � uiT0�/u� D 0

holds, which, by using (2.29), doing some cancellations, and multiplying by e�2U
gives

(2.32) .1 ��e�2U˛/2	i C�.1 ��e�2U˛/	ij�j

C�e�4U �i Œ.1 ��e�2U˛/	 C�	j�
j � D 0:

Equation (2.32) can be proved by explicit computation, by using (2.16) and (2.34).

As a consequence of (2.32) we have the following:

LEMMA 2.2 For sufficiently small �,

(2.33) .1 ��e�2U˛/	i C�	ij�
j

C�e�4U �i Œ	 C�.1 ��e�2U˛/�1	j�j � D 0:
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2.7 Stress Tensor
In order to write the field equations, we shall need the stress tensor for the elastic

material. For consistency with the treatment of the static case considered in [1], we

shall here make use of an analogous form of the stress tensor. Recall that assuming

material frame indifference, the stored energy function � is a function of f A and

�AB D f A;�f
B
;�g

�� . Taking equation (2.29) into account, we find

�AB D f .A;if
B/
;j

�
e2Uhij C 2�e2U i�j

C�2.e2U k k � e�2U /�i�j
�
:

(2.34)

In the computations below we make use of HAB defined by �AB D e2UHAB ,

so that

HAB D f .A;if
B/
;j Œh

ij C 2� i�j C�2. k k � e�4U /�i�j �:

Let

(2.35)

AB D �2 @�

@HAB
; 
�� D nf A;�f

B
;�
AB ;


�
A D f B;�
BCH

CA:

It follows from the definition that


AB D �2e�2U @�

@�AB
:

Our next task is to evaluate the dependence on � of the terms occurring in the

left-hand side of (2.16). It is straightforward to verify that the following lemma

holds:

LEMMA 2.3 There are ´, ´i , and ´ij depending smoothly on f A, g�� , and their
first derivatives, as well as � and G, such that the following equations are valid:

eU
�
2
@�

@hij
� �hij

�
D �eU .
ij ��´ij /;(2.36a)

eU
@�

@ i
D �eU�´i ;(2.36b)

eU
�
�C @�

@U

�
D eU .n� � 
`` C�´/:(2.36c)

By the results of Lemma 2.3 and Lemma 2.1, we have

	ij D �eU .
ij ��´ij /:
We are now able to rewrite the integrability condition (2.22) in the form

Dj .eU 
ij / D eU .n� � 
``/DiU C�ŒDj .eU ´ij /C 2eU!ij´
j C ´DiU �:
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Taking the above facts into account, we arrive at the system of equations


hU D 4�G�f �1.B/e
U .n� � 
``/C�´/ � e4U!kl!kl ;(2.37a)

Di .e4U!ij / D 8�G�f �1.B/e
U� j́ ;(2.37b)

Gij D 8�GŒ��f �1.B/e
U .
ij ��´ij /C‚ij C�ij �;(2.37c)

Dj .eU 
ij / D eU .n� � 
``/DiU
C�ŒDj .eU ´ij /C 2eU!ij´

j C ´DiU � in f �1.B/;
(2.37d)

subject to the boundary condition

.
ij ��´ij /nj
ˇ̌
@f �1.B/ D 0:(2.37e)

2.8 Gauge Reduction
Two of the equations in system (2.37) fail to be elliptic in the form given above,

namely (2.37b) and (2.37c). The reason for this failure is related to the diffeomor-

phism invariance of the four-dimensional Einstein equations. As in the static case,

the method that shall be used to avoid this problem is to make use of harmonic

coordinates.

Taking into account the fact that g�� is stationary, we have

�g t D 1p�g @�.g
��p�g@�/t

D e2UDi i :

Thus, e2UDi i D 0 precisely when the time t is harmonic.

The left-hand side of equation (2.37b) is of the form

(2.38) Di .e4U!ij / D e4U
�
4DiU!ij C 1

2
.
 j �Rj k k/

�
� 1

2
e4UDjD

i i :

The term DjD
i i causes this expression to fail to be an elliptic in  i . However,

the following reduced form of equation (2.37b),

(2.39) Di .e4U!ij /C 1

2
Dj .e

4UDi 
i / D 8�G �f �1.B/e

U� j́ ;

which modifies the left-hand side by a quantity that vanishes if the harmonic time

condition is satisfied, is elliptic in  i .

Similarly, (2.37c) fails to be elliptic due to the covariance of Rij . Following [1,

sec. 3.1], let V i D hjk.� i
jk

� y� i
jk
/where y� i

jk
are the Christoffel symbols of a fixed

Euclidean background metric on M . Then V i D 0 is the condition for harmonic

coordinates in M . By replacing Rij by Rij � D.iVj / we arrive, after rewriting

equation (2.37c) by making use of the identity [1, (3.11)], at the reduced Einstein
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equation

�1
2

hhij CQij .h; @h/

D �8�GeU .
ij � hij 
l l C�.´ij � hij´l l//�f �1.B/

C 2DiUDjU C e4U Œhij!kl!
kl � 2!ik!j k�:

(2.40)

As in [1], we shall first solve the reduced system involving (2.40) and (2.39), and

once the solution is in hand show that the solution to the reduced system is actu-

ally a solution to the full system. We construct solutions by an implicit function

theorem argument applied to a projected version of the field equations in material

form.

2.9 Field Equations in Material Form
In the Eulerian picture, the domain f �1.B/ depends on the unknown configu-

ration f . This introduces a “free boundary” aspect in the Eulerian version of the

field equations, which we will avoid by passing to the material or Lagrangian form

of the field equations. In this form of the equations, the configuration f is replaced

by the deformation �, and the entire system of field equations is moved to the ex-

tended body R3B. In particular, in this formulation, the elastic field equation lives

on the fixed domain B.

The Piola transform of 
i
j is

N
iA D J.f A;j
i
j / ı �:

Similarly, we introduce the Piola transform of ´ij . Since B has a smooth boundary,

there is a linear extension operator that takes functions on B to functions on R3B.

In particular, this allows us to define an extension y� of � that is equal to i outside

a compact set. We use y� to move the fields from space to R3B and use the bar

notation introduced in [1, sec. 3.2] to denote the quantities transported under y�. In

particular, we define

U D U ı y�; @iU D @iU ı y�;  i D  i ı y�; hij D hij ı y�:
Note that for the barred quantities, it is the frame components that are pulled back

and not the tensor itself. Equation (2.37a) in the material frame becomes

(2.41) 
hU D 4�G�Be
xU .nN� � N
``/C� Ń/ � e4 xU!kl!kl in R3B:

We remark that covariance of the Laplacian gives


hU D 
y��h
.U ı y�/:

Next, equation (2.39) in the material frame becomes

(2.42) Di .e4U!ij /C 1

2
Dj .e4UDi i / D 8�G�Be

xU� Ńj :
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Equation (2.40) becomes

�1
2

hhij CQij . Nh; @ Nh/
D �8�Ge xU . N
ij � Nhij N
l l C�. Ń ij � Nhij Ń l l//�B

C 2DiUDjU C e4
xU � Nhij!kl!kl � 2 � !ik!j k

�
:

(2.43)

Equations (2.37d) and (2.37e) become in the material frame

DA.e
xU 
iA/ D e

xU
�
� � N
``

Nn
�
@iU

C�

�
DA.e

xU Ń iA/C 2e
xU !ij´j

Nn C Ń@iU
�

in B;
(2.44a)

subject to the boundary condition

(2.44b) . N
iA �� Ń iA/nA
ˇ̌
@B D 0:

2.10 Constitutive Conditions
Similarly to the static case, we shall assume the existence of a relaxed reference

configuration for the elastic material, which is such that suitable ellipticity prop-

erties hold for the elasticity operator evaluated in the relaxed state. The relaxed

state is given by the body B, a compact, connected domain B � R3B with smooth

boundary @B, together with a reference configuration i W R3B ! R3S . We assume

a reference Euclidean metric Oı on M D R3S is given. The body metric R3B on

R3B is defined by ıB D i� Oı. The relaxed nature of the reference configuration is

expressed by the condition�
@�

@HAB

�ˇ̌
ˇ̌
.UD0;HDıB/

D 0 in B:

The specific rest mass, i.e., the rest mass term in the relativistic stored energy

function, should obey

V�.X/ D �
ˇ̌
.UD0;HDıB/ � C

for some constant C > 0. Further, we assume that the elastic material is such that

there is a constant C 0 > 0 such that the pointwise stability condition

(2.45) VLABCDNABNCD � C 0.ıCAıBD C ıCBıAD/N
ABNCD in B

holds, where

(2.46) VLABCD.X/ WD
�

@2�

@HAB@HCD

� ˇ̌̌
ˇ
.UD0;HDıB/

:

In the isotropic case considered in this paper, � depends only on the invariants of

�AB D e2UHAB , defined with respect to the body metric .ıB/AB (cf. Section 2.1).
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It follows that V� is independent of X and there are constants V� and V� so that

(2.47) VLABCD D V�ıABıCD C 2 V�ıC.AıB/D;
in terms of which condition (2.45) holds exactly when

(2.48) V� > 0; 3 V�C 2 V� > 0I
cf. [16, sec. 4.3]. The constants V� and V� are apart from a common constant factor

the classical Lamé moduli. Inequalities (2.48) are usually expressed by saying that

the Poisson ratio defined by

� D
V�

2. V�C V�/
satisfy �1 < � < 1

2
. In fact, for most materials occurring in practice there holds

1
4
< � < 1

3
.

We shall assume that the body is axisymmetric. To make this notion concrete,

let xi and XA be coordinates on R3S and R3B, respectively, so that the Euclidean

metrics Oı and ıB have components ıij and ıAB , respectively. The body B is axially

symmetric if there is a one-parameter subgroup of Euclidean motions, defined with

respect to ıAB , that leaves B invariant. We may without loss of generality assume

that the subgroup leaving B invariant is generated by the Killing field

(2.49) �A@A D X2@1 �X1@2;
which necessarily is such that �A is tangent to @B. Given the axial Killing field �A

on R3B, define a vector field �i on R3S by

(2.50) �i@i D i�.�A@A/:

In particular, we may without loss of generality assume �i@i to be of the form

�i@i D x2@1 � x1@2.

In addition to the above-mentioned conditions, we shall in the following assume

that the elastic material is isotropic; cf. Section 2.1. Recall that if the elastic mate-

rial is isotropic, thenƒ and hence also the stored energy function � depends only on

the invariants �i of �AB , defined with respect to the body metric ıB; cf. Section 2.1.

Consequently, in view of the discussion above (see in particular Section 2.7), the

reduced energy density � D n� can be viewed as a function � D �.�i /.

The invariants �i are functions of the form �i D �i .f; @f; U; i ; hij I �i ; �/.
In the present case, we are using a coordinate system on B in which the metric

ıB has constant components and hence the �i do not depend on f but only on its

derivatives. We may write � as a functional � D �Œf; gI �;��, where the symbol

g is used as shorthand for the gravitational variables U ,  i , and hij parametrizing

the spacetime metric g�� .
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3 Analytical Setting
We now introduce the analytical setting that will be used to construct solutions to

the field equations. Fix a weight ı 2 .�1;�1
2
/. Further, fix p > 3. The parameters

ı and p will be used to determine the weighted Sobolev spaces that are used in the

implicit function argument.

The system of equations in material form has the unknowns �i , U ,  i , and hij .

Let

B1 D W 2;p.B/ �W 2;p

ı
�W 2;p

ı
�E2;p

ı
;

where E
2;p

ı
is the space of asymptotically Euclidean metrics introduced in [1,

sec. 2.3], and let

B2 D ŒLp.B/ � B1�1=p;p.@B/� � Lp
ı�2 � Lp

ı�2 � Lp
ı�2:

Thus, B1 is a Banach manifold and B2 is a Banach space.

The residuals of equations (2.44a) with boundary condition (2.44b), (2.41),

(2.42), and (2.43), which depend on the Newton constant G and the rotation veloc-

ity � as parameters define a map F W R2 � B1 ! B2. Thus, F has components

.F� ;FU ;F ;Fh/ corresponding to the components of B2, given by

(3.1a) F� D ŒFB
� ;F@B� �;

where

(3.1b)

FB
� D DA.e

xU 
iA/ � e xU
�
� � N
``

Nn
�
@iU ;

��
�
DA.e

xU Ń iA/C 2e
xU !ij´j

Nn C Ń@iU
�
;

F@B� D . N
iA �� Ń iA/nA
ˇ̌
@B;

and

FU D 
hU � 4�G�Be xU .nN� � N
``/C� Ń/C e4
xU!kl!kl ;(3.1c)

F D Di .e4U!ij /C 1

2
Dj .e4UDi i / � 8�G�Be xU� Ńj ;(3.1d)

Fh D �1
2

hhij CQij . Nh; @ Nh/

C 8�Ge
xU . N
ij � Nhij N
l l C�. Ń ij � Nhij Ń l l//�B(3.1e)

� 2DiUDjU � e4 xU � Nhij!kl!kl � 2!ik!j k
�
:

We now have F D F..G;�/; .�; NU ; N ; Nh//. Write a general element of B1 as Z.

We will use the implicit function theorem to construct solutions to F D 0 for G

and � close to 0 2 R2.

An essential assumption which allows us to introduce a relaxed configuration is

that there is a reference Euclidean metric Oı on M D R3S , and a diffeomorphism
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i W R3B ! R3S . As discussed in Section 2.10, an Euclidean metric on R3B is defined

by ıB D i� Oı. Recall that B is assumed to be a connected domain with smooth

boundary.

From the constitutive conditions (cf. Section 2.10), we have that

Z0 D .i; 0; 0; Oıij ı i/
is a solution to the equation F.0;Z0/ D 0. In order to apply the implicit function

theorem at .0;Z0/, it is necessary that the Frechet derivative D2F.0;Z0/ be an

isomorphism. We see that F.0;Z/ is of the form

F�.0;Z/ D
�
DA.e

xU 
iA/ � e xU
�
� � N
``

Nn
�
@iU ; N
iAnA

ˇ̌
@B

�
;

FU .0;Z/ D 
hU C e4
xU!kl!kl ;

F .0;Z/ D Di .e4U!ij /C 1

2
Dj .e4UDi i /;

Fh.0;Z/ D �1
2

hhij CQij . Nh; @ Nh/ � 2DiUDjU

� e4 xU � Nhij!kl!kl � 2!ik!j k
�
:

It follows from the constitutive conditions stated in Section 2.10 that D�F�.0;Z/
is elliptic.

3.1 Projected System
An analysis along the lines of [1, sec. 4.2] shows thatD2F.0;Z0/ is of the form0

BB@
D�F� DUF� 0 DhF�
0 
 0 0

0 0 1
2

 0

0 0 0 �1
2



1
CCA ;

where the entries are evaluated at Z0. The diagonal entries are isomorphisms be-

tween the weighted spaces given in the definitions ofB1 andB2, with the exception

of D�F� . As in the static case this has a nontrivial kernel and cokernel; see the

discussion in [1, sec. 4]. The kernel and cokernel can be identified with the space

of Killing fields on .B; ıB/. Therefore, in order to construct solutions, we will

consider the projected system

PBF D 0;

where PB W B2 ! B2 is a projection operator that is defined exactly along the

lines of [1, sec. 4]. In particular, PB is defined to act as the identity in the second to

fourth components of B2, while in the first component of B2 it acts as the unique

projection along the cokernel of D�F�.0;Z0/ onto the range of D�F�.0;Z0/,
which leaves the boundary data in the first component of B2 unchanged. We use

the label B to indicate that PB operates on fields on the body and the extended

body. We shall later need to transport the projection operator to fields on R3S .
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Let .bi ; 	i / denote pairs of elements in W 2;p.B/�W 1�1=p;p.@B/. The restric-

tion of PB to the first component of B2, which we here denote by the same symbol,

is defined by setting PB.bi ; 	i / D .b0
i ; 	i /, satisfying

(3.2)

Z
B
� ib0

i D
Z
@B

� i	i

for all Killing fields � i . Pairs .b0
i ; 	i / satisfying this condition are called equili-

brated. As discussed in [1, sec. 4], the definition of PB implies there is a unique �i
of the form �i D ˛i C ˇijX

j for constants ˛i and ˇij satisfying ˇij D � ǰ i such

that

b0
i D bi � �i�B:

We further restrict the domain of PBF to eliminate the kernel of D�PBF . By

assumption (cf. Section 2.10), B has an axis of symmetry, which without loss of

generality can be identified with the X3-axis. Fix a point X0 on the axis of sym-

metry of B; i.e., X0 has coordinates .0; 0;X3/ for some X3. Recall that the kernel

of D�F consists of the Killing fields of .B; ıB/. A killing field in B is determined

by specifying its value and antisymmetrized derivative at one point. Following the

proof of [1, prop. 4.3],2 define X to be the submanifold of B1 such that

(3.3) .� � i/.X0/ D 0 and ıCi ıCŒA@B�.� � i/i .X0/ D 0:

and define Y to be the range of the projection operator PB. An application of the

implicit function theorem to the map

PBF W X ! Y

now gives the following result, analogous to [1, prop. 4.3].

PROPOSITION 3.1 Let F W B1 ! B2 be the map defined by (3.1) and let PB be
defined as in [1, sec. 4.3]. Then for sufficiently small values of Newton’s constantG
and the rotation velocity �, there is a unique solution Z D Z.G;�/, where Z D
.�; xU ; N i ; hij /, to the reduced, projected equation for a self-gravitating rotating
elastic body given by

(3.4) PBF..G;�/;Z/ D 0;

which satisfies condition (3.3). In particular, for any � > 0, there are G > 0 and
� > 0 such that Z.G;�/ satisfies the inequality

(3.5) k� � ikW 2;p.B/ C khij � ıij k
W

2;p

ı

C k xU k
W

2;p

ı

C k N k
W

2;p

ı

< �:

The proof of Proposition 3.1 proceeds along exactly the same lines as the proof

of [1, prop. 4.3] and is left to the reader.

2 The discussion here corrects some typos in the proof of [1, prop. 4.3]; in particular, the antisym-

metrization in (3.3) corrects the corresponding expression in [1].
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4 Equilibration
Arguing along the lines of [1, sec. 5], we have the following corollary to Propo-

sition 3.1:

COROLLARY 4.1 For any � > 0, there are G > 0 and � > 0 such that the
inequality

(4.1) k� � ikW 2;p.B/ C khij � ıij k
W

2;p

ı

C kU k
W

2;p

ı

C k k
W

2;p

ı

< �

holds.

4.1 Eulerian Form of the Projected Equations
Let Pf �1.B/ be the Eulerian form of the projection operator, defined as in [1,

sec. 5.1] by

Pf �1.B/.n � .b ı f // D n.PBb/ ı f:
Moving to the Eulerian form of the projected system, we find that we have con-

structed, for small G and � a solution .�; U; i ; hij / of the following set of pro-

jected equations, which is conveniently written in terms of the stress energy com-

ponents 	 , 	i , and 	ij .

Pf �1.B/.D
j 	ij � 2!ij 	j C .DiU/.e

�4U 	 C 	k
k// D 0;(4.2a)

	ijn
j j@f �1.B/ D 0;(4.2b)


hU D 4�G�f �1.B/.e
�4U 	 C 	k

k/ � e4U!kl!kl ;(4.2c)

Di .e4U!ij /C 1

2
Dj .e

4UDi i / D 8�G�f �1.B/	j ;(4.2d)

Gij �D.iVj / C 1

2
hijDlV

l D 8�G.�f �1.B/	ij C‚ij C�ij /:(4.2e)

Let Y D .f A; U;  i ; hij / be the Eulerian form of the solution to the projected

form of the material field equations constructed in Section 3.1. From Proposition

3.1, the solution is unique. For the purposes here, we shall need to make the unique-

ness property somewhat more explicit. An analysis of the proof of Proposition 3.1

proves the following corollary.

COROLLARY 4.2 Let the body domain B with metric ıB be given, with the cor-
responding background metric Oı on M D R3S , and fix a point X0 in B and a
vector field �A on B. Then the Eulerian form Y D .f A; U;  ; h/ of the solution to
the reduced projected system for a self-gravitating, rotating, elastic body defines a
function of the form

Y D Y.G;�I ŒB; ıB; Oı; X0; ��/:
4.2 Equivariance

We now analyze some of the consequences of the constitutive conditions im-

posed in Section 2.10. Recall that, particularly in view of frame indifference and
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homogeneity and the discussion in Section 2.10, the reduced stored energy function

� is of the form

� D �Œf; gI �;��;
where f A is the configuration, g is used as shorthand for the fields U ,  i , and

hij on M parametrizing the spacetime metric g�� , and �i is the axial vector field

on M specified in Section 2.10. Let 
 be a spatial diffeomorphism, i.e., t ı 
 D t .

Then by frame indifference (i.e., general covariance), we have

(4.3) �Œf ı 
 I 
�gI 
��;�� D �Œf; gI �;�� ı 
:
Further, as a consequence of the isotropy of the elastic body, for any isometry† of

.B; ıB/, we have

(4.4) �Œ† ı f; gI �;�� D �Œf; gI �;��:
The transformation properties stated in (4.3) and (4.4) give the following lemma:

LEMMA 4.3 Let .f A; U;  i ; hij / be as in Corollary 4.2. Let † be a diffeomor-
phism of B leaving the data .X0; ıAB ; �A/ invariant. Then the diffeomorphism 


ofM defined by requiring that iı† D 
 ı i on all of R3B is an isometry in the sense
that it leaves all of .f A; U;  i ; hij ; �i / invariant.

PROOF: First note that 
 is by construction an isometry of the flat background

metric Oı entering the projected, harmonically reduced field equations and that

.
��/i D �i trivially from the construction of �i . Using these facts together with

the equivariance property expressed in (4.3) and (4.4), we have that

(4.5) ..†�1 ı f ı 
/A; 
�U; .
� /i ; .
�h/ij /
is a solution with the same data. By the uniqueness property made explicit in

Corollary 4.2, we then have

(4.6) ..†�1 ı f ı 
/A; 
�U; .
� /i ; .
�h/ij / D .f A; U;  i ; hij /:

�

If 
 is as in Lemma 4.3, then we also have

(4.7) 
�	 D 	; .
�	/i D 	i ; .
�	/ij D 	ij :

Lemma 4.3 has the following corollary, which will play an important role in the

proof of orthogonal transitivity (see Section 4.5 below):

COROLLARY 4.4 Let .f A; U;  i ; hij / be as in Corollary 4.2. Let† be an isometry
of .B; ıB/ such that †.X0/ D X0 and .†��/A D ��A, and let 
 be a diffeomor-
phism of M such that i ı† D 
 ı i on all of R3B. Then 
 is an isometry of hij , and
we have

(4.8) .†�1 ı f A ı 
; 
�U; .
� /i ; .
�h/ij / D .f A; U;� i ; hij /:
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PROOF: The transformation  i ! � i , �A ! ��A leaves HAB and hence

all the field equations invariant. Therefore it maps a solution to another solution.

By uniqueness it follows that the solution with data B, ıB, Oı, ��A, G, and � is

given by .f A; U;� i ; hij /. The result follows. �
Recall that the reference state is axially symmetric; i.e., �A is an axial Killing

vector in Euclidean space leaving B invariant. Denoting by † the flow of �A and

correspondingly using 
 to denote the flow of �i , we have the following infinitesi-

mal version of Lemma 4.3:

LEMMA 4.5 Assume that B is axially symmetric with axial Killing field �A, as
discussed in Section 2.10. Then

(4.9) f A;i .x/�
i .x/ D �A.f .x//;

i.e.,

(4.10) �i@i D f �.�A@A/
and

L�U D 0;(4.11a)

L� i D 0;(4.11b)

L�hij D 0:(4.11c)

By the antisymmetry of !ij we have, using (2.27), that

(4.12) L�.e�2U˛/ D 0:

Furthermore, from (4.7) applied to the flow of �i , we infer that

(4.13) L�	 D 0; L�	i D 0; L�	ij D 0:

4.3 Divergence Identities
Now turn back to equation (2.33). Taking the divergence of this equation and

using (4.11a), (4.11c), (4.12), (4.13), and (4.2a) gives

0 D .1 ��e�2U˛/Di	i ��Di .e�2U˛/	i C 2��j!j i	
i(4.14)

C��j .If �1.B/ � Pf �1.B//
�
Di	ij � 2!j i	 i
C .DjU/.e

�4U 	 C 	k
k/

�
D .1 ��e�2U˛/Di	i(4.15)

C��j .If �1.B/ � Pf �1.B//
�
Di	ij � 2!j i	 i
C .DjU/.e

�4U 	 C 	k
k/

�
�f �1.B/

by using (2.26b) for (4.15).

It also follows directly from (2.33) and the fact that �i is parallel to the boundary

of f �1.B/ that the boundary condition

(4.16) 	in
i
ˇ̌
f �1.@B/ D 0
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holds. Let W D e4UDi i . The first term in the left-hand side of (4.2d) is the

divergence of a 2-form, and therefore its divergence is 0. Hence, taking the diver-

gence of both sides of (4.2d) and using the fact that (4.16) holds for the case of an

axisymmetric body, gives the identity

(4.17) 
hW D 16�G�f �1.B/D
i	i :

Equation (4.15) gives the form of the right-hand side in (4.17). Let

(4.18) LVi D 
hVi CRi
kVk;

and note

Dj
�
D.iVj / � 1

2
hijDkV

k

�
D 1

2
LVi :

Using (2.18) and (2.19) we find after taking the divergence of both sides of (4.2e),

when G ¤ 0, that

LVi D �16�G�f �1.B/ŒD
j 	ij C .DiU/.e

�4U 	 C 	k
k/�C 4!ikD

j .e4U!j
k/

and by using (4.2d) and (4.2a)

D �16�GŒDj 	ij C .DiU/.e
�4U 	 C 	k

k/��f �1.B/

C 4!ij

�
8�G�f �1.B/	

j � 1

2
DjW

�

C 16�GPf �1.B/ŒD
j 	ij C .DiU/.e

�4U 	 C 	k
k/ � 2!ij 	j ��f �1.B/

D �16�G.If �1.B/ � Pf �1.B//
�
Dj 	ij C .DiU/.e

�4U 	 C 	k
k/

� 2!ij 	j
�
�f �1.B/ � 2!ijDjW:

Let

Zi D �16�GŒDj 	ij C .DiU/.e
�4U 	 C 	k

k/ � 2!ij 	j �:
Then we have the following system of equations for W and Vi :

.1 ��e�2U˛/
W D ��j .If �1.B/ � Pf �1.B//Zj�f �1.B/;

LVi D .If �1.B/ � Pf �1.B//Zi�f �1.B/ � 2!ijDjW:
Arguing as in the proof of [1, lemma 5.7], we have that

.If �1.B/ � Pf �1.B//Zi�f �1.B/ D n.�i ı f /�f �1.B/

for some �i that is a Killing field in B. Hence we have the equations

.1 ��e�2U˛/
W D ��jn.�j ı f /�f �1.B/;(4.19a)

LVi D n.�i ı f /�f �1.B/ � 2!ijDjW:(4.19b)
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4.4 Main Theorem
We are now able to prove the following:

THEOREM 4.6 For sufficiently small values ofG and�, withG nonzero, the solu-
tion to the reduced, projected system of equations for a stationary, rotating, elastic,
self-gravitating body (3.4) is a solution to the full system of equations (2.17) for
a stationary, rotating, elastic, self-gravitating body, together with the integrabil-
ity conditions of Section 2.5. In particular, this solution corresponds to a pair
.f A; g��/ that solves the full Einstein equations G�� D 8�GT�� .

Remark 4.7. The solutions constructed in Theorem 4.6 are static exactly when

� D 0.

PROOF: Using the estimate of Corollary 4.1 and the multiplication properties

of the weighted Sobolev spaces (cf. [1, sec. 2.3]), one checks that

!ij 2 W 1;p

ı�1; �ij 2 W 1;p

2ı�2; ‚ij 2 W 1;p

2ı�2;
with corresponding estimates. We now use (4.2e) for hij in the equivalent form

(2.42), equation (4.2d) for  i (making use of equation (2.40) to express it in a form

suitable for estimates), as well as (4.2c) for U . The result is that the conclusion of

[1, lemma 5.2] for hij also holds in the present case, namely,

hij D ıij C �ij

r
C h.2/ ij

for constants �ij , with h.2/ ij 2 W
2;p

2ı
. For sufficiently small G and �, we have

the estimate

kh.2/ ij k
W

2;p

2ı

C k�k � C.khij � ıij k
W

2;p

ı

C k� � ikW 2;p.B//:

For brevity, we shall in what follows write estimates of the above form using

kZ � Z0kB1
where the norm refers to that induced from the Banach spaces used

in defining the space B1; cf. Section 3. We shall further write inequalities of the

form a � Cb where C is a constant that is uniformly bounded for small G and �

as a . b.

Given this result about the asymptotics of hij , the conclusion of [1, lemma 5.4]

concerning Vi holds, and hence also the partial integration result [1, lemma 5.5]

and the estimate of [1, lemma 5.6]. Now define the operator Q W Lp
ı�3.R

3
S/ ! R6

as in [1, sec. 5.2]. Given a basis f�.�/g6�D1 for the space of Killing fields, we set

Q�.´i / D
Z

R3
S

.� i.�/ ı f /´id�h; � D 1; : : : ; 6:

Since W D e4UDi i , the term !ijD
jW in (4.19b) satisfies !ijD

jW 2 L
p

2ı�3
and we have the estimate

(4.20) k!ijDjW kLp

ı�3
.R3

S/
. kZ �Z0kB1

kn.� ı f /kLp.f �1.B//:
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Recall that from the construction of Q we have for small G and � the equivalence

of norms

(4.21) kQn.� ı f /�f �1.B/kR6 . k�kR6 . kQn.� ı f /�f �1.B/kR6 ;

where if �i D ˛i C ˇijx
j , k�kR6 is defined by

k�k2R6 D
X
i

.˛i /2 C
X
i<j

.ˇij /
2:

The analogue of (4.21) also holds for kn.�ıf /kLp.f �1.B// due to the properties

of Q. Applying Q to both sides of (4.19b), we have using (4.20) and (4.21),

k�kR6 . kQLV kR6 C kQ!DW kR6

. kQLV kR6 C kZ �Z0kB1
k�kR6 ;

and hence

(4.22) k�kR6 . kQLV kR6 :

Recall that for G and � sufficiently small, we also have due to Corollary 4.1 that

kZ � Z0kB1
is small. We now have the chain of inequalities for G and � suffi-

ciently small,

kV k
W

2;p

ı�1

. kLV k
W

2;p

ı�3

. kn.� ı f /kLp.f �1.B// C k!DW kLp

ı�3

. k�kR6 C kZ �Z0kB1
k�kR6

. k�kR6

. kQLV kR6 from (4.22):

By the inequality proved in [1, prop. 5.8] we have

kQLV kR6 . kZ �Z0kB1
kV k

W
2;p

ı�1

;

which together with the above gives

(4.23) kV k
W

2;p

ı�1

. kZ �Z0kB1
kV k

W
2;p

ı�1

:

By choosing G and � sufficiently small, we can make kZ �Z0kB1
small enough

so that (4.23) gives the inequality

kV k
W

2;p

ı�1

� 1

2
kV k

W
2;p

ı�1

;

which implies

V D 0:

Due to the vanishing of V , it follows from (4.22) that also � D 0, and hence we

have

W D 0:
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This means that the solution of the projected system of equations (4.2) is actually

a solution to the full system of field equations (2.17) for the rotating elastic body,

together with the integrability conditions discussed in Section 2.5.

It remains to demonstrate that the solution .f A; U;  i ; hij / to (2.17) constructed

in this proof corresponds to a Lorentzian spacetime .M; g��/ solving the Ein-

stein equations for the elastic body. The solution we have found yields via (2.4)

a Lorentz metric g�� at some time t0 together with its vanishing first and second

time derivatives at t0, as well as a configuration f A together with its nonvanishing

first time derivative at t0. These solve the Einstein equations at t0. We extend the

spacetime metric off t0 by requiring it to be t -independent and f A by requiring it

to satisfy (2.29) for all times. This constructs a spacetime .M; g��/ that is axi-

symmetric and stationary and a configuration that is axially symmetric and helical.

Thus, by the discussion in Section 2.2, the associated energy momentum tensor is

time independent. This shows that .M; g��/ together with the configuration f A

provides a solution to the full Einstein equations. �
In Theorem 4.6 we have treated the field equations for a rotating, self-gravitating

body from a mathematical point of view; in particular, we have not made explict the

physical units involved. Suppose we have solutions to the problem for 0 < G <

G0, 0 < � < �0. Since the equations have a physical origin, there are certain

similarity transformations that map solutions into solutions. These transformations

arise from the possibility of choosing arbitrary units for time, space, and mass in

the physical theory.

The Newton constant G has dimensions of

(length)3(time)�2(mass)�1:
Therefore by an appropriate choice of units, we can bring the numerical value of

the physical gravitational constant into the range 0 < G < G0 and interpret our

solutions as physical solutions in these particular units.

In our treatment the stored energy function is taken to be independent of G and

�. Because it contains quantities with physical dimensions, the stored energy in

our family of solutions will change under the similarity transformation. Neverthe-

less, we have shown the existence of solutions that can be interpreted physically.

We remark that our theorem does not cover the case of large, self-gravitating

systems like neutron stars, because for these there is no “nearby” relaxed configu-

ration without gravity.

4.5 Orthogonal Transitivity
Let .M; g��/ be a stationary spacetime containing a rotating elastic body as

constructed in Theorem 4.6. We have shown in Section 4 that .M; g��/ admits

a two-parameter, abelian group of isometries, generated by the Killing fields ��

and ��. In fact, since �� is the pullback of the axial vector field acting on the body,

the group can be taken to be the cylinder R � S1. The question arises if this group

acts orthogonally transitively on M, as is the case for perfect fluids. Recall that
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a group acts orthogonally transitively if the the distribution perpendicular to the

generators of the group action is Frobenius integrable.

Define !��� D 3�Œ�r���� and let !0
��� be defined with respect to �� in an

analogous manner. Orthogonal transitivity is equivalent to the conditions

�Œ�!���� D 0;(4.24a)

�Œ�!
0
���� D 0I(4.24b)

see [3, (2.53)]. The spacetimes constructed in this paper have metrics that fail to

be smooth at the boundary of the body f �1.B/.
PROPOSITION 4.8 Let .M; g��/ be a stationary spacetime containing a rotating
elastic body as in Theorem 4.6 with stationary and axial Killing fields �� and ��,
respectively. Then if � > 0 is sufficiently small, equation (4.24) holds in M.

PROOF: The conditions (4.24) can be restated in the space manifold M as

e2U �Œi!jk� D 0;(4.25a)

e�2U �ŒiDj�k� C ˛�Œi!jk� D 0:(4.25b)

Here !ij D @Œi j � and ˛ D ����, as above. Equations [3, (2.60),(2.61)] are

equivalent to (4.25) but written in terms of a different representation of the space-

time metric.

By [3, equations (2.51)–(2.52)], we have

4r�.�Œ�!����/ D 6��R�Œ������;(4.26a)

4r�.�Œ�!0
����/ D �6��R�Œ������:(4.26b)

It follows that

(4.27) r�.�Œ�!���� ���Œ�!0
����/ D 12�G.�� C���/T�Œ������:

Since the velocity vector u� D b�1.�� C���/ (see equation (2.28)) is an eigen-

vector of the stress energy tensor (cf. equation (2.1)), the right-hand side of (4.27)

is 0. The left-hand side of (4.27) is the divergence of a 4-form, i.e., in terms

of the exterior derivative and the Hodge dual, we have an equation of the form

? d?˛ D 0. In particular, ?˛ is a scalar function that is constant, d?˛ D 0. In the

situation under consideration, ˛ vanishes on the axis x1 D x2 D 0, and hence it is

0 everywhere. In this argument we made use of the fact that u� is well-defined in

all of f �1.B/. This holds for sufficiently small values of �, since then the vector

field �� C ��� is timelike in all of f �1.B/. In terms of the space manifold M ,

we have shown that

(4.28) ��ŒiDj�k� � e4U .1 ��e�2U˛/�Œi!jk� D 0:

This can of course also be checked directly from the three-dimensional field equa-

tions. Note that relation (4.28) becomes vacuous in the static case � D 0.

By the above argument we have shown that the two equations (4.25) are linearly

dependent if� ¤ 0. Thus, in order to show that both equations in (4.25) hold, it is
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sufficient to show that �ŒiDj�k� D 0. To see this, we argue as follows: It follows

from the axisymmetry of the body that there is a discrete isometry † of .B; ıB/,
consisting of reflections in planes containing the X3-axis, that maps �A to ��A.

An explicit choice of † is given by

†.X1; X2; X3/ D .�X1; X2; X3/:
By Corollary 4.4 and the construction of �i , we have that the diffeomorphism 


of M defined by † ı i D 
 ı i is an isometry of hij , which has the property that

.
��/i D ��i . We can now conclude that reflections at planes through the x3-axis

preserve both U and hij and send both  i and �i to their respective negatives. So,

in particular, these transformations preserve vectors tangent to these planes, and

since they send �i to ��i and preserve inner products, �i has to be orthogonal to

these planes. Consequently, �i is hypersurface orthogonal, i.e.,

(4.29) �ŒiDj�k� D 0:

It follows, using (4.28), that (4.25) holds. �

Remark 4.9. Recall the identity valid for Killing vectors

(4.30) 3Di .�ŒiDj�k�/ D 2�ŒjRk�l �
l :

Inserting (4.30) into (2.14c), using (2.27), (2.26a), and finally (4.28), we obtain

(4.31) 3Di Œ.1 ��e�2U˛/1=3�ŒiDj�k�� D 16�G.1 ��e�2U˛/1=3�i	iŒj�k�:

Thus we have inferred that �i is an eigenvector of the stress tensor. This latter fact

could have also been shown directly from the reflection symmetry without using

the Einstein equations.

Remark 4.10. In the case of a smooth spacetime, it follows from (4.24) and the

Frobenius theorem that the distribution perpendicular to �� and �� is integrable

in the sense that there are smooth 2-surfaces in M orthogonal to the span of ��

and ��. The spacetimes constructed in Theorem 4.6 have been shown to be W
2;p

loc .

Although the spacetimes containing a rotating body can in fact be shown to be

real analytic away from the boundary of the body, f �1.@B/, a further analysis is

needed to show that an appropriate version of the Frobenius theorem applies. This

question will be studied in a later paper.

Appendix: Proof of Lemma 2.1

We have ƒ D e3U �. From

T�� D 2
@ƒ

@g��
�ƒg�� ;

we get
@ƒ

@g��
D 1

2
.T�� Cƒg��/:
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Using a form of g�� (cf. (2.5)), we have

@g��

@hij
@�@� D e2U .@i@j �  i j @2t /;

@g��

@ i
@�@� D e2U .�2@i@t C 2 i@

2
t /;

@g��

@U
@�@� D 2g��@�@� C 4e�2U @2t :

Define 	 , 	i , and 	ij by

T�� D 	.dt C  idx
i /2 C 2	j dx

j .dt C  i dx
i /C 	ij dx

i dxj :

Then

Tij D 	ij C 2	.i j / C 	 i j ;

T0i D 	i C 	 i ;

T00 D 	;

T�
� D �e�2U 	 C e2U 	`

`:

We calculate

eU
�
2
@�

@hij
� �hij

�
D e�2U

�
2
@ƒ

@hij
�ƒhij

�

D e�2U
�
2
@ƒ

@g��
@g��

@hij
�ƒhij

�

D e�2U
�
.T�� Cƒg��/

@g��

@hij
�ƒhij

�

D Tij � T00 i j Cƒ.gij � g00 i j / �ƒe�2Uhij

D 	ij ;

eU
@�

@ i
D e�2U @ƒ

@ i

D e�2U @ƒ

@g��
@g��

@ i

D e�2U 1
2
.T�� Cƒg��/

@g��

@ i

D �Ti0 C  iT00 �ƒgi0 Cƒ ig00

D �	i ;
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eU
�
@�

@U
C �

�
D e�2U

�
@ƒ

@g��
@g��

@U
� 2ƒ

�

D e�2U
�
1

2
.T�� Cƒg��/

@g��

@U
� 2ƒ

�

D e�2U �
.T�� Cƒg��/.g

�� C 2e�2U ı�0ı�0/ � 2ƒ�

D e�2U .T�� C 4ƒC 2e�2UT00 C 2e�2Uƒg00 � 2ƒ/

D e�2U .T�� C 2e�2UT00/

D e�4U 	 C 	`
`:
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