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Abstract
The ‘external’ or ‘bulk’ motion of extended bodies is studied in general
relativity. Compact material objects of essentially arbitrary shape, spin, internal
composition and velocity are allowed as long as there is no direct (non-
gravitational) contact with other sources of stress–energy. Physically reasonable
linear and angular momenta are proposed for such bodies and exact equations
describing their evolution are derived. Changes in the momenta depend
on a certain ‘effective metric’ that is closely related to a non-perturbative
generalization of the Detweiler–Whiting R-field originally introduced in the
self-force literature. If the effective metric inside a self-gravitating body can
be adequately approximated by an appropriate power series, the instantaneous
gravitational force and torque exerted on it is shown to be identical to the
force and torque exerted on an appropriate test body moving in the effective
metric. This result holds to all multipole orders. The only instantaneous effect
of a body’s self-field is to finitely renormalize the ‘bare’ multipole moments
of its stress–energy tensor. The MiSaTaQuWa expression for the gravitational
self-force is recovered as a simple application. A gravitational self-torque is
obtained as well. Lastly, it is shown that the effective metric in which objects
appear to move is approximately a solution to the vacuum Einstein equation if
the physical metric is an approximate solution to Einstein’s equation linearized
about a vacuum background.

PACS numbers: 04.20.Cv, 04.25.−g, 04.40−b, 45.20.−d

1. Introduction

Newtonian celestial mechanics typically describes the motion of widely separated masses
using two types of parameters (see, e.g., [1, 2]). These concern either the behavior of each
body as a whole—the ‘external’ or ‘bulk’ parameters—or the details of their internal dynamics.
Examples of external parameters are the center of mass positions and spin angular momenta of
the various masses. The internal variables include, e.g., the density and velocity distributions
inside each body. In typical applications, there is very little coupling between the internal
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and external parameters. As a consequence, one can often compute the center of mass
positions of each extended body in an N-body system as though that system were composed
of point particles described only by their positions and masses. Furthermore, the spin angular
momentum of each body in such a system can usually be taken to remain constant (and does
not affect the center of mass motion). Both of these statements are, of course, approximate.
A more accurate description requires introducing additional parameters such as quadrupole
moments. These depend on the internal dynamics, but in a relatively mild way that often lends
itself to simple phenomenological models.

The external variables decouple from the internal ones in Newtonian gravity largely
because the net force and torque exerted by a body’s self-field always vanishes. There are no
self-forces or self-torques in this theory1. The instantaneous evolution equations for an object’s
linear momentum, center of mass position and spin do not explicitly involve its self-field. These
quantities are affected by the self-field through its action on other objects, although this is an
effect that takes time to accumulate.

A priori, it is not clear that similar statements can be made for matter interacting with
relativistic fields. Such fields carry energy and momentum, so self-forces arise generically.
This does not, however, preclude an internal–external split of the dynamics. The usefulness of
such a split does not require that self-forces vanish entirely, but only that they do not depend
in any essential way on the details of a body’s internal structure.

To illustrate this point, consider the motion of a small electric charge in approximate
internal equilibrium moving non-relativistically in flat spacetime. It has long been known that
under suitable conditions, the center of mass acceleration a(s) of such a charge at time s very
nearly satisfies2

ma = Fext + 2

3
q2 da

ds
− δma. (1)

Here, Fext is an externally imposed force, q is the object’s total charge and m its (bare) mass.
The last two terms on the right-hand side of this equation arise from interactions with the
body’s own electromagnetic field. The first of these is ‘simple’ in that it depends only on
bulk parameters—namely q and a—already required to describe the motion of a charged test
particle.

By contrast, δm has a very different character. In an appropriate approximation, it is the
self-energy of the charge distribution as it would typically be defined [5]. Denoting the electric
charge density by ρe,

δm(s) = 1

2

∫
d3X

∫
d3X′

(
ρe(X, s)ρe(X′, s)

|X − X′|
)

. (2)

It is clear that δm depends on the body’s internal structure in a nontrivial way. Despite this,
(1) may be rewritten in the form

m̂a = Fext + 2

3
q2 da

ds
, (3)

1 The self-force is defined here as the net force exerted by the self-field. The self-field is, in turn, defined in a standard
way. See section 2.1. Note that this definition of self-force is not the same as the perturbative one used in, e.g., [3].
2 This equation has been established as a valid approximation only for the acceleration of a physical charge (see, e.g.,
[4, 5]). This does not mean that a trajectory with an acceleration satisfying (1) for all time is guaranteed to stay near
the physical trajectory. Many such motions violate the conditions under which the equation was derived (even on short
timescales), and must therefore be discarded. Additionally, there may be neglected terms which lead to qualitatively
different behavior over long times. Better-behaved equations arise by ‘reducing order’ [4, 6], which changes (1) only
by an amount comparable to the error terms that are already present. This leads to an equation often attributed to
Landau and Lifshitz in the relativistic case [7].
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where m̂ := m + δm is interpreted as a renormalized or effective mass. The same assumptions
leading to the derivation of (1) can also be used to show that dm̂/ds = 0. For a well-behaved
extended object, δm is finite. The mass renormalization effect is therefore finite as well.

Even though the self-force is significant in this example (and depends on nontrivial details
of the body’s internal structure), the final equation of motion involves only parameters of
the same type as those already needed to describe the motion of a charged test particle. To
the extent that (1) can be trusted, this means that the external variables largely decouple
from the internal ones in electromagnetism. The center of mass acceleration of an appropriate
extended self-interacting charge distribution is the same as the acceleration of a monopole
test charge moving in an effective electric field given by the external one plus 2

3 qda/ds (at the
particle’s location). This effective field may be shown to arise naturally as a certain solution
to the vacuum Maxwell equations [5, 8, 9].

This result can be generalized considerably. Essentially all restrictions regarding the
charge’s size, internal dynamics and speed may be removed. For almost any bounded self-
interacting charge-current distribution in flat spacetime, physically reasonable linear and
angular momenta may be defined that evolve as though they were the momenta of an
extended test charge (or a pointlike test charge ‘with structure’) moving in a certain effective
electromagnetic field [5]. This effective field satisfies the vacuum Maxwell equations near the
charge. All effects of the self-force and self-torque can be non-perturbatively absorbed into
the definitions of the momenta and the effective field. Whether or not the internal structure
is ‘effaced’ from the external laws of motion therefore reduces to a question regarding the
nature of the effective field. In all but the most extreme systems, the effective field may
be shown to depend only on bulk parameters like the total charge. Very similar results also
hold in generic (but fixed) curved spacetimes. The only qualitative change that occurs when
introducing spacetime curvature is that the quadrupole and higher multipole of a charge’s
stress–energy tensor are renormalized along with its momenta [10]. Analogous statements are
known for matter interacting with linear scalar fields as well [10, 11].

Results of this type greatly expand the scope of—and provide a basis for—what has
been referred to as the Detweiler–Whiting axiom [9, 12]. It is well known that point particles
are incompatible with, e.g., the standard formulation of Maxwell electrodynamics (and with
general relativity [13]). Despite this, ‘point particle methods’ can still be used if additional
axioms are introduced into the theory. Suppose, for example, that a certain portion of the
self-field associated with a pointlike electric charge is assumed not to affect its motion.
Detweiler and Whiting considered this possibility with an ignorable field constructed using
a certain symmetric Green function [9]. Subtracting this field from the physical one leaves
a result which is easily calculated and well behaved. It also satisfies the vacuum Maxwell
equations at the location of the particle. Substituting this difference field into the Lorentz
force equation produces the standard Dewitt–Brehme result [12, 14] for the motion of a
self-interacting charged particle in curved spacetime. Similar subtractions were also used to
efficiently reproduce equations of motion that had previously been derived for self-interacting
scalar charges as well as uncharged masses in linearized general relativity.

The results of [5, 11] show that this ability to ignore what is referred to as the Detweiler–
Whiting S-field is not merely a computational shortcut allowing the use of point particle
methods in cases where actual point particles cannot exist. A very general type of ‘Detweiler–
Whiting axiom’ may be rigorously derived from first principles for a large class of extended
scalar and electromagnetic charge distributions moving in fixed spacetimes. This paper uses
similar methods to treat the gravitational problem. Specifically, it investigates whether the
bulk dynamics of an uncharged mass in general relativity can be reduced to test body motion
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in an effective metric (in a nontrivial sense3). Related questions have been studied in various
contexts using the post-Newtonian approximation [1, 15–17], where they are often referred to
as ‘effacement principles’ or demonstrations of the strong equivalence principle.

The work presented here is motivated more by the types of systems commonly encountered
in discussions of the gravitational self-force. These discussions typically allow the body of
interest to move at relativistic speeds in a strongly curved background spacetime, but restrict it
to be small compared to all scales associated with that background. One also assumes that the
internal structure of the body does not vary too rapidly. Under these conditions—made precise
in, e.g., [18, 19]—an equation of motion may be derived that does not depend on any details of
the body’s internal structure. At lowest order, it is just the geodesic equation associated with
the background spacetime. The next approximation introduces forces due to both gravitational
self-interaction and spin. The latter effect is the Papapetrou force long known to act on spinning
test particles [20, 21]. The self-force component is typically referred to as the MiSaTaQuWa
force after the authors who originally obtained it: Mino, Sasaki, Tanaka, Quinn and Wald
[22, 23]. Neglecting the Papapetrou term, the motion is most naturally viewed as a
geodesic with respect to a certain effective metric satisfying the linearized vacuum Einstein
equation [9].

We show that this is a special case of a much more general result. Certain definitions
of linear and angular momentum are proposed for extended compact matter distributions in
general relativity. It is assumed that there is no stress–energy near the object of interest other
than its own (except perhaps dark energy equivalent to a cosmological constant). An effective
metric ĝab is then defined based on a non-perturbative generalization of the Detweiler–Whiting
decomposition of the physical metric gab. There is a sense in which the force and torque depend
only on ĝab and the details of the body’s stress–energy tensor. If ĝab varies sufficiently slowly
that it can be expanded in a Taylor series about an appropriate point inside the body (in a
Riemann normal coordinate system constructed using ĝab), the instantaneous force and torque
are shown to be identical to those of an appropriate test body moving in the effective metric. A
similar result also holds for a certain definition of the center of mass. This means that equations
known to hold for test bodies (possibly with higher multipole moments) also hold for masses
with significant self-interaction.

As a simple application, note that the simplest test bodies move on geodesics. The
simplest self-interacting bodies therefore move on geodesics of the effective metric. The
MiSaTaQuWa expression for the gravitational self-force follows easily with some minor
additional assumptions. Similarly, the simplest equations for a body’s spin evolution are
those of parallel transport. Appropriate self-gravitating masses therefore parallel-propagate
their spins in the effective metric. Corrections to these statements arising from higher order
multipole moments are easily added when appropriate.

The assumptions adopted here are different from those found in other treatments of the
gravitational self-force. Most importantly, the approaches of, e.g., [18, 19] are intrinsically
perturbative. They work in an intermediate ‘buffer’ region outside of the body of interest and
assume that in the metric there is a small perturbation off of some vacuum background. Such
methods can be applied even to the motion of black holes, which lies beyond the scope of
the formalism developed here. We require that a body be described by a well-behaved stress–
energy tensor. Despite this restriction, there are considerable benefits to our assumptions. They
allow the analysis of objects that may be highly distorted and dynamical: Dixon’s multipole

3 Suppose that it is known, for example, that the acceleration of an extended nonrelativistic electric charge satisfies
ma = qE+ f. If q �= 0, this is trivially equivalent to the motion of a pointlike test body in the field E+q−1f. In general
relativity, equations with the form mDua(s)/ds = f a can always be rewritten as geodesic equations associated with
some connection. It is only in special cases, however, that such identifications are useful.
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expansions [2, 24] for the motion of extended test masses are generalized to all orders.
Explicit formulas for the momenta are also provided in terms of the body’s internal structure.
There are esthetic advantages as well. In regimes where they overlap, the method presented
here requires far less computation than others in the literature. It also provides significantly
more physical insight.

Layout of the paper

The main results established in this work are obtained using only a modicum of computation.
Despite this, a number of concepts and techniques are employed that are not in common use.
While not new [5, 10, 11, 25], the relevant ideas are reviewed in section 2 by applying them
to problems with which the reader might be more familiar. Section 2.1 starts by discussing in
detail the motion of self-interacting masses in Newtonian gravity. While the conclusions of
this section are completely standard, the formulation used to obtain them has several unusual
features. It does not, for example, rely on any choice of coordinates. It also treats a body’s
linear and angular momenta as different components of a single scalar functional on the space
of Euclidean Killing fields. The lack of self-forces and self-torques is shown to follow from the
symmetries of a particular Green function used to define what is meant by the term ‘self-field’.

Similar techniques are used in section 2.2 to discuss the motion of fully relativistic
extended test masses in curved spacetimes. This is a review of appropriate aspects of Dixon’s
work on the subject [2, 24, 26] as reformulated in [25]. Linear and angular momenta are
shown to arise as two components of a scalar functional that now takes as input certain
‘generalized Killing fields’ (GKFs) when ordinary Killing fields do not exist. These vector
fields are defined in detail in the appendix. Using them, multipole expansions for the force and
torque are established when appropriate. A center of mass is also defined, and it is pointed
out that the hidden momentum is generically nonzero (i.e. the linear momentum is not parallel
to the center of mass velocity). Familiarity with the discussion of section 2 is essential for
understanding the remainder of this paper, where similar techniques are used to analyze the
motion of self-gravitating masses in general relativity.

The main results of this paper are contained in section 3. After discussing the problem of
defining an effective metric and a self-field abstractly in section 3.1, a specific definition for
the self-field is given in section 3.2. Exact expressions for the force and torque are then derived
in section 3.3. Multipole expansions of these equations are performed in section 3.4. A brief
discussion of the multipole moments appearing in the resulting series is given in section 3.5.
Finally, a center of mass is defined in section 3.6 and related to the linear momentum.

Section 4 applies these results to the motion of a small body. The monopole–dipole
approximation is discussed in various ways. We then specialize to general relativity linearized
off of a vacuum background and derive an equation for the center of mass position that
includes the MiSaTaQuWa ‘self-force’. A similar result is also obtained for the spin evolution
(including a ‘self-torque’).

The sign conventions used here are those of Wald [27]. Metrics therefore have signature
+2 and the Riemann tensor satisfies 2∇[a∇b]ωc = Rabc

dωd for any 1-form ωa. The Ricci tensor
is given by Rab = Racb

c. Multiple metrics are discussed in this paper, so indices are not raised
and lowered unless indicated otherwise. In almost all cases, factors of the appropriate metric
are displayed explicitly. There are three main metrics that appear: gab denotes the full physical
metric, ĝab a certain effective metric, and ḡab a background metric. Derivative operators and
curvature tensors associated with the latter two geometries are distinguished with a hat or bar as
appropriate. Non-geometric quantities (like momenta) with hats typically denote renormalized
or effective versions of their plainer counterparts. Abstract indices are written using letters
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from the beginning of the Latin alphabet, while Greek indices represent spacetime coordinate
components. The letters i, j, . . . represent spatial coordinate components. Units are used where
G = c = 1.

2. Motion in simple cases

The main goal of this paper is to describe, in some sense, the large-scale or bulk motion
of extended masses in general relativity. This is done by analyzing quantities that may be
interpreted as a body’s net linear and angular momenta (as well as the closely related notion
of its center of mass).

The type of momentum considered here is similar to the one developed by Dixon
[2, 24, 26]. Mathematically, Dixon’s momenta are tensor fields defined non-perturbatively
along a preferred worldline in the physical spacetime. They take as input this worldline and
a timelike vector field prescribed along it. The linear or angular momentum of an extended
body is then computed by integrating its stress–energy tensor over a spacelike hypersurface
in a particular way. The evolution of these quantities is strongly constrained by stress–energy
conservation.

The only significant restriction to the use of Dixon’s momenta is that an object’s stress–
energy tensor be bounded in spatial directions. This bound is also required not to be ‘extremely
large’ in a particular sense [24, 28]. Limitations on the metric are minimal. Despite this, most
applications (e.g. [29, 30]) have been restricted to the test body regime where the body of
interest is not allowed to backreact onto the geometry. While Dixon’s momenta retain a number
of interesting properties in a more general context [2, 24, 31, 32], other characteristics are
less satisfactory. For example, it has been shown that even in flat spacetime electromagnetism,
the momenta do not behave as simply as might have been expected once electromagnetic
self-interaction is taken into account [33]. This problem can be eliminated with a relatively
simple modification [5].

Similar changes are proposed here in order to obtain physically reasonable momenta that
obey simple evolution equations in the presence of significant gravitational self-interaction
(but without electromagnetic or other long-range non-gravitational fields). The basic strategy
is to first postulate ‘bare’ momenta. These agree with Dixon’s definitions in the test mass
regime, but differ in general. The important point is that the evolution equations for the bare
momenta include total time derivatives of certain terms involving parts of the self-field. These
derivatives are easily eliminated by redefining the momenta. The resulting variables obey
simple evolution equations in a wide variety of contexts.

This section sets the foundation for deriving these results by reviewing the relevant
techniques in simpler systems. We start by discussing the motion of self-interacting extended
masses in Newtonian gravity. This is carried out from a somewhat unusual point of view
introduced in [11]. Similar techniques are then used to analyze relativistic motion in a curved
spacetime, but without self-interaction. The resulting definitions and conclusions are equivalent
to Dixon’s [2, 24, 26]. Many aspects of the formalisms discussed in this section carry through
almost without modification to cases involving self-interaction in general relativity.

2.1. Self-interacting masses in Newtonian gravity

As a first step to understanding the motion of extended bodies in general relativity, consider the
motion of a freely falling extended mass in Newtonian gravity. Such a mass may be modeled
as having a time-dependent configuration on a three-dimensional Euclidean space (M, gab).
We assume that this configuration has nonzero volume and may be entirely contained in a
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compact region �s ⊂ M at time s (i.e. the body is extended but with a finite size). Also
suppose that the body of interest is composed of a single material with mass density ρ(x, s)
and 3-velocity va(x, s). Given any x ∈ M and s ∈ R, ρ(x, s) � 0. While it is possible to
relax this requirement considerably, we assume for simplicity that ρ(x, s) and va(x, s) are
smooth in both of their arguments. Lastly, suppose that there exists an open neighborhood of
�s containing no matter other than the body of interest. This ensures that there is no direct
contact with other objects.

In general, the density and velocity distributions are constrained by local mass and
momentum conservation. These laws have the explicit forms

∂ρ

∂s
+ ∇a(ρva) = 0 (4)

and
∂

∂s
(ρva) + ∇b(ρvavb + �ab) = −ρgab∇bφ, (5)

where ∇a denotes the Lévi–Cività connection associated with the Euclidean 3-metric gab.
�ab = �(ab)(x, s) represents the body’s stress tensor, φ(x, s) the gravitational potential, and
gab(x) the inverse of gab(x). Besides these equations, the body of interest is also assumed to
be a source for the gravitational field. The potential therefore satisfies

gab∇a∇bφ = 4πρ (6)

throughout �s.
The simplest consequence of these equations is that the total mass m cannot change. Using

dV to denote the natural (three-dimensional) volume element associated with gab, let

m :=
∫

�s

ρ(x, s) dV. (7)

It immediately follows from (4) that m is independent of s.
Equation (5) constrains the evolution of the body’s total linear momentum pa and angular

momentum Sa. The linear momentum is typically defined by integrating the components ρvi in
a Cartesian coordinate system Xi(x). A similar integral also exists for the angular momentum.
It is important for later generalizations to avoid any coordinate choices such as these and
instead define the momenta geometrically. This can be accomplished by recalling that global
linear momentum conservation is associated with the translational invariance of Euclidean
space. Similarly, global angular momentum conservation is related to the rotational invariance
of Euclidean space. Translations and rotations together comprise the continuous isometries of
(M, gab). Generators of these isometries are Killing vectors.

Given any Euclidean Killing field ξ a and time s, consider

Pξ (s) :=
∫

�s

ρ(x, s)va(x, s)gab(x)ξ b(x) dV. (8)

This is a linear functional on the six-dimensional space of Killing fields. It may be viewed as
returning the component of momentum ‘conjugate’ to ξ a. If, say, ζ a = ∂/∂X1 is a particular
Killing field associated with translations in the X1-direction, Pζ (s) is equal to the Euclidean
component p1(s) = gab paζ b of the body’s linear momentum as it would ordinarily be defined.
Similarly, the use of a purely rotational Killing field in (8) returns a component of the body’s
angular momentum.

In general, Pξ is equal to a sum of linear and angular momentum components. The precise
form of this sum may be established by recalling that any Killing field is fixed everywhere by
specifying it and its first derivative at a single point [27]. Choosing a (possibly time-dependent)
origin γs ∈ M,

ξ a(x) ⇔ {ξ a(γs),∇bξ
a(γs)}. (9)
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This correspondence may be observed explicitly by noting that in Cartesian coordinates Xi(x),
all Euclidean Killing fields have the form

ξ i(x) = ξ i(γs) + [X j(x) − X j(γs)]∂ jξ
i(γs). (10)

ξ i(γs) may be chosen arbitrarily in this equation, while ∂ jξ
i(γs) must be an antisymmetric

matrix. Note that ξ i(x) is linear in the ‘data’ {ξ i(γs), ∂ jξ
i(γs)}. This is a generic feature of the

correspondence (9) and is unrelated to working in Euclidean space.
Now, it is clear from (8) that Pξ is linear in ξ a(x). It follows that Pξ may always be written

as a linear combination of ξ a(γs) and ∇bξ
a(γs). The appropriate coefficients are essentially

the linear and angular momenta as they would typically be defined. If �a := gabξ
b, let pa and

Sab = S[ab] satisfy

Pξ (s) = pa(γs, s)�a(γs) + 1
2 Sab(γs, s)∇a�b(γs). (11)

All Killing fields may be generated by varying �a(γs) amongst all possible 1-forms and
∇a�b = ∇[a�b](γs) amongst all possible 2-forms. The knowledge of Pξ for all ξ a is therefore
equivalent to the knowledge of pa and Sab. The angular momentum 1-form Sa may be extracted
from Sab via

Sa := 1
2εabcSbc, (12)

where εabc denotes the natural volume element associated with gab. Both Sa and Sab contain all
angular momentum information in the three dimensions considered here. Equation (12) may
therefore be inverted, giving Sab = εabcSc.

Equations (8) and (11) provide a coordinate-invariant definition for a body’s linear and
angular momenta. Mathematically, pa(γs, s) and Sab(γs, s) are tensors at the point γs. In
more elementary presentations of Newtonian mechanics, γs corresponds to the preferred point
required to define the angular momentum. It is often taken to coincide with the object’s center
of mass, although this choice is not essential.

Later sections in this paper make extensive use of functionals like Pξ . For a relativistic
object moving in curved spacetime, the quantity ρva appearing in the integrand of (8) is
translated into an obvious analog involving the body’s stress–energy tensor. It is more difficult
to generalize ξ a, which must be chosen from a suitable space of generalized Killing fields
when ordinary Killing fields do not exist. This is, however, a surmountable problem. Relation
(11) between Pξ , pa and Sab does not change at all for relativistic motion in curved spacetimes.

Even in the Newtonian context, there are advantages to working with Pξ rather than pa and
Sab. Most importantly, this functional allows the linear and angular momenta to be manipulated
simultaneously merely by performing operations on scalars. Pξ also provides a clear relation
between symmetries and conservation laws.

It is now possible to discuss how a Newtonian body’s momenta vary over time. These
changes can be extracted from changes in Pξ . Using (8) together with (5) shows that

d

ds
Pξ (s) = −

∫
�s

ρ(x, s)Lξφ(x, s) dV, (13)

where Lξφ denotes the Lie derivative of φ with respect to ξ a. Differentiating (11) also shows
that

d

ds
Pξ (s) = Dpa

ds
�a + 1

2

(
DSab

ds
− 2p[aγ̇ b]

s

)
∇a�b, (14)

where γ̇ a
s := dγ a

s /ds and we have used the fact that second derivatives of Killing fields vanish
in flat space. Equating the right-hand side of this equation with the right-hand side of (13)

8
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produces evolution equations for both pa and Sab. It is useful to define a force Fa and torque
Nab = N[ab] such that

d

ds
Pξ (s) = Fa�a + 1

2
Nab∇a�b. (15)

Then,
Dpa

ds
= Fa, (16)

DSab

ds
= 2p[aγ̇ b]

s + Nab, (17)

where D/ds denotes the covariant path derivative associated with gab. Just as the knowledge
of Pξ is equivalent to the knowledge of pa and Sab, (15) provides a one-to-one correspondence
between dPξ /ds and Fa and Nab. The (possibly unfamiliar) term involving p[aγ̇ b]

s in the
evolution equation for the angular momentum measures the degree to which pa and γ̇ a

s fail
to be collinear. This term vanishes here if γs is chosen to coincide with the body’s center of
mass. In the relativistic context, it rarely vanishes exactly.

Now note that the evolution equation (13) for Pξ is linear in φ. It therefore makes sense
to discuss the force and torque exerted by particular components of the potential. Consider,
in particular, the effect of the self-field φS. This is defined using a symmetric Green function
GS(x, x′) = GS(x′, x) that satisfies

gab∇a∇bGS(x, x′) = −4πδ(x, x′) (18)

and vanishes when its arguments are infinitely separated. In Cartesian coordinates Xi(x), it is
explicitly

GS(x, x′) = 1

|X(x) − X(x′)| . (19)

The self-field φS is now defined by

φS(x, s) := −
∫

�s

ρ(x′, s)GS(x, x′) dV ′. (20)

It is clear from (18) that

gab∇a∇bφS = 4πρ (21)

in �s. Combining this with (6) shows that the difference field

φ̂ := φ − φS (22)

satisfies the vacuum equation

gab∇a∇bφ̂ = 0 (23)

in �s.
Inserting (20) and (22) into (13) and commuting integrals shows that

dPξ

ds
= −

∫
�s

dVρLξ φ̂ − 1

2

∫
�s

dV
∫

�s

dV ′ρρ ′Lξ GS, (24)

where ρ ′ := ρ(x′, s). This equation involves the Lie derivative Lξ GS(x, x′) of a two-point
scalar GS(x, x′). Unless otherwise noted, Lie derivatives of objects depending on multiple
points are defined in this paper to act on each of those points individually. For example,

Lξ GS(x, x′) = ξ a(x)∇aGS(x, x′) + ξ a′
(x′)∇a′GS(x, x′). (25)

9
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The integrals involving this term in (24) determine the force and torque exerted by the self-field
(i.e. the self-force and self-torque). These are very simple to evaluate. GS is invariant with
respect to all translations and rotations, so

Lξ GS = 0 (26)

for all Killing fields ξ a. All self-forces and self-torques therefore vanish. The momenta satisfy

d

ds
Pξ = −

∫
�s

dVρLξ φ̂. (27)

Instantaneously, this is the same as the equation satisfied by a test body with density ρ

immersed in the (vacuum) potential φ̂.
Elementary discussions of Newtonian gravity commonly ascribe vanishing self-forces

and self-torques to Newton’s third law. It is instructive to note that this concept is equivalent
to symmetry (26) of the Green function used to define the self-field. To see this, consider two
small volumes dV and dV ′. In Cartesian coordinates, the gravitational force exerted on matter
in dV by matter in dV ′ is reasonably interpreted to refer to

ρ(x, s)ρ(x′, s)∂iGS(x, x′) dV dV ′. (28)

Now consider only the first coordinate component of the force exerted by dV on dV ′. Adding
to this the first coordinate component of the force exerted on dV by dV ′ results in

ρ(x, s)ρ(x′, s)Lζ GS(x, x′) dV dV ′ = 0, (29)

where ζ a = ∂/∂X1 is a translational Killing vector. This argument may obviously be repeated
for any translational Killing field ζ a (i.e. for any ζ a satisfying ∇bζ

a = 0). It follows that the
force on dV due to dV ′ is equal and opposite to the force on dV ′ due to dV . Considering
translational Killing fields in (26) therefore implies the weak form of Newton’s third law. That
GS is also invariant under rotations implies the strong form of Newton’s third law: forces that
dV and dV ′ exert on each other point along the line connecting them.

Returning to the main development, (27) provides an exact expression for the force and
torque exerted on an extended mass in Newtonian gravity. It is not, however, particularly
useful in this form. It is important to take into account that in many practical scenarios, the
effective potential φ̂ (or ‘external field’ in this context) varies slowly inside �s. One might
therefore expect that φ̂ could be adequately approximated inside the body using only the first
few terms in a Taylor expansion. Integrating each term of such a series recovers standard
multipole expansions for the force and torque.

Noting from (23) that φ̂ is harmonic in �s, it must also be analytic in this region (unlike
φ, generically). The effective field may therefore be expanded in a Taylor series about, e.g.,
γs ∈ �s. While it is not guaranteed that the resulting series converges throughout �s, we
assume that it does. The Taylor expansion of φ̂ may be written in a coordinate-invariant
manner by introducing Synge’s function σ (x, x′) = σ (x′, x). This is a two-point scalar
equal to one-half of the geodesic distance between its arguments. In Cartesian coordinates
Xi(x),

σ (x, x′) = 1
2 |X(x) − X(x′)|2. (30)

Derivatives of σ (x, x′) may be used as ‘radial vectors’ between x and x′. Holding x′ fixed, one
derivative of σ (x, x′) at x produces a 1-form at x whose coordinate components are the ‘radial
vector’

σi(x, x′) = Xi(x) − Xi(x
′). (31)

10
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Here, we have used the standard notation σa := ∇aσ . Using Lξ σ (x, x′) = 0, it follows that

Lξ φ̂(x′) =
∞∑

n=0

(−1)n

n!
σa1 (γs, x′) · · · σan (γs, x′)ga1b1 (γs) · · · ganbn (γs)Lξ∇b1 · · · ∇bn φ̂(γs) (32)

for all x′ ∈ �s and for all Killing fields ξ a.
Inserting (32) into (27) and integrating term by term,

d

ds
Pξ (s) = −

∞∑
n=0

1

n!
ma1···an (s)Lξ∇a1 · · · ∇an φ̂(γs), (33)

where ma1···an is the ‘complete’ 2n-pole mass moment

ma1···an (s) := (−1)nga1b1 (γs) · · · ganbn (γs)

∫
�s

ρ(x′, s)σb1 (γs, x′) · · · σbn (γs, x′) dV ′. (34)

It is clear that ma1···an is symmetric in all of its indices. Many of its components do not, however,
enter the law of motion (33). To see this, note that for any n � 2, multiples of the (inverse)
metric symmetrized with any tensor of rank n − 2 may be added to ma1···an without affecting
dPξ /ds. This is a consequence of the fact that φ̂ satisfies the vacuum field equation (23). Using
this freedom, each ma1···an may be replaced by another tensor that is both symmetric and trace
free. For example, the complete quadrupole moment mab may be replaced by

mab → mab − 1
3 gabgcdmcd . (35)

The resulting trace-free moments are the ordinary ones found in textbooks. Equation (33) is
then equivalent to standard multipole expansions for the force and torque acting on an extended
mass in Newtonian gravity.

More explicit equations may be obtained by fixing the point γs. It is natural to do so by
choosing this to lie at the body’s center of mass. The center of mass is defined to be the point
about which the first mass moment vanishes:

ma(s) = −gab(γs)

∫
�s

ρ(x′, s)σb(γs, x′) dV ′ = 0. (36)

A unique solution to this equation is guaranteed by the assumption that the mass density can
never be negative and m �= 0. Choosing γs such that ma = 0 eliminates the dipole (n = 1)
term in (33). Differentiating (36) with respect to s and using (4) also demonstrates that

pa = mγ̇ a
s . (37)

This is the ordinary relation between linear momentum and center of mass velocity. Note,
however, that a similar equation does not remain true in the relativistic case (although it is
often an excellent approximation).

Explicit laws of motion may now be written down for the center of mass position γs,
linear momentum pa and spin Sa. Combining (12), (14), (33) and (36) shows that

dpa

ds
= −gab(γs)

(
m∇bφ̂(γs) +

∞∑
n=2

1

n!
mc1···cn (s)∇b∇c1 · · · ∇cn φ̂(γs)

)
, (38)

dSa

ds
= −εab1cgcd(γs)

∞∑
n=2

1

(n − 1)!
mb1···bn (s)∇d∇b2 · · · ∇bn φ̂(γs). (39)

Combining the first of these equations with (37) and dm/ds = 0 immediately provides a
similar expansion for the acceleration of a body’s center of mass in terms of its multipole
moments and derivatives of φ̂ evaluated at γs.

11
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In most cases of practical interest, the first few terms in (38) and (39) provide excellent
approximations to the true force and torque. If, e.g., the object of interest has a size O(d)

and is separated from other objects by a distance of O(D), successive terms in the multipole
expansions tend to differ in size by a factor of at least d/D. A more precise bound may be
obtained using standard expressions for the remainder term associated with a Taylor series of
finite order. Even better estimates can be found using Fourier transforms. See, e.g., [34].

Note that the gravitational potential φ̂ entering into the final laws of motion is not the
one that would be measured using local experiments (which is φ, or really its gradient). The
body’s momenta satisfy evolution equations that are instantaneously identical to those of an
extended test mass with moments ma1···an moving in the vacuum field φ̂ ( �= φ).

It is the intent of this paper to demonstrate a similar result for self-gravitating masses in
general relativity. This is done in two steps. First, section 2.2 considers relativistic test masses
moving in a prescribed spacetime. The laws of local mass and momentum conservation (4) and
(5) are then replaced by conservation of the body’s stress–energy tensor. No particular relation
is, however, assumed to hold between the body of interest and the spacetime metric. Once the
relevant techniques are established, Einstein’s equation is ‘turned on’ in the remainder of this
paper and self-interaction is dealt with directly.

2.2. Test masses in curved spacetimes

Consider a relativistic extended body moving in a curved four-dimensional spacetime
(M, gab). Associated with this body is a stress–energy tensor T ab = T (ab)(x). Denoting
its worldtube by W := supp T ab, spatial slices of W are assumed to be compact and to have
positive (but finite) 3-volume. As in the Newtonian case discussed above, all laws of motion
are to be derived from generic local conservation laws. In this context, equations (4) and (5)
are replaced by stress–energy conservation:

∇aT ab = 0. (40)

We assume for now that the body of interest is a test mass, meaning that it does not affect the
spacetime metric gab. There is therefore no replacement for (6) in this section.

Now consider the ‘momentum functional’

Pξ (�) :=
∫

�

gabξ
aT bc dSc, (41)

where dSc denotes the natural 3-surface element associated with gab. Pξ (�) takes as input
a hypersurface � assumed to bisect W and a vector field ξ a that is chosen later. As with
the similar functional (8) defined in the Newtonian case, Pξ (�) may be viewed as returning
the component of momentum conjugate to ξ a at a ‘time’ defined by �. This interpretation
is completely standard if ζ a is a Killing vector: equation (40) then implies that Pζ (�) is
independent of � (i.e. it is conserved).

As in the Newtonian case, linear and angular momenta pa and Sab = S[ab] may be defined
by demanding that Pξ be a linear combination of these two quantities. Specifically, it is useful
to retain (11). This relation does not, however, make sense without being more specific about
the types of vector fields ξ a that may be used in (41). In general, there is no reason to expect that
any Killing fields exist (and certainly not the 4 + 6 = 10 required to define all components of
pa and Sab). Using a relation like (11) requires that ξ a be chosen from a ten-dimensional vector
space with the property that each vector is determined throughout a hypersurface �s given the
knowledge of an arbitrary 1-form �a(γs) and an arbitrary 2-form ∇a�b = ∇[a�b](γs) at one
point γs ∈ �s. Furthermore, ξ a(x) must be linear in this ‘initial data’.

12
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Figure 1. A schematic illustration of the geometry required to define GKFs. The shaded region
denotes a portion of the body’s worldtube W . γs is a point on the timelike worldline �. na

s is a
timelike vector at γs and �s is a spacelike hypersurface formed by the union of all geodesics
orthogonal to na

s .

There are many spaces of vector fields with these properties. We now specialize to specific
definitions that recover Dixon’s expressions [2, 24, 26] for the linear and angular momentum
of an extended body. Using the terminology of [25], ξ a is assumed to be of the form4

ξ a = gab�b, (42)

where �a is a Killing-type generalized affine collineation constructed using gab. This is defined
precisely in the appendix. Following [5, 10, 11], we simplify the terminology by referring to
the �a (or ξ a) simply as GKFs with respect to gab.

Defining GKFs requires fixing not only a metric, but also a timelike worldline
� = {γs|s ∈ R} and a timelike vector field na

s ∈ TγsM along �. The worldline serves as an
origin about which we compute multipole moments of T ab. The na

s fix a family of spacelike
hypersurfaces �s that provide a time function �s 
 x �→ s inside the body’s worldtube W . At
fixed s, �s is defined to be the union of all geodesics that pass through γs and are orthogonal
to na

s at that point. These geodesics are not to be extended so far that they intersect either with
each other (except at γs) or with another hypersurface in the family. It is assumed that the body
is sufficiently small that such restricted geodesics still form hypersurfaces �s that foliate W .
See figure 1 for an illustration of the geometry. Under mild assumptions, γs and na

s can both
be specified uniquely using center of mass conditions [28] (see also (68) and (69)). For now,
however, we continue to describe the general case where they are left free.

Once gab, � and na
s have been fixed, vector fields ξ a = gab�b that may be used in Pξ

are to be chosen using the definitions in the appendix. The result is a ten-dimensional vector
space with a number of characteristics that are very similar to those of genuine Killing fields.
First among these is the ‘rigidity property’ that has already been mentioned. Given any 1-form
�a(γs) and 2-form ∇a�b = ∇[a�b](γs) at a single point γs ∈ �, a GKF �a(x) is fixed for all
x in the neighborhood W of � defined in the appendix. The �a(x) are linear in �a(γs) and
∇a�b(γs).

GKFs are also ‘approximately Killing’ near �, meaning that

∇(a�b)|� = ∇a∇(b�c)|� = 0, (43)

or equivalently,

Lξ gab|� = ∇aLξ gbc|� = 0. (44)

4 The simpler notation �a = gab�b is not used in order to avoid confusion when multiple metrics are introduced
below.
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The space of GKFs includes any genuine Killing fields associated with gab: if ζ a satisfies
Lζ gab = 0 everywhere, it is also a GKF. In maximally symmetric spacetimes, the space
of GKFs coincides with the space of genuine Killing fields. The dependence on a preferred
worldline and foliation disappears in this special case. More generally, the ξ a may be interpreted
as the generators of an ‘approximate Poincaré group’ for an observer moving on � (and with
a preferred time slicing determined by the �s).

Linear and angular momenta pa(s) and Sab = S[ab](s) may now be introduced as tensor
fields along �. Following (11), let

Pξ (�s) = pa(s)�a(γs) + 1
2 Sab(s)∇a�b(γs). (45)

As in the Newtonian case, the knowledge of Pξ for all possible ξ a is equivalent to the
knowledge of pa and Sab. Here, however, Sab is not equivalent to an angular momentum 1-form.
This second-rank tensor has six independent components in the four spacetime dimensions
considered here. Roughly speaking, there is a sense in which Sab contains information
associated with both the spin 1-form and the mass dipole moment of Newtonian physics.

It is possible to write �a(x) directly in terms of �a(γs) and ∇a�b(γs) if x ∈ �s. The
resulting expressions use Synge’s function σ (x, x′). Recall that this is a biscalar defined
to equal one-half of the geodesic distance between its arguments. To borrow terminology
from optics, it is essentially a characteristic function for the spacetime. Many properties
of σ (x, x′) are discussed in [12, 35, 36]. As is standard, we denote derivatives of σ

by appending indices: e.g. σaa′ := ∇a∇a′σ . Defining Ha′a(x, x′) := [−σaa′ (x, x′)]−1 and
Ka′

a(x, x′) := Ha′b(x, x′)σab(x, x′), all GKFs may be shown to satisfy [25]

ξ a′
(x′) = gab(γs)[K

a′
a(γs, x′)�b(γs) − Ha′c(γs, x′)σa(γs, x′)∇b�c(γs)] (46)

if x′ lies within a normal neighborhood of γs and x′ ∈ �s. This equation generalizes the
Euclidean expression (10). Inserting it into (41) and (45) provides explicit expressions for the
momenta as integrals over the body’s stress–energy tensor:

pa(s) = gab(γs)

∫
�s

ga′b′ (x′)Ka′
b(γs, x′)T b′c′

(x′) dSc′ (47)

and

Sab(s) = 2
∫

�s

ga′b′ (x′)Ha′[a(γs, x′)gb]c(γs)σc(γs, x′)T b′c′
(x′) dSc′ . (48)

These momenta coincide with standard textbook definitions in flat spacetime. In curved
spacetimes, they are the momenta identified by Dixon as being particularly useful for the
description of objects with conserved stress–energy tensors [2, 24, 26]. Formulas (47) and
(48) are included here for completeness, but are not needed in any arguments below.

As in Newtonian physics, changes in the momenta may be computed from changes in Pξ .
First note that (44) may be used to show that for any GKF �a and any γs ∈ � [25],

∇b∇a�c(γs) = Rcab
d(γs)�d(γs). (49)

A similar relation holds everywhere for genuine Killing fields [27]. Differentiating (45) while
using this identity,

d

ds
Pξ =

(
Dpa

ds
− 1

2
Rbcd

aSbcγ̇ d
s

)
�a + 1

2

(
DSab

ds
− 2p[aγ̇ b]

s

)
∇a�b. (50)

As is standard, the notation γ̇ a
s used here denotes the tangent vector to the curve � at γs.

Equation (50) provides a recipe for extracting the covariant derivatives Dpa/ds and DSab/ds
from dPξ (�s)/ds. The only difference between this equation and its Newtonian equivalent
(14) is the presence of the Riemann tensor Rbcd

a. This arises from (49).

14



Class. Quantum Grav. 29 (2012) 055012 A I Harte

Everything said thus far has involved only definitions. It is now possible to explore the
physical properties of the momenta that have just been described. In general, Pξ (�s) depends
on s. Using (40) and (41), the difference in Pξ between two times s and s′ > s is

δPξ (�s, �s′ ): = Pξ (�s′ ) − Pξ (�s)

= 1

2

∫
�(s,s′ )

T abLξ gab dV, (51)

where �(s, s′) is defined to be the portion of the body in between the two hypersurfaces
�s and �s′ . dV denotes the natural (four-dimensional) volume element associated with gab.
Equation (51) may be put into the differential form by letting dS := ta dSa, where ta is a time
evolution vector field for the foliation {�s}:

d

ds
Pξ (�s) = 1

2

∫
�s

T abLξ gab dS. (52)

Equating the right-hand side of this equation with the right-hand side of (50) provides evolution
equations for pa and Sab.

It is clear from (51) that Pξ is a conserved quantity if ξ a is Killing. If dPξ /ds = 0 for
all ξ a, one recovers the Papapetrou equations [20, 21] typically used to model a spinning test
particle. More generally, changes in Pξ measure the deviation from these equations. In this
formalism, Papapetrou terms in the laws of motion arise purely as a kinematic consequence
of (44) and (45).

The discussion up to this point has not made any strong assumptions regarding the nature
of the metric. In particular, self-fields have not been excluded. We now assume, however, that
in a Riemann normal coordinate system Xμ(x) with origin γs, the metric components gμν may
be accurately expanded throughout �s ∩W in a Taylor series about γs. In particular, introduce
four 1-forms eμ

a at γs. These are assumed to form an orthonormal tetrad, so

gab(γs)e
μ
a eν

b = ημν, ημνeμ
a eν

b = gab(γs), (53)

where ημν = ημν = diag(−1, 1, 1, 1). This tetrad allows the introduction of four Riemann
normal coordinates Xμ(x′) associated with the point x′:

Xμ(x′) := −eμ
a gab(γs)σb(γs, x′). (54)

This definition is, in part, motivated by the Euclidean expression (31). Note that Xμ(γs) = 0,
so γs is the origin of this coordinate system.

The metric in Riemann normal coordinates can be viewed as a matrix of scalars that
depend on the choice of origin γs and the coordinates Xμ(x′). This matrix is given by [10]

gμν (γs, Xμ(x′)) = ημληνρeλ
aeρ

b Ha′a(γs, x′)Hb′b(γs, x′)ga′b′ (x′). (55)

Taylor expanding these scalars5 in Xμ(x′) about Xμ = 0 leads to a general expression for the
metric that does not make any explicit reference to eμ

a . Letting Xa(γs, x′) := −gab(γs)σb(γs, x′),
the resulting series is [10]

ga′b′ (x′) = σaa′ (γs, x′)σbb′ (γs, x′)gac(γs)g
bd(γs)

×
∞∑

n=0

1

n!
X f1 (γs, x′) · · · X fn (γs, x′)gcd, f1··· fn (γs). (56)

5 In general, gμν need not be analytic at γs. We assume that a finite power series nevertheless provides an adequate
approximation throughout �s ∩ W . The Taylor expansion (56) should therefore be cut off at finite n. We write an
infinite upper limit and an exact equality sign here (and in similar equations below) for simplicity.
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The gab,c1···cn (γs) appearing in this equation are referred to either as tensor extensions of gab or
as metric normal tensors. They are derived from the coefficients appearing in the Taylor series
for gμν :

gab,c1···cn (γs) := eμ
a eν

beλ1
c1

· · · eλn
cn

∂ngμν (γs, 0)

∂Xλ1 · · · ∂Xλn
. (57)

Despite appearances, the gab,c1···cn do not depend on the choice of eμ
a . The zeroth extension

is the metric itself and the first extension vanishes. In general, it is clear that the nth metric
normal tensor is symmetric in both its first two and its last n indices. It may also be shown
that [10]

ga(b,c1···cn) = g(ab,c1···cn−1)cn = 0 (58)

for all n � 2. Keeping this restriction on n, all metric normal tensors can be written as
polynomials in the Riemann tensor. To linear order [24],

gab,c1···cn = 2

(
n − 1

n + 1

)
∇(c3···cn (R|a|c1c2 )

dgbd ) + O(R2). (59)

This equation is exact for n = 2, 3. For higher n, there are additional terms nonlinear in Rabc
d

or its derivatives.
Using certain details of the GKFs together with (56), one may derive a power series

expansion for Lξ gab [10]:

Lξ ga′b′ (x′) =
∞∑

n=2

1

n!
(· · ·)a′b′d1···dn

abc1···cn Xd1 (γs, x′) · · · Xdn (γs, x′)Lξ gab,c1···cn (γs). (60)

The omitted coefficients in this series are known explicitly in terms of σ if x′ ∈ �s, which is
the only case relevant in this section. More generally, such a series still exists, although the
coefficients are no longer known exactly. Substituting (60) into (52) now shows that

d

ds
Pξ (�s) = 1

2

∞∑
n=2

1

n!
Ic1···cnab(s)Lξ gab,c1···cn (γs). (61)

By analogy with (33), the coefficients Ic1···cnab(s) appearing here are interpreted as the 2n-pole
moments of T ab at the time s.

Without loss of generality, the symmetry properties of the metric normal tensors allow
the Ic1···cnab to be chosen such that they are separately symmetric in their first n and last two
indices. They may also be taken to satisfy

I(c1···cna)b = Ic1(c2···cnab) = 0. (62)

A unique formula linking moments with these properties to T ab may be derived using (60)
and (61) [10] (see also [24]). Like (47) and (48), the result has the form of an integral over �s

involving the stress–energy tensor and various bitensors constructed from σ . It is significantly
more complicated than the Newtonian formula (34) for ma1···an . This is partially because T ab

has two more indices than ρ. Much less obvious is that the relativistic moments are ‘reduced’
with respect to (40). They are adapted to describing conserved second-rank symmetric tensors.
Knowing all of the Ic1···cnab together with pa and Sab is equivalent to the knowledge of T ab [24].
The same statement does not remain true if T ab is replaced in all integrals by a second-rank
symmetric tensor that is not divergence-free.

The given index symmetries imply that Ic1···cnab has a total of

(n + 3)(n + 2)(n − 1) (63)

algebraically independent components. This far exceeds the number typically ascribed to the
2n-pole moment in other formalisms [37]. The reason for this is essentially that the I··· are
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‘complete’ in the sense described in the previous paragraph. If no restrictions are placed on gab,
nothing further can be said. Recall, however, that traces of ma1···an decouple from the Newtonian
equation (33) because φ̂ is a vacuum field. Similarly, certain components of I··· decouple from
(61) if gab satisfies the vacuum Einstein equation Rab = 0. This may be seen by noting that
certain traces of (59) vanish in this case. Use of (44) shows that these same traces still vanish if
Rab = �gab for any constant �. In most cases where a test body description is appropriate, the
I··· may therefore be replaced in (61) by moments with many fewer components. Additional
discussion of these points may be found in [10], although precise details of the reduction
process are not known.

Another important point to note is that the sum in (61) starts at n = 2. This corresponds to
quadrupole order. It is a consequence of (44) and (52) that the monopole and dipole moments of
T ab—essentially pa and Sab—do not directly contribute to dPξ /ds. These moments do, however,
affect Dpa/ds and DSab/ds via the Papapetrou-like terms appearing in (50). Explicitly, define
a net force Fa(s) and a net torque Nab = N[ab](s) such that

Dpa

ds
= 1

2
Rbcd

aSbcγ̇ d
s + Fa, (64)

DSab

ds
= 2p[aγ̇ b]

s + Nab. (65)

Comparison with (45) and (61) shows that

Fa(s) = 1

2
gab(γs)

∞∑
n=2

1

n!
I f1··· fncd(s)∇bgcd, f1··· fn (γs) (66)

and

Nab(s) = 2
∞∑

n=2

1

n!
Ic1···cndf (s)

[
g f h,c1···cn (γs)δ

[a
d + n

2
gdf ,hc1···cn−1 (γs)δ

[a
cn

]
gb]h(γs). (67)

The hope in writing these series is, of course, that adequate approximations may be
obtained by truncating them at some small maximum n. This can only occur if � and {�s}
are chosen appropriately (if it is possible at all for a given system). We now fix a particular
worldline and foliation that is hopefully ‘appropriate’ in this sense. This is done by imposing
center of mass conditions as described in, e.g., [2, 26, 38]. First recall that �s is constructed
using geodesics that pass through γs and are orthogonal to na

s at that point. Suppose that � and
na

s are chosen such that

pa(s) ∝ na
s , (68)

gab(γs)pa(s)Sbc(s) = 0. (69)

Under mild assumptions, the resulting � and na
s exist, are unique and are timelike [28]. The

first of these equations essentially states that the {�s} foliation is the one preferred by ‘zero-
momentum observers’. Equation (69) encapsulates the notion that a body’s center of mass
position is the point about which its mass dipole moment vanishes in the zero-momentum
frame.

Unlike in Newtonian gravity, the center of mass velocity γ̇ a
s of a relativistic mass is not

necessarily proportional to pa. Relating these two quantities is simpler if the time parameter s
is chosen such that gab(γs)pa(s)γ̇ b

s = −m(s), where the mass is defined by

m(s) := [−gab(γs)pa(s)pb(s)]1/2. (70)
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This means that in general, γ̇ a
s does not have unit norm. There is, however, no loss of generality

in assuming that gabna
s nb

s = −1. Hence,

pa = mna
s . (71)

With these conventions, differentiation of (69) may be used to show that the linear momentum
and center of mass velocity are related via [38]

mγ̇ a
s = pa − Nabgbcnc

s − Sab[mgbcFc − 1
2 Scd(pf − N f hghrnr

s)Rcdb
lg f l]

m2 + 1
4 SbcSdf Rbcd

lg f l
. (72)

This equation breaks down if m2 + 1
4 SbcSdf Rbcd

lg f l = 0, which may be interpreted as a
constraint on Sab/m. Such a restriction is implied by the conditions required for the center of
mass to exist as a unique timelike worldline.

Note that the center of mass velocity does not appear on the right-hand side of (72).
Indeed, the complexity of this equation arises mainly from the nontrivial operations required
to solve explicitly for γ̇ a

s . Displaying (72) in this way makes it evident that equations (64)–(67)
and (72) form ordinary differential equations (ODEs) for γs, pa and Sab with the form

γ̇ a
s = . . . ,

Dpa

ds
= . . . ,

DSab

ds
= . . . . (73)

The right-hand sides of these equations involve only geometric quantities, γs, pa, Sab and the
higher moments I···. It follows that if the metric is known and the quadrupole and higher
moments are prescribed functions of s, the motion is uniquely determined by specifying initial
values for γs, pa and Sab. There is, however, no physical reason that the higher moments should
be treated as given functions of s. Generically, their evolution depends on the details of the
specific system under consideration.

To summarize, Dixon’s momenta have now been described as they apply to a compact
body with a conserved stress–energy tensor. Equation (41) constructs Pξ from ξ a and T ab,
(45) links pa and Sab to Pξ , and the ξ a are built from the metric in the appendix. Taken
together, these relations define Dixon’s momenta in a very general context. Their changes
are described exactly by the integral (52) (even if the body’s presence strongly influences
the geometry). As in Newtonian gravity, integral expressions for the force and torque are not
particularly useful by themselves. Ideally, one would like to be able to constrain the motion
without detailed knowledge of the body’s stress–energy tensor. This is easily accomplished in
the formalism just described if the metric does not vary rapidly inside the body (specifically,
on a given �s ∩W ). dPξ /ds can then be expanded in the multipole series (61). This is, however,
a reasonable procedure mainly for test masses. In cases involving significant self-gravity, gab

generically varies rapidly inside the body. In such cases, it cannot be accurately approximated
using a low-order Taylor series.

Nevertheless, the remainder of this paper establishes that there is a sense in which useful
multipole expansions can be performed even in the presence of a significant self-field. This
is because forces and torques exerted by the (potentially complicated) self-field are shown
only to make an object’s momenta and higher moments appear slightly shifted from what
might have initially been expected. In this sense, the self-field may be eliminated from the
instantaneous laws of motion by appropriate (and physically reasonable) redefinitions.

Obtaining this result requires defining precisely what ‘should’ be meant by ‘linear and
angular momentum’ as well as ‘self-field’. The momenta used below reduce to the definitions
provided in this section in a test mass limit. More than this, the form (41) for Pξ (�) is retained
exactly as written. The space of vector fields from which the ξ a are to be drawn does change,
however.
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3. Mechanics of self-gravitating extended bodies in curved spacetimes

The remainder of this paper considers an extended mass with stress–energy tensor T ab moving
in a spacetime (M, gab). Its worldtube is denoted by W . A worldline � is taken as given
together with a collection of hypersurfaces {�s|s ∈ R} that foliate W . Each slice �s ∩ W
is assumed to be compact and γs := � ∩ �s (see figure 1). Both � and {�s} may be fixed
using center of mass conditions (see section 3.6), although we do not require this. Unlike in
section 2.2, Einstein’s equation

Rab − 1
2 gabR + �gab = 8πgacgbdT cd (74)

is now required to hold with the stress–energy tensor T ab at least in a neighborhood of W (i.e.
the body is assumed not to be in direct contact with any other source of stress–energy). The
presence of a cosmological constant � in Einstein’s equation does not significantly change
any arguments below, so we allow it to be nonzero. Additionally, note that T ab is automatically
conserved as an integrability condition for (74).

The ‘bare’ momentum associated with a body of the type just described is defined by
introducing a Pξ (�s) computed via (41) as a certain integral of T ab over �s. All metrics and
volume elements in that formula are those associated with the physical metric gab. This is
to be distinguished from a certain ‘effective metric’ ĝab ( �= gab) defined below. ĝab plays an
analogous role in the laws of motion to the Newtonian effective potential φ̂ introduced in
section 2.1.

It will be seen to be most natural to choose the ξ a appearing in (41) to be GKFs associated
with ĝab. In particular, let

ξ a = ĝab�b, (75)

where ĝab is the inverse of ĝab and �a is a GKF constructed as described in the appendix,
but with the gab used there replaced by ĝab. The worldline � is chosen as a set of origins for
the GKFs. This is assumed to be a timelike curve with respect to ĝab. Similarly, the �s are
assumed to be hypersurfaces formed from the set of all geodesics passing through γs ∈ � and
orthogonal to a timelike vector field na

s at that point (notions of geodesic, orthogonality and
timelike all being with respect to ĝab).

3.1. Initial considerations

It follows from (40) and (41) that dPξ (�s)/ds may be computed using (51). In most cases
of interest, the metric varies rapidly inside the body. It is therefore not useful to expand the
right-hand side of (51) in a multipole series like (61). We instead proceed as in the Newtonian
analysis of section 2.1. Define a self-field using an appropriate Green function and compute
the effect of this self-field on dPξ (�s)/ds. The self-field should be chosen such that the force
and torque exerted by it are ‘ignorable’ in an appropriate sense. Subtracting the self-field away
from gab should also leave an ‘effective metric’ ĝab that can be well-approximated by a Taylor
series in many cases of interest.

Quite generally, one might suppose that gab can be reconstructed from an effective metric
ĝab and a ‘self-field’ Hab using local algebraic operations:

gab = Gab(ĝ, H). (76)

Assuming a relation of this sort, it follows from (51) that the force and torque depend on an
integral involving

T abLξ gab = T ab
[
Aab

cd(ĝ, H)Lξ ĝcd + Babcd (ĝ, H)Lξ Hcd
]
, (77)

where Aab
cd(ĝ, H) and Babcd (ĝ, H) are determined by Gab(ĝ, H).
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The first term on the right-hand side of (77) has a simple effect on dPξ /ds. Suppose that
the ξ a are to be derived from GKFs associated with ĝab as described above. Comparison with
(51) then shows that the term involving Aab

cd in (77) contributes forces and torques identical
to those exerted on a test mass with a stress–energy tensor

T̂ ab :=
√

g/ĝT cdAcd
ab(ĝ, H) (78)

moving in a metric ĝab. Here,
√

g/ĝ denotes the proportionality factor relating the volume
elements associated with gab and ĝab:

εabcd =
√

g/ĝε̂abcd . (79)

In any coordinate system, this is equal to the square root of the ratio of the determinants det gμν

and det ĝμν . The result is, however, independent of any coordinate choice.
If Lξ ĝab can be accurately expanded in a Taylor series on a cross-section �s ∩W , the first

term on the right-hand side of (77) contributes forces and torques that may be expanded in a
multipole series like (61):

d

ds
Pξ (�s) = 1

2

∞∑
n=2

1

n!
(I′)c1···cnab(s)Lξ ĝab,c1···cn (γs) + 1

2

∫
�s

T abBabcdLξ HcddV. (80)

The ĝab,c1···cn are tensor extensions of ĝab as explained in section 2.2. The multipole moments
(I′)··· appearing here are the same as the I··· used in (61) with the replacements gab → ĝab and
T ab → T̂ ab. These shifts may be interpreted as (finitely) ‘renormalizing’ the body’s quadrupole
and higher multipole moments.

It is the goal of this paper to show that there is a sense in which all of dPξ /ds (or really
dP̂ξ /ds for an appropriate P̂ξ ) can be expanded in a multipole series. Demonstrating this
requires specializing further so that the second term in (80) may be simplified. At this point,
ĝab, Hab and Gab(ĝ, H) have not yet been specified. It would be ideal if precise definitions
could be provided such that

(i) the self-field Hab does not affect the force and torque in any ‘essential’ way. It may shift
the momenta (as is well known to occur in electromagnetism) and the higher moments,
but do nothing else. There should therefore exist some Eξ (s) and some (I′′)c1···cnab(s) such
that

1

2

∫
�s

T abBabcdLξ Hcd dV = 1

2

∞∑
n=2

1

n!
(I′′)c1···cnab(s)Lξ ĝab,c1···cn (γs) − dEξ

ds
. (81)

The Eξ (s) appearing here is to be interpreted as a ‘self-momentum’ and must depend on
properties of the system only in a finite neighborhood of �s.

(ii) ĝab satisfies the vacuum Einstein equation R̂ab = �ĝab as closely as possible in a
neighborhood of W . Following the Newtonian analysis of section 2.1, one might expect
that this implies ‘slow variation’ of the effective metric in typical systems.

Unfortunately, it is not clear how to realize both of these requirements exactly. We choose
to implement the first precisely as stated. The second is weakened to demanding that
ĝab approximately satisfy the vacuum Einstein equation linearized about an exact vacuum
background ḡab if gab is sufficiently close ḡab (although the definition of ĝab is non-perturbative
and does not require a choice of background or that gab be ‘close’ to a vacuum solution in any
sense).
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3.2. Defining a self-field

Taking cues from perturbation theory in Lorenz gauge (see, e.g., [12]), choose the Gab(ĝ, H)

appearing in (76) by supposing that gab is equal to ‘a background’ ĝab plus a trace-reversed
perturbation Hab:

gab = ĝab + (
ĝacĝbd − 1

2 ĝabĝcd
)
Hcd . (82)

Further suppose that the self-field Hab is related to the body’s stress–energy tensor via

Hab = 4
∫

W
Ĝaba′b′

S ĝa′c′ ĝb′d′T c′d′
dV ′, (83)

where Ĝaba′b′
S (x, x′) = Ĝ(ab)a′b′

S = Ĝab(a′b′)
S is an appropriately chosen Green function associated

with metric perturbations about ĝab.
Again using Lorenz-gauge perturbation theory as a guide, let Ĝaba′b′

S satisfy

�̂Ĝaba′b′
S + 2

[
ĝc(aR̂dc f

b) − 1
4 ĝab(R̂df − �ĝdf )

]
Ĝdf a′b′

S = −4π ĝa′c′
ĝb′d′

ĝ(a
c′ ĝb)

d′ δ̂(x, x′). (84)

Here, �̂ := ĝcd∇̂c∇̂d and ĝa
a′ (x, x′) may be any two-point tensor that reduces to a Kronecker-δ

in the limit that its arguments coincide. For definiteness, we take ĝa
a′ to be the parallel-

propagator associated with ĝab. Given any vector va′
at x′, ga

a′ (x, x′)va′
returns a vector at x

that is equal to va′
parallel-transported to x using ĝab (along the ĝ-geodesic connecting x and

x′). If dV̂ is used to denote the volume element associated with ĝab, the Dirac distribution
δ̂(x, x′) satisfies∫

M
δ̂(x, x′) f (x′) dV̂ ′ = f (x) (85)

for any test function f (x) and any x ∈ M. It follows from (83) and (84) that Hab satisfies the
hyperbolic differential equation

�̂Hab + 2
[
ĝc(aR̂dc f

b) − 1
4 ĝab(R̂df − �ĝdf )

]
Hdf = −16π

√
g/ĝT ab. (86)

If desired, (82) may be used to obtain a similar equation for gab as well (written in terms of
geometric objects associated with ĝab).

Note that equation (84) does not define Ĝaba′b′
S completely. There are many solutions to

that equation (for a fixed ĝab). A particular solution may be fixed by making the following
choices [12].

(i) Like the GS used to define the Newtonian self-field in section 2.1, demand that the
gravitational Green function be symmetric in its arguments:

Ĝaba′b′
S (x, x′) = Ĝa′b′ab

S (x′, x). (87)

This is essential for most of the self-force to vanish due to cancellations that can be
interpreted as a manifestation of Newton’s third law (as far as it can be said to hold in this
context).

(ii) Also demand that Ĝaba′b′
S (x, x′) vanish if its arguments are timelike-separated with respect

to ĝab. This ensures that the self-field Hab defined by (83) does not depend on the
knowledge of the body in the distant past or future.

Enforcing both of these requirements fixes the Green function completely for a given ĝab. The
result is (at least if R̂ab = � = 0) commonly referred to as the S-type Detweiler–Whiting
gravitational Green function associated with the metric ĝab [9, 12].
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If x and x′ are sufficiently close, it is known that Ĝaba′b′
S (x, x′) has the Hadamard

form6 [12]

Ĝaba′b′
S = 1

2 [ĝacĝbdĝ(a′
cĝb′)

d�̂
1/2δ(σ̂ ) − V̂ aba′b′

�(σ̂ )]. (88)

Here, δ and � are the Dirac and Heaviside distributions, respectively. σ̂ (x, x′) = σ̂ (x′, x) is
Synge’s function computed using ĝab, �̂(x, x′) = �̂(x′, x) is the van Vleck determinant, and
ĝa′

a the parallel propagator. �̂ is defined to be the unique biscalar satisfying

ĝabσ̂a∇̂b ln �̂ = 4 − ĝabσ̂ab (89)

and �̂(x, x) = 1. This equation can be viewed as an ODE along the ĝ-geodesic connecting x
and x′. In coordinates, the solution is

�̂(x, x′) = −det(∇̂μ∇̂μ′ σ̂ )√
−ĝ

√
−ĝ′ . (90)

The tail V̂ aba′b′
(x, x′) = V̂ a′b′ab(x′, x) appearing in (88) is a certain homogeneous solution

of (84):

�̂V̂ aba′b′ + 2
[
ĝc(aR̂dc f

b) − 1
4 ĝab(R̂df − �ĝdf )

]
V̂ df a′b′ = 0. (91)

The appropriate boundary conditions are found by integrating the ODE

ĝcd σ̂c∇̂dV̂ aba′b′ + 1
2 (ĝcd σ̂cd − 2)V̂ aba′b′ = 1

2 ĝcd∇̂c∇̂d(ĝa f ĝbhĝ(a′
f ĝ

b′)
h�̂

1/2)

+ [
ĝc(aR̂dc f

b) − 1
4 ĝab(R̂df − �ĝdf )

]
ĝdhĝf l ĝ(a′

hĝb′)
l�̂

1/2 (92)

along all ĝ-null geodesics emanating from x′. V̂ aba′b′
may therefore be found by solving a

characteristic initial value problem.
A Green function satisfying all of the given equations is uniquely determined if its

arguments are not too widely separated (there should, in particular, exist exactly one geodesic
connecting those arguments). It is important to note that the trace of Ĝaba′b′

S (x, x′) is always
proportional to the metric. Contracting (84) with ĝab,

�̂
(
ĝabĜaba′b′

S

) + 2�
(
ĝabĜaba′b′

S

) = −4π ĝa′b′
δ̂(x, x′). (93)

It follows from this together with the imposition of appropriate boundary conditions that

ĝabĜaba′b′
S = ĝa′b′

ĜS, (94)

where ĜS(x, x′) is the S-type Detweiler–Whiting Green function associated with a massive,
minimally coupled linear scalar field. ĜS satisfies

�̂ĜS + 2�ĜS = −4πδ̂(x, x′) (95)

and is symmetric: ĜS(x, x′) = ĜS(x′, x). This Green function also vanishes when its arguments
are timelike-separated with respect to ĝab. Explicitly,

ĜS = 1
2 [�̂1/2δ(σ̂ ) − V̂�(σ̂ )], (96)

where

V̂ = 1
4 ĝabĝa′b′V̂ aba′b′

. (97)

Given a physical metric gab and a body with the stress–energy tensor T ab, the effective
metric ĝab is taken to be a solution of the simultaneous equations (82), (83), (88), (91) and
(92). This definition is highly implicit, and it is not clear that any solution exists (or that it is

6 Reference [12] only derives this result in the cases where R̂ab = � = 0. The derivation is easily extended to the
case considered here with no change in the conclusion.
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unique). Despite this, we assume that a unique solution of the given system does exist and that
it has the same signature as gab.

One practical method for computing the effective metric is via iteration. As a first guess,
suppose that ĝab ≈ ĝ(0)

ab for some metric ĝ(0)

ab . Substituting this zeroth-order solution for ĝab

into (82) and (83) produces the first-order approximation

ĝ(1)

ab := gab − (
ĝ(0)

ac ĝ(0)

bd − 1
2 ĝ(0)

ab ĝ(0)

cd

)
H (0)cd, (98)

where

H (0)ab := 4
∫

W
Ĝ(0)aba′b′

S ĝ(0)
a′c′ ĝ

(0)

b′d′T c′d′
dV ′. (99)

ĝ(1)

ab may, in turn, be substituted back into (82) and (83) to find a second-order approximation
for ĝab. This process can be repeated as often as required. It is not clear that such a procedure
converges uniquely for reasonable choices of ĝ(0)

ab , although we assume that it does.
The definition of the effective metric provided here was chosen essentially as the simplest

non-perturbative generalization of the Detweiler–Whiting decomposition [9, 12] typically
presented for solutions of the linearized Einstein equation. It follows that ĝab has particularly
nice properties in the linearized regime. Temporarily suppose that gab is an approximate
solution to Einstein’s equation linearized about a background metric ḡab satisfying the vacuum
equation R̄ab = �ḡab. Define a trace-reversed metric perturbation Hab = H(ab) such that

gab = ḡab + (
ḡacḡbd − 1

2 ḡabḡcd
)
Hcd . (100)

If Hab is sufficiently small7 and gab is an exact solution to Einstein’s equation with the stress–
energy tensor T ab,

�̄Hab + 2ḡc(aR̄dc f
b)Hdf + (ḡab∇̄d − 2δ

(a
d ḡb) f ∇̄ f )∇̄cHcd = −16πT ab + O(H2). (101)

One may now solve for ĝab using the iterative method described above. It is natural in this
case to use ḡab as a zeroth-order guess for the effective metric: ĝ(0)

ab = ḡab. Combining (98)
and (100) then shows that the first-order approximation for ĝab is given by

ĝ(1)

ab = ḡab + (
ḡacḡbd − 1

2 ḡabḡcd
)
Hcd

R , (102)

where Hab
R := Hab − H (0)ab. Combining the first-order analog of (86) with (101),

�̄Hab
R + 2ḡc(aR̄dc f

b)Hdf
R + (ḡab∇̄d − 2δ

(a
d ḡb) f ∇̄ f )∇̄cHcd

R = O(H2). (103)

Comparing (102) and (103) with (100) and (101) shows that ĝ(1)

ab is approximately a solution
to the vacuum Einstein equation linearized about ḡab. It is also expected in this linearized
regime that ĝ(1)

ab is an excellent approximation to ĝab. It follows that the effective metric itself
is very nearly a vacuum solution if gab is approximately a solution to Einstein’s equation
linearized about a vacuum background. Note that although the definition of the self-field
was inspired by expressions for metric perturbations in the Lorenz gauge, no such gauge
choice is required for this conclusion. Equation (103) is the linearized Einstein equation for
trace-reversed metric perturbations in any gauge. Furthermore, the equations defining ĝab are
completely non-perturbative. They do not depend on any choice of background.

7 Technically, one should consider a smooth one-parameter family of metrics gab(x; λ) and the associated
perturbations Hab(x; λ). For fixed λ, gab(x; λ) is a solution to Einstein’s equation with stress–energy tensor T ab(x; λ).
If gab(x; 0) = ḡab(x), it is clear that Hab(x; 0) = T ab(x; 0) = 0. An exact solution of (101) (omitting the O(H2)

term) is really a solution for ∂Hab(x; 0)/∂λ. Similarly, the T ab appearing in that equation should be ∂T ab(x; 0)/∂λ.
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Figure 2. An illustration of the spacetime regions used in (104) and (106). The shaded volume
denotes the portion of the worldtube where information is required in order to compute Eξ (�s)

and Eξ (�s′ ).

3.3. Force and torque

Consider, once again, the momentum functional Pξ (�s) associated with an extended mass. The
(exact) difference between a component of momentum at time s versus the same component
at time s′ > s is given by (51). Using this together with (82) and (83) shows that

Pξ (�s′ ) − Pξ (�s) = 1

2

∫
�(s,s′ )

T ab(x)Lξ ĝab(x) dV +
∫

�(s,s′ )
dV

∫
W

dV ′Fξ (x, x′), (104)

where

Fξ (x, x′) := 2T abT a′b′L(x)
ξ

[(
ĝacĝbd − 1

2 ĝabĝcd
)
ĝa′c′ ĝb′d′Ĝcdc′d′

S

]
. (105)

�(s, s′) ⊂ W represents the portion of the body lying between the hypersurfaces �s and �s′

(see figure 2), while L(x)
ξ denotes a ‘partial Lie derivative’ that varies x but not x′. As discussed

in section 3.1, the first term on the right-hand side of (104) contributes forces and torques that
are easily understood if ĝab varies slowly inside the body. The second term in this equation is
more complicated to understand and may be interpreted as the effect of self-interaction.

Fξ (x, x′) essentially represents the force exerted on matter at x by matter at x′. For any
such biscalar (even if (105) does not hold), note that∫

�

dV
∫

W
dVFξ (x, x′) = 1

2

∫
�

dV
∫

W
dV ′ [Fξ (x, x′) + Fξ (x

′, x)]

+1

2

∫
�

dV
∫

W\�
dV ′ [Fξ (x, x′) − Fξ (x

′, x)], (106)

if all integrals can be commuted (see figure 2). The first line of this equation may be physically
interpreted as averaging the force on matter at x due to matter at x′ and vice versa. In this
sense, it measures the failure of Newton’s third law as discussed in section 2.1. Using (87),
(94) and (105),

1
2 [Fξ (x, x′) + Fξ (x

′, x)] = T abT a′b′Lξ (ĝacĝbdĝa′c′ ĝb′d′Ĝcdc′d′
S − 1

2 ĝabĝa′b′ĜS). (107)

The Lie derivative appearing here is the ordinary one acting on both x and x′. If ξ a is an exact
Killing vector associated with ĝab, equation (107) vanishes exactly. In many other cases of
interest, it is very small.

The second line of (106) effectively renormalizes Pξ . To see this, first note that

1

2

∫
�(s,s′ )

dV
∫

W\�(s,s′ )
dV ′ [Fξ (x, x′) − Fξ (x

′, x)] = Eξ (�s) − Eξ (�s′ ), (108)
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where

Eξ (�s) := 1

2

∫
�+

s

dV
∫

�−
s

dV ′ [Fξ (x, x′) − Fξ (x
′, x)]. (109)

The (four-dimensional) portion of W in the future of �s is denoted by �+
s in this equation,

while the portion in its past is denoted by �−
s . An explicit formula for Eξ is easily obtained by

combining (105) and (109). Using the notation

ĥab[R] := 4

(
ĝacĝbd − 1

2
ĝabĝcd

) ∫
R

ĝa′c′ ĝb′d′T c′d′
Ĝcda′b′

S dV ′ (110)

for any spacetime volume R,

Eξ (�s) = 1

4

(∫
�+

s

T abLξ ĥab[�−
s ] dV −

∫
�−

s

T abLξ ĥab[�+
s ] dV

)
. (111)

Despite appearances, this depends on the behavior of the body only in a finite four-dimensional
region around �s ∩ W . Recalling that Ĝaba′b′

S (x, x′) = 0 when x and x′ are timelike-separated
with respect to ĝab, portions of W that are timelike-separated from all of �s ∩ W do not
contribute to (111). In simple cases, Eξ (�s) depends on the body’s state for times of order its
diameter into the past and future. This is the shaded region in figure 2. Eξ is interpreted as a
‘self-momentum’ conjugate to ξ a. Further discussion may be found in section 3.5.

An exact equation may now be written for the force and torque acting on an extended
body with a conserved stress–energy tensor. Substituting (106)–(108) into (104) and taking
the limit s′ → s shows that
d

ds
P̂ξ (�s) = 1

2

∫
�s

dS T ab

[
Lξ ĝab + 2

∫
W

dV ′ T a′b′

×Lξ

(
ĝacĝbdĝa′c′ ĝb′d′Ĝcdc′d′

S − 1

2
ĝabĝa′b′ĜS

)]
, (112)

where

P̂ξ (�s) := Pξ (�s) + Eξ (�s). (113)

Equation (112) is analogous to the Newtonian expression (24) with two differences. First, the
left-hand side involves a time derivative of Pξ + Eξ rather than of Pξ by itself. The presence of
an additional term here is interpreted as being due to the inertia of the body’s self-field. That
a massive object must carry a field with it as it moves affects the momentum that naturally
appears in its laws of motion. The other difference between the present case and the Newtonian
one is that the Lie derivative of the Green function appearing in (112) does not necessarily
vanish. As explained in section 2.1, that term may be viewed as measuring the violation of
Newton’s third law.

As a whole, the component of ‘effective’ force or torque dP̂ξ (�s)/ds associated with a
particular vector field ξ a measures the degree to which ĝab is preserved by transformations in
the direction ξ a. To see this, note that Ĝaba′b′

S is constructed in a purely geometric manner from
ĝab. This means that Lξ Ĝaba′b′

S is a (nonlocal) linear functional in Lξ ĝab. It therefore follows
from (112) that dP̂ξ (�s)/ds depends on ξ a only via terms linear in Lξ ĝab. This dependence
is confined to a finite neighborhood of �s ∩ W sufficiently large to allow the computation of
Ĝaba′b′

S (x, x′) for all null or spacelike-separated pairs (x, x′) with x ∈ �s ∩ W and x′ ∈ W .
In general, (112) may be viewed as providing a recipe for computing dP̂ξ /ds =

d(Pξ + Eξ )/ds in terms of Lξ ĝab. The earlier equation (51) expresses dPξ /ds in terms of
Lξ gab. These relations are mathematically equivalent. No aspect of Einstein’s equation is
required to transform one into the other. No properties of the ξ a are required either. All that is
needed is the decomposition of gab into ĝab and Hab described in section 3.2.
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The value of (112) over (51) lies in the physical expectation that Lξ ĝab is ‘better-behaved’
than Lξ gab. This expectation derives from the detailed definition of ĝab and does depend on
Einstein’s equation. As shown at the end of section 3.2, ĝab is an approximate solution to
the vacuum Einstein equation at least if gab is sufficiently close to a vacuum metric. One
might therefore expect that in this regime, most of the details of a body’s internal structure
necessarily present in gab do not appear in ĝab. A finite power series expansion for Lξ ĝab is
therefore likely to be more accurate than the one for Lξ gab (given reasonable choices of ξ a). A
finite multipole expansion of the integral in (112) is then more useful than a similar expansion
of (51).

The construction presented here is by no means claimed to be the only reasonable one.
There is considerable freedom to change the definition of ĝab without spoiling any of the
properties just described. One can, for example, produce definitions where the equivalent of
(112) includes a three-point interaction term involving Lξ

[
Ĝaba′b′

S (x, x′)Ĝc′d′a′′b′′
S (x′, x′′)

]
. An

appropriate modification of this sort could be extremely valuable. It might, for example, be
possible to define an effective field g̃ab that is an exact solution to the vacuum Einstein equation
(unlike ĝab) and such that an appropriate dP̃ξ /ds depends only on Lξ g̃ab. Whether or not this is
possible to accomplish in a physically reasonably way is a question that must be left for later
work.

The definitions presented in this paper are ‘minimal’ in that they are essentially the
simplest non-perturbative generalization of the decomposition used in the Detweiler–Whiting
axiom for the motion of point masses [9, 12]. They also produce equations that closely match
those that are already known for non-gravitating objects with electric or scalar charge [5, 11].
It is, unfortunately, untrue that ĝab is an exact solution to the vacuum Einstein equation. This
does not mean that the definitions used here necessarily fail to be useful for systems where
the nonlinearity of Einstein’s equation cannot be ignored. The interior of, e.g., an isolated
star with constant density has a metric that is (as expected) quite simple in Fermi normal
coordinates based at the center of the star [39]. Even for a very compact star of this type, the
metric components are accurately approximated by low-order power series. It appears very
likely that a similar result holds inside similarly simple stars in, e.g., binary systems (before
tidal disruption). These comments apply to the full physical metric gab. The effective metric
ĝab is likely to have an even simpler behavior than gab. Precise details regarding the properties
of the definitions presented here are left for future work.

3.4. Multipole expansions

Given T ab and ĝab, (112) provides a generic (and exact) prescription for the force and torque
acting on an extended body. If there exists an exact Killing vector ζ̂ a associated with the
effective metric ĝab,

L
ζ̂
ĝab = L

ζ̂
Ĝaba′b′

S = L
ζ̂
ĜS = 0. (114)

The effective momentum P̂
ζ̂

associated with ζ̂ a is therefore conserved. This is analogous to
the result that the bare momentum Pζ conjugate to ζ a is conserved if Lζ gab = 0.

Generically, there are no Killing fields associated with gab or ĝab. The integral appearing in
(112) is then rather unwieldy to evaluate directly. It would be significantly simpler if Lξ ĝab(x)

could be expanded in a Taylor series about γs that provides a good approximation for all x in
a sufficiently large (but finite) ball enclosing �s ∩ W . That such an expansion simplifies the
first term on the right-hand side of (112) is clear from the discussion in section 2.2. That it
also simplifies the second term follows from the aforementioned fact that Lξ Ĝaba′b′

S is a linear
functional in Lξ ĝab.
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We now assume that the effective metric can be accurately expanded about γs in a Taylor
series in a Riemann normal coordinate system with the origin γs (where the coordinate system
is constructed using ĝab). This means that, by analogy with (56),

ĝa′b′ = σ̂aa′ σ̂bb′ ĝacĝbd
∞∑

n=0

1

n!
X̂ f1 · · · X̂ fn ĝcd, f1··· fn , (115)

where X̂a := −ĝabσ̂b and the ĝab,c1···cn denote tensor extensions of ĝab (see section 2.2).
Although the sum here is written as an infinite one, there is no guarantee that the series will
converge. We instead assume that the right-hand side is an asymptotic series for the left-hand
side. There then exists a certain n beyond which the series should be truncated in order to
obtain an optimal approximation. Despite this, we continue to display infinite upper limits and
exact equality signs for simplicity.

Recall that the ξ a are taken to be GKFs with respect to ĝab. The origins used to construct
these fields lie on the worldline �. Using this and (115), it is possible to establish the ‘hatted
analog’ of (60):

Lξ ĝa′b′ (x′) =
∞∑

n=2

(· · ·)a′b′d1···dn
abc1···cn X̂d1 · · · X̂dnLξ ĝab,c1···cn (γs). (116)

The omitted coefficients in this equation are complicated but calculable. Details of their
properties are discussed in [10]. That the sum cannot include contributions from n = 0, 1
follows from ĝab,c = 0 and

Lξ ĝab|� = ∇̂aLξ ĝbc|� = 0. (117)

Substituting (116) into (112) and integrating term by term shows that there exist tensors
Îc1···cnab(s) such that

d

ds
P̂ξ (�s) = 1

2

∞∑
n=2

1

n!
Îc1···cnab(s)Lξ ĝab,c1···cn (γs). (118)

Note that this is identical to the test mass expression (61) for dPξ /ds with the replacements

gab → ĝab, Pξ → P̂ξ , Ic1···cnab → Îc1···cnab. (119)

This means that if the series expansion (115) for ĝab is valid, the momenta P̂ξ associated with
a self-gravitating compact body behave as though they were the momenta of a test mass with
multipole moments Îc1···cnab moving in a metric ĝab. All direct effects of the self-field Hab have
been absorbed into the definitions of P̂ξ and Îc1···cnab. This is made more explicit in section 3.6,
where laws of motion are obtained for effective linear and angular momenta p̂a and Ŝab. The
arguments are essentially identical to the ones given in section 2.2 for extended test masses.

Note that the multipole series (118) is useful only if an adequate approximation is obtained
by truncating it at some small finite n. Roughly speaking, this occurs if all significant length
scales associated with ĝab are much larger than the body’s diameter. This is likely to be the case
if gab is very nearly a solution to Einstein’s equation linearized about a vacuum background.
ĝab is then very nearly a solution to the linearized vacuum Einstein equation. More generally,
it is not clear how useful the multipole expansion may be.

3.5. Effective multipole moments

Before continuing to describe the motion of an extended body, we first note some properties
of the renormalized multipole moments appearing (118). The effective monopole and dipole
moments are contained in P̂ξ . They differ from the bare moments contained in Pξ by the
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Eξ defined in (111). Explicit formulas for the quadrupole and higher effective moments
Î··· appearing in (118) are not derived here. They may, however, be determined (at least
approximately) using the techniques developed in [10]. This requires comparing (112) and
(118), and is not difficult conceptually. It does, however, require a great deal of tedious
calculation.

Regardless of any detailed relations between the moments and T ab, it is clear from (118)
and the discussion of metric normal tensors in section 2.2 that the effective moments have the
same index symmetries as their bare counterparts I···. This means that Îc1···cnab is separately
symmetric in its first n and last two indices. It also satisfies (62) with the substitution I··· → Î···.
Note as well that in the regime where ĝab is approximately a vacuum solution to Einstein’s
equation, certain traces of the multipole moments decouple from the laws of motion as
discussed in section 2.2 and in [10].

The physical meaning of the self-momentum Eξ can be made considerably more
transparent by specializing to the case of a stationary system that is a solution to Einstein’s
equation linearized off of a Minkowski metric ḡab. Assume that T ab is invariant under the action
of a particular time-translation vector field τ a := ∂/∂X0, where X0 is a globally inertial time
coordinate for ḡab. The ξ a (constructed using ĝab) are then approximately equal to Minkowski
Killing fields ξ̄ a. Consider, in particular, the Killing fields independent of X0 (i.e. exclude
boosts). Then,

Eξ (�s) = −1

4

∫
�s

T abĥab[W ]ξ̄ c dS̄c (120)

to lowest nontrivial order in the metric perturbation.
Now specialize further so that only the significant component of T ab is proportional to

(∂/∂X0) ⊗ (∂/∂X0). Also take �s to be a hypersurface of constant X0 that is unbounded in
every direction. Suppose as well that the only the significant metric perturbation is determined
by Hab (so there is no ‘external field’). This means that Hab ≈ Hab ≈ H (0)ab in (100). The
effective ‘energy’ is therefore given by

−P̂τ =
∫

T 00

(
1 + 1

8
H00

)
d3X (121)

to second order in the metric perturbation. This is equivalent to

−P̂τ =
∫

[(−g)T 00 + t00]d3X (122)

in the given approximation, where tab is the Landau–Lifshitz tensor in the background ḡab:

16πtab := ḡcd ḡf h∇̄ f H
ac∇̄hHbd + 1

2 ḡcd ḡab∇̄ f H
ch∇̄hHdf

− 2ḡcd ḡf (a∇̄hHb)c∇̄ f H
dh + 1

2

(
ḡacḡbd − 1

2 ḡabḡcd
)

× (
ḡ f pḡhq − 1

2 ḡ f hḡpq
)∇̄cH f h∇̄dH pq. (123)

Equation (122) is the usual expression for the energy used in post–Newtonian theory.

3.6. Center of mass motion

At this point, effective linear and angular momenta p̂a(s) and Ŝab = Ŝ[ab](s) may be introduced
as tensor fields on the worldline � used to define the GKFs. By analogy with the test mass
equation (45), suppose that

P̂ξ (�s) = p̂a(s)�a(γs) + 1
2 Ŝab(s)∇̂a�b(γs) (124)

for all GKFs �a(x) defined using the metric ĝab, the worldline � and the vector field na
s . The

ξ a appearing on the left-hand side of this equation is related to �a via (75). Furthermore, (49)
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holds with the replacements ∇a → ∇̂a and Rabc
d → R̂abc

d . Equation (124) therefore implies
that

d

ds
P̂ξ =

(
D̂p̂a

ds
− 1

2
R̂bcd

aŜbcγ̇ d
s

)
�a + 1

2

(
D̂Ŝab

ds
− 2p̂[aγ̇ b]

s

)
∇̂a�b. (125)

This is directly analogous to the test mass relation (50). Combining it with (118) yields
multipole expansions for D̂p̂a/ds and D̂Ŝab/ds identical to (64)–(67) after the replacements

pa → p̂a, Sab → Ŝab, Ic1···cnab → Îc1···cnab

gab → ĝab, Rabc
d → R̂abc

d, gab,c1···cn → ĝab,c1···cn (126)

∇a → ∇̂a, D/ds → D̂/ds, Fa → F̂a, Nab → N̂ab.

We refer to the resulting equations as the ‘hatted forms’ of their counterparts in the theory of
extended test bodies.

The worldline and foliation used to construct the GKFs may now be fixed by choosing
them such that

p̂a(s) ∝ na
s , (127)

ĝab(γs) p̂a(s)Ŝbc(s) = 0. (128)

These are obvious generalizations of the center of mass conditions (68) and (69). Unlike in
that case, however, there exists no proof that (127) and (128) have well-behaved solutions. We
assume, however, that they do.

As in section 2.2, it is useful to choose the parameter s such that ĝab p̂aγ̇ b
s = −m̂, where

the effective mass is defined by

m̂ := [−ĝab p̂a p̂b]1/2. (129)

We also set ĝabna
s nb

s = −1, so p̂a = m̂na
s . The center of mass velocity is then given by (72)

with the replacements (126) and m → m̂. Together, the hatted versions of (64)–(67) and (72)
strongly constrain the evolution of the body’s linear and angular momenta as well as its center
of mass. They do not determine it completely. As in the test body case, the evolution of the
quadrupole and higher moments must be specified using other methods. Additionally, the
effective metric ĝab couples to the motion in a nontrivial way. This is the main complication
in practical computations involving the gravitational self-force.

It can be useful to define a spin 1-form Ŝa via

Ŝa := − 1
2 ε̂abcdnb

s Ŝcd . (130)

The center of mass condition (128) guarantees that all information contained in Ŝab is also
contained in Ŝa. This means that (130) is invertible:

Ŝab = ε̂abcdĝc f n
f
s Ŝd . (131)

Note that p̂aŜa = 0. The hatted form of (65) implies that

D̂Ŝa

ds
= nb

s

(
m̂−1ĝabŜc

D̂p̂c

ds
− 1

2
ε̂abcdN̂cd

)
. (132)

The D̂ p̂c/ds appearing on the right-hand side of this equation may be eliminated using the
hatted form of (64). By not doing so, one may interpret the first term in (132) as being
responsible for a kind of Thomas precession. It arises from the requirement that p̂a and Ŝa

remain orthogonal.
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There is nothing that prevents the effective mass m̂ from varying. It immediately follows
from definition (129) that

dm̂

ds
= −ĝabna

s

D̂p̂b

ds
. (133)

Substituting the hatted form of (64) into this equation and simplifying with the hatted form of
(72) leads to a (large) equation that does not explicitly involve γ̇ a

s . Another useful form is [26]

dm̂

ds
= ĝab

(
−γ̇ a

s F̂b + m̂−1na
s N̂bcĝcd

D̂ p̂d

ds

)
, (134)

which follows from (128) as well as the hatted versions of (64) and (65). Additional
manipulations to the right-hand side of this equation may be used to bring it into a form
involving total s-derivatives and ‘induction terms’ that depend on derivatives of the moments
in a certain non-rotating reference frame [2, 26]. Regardless, multipole expansions for F̂a and
N̂ab start at quadrupole order. Multipole expansions for dm̂/ds therefore start at quadrupole
order as well.

4. Motion of a small mass: monopole and dipole approximations

As a simple application of the laws of motion just derived, consider the motion of a small
body around a much larger one. It is possible to adopt precise approximation schemes
for such problems and proceed rigorously (see, e.g., [18, 19]). We instead present what is
essentially a plausibility argument. This is straightforward to improve, although the details are
not particularly interesting.

First consider truncating all expressions for the motion at dipole order. This corresponds
to ignoring the quadrupole and higher moments Î···. Roughly speaking, this is a good
approximation if all significant length scales associated with ĝab are sufficiently large compared
with the body’s own size. If ĝab is nearly a vacuum metric (as occurs in the regime of linearized
gravity described in section 3.2) there is also a sense in which ignoring the higher moments
corresponds to assuming that the body of interest is nearly spherical. Regardless of the precise
reason for ignoring the higher moments, it follows from (118) that all of the P̂ξ remain constant
in this case. Applying (125) and the hatted forms of (64) and (65) implies that the force and
torque vanish: F̂a = N̂ab = 0. Combining this result with (134) immediately shows that the
effective mass m̂ remains fixed in this approximation. Furthermore, the linear and angular
momenta evolve via the Papapetrou equations in the effective metric:

D̂p̂a

ds
= 1

2
R̂bcd

aŜbcγ̇ d
s , (135)

D̂Ŝab

ds
= 2p̂[aγ̇ b]

s . (136)

Using the hatted form of (72), the center of mass velocity γ̇ a
s is seen to be related to pa via

m̂γ̇ a
s = p̂a + 1

2

(
ŜabŜcd pf R̂cdb

l ĝ f l

m̂2 + 1
4 ŜbcŜdf R̂bcd

l ĝ f l

)
. (137)

Equations (135)–(137) form a coupled set of ODEs for p̂a, Ŝab and γs. Alternatively, one may
replace the evolution equation for Ŝab with the one for Ŝa using (130) and (132).

The laws of motion simplify considerably if the spin can be neglected. Note that Ŝab = 0
is one solution to (136) and (137). It is therefore consistent to consider non-spinning bodies in
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the monopole–dipole approximation adopted in this section. Using (135) and (137), the center
of mass of such a body moves on a geodesic of the effective metric:

D̂γ̇ a
s

ds
= 0. (138)

The accuracy of this equation may be estimated by evaluating, e.g., the contribution of
quadrupole terms to the force and torque using the equations described above. As explained
in section 3.2, ĝab is very nearly a vacuum solution to Einstein’s equation if gab is itself
well approximated by a solution to Einsteins equation (with the stress–energy tensor T ab)
linearized about an exact vacuum solution. In this context, it appears reasonable that all scales
associated with ĝab are sufficiently large compared with those of T ab in, e.g., fairly generic
binary systems. Neglect of the higher moments is then relatively straightforward to justify. It
is less clear what occurs in the highly nonlinear regime. It is likely that (138) remains a good
approximation in many cases, although it may break down for strongly self-gravitating objects
with large inhomogeneities.

Equation (138) assumes that the body’s spin vanishes. If Ŝab/m̂ is nonzero but still small
compared to length scales associated with ĝab, equations (135)–(137) may be simplified by
linearizing in the spin. It then remains true that p̂a = m̂γ̇ a

s . Using (135) and (132), Ŝa is found
to be parallel-propagated along � with respect to ĝab:

D̂Ŝa

ds
= 0. (139)

Substituting (131) into (135) shows that the center of mass velocity satisfies

m̂
D̂γ̇ a

s

ds
= 1

2

(
R̂bcl

aε̂bcdf ĝdhγ̇
h
s γ̇ l

s

)
Ŝ f (140)

in this case. It is unclear how consistent (139) and (140) are over long times. They do not
preserve the constraint p̂aŜa = 0, which means that the spin 1-form Ŝa fails to remain equivalent
to the spin tensor Ŝab. Alternatively, Ŝab may be evolved instead of Ŝa using dŜab/ds = 0.
Coupling this with (140) eventually leads to violations in the center of mass condition (128).
Such complications do not arise if equations (135)–(137) are retained in full.

The laws of motion just derived do not explicitly make any assumptions regarding the
strength of a body’s self-gravity (although they are more likely to be accurate when the
nonlinearity of Einstein’s equation can be neglected). They do not require any choice of
background or gauge. More explicit expressions can be obtained by choosing a vacuum
background ḡab and a gauge as well as assuming that ĝab is ‘close’ to ḡab.

In this context, it is common to compute a body’s acceleration with respect to ḡab rather
than ĝab. This requires writing the derivative operator D̂/ds appearing in (139) and (140) in
terms of D̄/ds. For any vector va(s) or covector ωa(s), the appropriate transformations are

D̂va

ds
= D̄va

ds
+ Ĉa

bcγ̇
b
s vc,

D̂ωa

ds
= D̄ωa

ds
− Ĉc

abγ̇
b
s ωc, (141)

where

Ĉa
bc := 1

2 ĝad (2∇̄(bĝc)d − ∇̄dĝbc). (142)

To linear order in the metric perturbation ĝab − ḡab,

D̄γ̇ a
s

ds
= D̂γ̇ a

s

ds
+ 1

2
ḡad (∇̄dĝbc − 2∇̄bĝcd )γ̇ b

s γ̇ c
s . (143)

Note that, in general, the background acceleration need not be orthogonal to the 4-velocity
with respect to ḡab. This is because the parameter s has been chosen such that γ̇ a

s has the unit
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norm with respect to ĝab (when p̂a − m̂γ̇ a
s is negligible). It is more typical to normalize the

4-velocity with respect to ḡab. Introduce a new time parameter s̄(s) such that ua := (ds/ds̄)γ̇ a
s

satisfies ḡabuaub = −1. Then,

D̄ua

ds̄
=

(
ds

ds̄

)2
(

δa
b − γ̇ a

s γ̇ c
s ḡbc

γ̇ d
s γ̇

f
s ḡdf

)
D̄γ̇ b

s

ds
. (144)

For sufficiently small spins and weak metric perturbations, the background acceleration is
obtained by substituting (140) into this equation:

m̂
D̄ua

ds̄
= 1

2
m̂(ḡad + uaud )(∇̄dĝbc − 2∇̄bĝcd )ubuc + 1

2
R̄bcl

aε̄bcdf ḡdhuhul Ŝ f . (145)

The first group of terms on the right-hand side of this expression is what is typically referred
to as the gravitational self-force in the literature [12, 18, 19, 22, 23]. Note, however, that this
terminology differs from the non-perturbative notion of self-force adopted elsewhere in this
paper. The second term on the right-hand side of (145) is an approximation for the ordinary
Papapetrou force in the background spacetime.

There are more ‘bulk parameters’ describing an extended body than only its center of
mass position. Continuing to define quantities in terms of ḡab, one might be interested in a
‘background mass’ m̄ := [−ḡab p̂a p̂b]1/2. While it has already been noted that the m̂ defined by
(129) remains constant in the current approximation, the same is not true of m̄. This evolves
via

d

ds̄

{
m̄

[
1 − 1

2
(ĝab − ḡab)u

aub

]}
= 0 (146)

to first order in the metric perturbation.
The spin evolution equation (139) may be rewritten in terms of the background metric in

the same way that equation (140) for the center of mass acceleration is transformed into (145):

D̄Ŝa

ds̄
= −1

2
ḡcd (∇̄dĝab − 2∇̄(aĝb)d )ubŜc. (147)

Generalizing the terminology typically applied to (145), the right-hand side of (147) might be
said to represent a ‘self-torque’. This usage is, however, intrinsically perturbative. It differs
from the notion of self-torque used in other parts of this paper.

Equations (145) and (147) describe the center of mass and spin evolution of a body with
small spin and negligible higher moments if ĝab lies sufficiently close to a background metric
ḡab. More can be said by assuming that gab also lies near ḡab and by adopting Lorenz gauge.
This gauge choice corresponds to ensuring that the Hab appearing in (100) satisfies

∇̄aHab = 0. (148)

Using this in (101) shows that to linear order in the metric perturbation,

�̄Hab + 2ḡc(aR̄dc f
b)Hdf = −16πT ab. (149)

The physical metric may be found by specifying data on an initial Cauchy surface �s0

and using the retarded Green function Ḡaba′b′
ret (x, x′) to evolve this data into the future (where

Ḡaba′b′
ret satisfies (84) with all hats changed to bars). Then

Hab = 4
∫

�+
s0

ḡa′c′ ḡb′d′Ḡaba′b′
ret T c′d′

dV̄ ′ + Hab
0 , (150)

where Hab
0 is some homogeneous solution of (149) and �+

s0
is the portion of W in the future

of �s0 .
Far outside of W , a body with slow internal dynamics produces a metric perturbation

nearly indistinguishable from a retarded solution to the linearized Einstein equation with a
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point particle source (see, e.g., [12, 18, 19]). To a first approximation, this ‘effective particle’
can be taken to have the worldline �, mass m̂ and no higher moments. This means that

Hab(x) → 4m̂
∫ ∞

s0

Ḡaba′b′
ret (x, γs′ )ḡa′c′ (γs′ )ḡb′d′ (γs′ )uc′

(s′)ud′
(s′) ds′ + Hab

0 (x) (151)

at large distances. Now, the motion is determined by the difference field Hab
R appearing in

(102). This is a homogeneous solution of the linearized Einstein equation in Lorenz gauge, so
it may be written in the Kirchhoff form:

Hab
R = 1

4π

∮
T

ḡa′d′ ḡb′ f ′ ḡc′h′(
Ḡaba′b′

S ∇̄c′Hd′ f ′ − ∇̄c′Ḡaba′b′
S Hd′ f ′)

dS̄h′ . (152)

Here T is any closed hypersurface enclosing the point x at which the left-hand side is evaluated.
Allowing T to be a very large tube with timelike sides surrounding W , the use of (151)

shows that

Hab
R = 4m̂

∫ ∞

s0

Ḡaba′b′
R ḡa′c′ ḡb′d′uc′

ud′
ds′ + Hab

0 , (153)

where Ḡaba′b′
R := Ḡaba′b′

ret − Ḡaba′b′
S is typically referred to as the R-type Detweiler–Whiting

Green function (even though this satisfies a homogeneous wave equation and is therefore not
strictly a Green function). The conclusion of this argument is that for a sufficiently small
particle with slow internal dynamics, the effective metric inside W is essentially that of a point
particle. A similar statement cannot be made for the retarded field.

The Hadamard form (88) for Ḡaba′b′
S (and the equivalent for Ḡaba′b′

ret ) may now be used to
compute Hab

R explicitly. As can be seen from (145), we need only the first derivative of this
field on �. This has already been computed in, e.g., [12] for the case where R̄ab = 0 and
D̄ua/ds̄ = 0. We will continue to assume that the acceleration is zero, as any terms involving
it will be negligibly small. We do, however, generalize the Ricci tensor to be �ḡab. Then,

∇̄cHab
R (γs) = 4m̂

[
(R̄cdf

(aub) − ucR̄d
(a

f
b))udu f − 1

3�ucuaub
] + Hc

ab + ∇̄cHab
0 , (154)

where

Hc
ab := 4m̂ lim

ε→0

∫ s−ε

s0

∇̄cḠaba′b′
ret ua′ub′ ds′. (155)

For simplicity, indices in these equations have been raised and lowered with the background
metric. Also note that the limiting process used to define Hab

c avoids the singularity in the
retarded Green function.

Now suppose for simplicity that ∇̄cHbc
0 is negligible, as can be arranged if linear

perturbation theory may be trusted sufficiently far in the past. Substituting (154) into (145)
then yields

D̄ua

ds̄
= 1

2
(ḡad + uaud )ubuc(Hdbc − 2Hbcd ) + 1

2
R̄bcl

aε̄bcdf ḡdhuhul Ŝ f . (156)

Excluding the spin term, this is the MiSaTaQuWa equation as it is usually written (at least if
s0 → −∞) [12, 18, 19, 22, 23]. Reference [18] (which includes the spin term) refers to (156)
as the ‘self-consistent’ equation of motion. This is to distinguish it from the acceleration of a
deviation vector for the center of mass worldline away from a background worldline that is
geodesic with respect to the background. Such constructions have not been used here.

Lastly, note that an analog of the MiSaTaQuWa equation for the spin evolution is easily
obtained by substituting (154) into (147):

D̄Ŝa

ds̄
= −2m̂ubucR̄abc

dŜd − 1

2
ubŜc(Hcab − 2H(ab)c). (157)
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5. Discussion

This paper non-perturbatively defines linear and angular momenta p̂a and Ŝab adapted to the
study of extended objects in general relativity. An effective metric ĝab is also constructed
non-perturbatively from the physical metric gab by generalizing the Detweiler–Whiting
decomposition originally introduced in [9]. Using stress–energy conservation, p̂a and Ŝab are
shown to evolve via the Papapetrou equations (written using ĝab) plus corrections depending
on the degree to which the effective metric fails to be symmetric with respect to a certain set
of GKFs.

Considerable simplifications arise in cases where ĝab can be accurately expanded in a
power series throughout the body of interest (in the sense described in sections 2.2 and
3.4). When this occurs, corrections to the Papapetrou equations may be expanded in series
depending on a body’s quadrupole and higher multipole moments. These series are formally
identical to the multipole expansions provided by Dixon [2, 24, 38] for extended test masses.
There is a sense in which self-gravitating masses move like test bodies. The metric in which
such a fictitious test body appears to fall is ĝab rather than gab.

The conclusions of this paper may be viewed as providing a justification for the
gravitational Detweiler–Whiting axiom [9] that a ‘point mass’ moves on a geodesic in an
effective metric produced by subtracting a certain ‘S-field’ from the physical metric (if
‘point mass’ is replaced by ‘mass with small but finite size’). The validity of this type of
statement has also been extended considerably. It applies to all multipole orders and also to
the evolution of a body’s angular momentum. This joins similar results that have recently been
established for objects with scalar or electromagnetic charge moving in fixed background
spacetimes [5, 11].

Future work

The momenta proposed in this paper are not intended to be the final word on the subject.
The multipole expansions for the force and torque derived in section 3.4 require as their main
assumption that ĝab vary slowly inside objects of interest. That this is likely to occur in ‘typical’
systems is motivated in section 3.2 by noting that in linearized gravity, the effective metric is
very nearly a solution to the vacuum Einstein equation. This suggests (but does not strictly
imply) that details of a body’s internal structure necessarily present in gab disappear in ĝab.
The vacuum condition is also useful in that it decouples many components of the ‘complete’
multipole moments from the laws of motion.

It is less clear what occurs in the fully nonlinear regime. In general, ĝab is not an exact
solution to the vacuum Einstein equation. Despite this, the multipole expansion (118) remains
valid in this case as long as ĝab does not vary too rapidly. Indeed, a ‘second-order self-
force’ could be derived from this formalism for systems where the effective metric varies
slowly. Slow variation appears likely inside strongly self-gravitating objects with a nearly
uniform internal structure, although its precise range of validity is not clear. Additionally,
many more components of an object’s multipole moments are required to describe the motion
if R̂ab �= �ĝab.

It would be ideal if the definitions provided in this paper were modified so that extended
objects could be shown to fall like test bodies moving in an effective metric that satisfies
the vacuum Einstein equation exactly. As has been emphasized at various points, there is
considerable freedom in the techniques developed here. Different choices could have been
made in this work without spoiling any of its main conclusions. It is likely that some of these
choices have even better properties than the ones that were taken. Perhaps a relatively simple
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change could be used to produce an effective metric g̃ab that satisfies the vacuum Einstein
equation beyond the regime of linearized perturbation theory.
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Appendix. Generalized Killing fields

The notion of a GKF used in this paper was developed in [25], where such objects were referred
to as Killing-type generalized affine collineations. Their main properties are summarized in
section 2.2. For completeness, this appendix provides explicit definitions. It is heavily based
on the description in [40].

Everything in this appendix is formulated on a spacetime (M, gab). Note, however, that
the main text discusses GKFs constructed using different metrics. Besides the geometry, a
GKF �a also requires for its construction a smooth timelike worldline � = {γs|s ∈ R} and a
future-directed timelike vector field na

s ∈ TγsM defined along �. Note that s is not required to
be proper time and na

s need not lie tangent to �.
A specific GKF may be fixed by choosing a time s0 together with tensors Aa(s0) and

Bab = B[ab](s0) at γs0 . The Killing transport equations
D

ds
Aa(s) − γ̇ b

s Bba(s) = 0 (A.1)

D

ds
Bab(s) + Rabc

d(γs)γ̇
c
s Ad(s) = 0 (A.2)

are used to uniquely extend these tensors to all of �. Note that the skew symmetry of Bab is
preserved by this prescription8.

Now consider all pairs (γs, v
a), where va ∈ TγsM is orthogonal to na

s . This forms a
subset T⊥� of the tangent bundle TM. For any element of T⊥�, one may associate an
affinely parameterized geodesic y(w) whose initial point is y(0) = γs and whose initial
tangent is ẏa(0) = va. As long as these geodesics can be extended sufficiently far, the map
(γs, v

a) → y(1) is a smooth function from T⊥� to M. Its Jacobian is clearly invertible at
(least at) every point (γs, 0), so it follows from the inverse function theorem that the given map
defines a diffeomorphism on some neighborhood W of �. This will be the region in which the
GKFs are to be defined. It is assumed in the main text that the body whose motion is being
studied always lies inside this region: W ⊂ W .

We now define the GKF �a(x) associated with a choice of Aa(s0) and Bab(s0). The
diffeomorphism just described may be used to uniquely associate x with some (γs, v

a) ∈ T⊥�.
Use this pair to construct a geodesic y(w) as before. The GKF is then computed along y(w)

by solving the Jacobi (or geodesic deviation) equation

D2�a

dw2
− Rabc

dẏbẏc�d = 0, (A.3)

with initial data

�a(γs) = Aa(s), (A.4)

8 It is possible to use initial data for which Bab is not skew. The vector field that eventually results generalizes a
homothety or other non-Killing affine collineation [25].
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D�a(γs)

dw
= vbBba(s). (A.5)

The given equations uniquely define �a(x) throughout W once Aa and Bab are given at any
one point on �. More detailed discussions may be found in [10, 25, 40].
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[32] Streubel M and Schattner R 1981 Ann. de l’Inst. H. Poincaré 34 145
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