
ar
X

iv
:1

10
3.

05
43

v2
  [

gr
-q

c]
  1

0 
M

ar
 2

01
1

Mechanics of extended masses in general relativity

Abraham I. Harte

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut
Potsdam-Golm, Germany

E-mail: harte@aei.mpg.de

Abstract. The “external” or “bulk” motion of extended bodies is studied in
general relativity. Material objects of arbitrary shape, spin, internal composition,
and velocity are allowed as long as the metric remains near a vacuum solution
(with a possible cosmological constant). Under this restriction, physically
reasonable linear and angular momenta are proposed that evolve as though they
were the momenta of an extended test body moving in an effective vacuum metric.
This result holds to all multipole orders. The portion of the physical metric
that does not directly affect the motion is a slightly generalized form of the
Detweiler-Whiting S-field originally introduced in the context of self-force. This
serves only to (finitely) renormalize the “bare” multipole moments of the object’s
stress-energy tensor. The MiSaTaQu expression for the gravitational self-force is
recovered as a simple application. A gravitational self-torque is obtained as well.
Lastly, a certain exact result is derived that may provide a basis for understanding
self-interaction at higher orders.

1. Introduction

Newtonian celestial mechanics typically describes the motion of widely-separated
masses using two types of parameters (see, e.g., [1, 2]). These concern either the
behavior of each body as a whole or the details of their internal dynamics. Examples
of the former type – often referred to as the “external” or “bulk” parameters – are
the center of mass positions and spin angular momenta of the various masses. In
typical applications, there is very little coupling between the internal and external
descriptions. As a consequence, one can often compute the center of mass motions
of an N -body system as though it were composed of point particles parameterized
only by their positions and masses. Going beyond this approximation requires
introducing additional parameters such as quadrupole moments. These depend on
the internal dynamics, but in a relatively mild way that often lends itself to simple
phenomenological models.

The external variables decouple from the internal ones in Newtonian gravity
largely because there are no self-forces or self-torques in this theory. The evolution of
a body’s center of mass position and spin are only indirectly influenced by its self-field.

A priori, it is not clear that similar arguments can be applied to matter interacting
with relativistic fields. These fields carry energy and momentum, so self-forces
arise generically. This does not, however, preclude an internal-external split of the
dynamics. It is not necessary that self-forces vanish entirely, but only that they do
not depend in any essential way on the details of a body’s internal structure.

http://arxiv.org/abs/1103.0543v2
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To illustrate this point, consider the motion of a small electric charge in
approximate internal equilibrium moving non-relativistically in flat spacetime. It has
long been known that under suitable conditions, the center of mass acceleration ~a(t)
of such a charge will very nearly satisfy‡

m~a = ~Fext +
2

3
q2

d~a

dt
− δm~a. (1)

Here, ~Fext is an externally-imposed force, q is the object’s total charge andm its mass§.
The last two terms on the right-hand side of this equation arise from interactions with
the body’s own electromagnetic field. The first of these is “simple” in that it depends
only on bulk parameters already required to describe the motion of a charged test
particle. δm, by contrast, has a very different character. It is related to the body’s
internal charge distribution in a nontrivial way. Despite this, It is clear that

m̂~a = ~Fext +
2

3
q2

d~a

dt
, (2)

where m̂ := m + δm can be interpreted as an effective mass. The same assumptions
that lead to the derivation of (1) can also be used to show that dm̂/dt = 0.

Even though the self-force is significant in this example (and depends on the
body’s internal structure), the final equation of motion only involves parameters
that are already needed to describe the motion of a charged test particle. To the
extent that (1) can be trusted, this means that internal-external split remains useful
in electromagnetism. The center of mass motion of an extended charge distribution
can be treated as though it were the trajectory of a pointlike test charge parameterized
only by its position, m̂, and q. This charge moves in an effective electric field given by
the external one plus 2

3qd~a/dt (at the particle’s location). This field may be shown to
be a restriction of one that satisfies the vacuum Maxwell equations [4, 7, 8, 9].

This result can be generalized considerably. For essentially any bounded charge-
current distribution in flat spacetime, linear and angular momenta may be defined that
evolve as though they were the momenta of an extended test charge (or a pointlike
test charge “with structure”) moving in a certain effective electromagnetic field [4].
This effective field satisfies the vacuum Maxwell equations near the charge. All effects
of the self-force and self-torque are non-perturbatively absorbed into the definitions
of the momenta and the effective field. Whether or not the internal structure is
“effaced” therefore reduces to a question regarding the nature of the effective field.
In all but the most extreme systems, this may be shown to depend only on bulk
parameters like the total charge. Very similar results also hold in generic (but fixed)
curved spacetimes. The only difference is that the quadrupole and higher multipole
of the body’s stress-energy tensor must be renormalized along with its momenta [10].
Analogous statements are known for matter interacting with linear scalar fields as well
[10, 11].

‡ This equation has been established as a valid approximation only for the acceleration of a physical
charge (see, e.g., [3, 4]). This does not mean that a trajectory with an acceleration satisfying (1) for
all time is guaranteed to stay near the physical trajectory. Many such motions violate the conditions
under which the equation was derived (even on short timescales), and must therefore be discarded.
Additionally, there may be neglected terms which lead to qualitatively different behavior over long
times. Better-behaved equations arise by “reducing order” [3, 5], which changes (1) only by an
amount comparable to the error terms that are already present. This leads to an equation often
attributed to Landau and Lifshitz in the relativistic case [6].
§ There is some subtlety in defining precisely what is meant by mass and center of mass in (1), but
the details are not important here. See, e.g., [4].
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Results of this type greatly expand the scope of – and provide a basis for
– what has been referred to as the Detweiler-Whiting axiom [8, 12]. It is well-
known that point particles are incompatible with, e.g., the standard formulation
of Maxwell electrodynamics (and with general relativity [13]). Despite this, “point
particle methods” can still be used if additional axioms are introduced into the theory.
Suppose, for example, that a certain portion of the self-field associated with a point
particle is assumed not to affect its motion. Detweiler and Whiting considered this
possibility with a field sourced from a certain symmetric Green function [8]. Assuming
that this does not affect the motion leaves a finite vacuum field at the location of
the particle. This is easily calculated. Substituting it into the Lorentz force equation
produces the standard Dewitt-Brehme result [12, 14] for the motion of a self-interacting
charged particle in curved spacetime. Similar subtractions were also used to efficiently
reproduce equations of motion that had previously been derived for self-interacting
scalar charges as well as uncharged masses in general relativity.

The results of [4, 11] show that the ability to ignore what is referred to as the
Detweiler-Whiting S-field can be derived from first principles for a very wide class
of extended scalar and electromagnetic charge distributions. This paper uses similar
methods to treat the gravitational problem. Specifically, it investigates whether the
bulk dynamics of an uncharged mass in general relativity can be reduced to test body
motion in an effective field (in a nontrivial sense‖). Related questions have been
studied in various contexts using the post-Newtonian approximation [1, 15, 16, 17],
where they are often referred to as “effacement principles” or demonstrations of the
strong equivalence principle.

The work presented here is more concerned with the types of systems typically
encountered in discussions of the gravitational self-force. These allow the body of
interest to move at relativistic speeds in a strongly curved background spacetime, but
restrict it to be small compared to all scales associated with that background. One
also assumes that the internal structure of the body does not vary too rapidly. Under
these conditions – made precise in [18, 19] – an equation of motion may be derived
that does not depend on any details of the body’s internal structure. At lowest order,
it is just the geodesic equation associated with the background spacetime. The next
approximation introduces forces due to both gravitational self-interaction and spin.
The latter effect is the Papapetrou force long known to act on spinning test particles.
The self-force component is typically referred to as the MiSaTaQuWa force after the
authors who originally obtained it: Mino, Sasaki, Tanaka, Quinn, and Wald [20, 21].
Neglecting the Papapetrou term, the motion may be viewed as geodesic with respect
to a certain effective metric [8].

We show that this is a special case of a much more general result. Certain
definitions of linear and angular momenta are proposed for extended (but bounded)
stress-energy distributions in general relativity. These are shown to satisfy the same
evolution equations as the momenta of an extended test mass moving in a particular
effective metric. A similar result also holds for a certain definition of the center of
mass. The effective metric is computed by using the Detweiler-Whiting prescription
to subtract an S-field from the physical metric. In the monopole approximation,
equations for the center of mass reduce to the geodesic equation in the effective metric.
The MiSaTaQuWa equation follows immediately if the physical metric is assumed to be

‖ Suppose that it is known, for example, that the acceleration of an electric charge satisfies

m~a = q ~E + ~f . This is trivially equivalent to the motion of a test body in the field ~E + q−1 ~f .
It is only in special cases, however, that such an identification is useful.
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the retarded field. To lowest order, the spin vector is found to be parallel-propagated
with respect to the effective metric.

These results apply to a spatially-compact uncharged mass moving through a
spacetime containing no other matter (except perhaps dark energy). The presence of
a nonzero cosmological constant adds no significant complication, so this is allowed.
Under these conditions, an equation is derived that provides a sense in which the
gravitational “Detweiler-Whiting axiom” is satisfied exactly. This result is, however,
applied only in a regime where the metric inside the body can be adequately
approximated by a solution to the linearized Einstein equation (at least for short
times). This linearization is carried out about an arbitrary vacuum solution.

The assumptions adopted here are different from those found in other treatments
of the gravitational self-force. Most importantly, the approaches of, e.g., [18, 19]
require that the metric perturbation be small only in some intermediate vacuum region
outside of the body of interest. They can therefore be applied even to the motion of
black holes. This lies beyond the scope of the formalism developed here. Nevertheless,
there are considerable benefits to our assumptions. They allow the analysis of objects
that may be highly distorted and dynamical: Dixon’s multipole expansions [2, 22] for
the motion of extended test masses are generalized to all orders. Explicit formulae for
the momenta are also provided in terms of the body’s internal structure. There are
aesthetic advantages as well. In regimes where they overlap, the method presented here
requires far less computation than others in the literature. It also provides significantly
more physical insight.

This paper starts by discussing Dixon’s formalism [2, 22, 23] as it pertains to the
motion of extended test masses. Although this is not new, many subsequent arguments
require familiarity with these results. Next, Sect. 3 discusses various properties of
gravitational Green functions in general relativity. Sect. 4 introduces the notion of
a Detweiler-Whiting S-field for an extended mass and briefly discusses the evolution
of the “bare momentum.” The central results of this paper are contained in Sect. 5.
Evolution equations for the momenta are first analyzed perturbatively and shown to
have a multipole expansion like that arising in the theory of extended test bodies. This
is used as a guide to derive a generalization that does not require linearizing Einstein’s
equation. Sect. 6 develops explicit multipole expansions for the force and torque. It
also defines a center of mass and relates it to the momenta. The gravitational self-
force and self-torque are obtained in a simple case. Appendix A provides a discussion
of Einstein’s equation in wave gauge. Appendix B defines certain “generalized Killing
fields” used in the text.

The sign conventions used here are those of Wald [24]. Metrics therefore have
signature +1 and the Riemann tensor satisfies 2∇[a∇b]ωc = Rabc

dωd for any 1-form
ωa. The Ricci tensor is given by Rab = Racb

c. Multiple metrics are discussed in this
paper, so indices are not raised and lowered unless indicated otherwise. In almost
all cases, factors of the appropriate metric are displayed explicitly. There are four
metrics that are used here: gab denotes the full physical metric, ḡab the background
metric, and ĝab a certain effective metric, and g̃ab an alternative effective metric.
Derivative operators and curvature tensors associated with the latter three geometries
are distinguished with a bar, hat, or tilde as appropriate. Non-geometric quantities
(like momenta) with hats or tildes denote renormalized or effective versions of their
plainer counterparts. Abstract indices are written using the Latin alphabet, while
Greek indices represent coordinate components. Units are used where G = c = 1.
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2. Motion of extended test masses

The main goal of this paper is to describe, in some sense, the large-scale or bulk
motion of extended masses in general relativity. This is done by analyzing quantities
that may be interpreted as a body’s net linear and angular momenta. Closely related
to these is the notion of a center of mass.

The type of momentum considered here is similar to the one developed by
Dixon [2, 22, 25]. Mathematically, Dixon’s momenta are tensor fields defined non-
perturbatively along a preferred worldline in the physical spacetime. They take as
input this worldline and a timelike vector field prescribed along it. The linear or
angular momentum of an extended body are computed by integrating its stress-
energy tensor over a spacelike hypersurface in a particular way. The evolution of
these quantities is strongly constrained by stress-energy conservation.

The only significant restriction to the use of Dixon’s momenta is that the object’s
stress-energy tensor be bounded in spatial directions (and that this bound is not
“extremely large” in a certain sense [22, 26]). Limitations on the metric are minimal.
Despite this, most applications have been restricted to the test body regime (e.g.,
[27, 28]). While Dixon’s momenta retain a number of interesting properties in a
more a general context [2, 22, 29, 30], other characteristics are less satisfactory. For
example, it has been shown that even in flat spacetime electromagnetism, the momenta
do not behave as simply as might have been expected once self-interaction is taken
into account [9]. This problem can be eliminated with a simple modification [4].

Similar changes are proposed here in order to obtain physically reasonable
momenta that obey simple evolution equations in the presence of significant
gravitational self-interaction (but without electromagnetic or other long-range non-
gravitational fields). The basic strategy is to first postulate “bare” momenta that
agree with Dixon’s definitions in the test mass regime. More generally, there will be
differences. The important point is that the evolution equations for the bare momenta
include total time derivatives of certain terms involving part of the self-field. These
derivatives are easily eliminated by redefining the momenta. The resulting variables
obey simple evolution equations in a wide variety of contexts.

Before demonstrating this, it is important to review the theory of extended
test mass motion in a curved spacetime (M, gab). Once a certain result has been
established – namely (65) below – many aspects of this formalism will be seen to
carry through almost without modification to cases involving self-interaction.

Suppose that the body of interest is associated with a stress-energy tensor

T abB = T
(ab)
B and that its worldtubeW := supp T abB is spatially compact. Now consider

the scalar functional

Pξ(Σ) :=

∫

Σ

gabξ
aT bcB dSc. (3)

This takes as input a hypersurface Σ assumed to bisect W and a vector field ξa that
will be chosen later. Pξ(Σ) may be viewed as returning the component of momentum
“conjugate” to ξa at a time defined by Σ. This interpretation is completely standard
if ξa is a Killing vector: Pξ(Σ) is then conserved – i.e., independent of Σ – as long as
∇aT

ab
B = 0.
In general, Pξ(Σ) will depend on the chosen hypersurface. Suppose that Σ1 and

Σ2 are two non-intersecting hypersurfaces that completely cut through W . Assuming
that

∇aT
ab
B = 0, (4)
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the difference in “ξ-momentum” at the two corresponding times is then

δPξ(Σ1,Σ2) := Pξ(Σ2)− Pξ(Σ1)

=
1

2

∫

Ω(Σ1,Σ2)

T abB LξgabdV. (5)

Here, Ω(Σ1,Σ2) is defined to be the portion of W bounded by Σ1 and Σ2. dV denotes
the natural volume element associated with gab and Lξ the Lie derivative with respect
to ξa.

Eq. (5) does not depend on any particular details of ξa or Σ. It describes a
property shared by all functionals with the form (3). We now specialize to specific
definitions that can be used to recover Dixon’s definitions for the linear and angular
momentum of an extended body. Using the terminology of [23], ξa will be assumed
to be of the form¶

ξa = gabΞb, (6)

where Ξa is a Killing-type generalized affine collineation constructed using gab. This
is defined precisely in Appendix B. Following [4, 10, 11], we will refer to the Ξa (or
ξa) simply as generalized Killing fields (GKFs) with respect to gab.

Defining GKFs requires fixing not only a metric, but also a timelike worldline
Γ = {γs|s ∈ R} and a timelike vector field nas ∈ TγsM along it. The worldline serves
as an origin about which to compute multipole moments of T abB . The nas fix a family
of spacelike hypersurfaces Σs that provide a time function Σs ∋ x 7→ s inside the
body’s worldtube W . At fixed s, Σs is defined as the union of all geodesics that
pass through γs and are orthogonal to nas at that point. These geodesics are not to
be extended so far that they intersect either with each other (except at γs) or with a
neighboring hypersurface in the family. It is assumed that the body is sufficiently small
that such restricted geodesics still form hypersurfaces Σs that foliate W . Under mild
assumptions, γs and n

a
s can both be specified uniquely using center of mass conditions

[26] (see also (23) and (24) below). For now, however, we continue to describe the
general case where they are left free.

Once gab, Γ, and n
a
s are given, the allowed covector fields Ξa are fixed using the

definition in Appendix B. They have a number of characteristics that are very similar
to those of genuine Killing fields. First among these is the “rigidity property:” Given
Ξa(γs) and ∇aΞb(γs) at any single point γs ∈ Γ, Ξa(x) is fixed for all x in the set
W ⊃ W defined in Appendix B. The Ξa(x) depend linearly on these “initial data.”
They are also “approximately Killing” near Γ, meaning that

∇(aΞb)|Γ = ∇a∇(bΞc)|Γ = 0, (7)

or equivalently,

Lξgab|Γ = ∇aLξgbc|Γ = 0. (8)

It follows from these statements that the generalized Killing fields form a ten-
dimensional vector space in four spacetime dimensions (with fixed gab, Γ and nas).
This space includes any genuine Killing fields associated with gab: If ψa satisfies
Lψgab = 0 everywhere, it is also a generalized Killing field. In maximally-symmetric
spacetimes, the space of generalized Killing fields coincides with the space of genuine

¶ The simpler notation ξa = gabξb is not used in order to avoid confusion when multiple metrics are
introduced below.
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Killing fields. The dependence on a preferred worldline and foliation disappears in
this special case.

It is useful at this point to introduce linear and angular momenta pa(s) and
Sab = S[ab](s) as tensor fields along Γ. It has already been noted that Ξa(x) depends
linearly on, say, Ξa(γs) and ∇aΞb(γs) = ∇[aΞb](γs). It follows from (3) that Pξ(Σs)
can be written as a linear combination of these parameters. The coefficients may be
identified as momenta:

Pξ(Σs) = pa(s)Ξa(γs) +
1

2
Sab(s)∇aΞb(γs). (9)

If Pξ is known for all possible Ξa, this equation determines pa and Sab completely.
More explicitly [2, 22, 23, 25],

pa(s) =

∫

Σs

Ka
a′(γs, x

′)T a
′b′

B (x′)dSb′ , (10)

and

Sab(s) = 2

∫

Σs

ga′c′(x
′)H [a|a′(γs, x

′)gb]c(γs)∇cσ(γs, x
′)T b

′c′

B (x′)dSb′ . (11)

Here, σ(x, x′) = σ(x′, x) is Synge’s world function, Haa′ := [−∇a∇a′σ]
−1, and

Ka
a′ := Hab′∇a′∇b′σ. These momenta coincide with standard textbook definitions

in flat spacetime. In general, however, they are the momenta identified by Dixon as
being particularly useful for the description of objects with conserved stress-energy
tensors [2, 22, 25]. Various properties of Synge’s function and related bitensors may
be found in [12, 31, 32].

Differentiating (9) with respect to s while using (8) yields

d

ds
Pξ =

(

Dpa

ds
− 1

2
Rbcd

aSbcγ̇ds

)

Ξa +
1

2

(

DSab

ds
− 2p[aγ̇b]s

)

∇aΞb. (12)

As is standard, the notation γ̇as denotes the tangent vector to the curve γs. This
equation provides a recipe for extracting Dpa/ds and DSab/ds from knowledge of
dPξ(Σs)/ds for all ξa. The differential form for changes in Pξ follows immediately
from (5):

d

ds
Pξ(Σs) =

1

2

∫

Σs

T abB LξgabdS. (13)

Here, dS := tadSa, where t
a is a time evolution vector field for the foliation {Σs}.

Equating the right-hand side of (12) with the right-hand side of (13) provides evolution
equations for pa and Sab.

Note that if dPξ/ds = 0, one recovers the Papapetrou equations typically used to
model a spinning test particle. More generally, changes in Pξ measure the deviation
from these equations. In this formalism, Papapetrou terms in the laws of motion arise
purely as a kinematic consequence of adopting (8) and (9).

The discussion up to this point has not made any strong assumptions regarding
the nature of the metric. In particular, self-fields have not been excluded. We now
assume, however, that in a Riemann normal coordinate system with origin γs, the
metric components gµν may be accurately expanded throughout Σs ∩W in a Taylor
series about γs. This leads to a “multipole expansion” for dPξ(Σs)/ds that is typically
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useful only in a test body limit. Using certain details of the GKFs, it may be shown
that the result has the coordinate-independent form+ [10]

d

ds
Pξ(Σs) =

1

2

∞
∑

n=2

1

n!
Ic1···cnab(s)Lξgab,c1···cn(γs). (14)

The coefficients Ic1···cnab(s) are interpreted as the 2n-pole moments of T ab at time s.
gab,c1···cn(γs) is the n

th tensor extension of gab at γs. Tensor extensions of the metric
are also referred to as metric normal tensors. These objects require some explanation.

Briefly, gab,c1···cn(x) is defined to be the (unique) tensor field satisfying
gµν,λ1···λn

(x) = ∂λ1
· · · ∂λn

gµν(x) in a Riemann normal coordinate system with origin
x. The zeroth extension is the metric itself and the first extension vanishes. In general,
it is clear that the nth metric normal tensor is symmetric in both its first two and its
last n indices. It may also be shown that [10]

ga(b,c1···cn) = g(ab,c1···cn−1)cn = 0 (15)

for all n ≥ 2. Keeping this restriction on n, all metric normal tensors can be written
as polynomials in the Riemann tensor. To linear order [22],

gab,c1···cn = 2

(

n− 1

n+ 1

)

∇(c3···cn(R|a|c1c2)
dgbd) +O(R2). (16)

This equation is exact for n = 2, 3. For higher n, there will be additional terms that
are nonlinear in Rabc

d or its derivatives.
Without loss of generality, the symmetry properties of the metric normal tensors

allow Ic1···cnab to be chosen such that it is separately symmetric in its first n and last
two indices. It may also be taken to satisfy

I(c1···cna)b = Ic1(c2···cnab) = 0. (17)

A unique formula linking moments with these properties to T abB may be derived
using (13) and (14) [10] (see also [22]). Like (10) and (11), the result has the form
of an integral over Σs that involves the stress-energy tensor and various bitensors
constructed from σ.

The given index symmetries imply that Ic1···cnab has a total of

(n+ 3)(n+ 2)(n− 1) (18)

algebraically independent components. This far exceeds the number typically ascribed
to multipole moments in other formalisms [33]. The reason for this is essentially that
the I ··· are “complete.” Knowing all of them together with pa and Sab is completely
equivalent to knowledge of T abB [22]. Additionally, (14) does not make any use of
Einstein’s equation other than in assuming stress-energy conservation. If gab – now
interpreted as a background metric – satisfies Rab = 0, many components of the I ···

decouple from the laws of motion. This may be seen by noting that certain traces
of (16) vanish in this case. Use of (8) shows that these same traces still vanish if
Rab = Λgab for any constant Λ. Additional discussion of these points may be found
in [10].

It is important to note that the sum in (14) starts at n = 2. This corresponds to
quadrupole order. It is a consequence of (8) and (13) that the monopole and dipole

+ Unless the components gµν are analytic, this series can only be expected to be asymptotic. This
means that it should be truncated at finite n. An infinite upper limit is written here for simplicity
(and in similar sums below).
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moments of T abB – essentially pa and Sab – do not directly contribute to dPξ/ds. These
quantities do enter the laws of motion for Dpa/ds and DSab/ds, but only due to the
Papapetrou-like terms appearing in (12). Explicitly, define a net force F a(s) and a
net torque Nab = N [ab](s) such that

Dpa

ds
=

1

2
Rbcd

aSbcγ̇ds + F a, (19)

DSab

ds
= 2p[aγ̇b]s +Nab. (20)

Comparison with (9) and (14) shows that

F a(s) =
1

2
gab(γs)

∞
∑

n=2

1

n!
If1···fncd(s)∇bgcd,f1···fn(γs), (21)

and

Nab(s) = 2

∞
∑

n=2

1

n!
Ic1···cndf (s)

[

gfh,c1···cn(γs)δ
[a
d +

n

2
gdf,hc1···cn−1

(γs)δ
[a
cn

]

gb]h(γs). (22)

The hope in writing these series is, of course, that adequate approximations may
be obtained by truncating them at some small maximum n. This can only happen
if Γ and {Σs} are chosen appropriately (if it is possible at all for a given system).
We now fix a particular worldline and foliation that is hopefully “appropriate” in
this sense. This is done by imposing center of mass conditions as described in, e.g.,
[2, 25, 34]. First recall that Σs is constructed using geodesics that pass through γs
and are orthogonal to nas at that point. Now suppose that Γ and nas are chosen such
that

pa(s) ∝ nas , (23)

gab(γs)p
a(s)Sbc(s) = 0. (24)

Under mild assumptions, the resulting Γ and nas exist, are unique, and are timelike
[26].

The center of mass velocity γ̇as is not necessarily proportional to pa. Relating these
two quantities is simpler if the time parameter s is chosen such that gab(γs)p

a(s)γ̇bs =
−m(s), where the mass m(s) is given by

m :=
√

−gabpapb. (25)

This means that in general, γ̇as does not have unit norm. There is, however, no loss
of generality in assuming that gabn

a
sn

b
s = −1. Hence,

pa = mnas . (26)

With these conventions, (24) may be used to show that [34]

mγ̇as = pa −Nabgbcn
c
s −

Sab[mgbcF
c − 1

2S
cd(pf −Nfhghrn

r
s)Rcdb

lgfl]

m2 + 1
4S

bcSdfRbcdlgfl
. (27)

The complexity of this equation arises from the fact that γ̇as has been completely
eliminated from the right-hand side. This makes it clear that if the I ···(s) are known,
(19)-(22) and (27) form a closed system of ordinary differential equations (ODEs) for
γs, p

a, and Sab. There is, however, no physical reason that the higher moments should
be treated as given functions of s. Generically, their evolution depends on the details
of the specific system under consideration.
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To summarize, Dixon’s momenta have now been described as they apply to a
compact body with a conserved stress-energy tensor. The most important definitions
are (3) for Pξ, (9) for pa and Sab, and the specification of the generalized Killing
fields described in Appendix B. Taken together, these are Dixon’s momenta in a very
general context. It is only in providing the multipole expansion (14) for dPξ/ds that
a significant assumption has been made regarding the metric. Roughly speaking, this
series is useful only if the metric does not vary rapidly inside any cross-section Σs∩W .
This is a reasonable assumption for a test mass. It is not for cases involving significant
self-gravity. A direct Taylor expansion of (12) fails to provide any simplification in
general. Nevertheless, it is shown below that there is a sense in which useful multipole
expansions can be performed even in the presence of a significant self-field.

A bare momentum for a self-gravitating mass

We are now in a position to postulate a bare momentum for self-gravitating matter
distributions in general relativity. As mentioned above, this will be required to reduce
to the definitions just provided in the test mass limit. More than this, the form (3)
for Pξ(Σ) will be retained exactly as written. The volume element in the integral
will be the one associated with the full physical metric gab. The vector fields ξa will,
however, be left as undefined for now. Similarly, no properties of the hypersurfaces Σs
or worldline Γ will be assumed at this point (other than that {Σs} foliates the body’s
worldtube W ). The form of dPξ/ds derived below will suggest natural definitions for
these quantities that lead to laws of motion essentially identical to those in the test
mass regime.

We continue to assume that the body’s stress-energy tensor is conserved. This is
an immediate consequence of Einstein’s equation in the absence of any other nearby
matter (or non-gravitational fields). It follows that changes in Pξ are given by (5).
The metric will usually vary rapidly inside the body, so it is not useful to expand the
right-hand side of this equation in a multipole series like (14). We instead analyze the
behavior of gab assuming that it can be considered close to some known background
metric ḡab that does not involve the body of interest. This first requires some discussion
of perturbation theory in general relativity.

3. Perturbation theory and gravitational Green functions

Most of the new results presented in this paper may be obtained using stress-energy
conservation in the physical spacetime together with the well-known linearization
of Einstein’s equation in Lorenz gauge. There are, however, several reasons to
postpone introducing approximations for as long as possible. This helps to clarify the
origin and validity of various results, and might also simplify attempts to generalize
them. Additionally, the fully linearized (“non-relaxed”) Einstein equation is not an
interesting theory of gravity. It implies that the stress-energy tensor must be conserved
with respect to the background spacetime. Matter therefore decouples from the metric
perturbations. See, e.g., [18] and [35] for different perspectives on this problem. We
avoid issues of this type by first obtaining exact expressions for the force and torque
acting on an extended body. This results in integrals that can be approximated
without significant difficulty.

Simplifications that are eventually applied require that the physical spacetime
(M, gab) be “close” to a known background. Physically, it is not important what
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happens in the distant past or future, nor very far from the body of interest. Indeed,
it is unlikely that ordinary perturbation theory can be successfully applied in large
regions. A correspondence between the physical and background spacetimes will
therefore be assumed only on a submanifold M ⊆ M. The spacetime (M, gab|M )
is then to be compared with (M, ḡab), where ḡab is a known solution of Einstein’s
equation. It is convenient to describe the difference between the two metrics using the
variable Hab = H(ab) defined by

Hab := ḡab −
(√−g√−ḡ

)

gab. (28)

This field reduces to the trace-reversed metric perturbation when the full metric gab
approaches ḡab. It is sometimes written as hµν in post-Newtonian contexts where
ḡab → ηµν := diag(−1, 1, 1, 1). The notation

√−g/√−ḡ is covariantly defined as the
proportionality factor linking the volume elements associated with gab and ḡab. In
coordinates, it is

√

− det gµν/
√

− det ḡµν .
Appendix A recasts Einstein’s equation (with a possible cosmological constant Λ)

Rab −
1

2
gabR+ Λgab = 8πgacgbdT

cd, (29)

into an equation for Hab. This is done in a wave gauge [36], which generalizes both the
Lorenz and harmonic gauges commonly used for various types of perturbation theory
in general relativity. Details of this choice are described in Appendix A. It implies
that ∇̄aH

ab = 0, where ∇̄a is the derivative operator associated with the background
metric. If gab and ḡab satisfy (29) with respective stress-energy tensors T ab and T̄ ab,
Hab must be a solution to the relaxed Einstein equation (A.12). Linearizing about
Hab = 0 in the case R̄ab = Λḡab,

�̄Hab + 2ḡc(aR̄dcf
b)Hdf = −16πT ab +O(H2). (30)

This is the familiar equation satisfied by trace-reversed metric perturbations in Lorenz
gauge (typically derived only in the case Λ = 0; see, e.g., [24]). We eventually assume
that T ab = T abB .

It is useful to introduce a Green function Ḡaba
′b′(x, x′) = Ḡ(ab)a′b′ = Ḡab(a

′b′) for
(30). Let it satisfy

�̄Ḡaba
′b′ + 2ḡc(aR̄dcf

b)Ḡdfa
′b′ = −4πḡa

′c′ ḡb
′d′ ḡ(ac′ ḡ

b)
d′ δ̄(x, x

′). (31)

Here, ḡaa′(x, x
′) is the parallel propagator associated with the background spacetime.

If dV̄ is used to denote the volume element associated with ḡab, the distribution δ̄(x, x
′)

satisfies
∫

M

δ̄(x, x′)f(x′)dV̄ ′ = f(x) (32)

for any test function f(x) and any x ∈ M . It is the Dirac measure associated with
the background.

Some Green functions satisfying (31) are also solutions to the adjoint equation

�̄
′Ḡaba

′b′ + 2ḡc
′(a′R̄d′c′f ′

b′)Ḡabd
′f ′

= −4πḡa
′c′ ḡb

′d′ ḡ(ac′ ḡ
b)
d′ δ̄(x, x

′). (33)

It follows from the well-known reciprocity relation Ḡaba
′b′

ret (x, x′) = Ḡa
′b′ab

adv (x′, x) that
the advanced and retarded Green functions both have this property. These are not
the only possibilities, however. For any Ḡaba

′b′

∗ that is a solution to both (31) and
(33), the linearized Einstein equation (30) may be rewritten entirely using volume and
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surface integrals linear in Ḡaba
′b′

∗ . A similar procedure may also be carried out for the
full Einstein equation (A.12). Choosing a closed spacetime region R ⊂M and a point
x ∈ R, this results in (assuming again that R̄ab = Λḡab)

Hab(x) = 4

∫

R

ḡa′c′ ḡb′d′Ḡ
aba′b′

∗ [(g′/ḡ′)T c
′d′ + τc

′d′ ]dV̄ ′

+
1

4π

∮

∂R

ḡa′d′ ḡb′f ′ ḡc
′h′

(Ḡaba
′b′

∗ ∇̄c′H
d′f ′ − ∇̄c′Ḡ

aba′b′

∗ Hd′f ′

)dS̄h′ , (34)

where

τab :=
1

16π

{

λab − 2Hd(aR̄cdf
b)Hcf − 2Λ

[

(
√

g/ḡ +
1

2
ḡcdH

cd − 1)(ḡab −Hab)
]}

, (35)

and λab is given by (A.13). Although this equation is exact, it is usually most useful
when τab can be ignored. In all cases, however, the surface integral on the second line
of (34) is a homogeneous solution to the linearized (relaxed or gauge-reduced) Einstein
equation (30).

As a word of caution, (34) has been derived assuming that the gauge condition
is satisfied. This will only occur if ∇aT

ab = 0. Eq. (A.15) may therefore be replaced
by (4) if T ab = T abB . Metric perturbations computed via (A.12) or (34) using stress-
energy tensors that are not conserved will result in a perturbed metric that fails to
satisfy the full Einstein equation. This means, in particular, that Ḡaba

′b′ cannot be
interpreted as an approximate solution to Einstein’s equation with a pointlike source.
Despite this, it remains a useful construction.

We now introduce the “singular” (or S-type) Detweiler-Whiting Green function
Ḡaba

′b′

S (x, x′) [8, 12]. This is defined at least in regions where its arguments can be
connected by exactly one geodesic. It is symmetric, meaning that

Ḡaba
′b′

S (x, x′) = Ḡa
′b′ab

S (x′, x). (36)

It also satisfies (31) and (33), and is constrained to vanish whenever its arguments
are timelike-separated. It may be shown that these properties define Ḡaba

′b′

S uniquely
[12], at least in finite regions.

If x and x′ are sufficiently close, it is known that Ḡaba
′b′

S (x, x′) has the Hadamard
form∗ [12]

Ḡaba
′b′

S =
1

2
[ḡacḡbdḡ(a

′

cḡ
b′)
d∆̄

1/2δ(σ̄)− V aba
′b′Θ(σ̄)]. (37)

Here, δ and Θ are the Dirac and Heaviside distributions, respectively. σ̄(x, x′) =
σ̄(x′, x) is the world function associated with the background, ∆̄(x, x′) = ∆̄(x′, x) is
the van Vleck determinant, and V̄ aba

′b′(x, x′) = V̄ a
′b′ab(x′, x) is a certain homogeneous

solution to (31). ∆̄ may be defined as the unique biscalar satisfying

ḡab∇̄aσ̄∇̄b ln ∆̄ = 4− ḡab∇̄a∇̄bσ̄ (38)

and ∆̄(x, x) = 1. This equation can be viewed as an ODE along the geodesic
connecting x and x′. In coordinates, the solution is

∆̄(x, x′) = −det(∇̄µ∇̄µ′ σ̄)√−ḡ√−ḡ′ . (39)

∗ Ref. [12] only derives this result in cases where R̄ab = 0. The derivation is easily extended to the
general case with no change in the conclusion.
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It will be important to note that the trace (with respect to ḡab) of Ḡ
aba′b′

S has a
particularly simple form. Any solution to (31) satisfies

�̄(ḡabḠ
aba′b′) + 2Λ(ḡabḠ

aba′b′) = −4πḡa
′b′ δ̄(x, x′). (40)

It follows that

ḡabḠ
aba′b′

S = ḡa
′b′ḠS, (41)

where ḠS(x, x
′) is the S-type Detweiler-Whiting Green function associated with a

massive minimally-coupled scalar wave equation. ḠS satisfies

�̄ḠS + 2ΛḠS = −4πδ̄(x, x′), (42)

and is symmetric in its two arguments. It also vanishes when those arguments are
timelike-separated with respect to ḡab.

4. Self-fields

We now return to discussing the motion of a body with stress-energy tensor T abB

contained in a worldtube W := supp T abB ∩M♯. Define its Detweiler-Whiting S-field
by

Hab
S := 4

∫

W

Ḡaba
′b′

S ḡa′c′ ḡb′d′T
c′d′

B dV̄ ′. (43)

This may be interpreted as the “bound” component of the self-field in the linearized
regime. Various arguments in the literature lead to expectations that at least in some
limits, Hab

S should not directly contribute to the body’s motion (except, perhaps,
through various renormalizations) [8, 12]. It is shown below that this is indeed the
case in a very general context.

It is therefore interesting to consider the difference field Ĥab := Hab−Hab
S . Using

(34) and setting T ab = T abB ,

Ĥab =
1

4π

∫

∂W

ḡa′d′ ḡb′f ′ ḡc
′h′

(Ḡaba
′b′

S ∇̄c′H
d′f ′ − ∇̄c′Ḡ

aba′b′

S Hd′f ′

)dS̄h′

+ 4

∫

W

ḡa′c′ ḡb′d′Ḡ
aba′b′

S {[(g′/ḡ′)− 1]T c
′d′

B + τc
′d′}dV̄ ′. (44)

The surface integral in the first line is a vacuum solution to the linearized (and relaxed)
Einstein equation. It is essentially a type of surface-averaged self-field in that case,
and often varies much more slowly than Hab

S . This can be seen more clearly by noting
that

∫

∂W

ḡa′d′ ḡb′f ′ ḡc
′h′

(Ḡaba
′b′

S ∇̄c′H
d′f ′

S − ∇̄c′Ḡ
aba′b′

S Hd′f ′

S )dS̄h′ = 0. (45)

Instances of Hab in the first line of (44) may therefore be freely replaced with Ĥab.
Using these definitions in the “force law” (5) requires writing Lie derivatives of

the metric in terms of the perturbation variable Hab. Use of (28) shows that

Lξgab =
[

√

ḡ/g(gafgbh −
1

2
gabgfh)ḡ

cf ḡdh +
1

2
gabḡ

cd

]

Lξ ḡcd

+
√

ḡ/g(gacgbd −
1

2
gabgcd)LξHcd. (46)

♯ The stress-energy tensor is technically a field on M, not M ⊆ M. Any effects associated with the
boundary of M (if it exists) will be ignored. Except where noted explicitly, this is consistent as long
as M is chosen appropriately and we do not consider the body’s behavior very near ∂M .
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Hence,

δPξ =
1

2

∫

Ω

T abB

[

icdabLξḡcd + (gacgbd −
1

2
gabgcd)LξHcd

]

dV̄ , (47)

where

icdab := (g/ḡ)δcaδ
d
b + 2

√

g/ḡ(δcagbfH
df − 1

4
gabH

cd)

+ (gafgbh −
1

2
gabgfh)H

cfHdh. (48)

The term involving Lξḡab in (47) is of relatively little importance. Temporarily
suppose, for the purposes of motivation, that the ξa are GKFs constructed using the
background metric. Comparison with Sect. 2 – particularly Eq. (8) – then shows
that any term involving Lξḡab can only produce quadrupole and higher corrections to
the laws of motion. Formulae for these moments in terms of T abB will be renormalized
somewhat by the presence of icdab, but this is relatively simple to take into account.
All “interesting” gravitational self-force effects are therefore contained in the term
involving LξHab. This is the focus of further simplifications below.

5. Free-fall

Changes in the momenta of a self-gravitating mass falling freely in a vacuum
background are determined by (47). This equation is exact. We now introduce
an approximation for the first time by assuming that the metric perturbations are
“small.” Hab and its derivatives – including T abB – will only be retained to quadratic
order in δPξ. Eq. (47) then reduces to

δPξ =
1

2

∫

Ω

{

T abLξ ḡab + T abB Lξ
[

(ḡacḡbd −
1

2
ḡabḡcd)H

cd
]

}

dV̄ +O(H3), (49)

where

T ab := (1 − 1

2
ḡcdH

cd)T abB . (50)

The error here has been abbreviated as “O(H3).” More explicitly, neglected terms in
the integrand of (49) have the schematic forms TBHHLξḡ and TBHLξH .

Now consider the effect of Hab
S on δPξ by splitting the metric perturbation via

Hab = Ĥab + Hab
S . Substituting (43) into (49) results in an expression involving a

term of the form
∫

Ω

dV̄

∫

W

dV̄ ′Fξ(x, x′), (51)

where the “force density” Fξ(x, x′) at point x due to point x′ is

Fξ(x, x′) := 2T abB T a
′b′

B L(x)
ξ

[

(ḡacḡbd −
1

2
ḡabḡcd)ḡa′c′ ḡb′d′Ḡ

cdc′d′

S

]

. (52)

Here, L(x)
ξ denotes a “partial Lie derivative” that varies x but not x′. For any Fξ, it

is straightforward to show that (assuming all integrals converge strongly enough that
they can be commuted at will)

∫

Ω

dV̄

∫

W

dV̄ Fξ(x, x′) =
1

2

∫

Ω

dV̄

∫

W

dV̄ ′ [Fξ(x, x′) + Fξ(x′, x)]

+
1

2

∫

Ω

dV̄

∫

W\Ω

dV̄ ′ [Fξ(x, x′)−Fξ(x′, x)]. (53)
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The first line of this equation may be physically interpreted as averaging the force on
matter at x due to matter at x′ and vice-versa. In this sense, it measures the failure
of Newton’s 3rd law. Using (36), (41), and (52),

1

2
[Fξ(x, x′) + Fξ(x′, x)] = T abB T a

′b′

B Lξ(ḡacḡbdḡa′c′ ḡb′d′Ḡcdc
′d′

S − 1

2
ḡabḡa′b′ḠS). (54)

The Lie derivative appearing here is the ordinary one: It acts on both points appearing
in its argument. One has, e.g., LξḠS(x, x

′) = ξa(x)∇aḠS(x, x
′)+ ξa

′

(x′)∇a′ḠS(x, x
′).

If ξa is an exact Killing vector associated with ḡab, Eq. (54) vanishes exactly. In many
other cases of interest, it is very small.

The second line of (53) effectively renormalizes Pξ. To see this, first note that

1

2

∫

Ω(Σ1,Σ2)

dV̄

∫

W\Ω(Σ1,Σ2)

dV̄ ′ [Fξ(x, x′)−Fξ(x′, x)] = Eξ(Σ1)− Eξ(Σ2), (55)

where

Eξ(Σ) :=
1

2

∫

Σ+

dV̄

∫

Σ−

dV̄ ′ [Fξ(x, x′)−Fξ(x′, x)]. (56)

Any hypersurface Σ used in this equation is assumed, as usual, to bisectW . The (four-
dimensional) portion of W in the future of Σ is denoted by Σ+, while the portion in
its past is denoted by Σ−. An explicit formula for the shift Eξ in the ξ-momentum is
easily obtained by combining (52) and (56). Using the notation

h̄Sab[R] := 4(ḡacḡbd −
1

2
ḡabḡcd)

∫

R

ḡa′c′ ḡb′d′T
c′d′

B Ḡcda
′b′

S dV̄ ′ (57)

for any spacetime volume R,

Eξ(Σ) =
1

4

(
∫

Σ+

T abB Lξh̄Sab[Σ−]dV̄ −
∫

Σ−

T abB Lξh̄Sab[Σ+]dV̄

)

. (58)

Despite appearances, this depends on the behavior of the body only in a finite four-
dimensional spacetime volume around Σ. Recalling that Ḡaba

′b′

S (x, x′) = 0 when x and
x′ are timelike-separated with respect to ḡab, this is the portion of W that cannot be
connected to every part of Σ∩W via timelike curves. In simple cases, it is essentially
a ball with radius of order the body’s light-crossing time. Further discussion may be
found in Sect. 5.2 below.

Changes in Pξ are computed by combining (53)-(55) with (49). Supposing, as
above, that a 1-parameter family of spacelike hypersurfaces Σs are available that
bisect W , the result may be written in differential (rather than difference) form:

d

ds
[Pξ(Σs) + Eξ(Σs)] =

1

2

∫

Σs

dS̄ T ab

{

Lξ
[

ḡab + (ḡacḡbd −
1

2
ḡabḡcd)Ĥ

cd
]

+ 2

∫

W

dV̄ ′ T a′b′Lξ
(

ḡacḡbdḡa′c′ ḡb′d′Ḡ
cdc′d′

S − 1

2
ḡabḡa′b′ḠS

)

}

+O(H3). (59)

The field

ĝab := ḡcd + (ḡacḡbd −
1

2
ḡabḡcd)Ĥ

cd (60)

appearing in the first line of (59) is essentially the physical metric with the portion
due to Hab

S subtracted out. Recalling from (44) that

Ĥab =
1

4π

∫

∂W

ḡa′d′ ḡb′f ′ ḡc
′h′

(Ḡaba
′b′

S ∇̄c′Ĥ
d′f ′ − ∇̄c′Ḡ

aba′b′

S Ĥd′f ′

)dS̄h′ +O(H2), (61)
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it satisfies the vacuum Einstein equation (with a possible cosmological constant) up
to terms of order H2. We refer to ĝab as the effective metric.

Now note that Ḡaba
′b′

S is a purely geometric object associated with the background

spacetime. This means that LξḠaba
′b′

S can always be written as a (nonlocal) linear
functional of Lξḡab. Any such instances of Lξḡab appearing in (59) may be replaced
by Lξ ĝab without changing the size of the error already present in that equation. The
evolution equation for Pξ(Σs) + Eξ(Σs) can therefore be written entirely in terms of
integrals linear in Lξ ĝab and confined to regions near Σs.

Given that ĝab is an approximate solution to the vacuum Einstein equation, one
might expect that it often varies slowly inside the body. This suggests that it can be
useful to expand (59) in a multipole series analogous to (14). As in the test body case,
the result is simple only if the vector fields ξa are chosen carefully. By analogy with
the discussion in Sect. 2, set

ξa = ĝabΞb, (62)

where Ξa is a generalized Killing field constructed as in Appendix B, but using the
effective metric ĝab instead of gab. The ĝab appearing here is the inverse of ĝab. It is
clear from (8) that for GKFs of this type,

Lξ ĝab|Γ = ∇̂aLξĝbc|Γ = 0 (63)

when Γ = {γs|s ∈ I ⊆ R} is the ĝ-timelike worldline used to construct the GKFs and
∇̂a is the derivative operator associated with ĝab.

If the components ĝµν are sufficiently well-behaved in Riemann normal
coordinates constructed with the origin γs and metric ĝab, it is now possible to show
that [10]

Lξ ĝab(x) =
∞
∑

n=2

(· · ·)abc1···cnLξĝab,c1···cn(γs), (64)

where the usual caveats regarding asymptotic series apply. ĝab,c1···cn denotes the
nth tensor extension of ĝab (see Sect. 2). The omitted coefficients in this equation
are complicated but calculable. Details of their properties are discussed in [10].
Regardless, it is now clear that there exist tensors Îc1···cnab(s) such that (59) reduces
to

d

ds
P̂ξ(Σs) =

1

2

∞
∑

n=2

1

n!
Îc1···cnab(s)Lξ ĝab,c1···cn(γs) +O(H3), (65)

where

P̂ξ := Pξ + Eξ. (66)

Eq. (65) is identical to the test mass expression (14) for dPξ/ds under the replacements

gab → ĝab, Pξ → P̂ξ, Ic1···cnab → Îc1···cnab. (67)

This means that in general relativity linearized about a vacuum background – possibly
with Λ 6= 0 – the momenta P̂ξ associated with a self-gravitating compact body behave

as though they were the momenta of a test mass with multipole moments Îc1···cnab

moving in a vacuum metric ĝab. All direct effects of H
ab
S have been absorbed into the

definitions of P̂ξ and Îc1···cnab. This is made more explicit in Sect. 6 below, where

laws of motion are obtained for effective linear and angular momenta p̂a and Ŝab.
The arguments are essentially identical to the ones given in Sect. 2 for extended test
masses.
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5.1. A non-perturbative formulation: eliminating the background metric

The central result obtained so far is the expansion (65) for dP̂ξ/ds. This provides
asymptotic series for changes in the linear and angular momenta of a large class of
extended (but bounded) masses in general relativity. The main assumption is that
the metric near the body be “close” to a particular vacuum metric ḡab. In actuality,
it is not necessary to specify an independent background at all. An appropriate ḡab
may be constructed by self-consistently identifying it with the effective metric.

To see this, it is first useful to recount the main steps in the derivation that
has already been presented. Briefly, combining stress-energy conservation with the
definitions (3) and (28) for Pξ and Hab yields (49). Substituting the definition (43)
for Hab

S into this equation and following Eqs. (51)-(56) leads to (59). From this point,

essentially no calculation is required to recover the final form (65) for dP̂ξ/ds.
Note that the error estimate associated with, e.g., (59) does not change if the

S-type Green function Ḡaba
′b′

S is modified by terms linear in the metric perturbation.
This freedom may be used to consider slightly different definitions from those
introduced above. Introduce a new effective metric g̃ab and a Green function
G̃aba

′b′

S (x, x′) = G̃a
′b′ab

S (x′, x) satisfying (41) with the replacements ḡab → g̃ab,

ḠS(x, x
′) → G̃S(x, x

′) = G̃S(x
′, x), etc. Also suppose that G̃aba

′b′

S (x, x′) = G̃S(x, x
′) =

0 if x and x′ are timelike-separated with respect to g̃ab. G
aba′b′

S and G̃S can be solutions
to (31) and (42), but other equations may be used instead.

In any case, define

H̃ab
S := 4

∫

W

G̃aba
′b′

S g̃a′c′ g̃b′d′T
c′d′

B dV ′, (68)

and

g̃ab = gab − (g̃acg̃bd −
1

2
g̃abg̃cd)H̃

cd
S . (69)

This last equation is to be interpreted as an implicit definition for g̃ab in terms of
the physical metric and the stress-energy tensor. There is no reason to suppose that
an exact solution exists or is unique. We assume, however, that there are no such
difficulties.

In practice, one might have physical reason to suppose that gab is “near” a
known vacuum solution ḡab. This can be used as an initial guess for g̃ab in order to
compute an approximate H̃ab

S . Substituting the result into (69) provides an improved
approximation for g̃ab. The prescription (60) for ĝab provided above may therefore be
interpreted as essentially the first iteration in a recursive sequence that (hopefully)
converges to g̃ab.

The advantage of this construction is that it is possible to derive an exact analog
of (59). Suppose that the definition (3) for Pξ is retained precisely as written (with
no particular assumption regarding the nature of the ξa). Repeating the same types
of calculations as before, one finds that

d

ds
[Pξ(Σs) + Ẽξ(Σs)] =

1

2

∫

Σs

dS T ab
[

Lξg̃ab + 2

∫

W

dV ′ T a
′b′

× Lξ
(

g̃acg̃bdg̃a′c′ g̃b′d′G̃
cdc′d′

S − 1

2
g̃abg̃a′b′G̃S

)

]

, (70)

where

Ẽξ(Σ) :=
1

4

(
∫

Σ+

T abB Lξh̃Sab[Σ−]dV −
∫

Σ−

T abB Lξh̃Sab[Σ+]dV

)

, (71)
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and

h̃Sab[R] := 4(g̃acg̃bd −
1

2
g̃abg̃cd)

∫

R

g̃a′c′ g̃b′d′T
c′d′

B G̃cda
′b′

S dV ′. (72)

No approximations have been made in these equations. If, however, g̃ab = ḡab+O(H)
for some known metric ḡab, g̃ab = ĝab +O(H2) and Ẽξ = Eξ +O(H3).

Although this result is very simple, it is not clear if it is significantly more powerful
than the perturbative equation (59). The new effective metric g̃ab is not a vacuum
solution to the exact Einstein equation. Despite this, one might still suppose that g̃µν
can be expanded in a Taylor series near Σs in a Riemann normal coordinate system
constructed with the metric g̃ab and origin γs. If this is possible – and if an accurate
approximation can be obtained by truncating the series after a small number of terms
– Eq. (64) may be used to obtain a multipole expansion for the evolution of Pξ + Ẽξ.
This is most conveniently done using GKFs Ξa = g̃abξ

b constructed using the effective
metric g̃ab. In this case,

d

ds
(Pξ + Ẽξ) =

1

2

∞
∑

n=2

1

n!
Ĩc1···cnabLξg̃ab,c1···cn . (73)

To the extent that this equation may be trusted, it generalizes (65). In the perturbative
regime, Ĩ ··· = Î ··· +O(H3) and g̃··· = ĝ··· +O(H2).

The development here provides a sense in which the gravitational Detweiler-
Whiting axiom is exact: The field H̃ab

S can be entirely removed from the laws of
the motion using finite renormalizations. All references to perturbative expansions
and background metrics have been eliminated. Unfortunately, the effective metric
in which the body is found to move does not satisfy the vacuum Einstein equation
exactly. It will be left to future work to decide whether or not this result is useful for
computing, e.g., nonlinear corrections to the gravitational self-force and self-torque.
The remainder of this paper focuses on the implications of the perturbative viewpoint.
This is equivalent to the exact treatment for sufficiently small metric perturbations.

5.2. An interlude: effective multipole moments

Before continuing to describe the motion of an extended body, we first discuss
the renormalized multipole moments appearing (65). The monopole and dipole
moments are contained in P̂ξ, which differs from Pξ by the Eξ given in (58). The
physical meaning of this expression is not immediately clear. It is made considerably
more transparent by specializing to the case of a stationary system in a Minkowski
background ḡab = ηab. Suppose that T abB is invariant under the action of a particular
time-translation vector field ∂/∂t, where t is a globally-inertial time coordinate for
ηab. Neglecting terms of O(H3) and higher, the ξa (technically constructed using ĝab)
may be replaced with Minkowski Killing fields. This may be used to show that

Eξ(Σ) → −1

4

∫

Σ

T abB hSabξ
cdS̄c +O(H3). (74)

Now specialize further so that the only significant component of T abB is
proportional to (∂/∂t) ⊗ (∂/∂t). Also take Σ to be a hypersurface of constant t
that is unbounded in every direction. Suppose as well that the only significant metric
perturbation is Hab

S . Then

P̂ξ(Σ) = Pξ(Σ) + Eξ(Σ) →
∫

Σ

(T abB + tab)ηbcξ
cdS̄a +O(H3), (75)
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where tab is the Landau-Lifshitz tensor (A.14). If the ξa were exactly Minkowski
Killing fields, the linear and angular momenta extracted from this using a formula like
(9) would be exactly those typically identified as the total momenta of the system in
post-Newtonian theory.

Returning to the general case of a dynamical system evolving on a curved
background, consider the quadrupole and higher effective moments Î ··· appearing in
(65). It is more difficult to find formulae for these objects than for P̂ξ, although they
may still be determined (at least approximately) using the techniques developed in
[10]. This is not difficult conceptually, but requires a great deal of tedious calculation.
We merely note that like P̂ξ(Σs), the Î

···(s) depend on details of the system in a finite
four-dimensional region around Σs.

The form of (65) and the discussion in Sect. 2 also makes it clear that the effective
moments may be taken to have the same index symmetries as their bare counterparts.
This means that Îc1···cnab is separately symmetric in its first n and last two indices.
It also satisfies (17) with the substitution I ··· → Î ···. Additionally, recall that the
effective metric ĝab is a solution to the linearized vacuum Einstein equation. There
is therefore no loss of generality in setting certain traces of the multipole moments to
zero as discussed in Sect. 2 and in [10].

6. Center of mass motion

At this point, effective linear and angular momenta p̂a(s) and Ŝab = Ŝ[ab](s) may be
introduced as tensor fields on the worldline Γ used to define the GKFs. By analogy
with the test mass equation (9), suppose that

P̂ξ(Σs) = p̂a(s)Ξa(γs) +
1

2
Ŝab(s)∇̂aΞb(γs) (76)

for all GKFs Ξa(x) defined using the metric ĝab, the worldline Γ, and the vector field
nas . The ξ

a appearing on the left-hand side of this equation is related to Ξa via (62).
Differentiating (76) while using (63) gives

d

ds
P̂ξ =

(

D̂p̂a

ds
− 1

2
R̂bcd

aŜbcγ̇ds

)

Ξa +
1

2

(

D̂Ŝab

ds
− 2p̂[aγ̇b]s

)

∇̂aΞb. (77)

D̂/ds is the covariant path derivative compatible with ĝab and R̂bcd
d is the Riemann

tensor associated with this metric. Eq. (77) is directly analogous to the test mass
relation (12). Combining it with (65) yields multipole expansions for D̂p̂a/ds and
D̂Ŝab/ds identical to (19)-(22) after the replacements

pa → p̂a, Sab → Ŝab, Ic1···cnab → Îc1···cnab

gab → ĝab, Rabc
d → R̂abc

d, gab,c1···cn → ĝab,c1···cn (78)

∇a → ∇̂a, D/ds→ D̂/ds, F a → F̂ a, Nab → N̂ab.

We refer to the resulting equations as the “hatted forms” of their counterparts in the
theory of extended test bodies.

The worldline and foliation used to construct the GKFs may now be fixed by
choosing them such that

p̂a(s) ∝ nas , (79)

ĝab(γs)p̂
a(s)Ŝbc(s) = 0. (80)
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These are directly analogous to the center of mass conditions (23) and (24). Unlike
in that case, however, there exists no proof that these equations have well-behaved
solutions. We assume, however, that they do.

As in Sect. 2, it is useful to choose the parameter s such that ĝabp̂
aγ̇bs = −m̂,

where

m̂ :=
√

−ĝabp̂ap̂b. (81)

We also set ĝabn
a
sn

b
s = −1, so p̂a = m̂nas . The center of mass velocity is then given

by (27) with the replacements (78) and m → m̂. Together, the hatted versions of
(19)-(22) and (27) strongly constrain the evolution of the body’s linear and angular
momenta as well as its center of mass. They do not determine it completely. As in the
test body case, the evolution of the quadrupole and higher moments must be specified
using other methods. Additionally, the effective metric ĝab couples to the motion in a
nontrivial way. This is the main complication in practical computations involving the
gravitational self-force.

It can be useful to define a spin 1-form Ŝa via

Ŝa := −1

2
ǫ̂abcdn

b
sŜ

cd. (82)

The center of mass condition (80) guarantees that all information contained in Ŝab is
also contained in Ŝa. This means that (82) is invertible:

Ŝab = ǫ̂abcdĝcfn
f
s Ŝd. (83)

Note that p̂aŜa = 0. The hatted form of (20) implies that

D̂Ŝa
ds

= nbs

(

m−1ĝabŜc
D̂p̂c

ds
− 1

2
ǫ̂abcdN̂

cd

)

. (84)

The D̂p̂c/ds appearing on the right-hand side of this equation may be eliminated using
the hatted form of (19). By not doing so, one may interpret the first term in (84) as
being responsible for a kind of Thomas precession. It arises from the requirement that
p̂a and Ŝa remain orthogonal.

There is nothing that prevents the effective mass m̂ from varying. It immediately
follows from its definition (81) that

dm̂

ds
= −ĝabnas

D̂p̂b

ds
. (85)

Substituting the hatted form of (19) into this equation and simplifying with the hatted
form of (27) leads to a (large) equation that does not explicitly involve γ̇as . Another
useful form is [25]

dm̂

ds
= ĝab

(

−γ̇as F̂ b + m̂−1nasN̂
bcĝcd

D̂p̂d

ds

)

. (86)

which follows from (80) as well as the hatted versions of (19) and (20). Additional
manipulations to the right-hand side of this equation may be used to bring it into a
form involving total s-derivatives and “induction terms” that depend on derivatives of
the moments in a certain non-rotating reference frame [2, 25]. Regardless, it is clear
that m̂ couples only to the quadrupole and higher moments Î ···.
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6.1. Monopole and dipole approximations

As a simple application of the laws of motion just derived, consider truncating them
at dipole order. This means that the quadrupole and higher moments Î ··· are to be
ignored. As a consequence, F̂ a = N̂ab = 0. It also follows from (86) that the effective
mass m̂ remains fixed in this approximation. All of the P̂ξ are also constant. The linear
and angular momenta evolve via the Papapetrou equations in the effective metric:

D̂p̂a

ds
=

1

2
R̂bcd

aŜbcγ̇ds , (87)

D̂Ŝab

ds
= 2p̂[aγ̇b]s . (88)

The center of mass velocity satisfies

m̂γ̇as = p̂a +
1

2

(

ŜabŜcdpf R̂cdb
lĝfl

m2 + 1
4 Ŝ

bcŜdf R̂bcdlĝfl

)

, (89)

which may be used to eliminate γ̇as from the right-hand sides of (87) and (88). The
result is a coupled set of ODEs for p̂a, Ŝab, and γs. Alternatively, one may replace
the evolution equation for Ŝab with one for Ŝa using (82) and (84).

Now consider a non-spinning body. It follows from (88) and (89) that Ŝab = 0 is
a valid solution to the dipole equations for all time. In this case, the object’s center
of mass moves on a geodesic of the effective metric:

D̂2γas
ds2

= 0. (90)

It is common in the literature to write equations of this sort in terms of the
background derivative operator D̄/ds. For any vector va(s) or covector wa(s),

D̂va

ds
=

D̄va

ds
+ Ĉabcγ̇

b
sv
c;

D̂wa
ds

=
D̄wa
ds

− Ĉcabγ̇
b
swc, (91)

where Ĉabc is given by (A.8) with the substitution gab → ĝab. To linear order in the
metric perturbation, (90) is therefore equivalent to

D̄2γas
ds2

=
1

2
ḡad(∇̄dĝbc − 2∇̄bĝcd)γ̇

b
s γ̇
c
s . (92)

Note that there is no projection operator on the right-hand side of this equation. In
general, the background acceleration need not be orthogonal to the 4-velocity (with
respect to ḡab). This is because the parameter s has been chosen such that γ̇as has
unit norm with respect to ĝab. It is more typical to normalize the 4-velocity with
respect to the background metric. Introduce a new time parameter s̄(s) such that
ua := (ds/ds̄)γ̇as satisfies ḡabu

aub = −1. Eq. (92) then becomes the more familiar

D̄ua

ds̄
=

1

2
(ḡad + uaud)(∇̄dĥbc − 2∇̄bĥcd)u

buc. (93)

This background acceleration (multiplied by m̂) is what is typically referred to as the
gravitational self-force.

One might also be interested in defining a mass m̄ :=
√

−ḡabp̂ap̂b using the
background metric. While it has already been noted that the m̂ defined by (81)
remains constant in the current approximation, the same is not true of m̄. The
“background mass” evolves via

d

ds

[

m̄

(

1− 1

2
ĥabu

aub
)]

= 0. (94)
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If the spin is “small” rather than exactly zero – meaning that only linear terms
in Ŝa are to be retained in the various evolution equations – it is parallel-propagated
along Γ with respect to ĝab:

D̂Ŝa
ds

= 0. (95)

This may be interpreted as being equivalent to a self-torque in the background
spacetime:

D̄Ŝa
ds

= −1

2
ḡcd(∇̄dĥab − 2∇̄(aĥb)d)u

bŜc. (96)

It is unclear how consistent this equation is over long times. It does not preserve the
constraint p̂aŜa = 0 if coupled to an evolution equation for p̂a that involves any spin
coupling at all (even when that coupling only involves the background curvature).
If Ŝab is evolved instead of Ŝa, the center of mass condition (80) would fail to
remain preserved over time. These complications do not arise if the more complicated
equations (87)-(89) are retained in full.

6.2. A small mass

Self-force problems are usually considered in cases where the object of interest is
very small compared to any background length scales. It is also assumed (at least
implicitly) that the internal dynamics occur on timescales that are long compared
to the body’s size. This may be formalized by fixing the background and considering
certain one-parameter families of stress-energy tensors that shrink in an approximately
self-similar manner (see, e.g., [3, 18]). Unfortunately, it is difficult to obtain significant
gravitational self-forces and self-torques without leaving the regime of linearized
gravity. If self-interaction effects are to be significantly larger than the neglected
nonlinearities, it would appear that the body must be able to support significant
tensile and shear stress if it is to avoid tidal disruption.

The O(H3) error in (65) suggests that forces computed using that equation could
be incorrect by terms of order (mass/radius)3. The neglected torques are perhaps of
order (mass)3/(radius)2. These are very conservative estimates. It is likely that most
of the self-field will not directly affect the motion at higher orders, so the actual errors
are probably significantly smaller (at least if the momenta are renormalized again).
It might be possible to establish this using the exact formalism in Sect. 5.1, but we
have not done so. It will therefore not be assumed.

Regardless, the spin and some of the higher moments generically have a larger
effect on the motion than the self-force. This is relatively innocuous. It has already
been established that corrections to the laws of motion involving the higher multipole
moments are exactly those already known from the test body regime. We shall
therefore focus only on computing the lowest order self-force and self-torque as these
quantities appear in (93) and (96). Additional corrections independent of the self-
interaction are easily added if necessary for the specific system under consideration.
The arguments we now present can easily be made more rigorous by adopting scaling
assumptions like those in, e.g., [3]. The details would not be particularly interesting,
so we instead present what is essentially a plausibility argument.

The key physical assumption needed to recover equations already derived by other
methods is that the metric perturbation essentially be the body’s retarded field. It
is not likely, however, that the linearized theory is valid in the distant past. For this
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reason, the submanifold M on which we’re working should not be extended that far.
A retarded field therefore cannot be produced by integrating T abB against the retarded

Green function Ḡaba
′b′

ret into the infinite past [19]. Instead, Cauchy data should be
prescribed on some initial hypersurface Σs0 ⊂M . Applying (34) then produces a field
of the form

Hab = 4

∫

W+

ḡa′c′ ḡb′d′Ḡ
aba′b′

ret T c
′d′

B dV̄ +Hab +O(H2), (97)

where Hab is some homogeneous solution of (30) and W+ := Σ+
s0 ∩W is the portion

of W to the future of Σs0 .
Far outside of W , Hab will appear nearly indistinguishable from a retarded

solution of the linearized Einstein equation with a point particle source (see, e.g.,
[12, 18, 19]). To a first approximation, this “effective particle” can be taken to have
the worldline Γ, mass m̂, and no higher moments. This means that

Hab(x) → 4m̂

∫ ∞

s0

Ḡaba
′b′

ret (x, γs′ )ḡa′c′(γs′ )ḡb′d′(γs′ )γ̇
c′

s′ γ̇
d′

s′ ds
′ +Hab (98)

at large distances. Now, the motion is determined by the effective field Ĥab inside W .
Using (61), this may be written in terms of a surface integral involving Hab. While
the surface used in that equation is ∂W , this may be changed to a very large timelike
tube T that surrounds W . Integrating over T results in

Ĥab = 4m̂

∫ ∞

s0

Ḡaba
′b′

R ḡa′c′ ḡb′d′u
c′ud

′

ds′ +Hab, (99)

where Ḡaba
′b′

R := Ḡaba
′b′

ret − Ḡaba
′b′

S is typically referred to as the R-type Detweiler-
Whiting “Green function” (even though it satisfies a homogeneous wave equation).
As in Sect. 6.1, ua ∝ γ̇as has unit norm with respect to ḡab. The conclusion of
this argument is that for a sufficiently small particle with slow internal dynamics,
the effective field inside W is essentially that of a point particle. A similar comment
cannot be made for the retarded field.

The Hadamard form (37) for Ḡaba
′b′

S (and the equivalent for Ḡaba
′b′

ret ) may now

be used to compute Ĥab explicitly. As can be seen from (93), we need only the first
derivative of this field on Γ. This has already been computed in, e.g., [12] for the case
where R̄ab = 0 and D̄ua/ds = 0. We shall continue to assume that the acceleration
is zero, as any terms involving it will be negligibly small. We do, however, generalize
the Ricci tensor to be Λḡab. Then

∇̄cĤ
ab(γs) = 4m̂

[

(

R̄cdf
(aub) − ucR̄d

(a
f
b)
)

uduf − 1

3
Λucu

aub
]

+Hc
ab + ∇̄cHab, (100)

where

Hc
ab := 4m̂ lim

ǫ→0

∫ s−ǫ

s0

∇̄cḠ
aba′b′

ret ua′ub′ds
′. (101)

For simplicity, indices in these equations have been raised and lowered with the
background metric. Also note that the limiting process used to define Hab

c avoids the
singularity in the retarded Green function.
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Now suppose for simplicity that ∇̄cHbc is negligible, as can be arranged if linear
perturbation theory may be trusted sufficiently far in the past. Substituting (100)
into (93) then yields

D̄ua

ds
=

1

2
(ḡad + uaud)ubuc(Hdbc − 2Hbcd) + . . . . (102)

This is the MiSaTaQuWa equation as it is usually written (at least if s0 → −∞)
[12, 18, 19, 20, 21]. An equation for the spin evolution is easily obtained by substituting
(100) into (96):

D̄Ŝa
ds

= −2m̂ubucR̄abc
dŜd −

1

2
ubŜc(Hcab − 2H(ab)c) + . . . . (103)

As we have already noted, these are not the full laws of motion. Most objects in
which the current analysis is valid will also be significantly affected by a number of
terms involving higher multipole moments. These are ordinary test body effects, and
have nothing to do with self-force. They are easily added as needed using the results
obtained above.

7. Discussion

We have shown that the Detweiler-Whiting S-field does not directly affect the bulk
motion of an uncharged mass in what is essentially linearized general relativity. It
does shift definitions for the effective multipole moments of a body’s stress-energy
tensor. This can be viewed as providing a justification for the original Detweiler-
Whiting axiom [8] that a “point mass” moves on a geodesic in an effective metric
produced by subtracting the S-field from the physical metric (if “point mass” is
replaced by “mass with small but finite size”). The validity of this type of statement
has also been extended considerably. It applies to all multipole orders and also to
the evolution of a body’s angular momentum. This joins similar results that have
recently been established for objects with scalar or electromagnetic charge moving in
fixed background spacetimes [4, 11].

The forms of the evolution equations obtained here are formally the same as the
multipole expansions provided by Dixon [2, 22, 34] for extended test masses. Dixon’s
series were originally derived using an extremely restrictive assumption regarding the
deviation of the physical metric from the background. This work shows that their
basic structure remains valid in a much wider context (after suitable renormalizations
and a shift in the effective metric).

Various generalizations of this work could be attempted. Most obviously, it would
be interesting to understand how the nonlinearities in Einstein’s equation affect the
motion of an uncharged mass distribution. A promising starting point for addressing
this question is the development in Sect. 5.1. This shows that there is a sense in which
the Detweiler-Whiting S-field may be exactly renormalized out of the laws of motion.
This leaves an effective metric which is not quite a vacuum solution, so it is not clear
to what extent it would be useful in deriving higher-order self-force effects.

Appendix A. Einstein’s equation in wave gauge

This paper considers the behavior of a material body in a spacetime (M, gab). This
is compared to a known spacetime (M̄, ḡāb). A reasonable correspondence cannot be
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expected globally, so restrict attention to the submanifolds M ⊆ M and M̄ ⊆ M̄.
These two regions are assumed to be diffeomorphic. An explicit diffeomorphism
between them – the gauge map – may be used to identify “equivalent points” in a
perturbative expansion. We make use of the wave gauge. This identifies points in the
two spacetimes using a diffeomorphism φ :M → M̄ that satisfies the Euler-Lagrange
equations obtained by varying φ in the action [36]

S :=
1

2

∫

M

gab[gab − (φ∗ḡ)ab]dV, (A.1)

where (φ∗ḡ)ab denotes the pullback of ḡāb̄|M̄ toM via φ. In the Riemannian case, such
maps are termed harmonic. In the Lorentzian case considered here, they are called
wave maps.

This action has two simple interpretations. The first arises from noting that the
quantity in brackets in (A.1) is the metric perturbation as it would typically be defined
in M :

hab := gab − (φ∗ḡ)ab. (A.2)

S is therefore the average trace of the metric perturbation (multiplied by one-half of
the volume of M). Alternatively, introduce coordinates xµ in M and x̄µ̄ in M̄ . The
gauge action then takes the explicit form

S = 2vol(M)− 1

2

∫

M

gµν(x)
∂φµ̄

∂xµ
∂φν̄

∂xν
ḡµ̄ν̄(φ(x))

√

−g(x)d4x. (A.3)

The first term here is an irrelevant constant, while the second has the form of an
energy integral for the map φ (or φµ̄(xµ) as it appears in coordinates). Although it is
tempting to think of the φ we obtain as extremizing these quantities, it only does so if
δφ = 0 on ∂M . This is a physically strong restriction if M is a compact submanifold
of M.

Regardless, varying (A.3) with respect to the gauge map yields

gµν(x)

(

∂2φµ̄

∂xµ∂xν
+
∂φρ̄

∂xµ
∂φν̄

∂xν
Γ̄µ̄ρ̄ν̄(φ(x)) −

∂φµ̄

∂xρ
Γρµν(x)

)

= 0. (A.4)

The Christoffel symbols Γµνρ and Γ̄µ̄ν̄ρ̄ appearing here are computed from gµν and ḡµ̄ν̄
in the usual way. Given the covariant nature of the action (A.1), it should not be
surprising that (A.4) may be written in a form that is completely free of coordinates
[36]. This is somewhat nontrivial, however, so we do not describe it here. The
important point is that any solution to (A.4) in one pair of coordinates remains a
solution under any pair of coordinate transformations. The resulting φ is known as a
wave map.

Now suppose that M = M̄ , and that the two coordinate systems considered
above are identical. We then say that gab is in a wave gauge with respect to ḡab if the
identity φ(x) = x is a wave map from M to itself. Substituting into (A.4) shows that
this occurs if

gµν(Γλµν − Γ̄λµν) = 0. (A.5)

The term in parentheses here is the difference between two connections, which is a
tensor field on M . In coordinate-free notation, the gauge condition has the equivalent
forms

0 = gab(∇̄agbc −
1

2
∇̄cgab) (A.6)

= gab∇a(ḡbc −
1

2
gbcg

df ḡdf ), (A.7)
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where ∇a and ∇̄a are the usual Levi-Civita connections associated with gab and ḡab,
respectively.

Note that (A.5) is exactly the harmonic coordinate condition when gµνΓ̄λµν = 0
(as occurs if ḡµν = ηµν = diag(−1, 1, 1, 1), for example). Eq. (A.7) is, in a sense, an
“inverted Lorenz” condition. It specifies the ordinary Lorenz gauge condition if our
interpretation of gab and ḡab is reversed so that gab is considered to be the background
metric. In this sense, choosing φ to map from the full spacetime to the background
gives a harmonic-like gauge condition. Choosing the opposite orientation for this map
recovers the Lorenz gauge condition. Both of these cases coincide in the linearized
theory.

It is straightforward to write down Einstein’s equation in wave gauge. First define

Ccab :=
1

2
gcd(2∇̄(agb)d − ∇̄dgab). (A.8)

In any coordinate system (and in any gauge), Cλµν = Γλµν − Γ̄λµν . A similar expression
also exists for the difference between the Riemann tensors associated with gab and ḡab
[37]:

Rabc
d − R̄abc

d = 2(∇̄[bC
d
a]c − Cfc[bC

d
a]f ). (A.9)

Contracting the second and fourth indices immediately gives

Rab − R̄ab = 2(∇̄[cC
c
a]b − Cdb[cC

c
a]d). (A.10)

These equations are all exact.
Now introduce a stress-energy tensor T ab = T (ab) via Einstein’s equation (29).

Do the same for the background stress-energy tensor T̄ ab. Applying the wave gauge
condition (A.5) to (A.10), one then finds that

gcd∇̄c∇̄dgab + 2(gcdgf(aR̄b)cd
f + R̄ab) = −16π[(gacgbd −

1

2
gabgcd)T

cd

− (ḡacḡbd −
1

2
ḡabḡcd)T̄

cd]− 2gcdgfh(
1

4
∇̄agcf∇̄bgdh

+ ∇̄cgaf ∇̄[hgd]b − ∇̄(a|gcf∇̄dg|b)h)− 2Λ(gab − ḡab), (A.11)

The metric itself (or hab = gab − ḡab) is not necessarily the simplest variable to
use here. Another possibility is to introduce the Hab defined by (28). This reduces to
the trace-reversed metric perturbation ḡacḡbd(hcd− 1

2 ḡcdḡ
fhhfh) when linearized. Also

note that
√−g/√−ḡ is shorthand for the proportionality factor between the volume

elements associated with the two metrics. In terms of Hab, Einstein’s equation takes
the form

�̄Hab + 2(ḡc(a −Hc(a)R̄dcf
b)Hdf + [2ḡc(aHb)d − (ḡab −Hab)Hcd]R̄cd −HabR̄

= −16π[(g/ḡ)T ab − T̄ ab + (16π)−1λab]

+ 2Λ[(
√

g/ḡ − 1)ḡab −
√

g/ḡHab] (A.12)

where �̄ := ḡcd∇̄c∇̄d,

λab := 16π(g/ḡ)tab + (∇̄dH
ac∇̄cH

bd −Hcd∇̄c∇̄dH
ab), (A.13)

and

16π(g/ḡ)tab := gcdg
fh∇̄fH

ac∇̄hH
bd +

1

2
gcdg

ab∇̄fH
ch∇̄hH

df

− 2gcdg
f(a∇̄hH

b)c∇̄fH
dh +

1

2
(gacgbd − 1

2
gabgcd)

× (gfpghq −
1

2
gfhgpq)∇̄cH

fh∇̄dH
pq. (A.14)
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The gauge condition (A.6) may also be written as

∇̄aH
ab = 0. (A.15)

If the background metric is flat and coordinates are introduced such that ḡµν = ηµν ,
(A.12) and (A.15) reduce to the Landau-Lifshitz form of Einstein’s equation. tµν also
coincides with the Landau-Lifshitz pseudotensor in this case.

Appendix B. Generalized Killing fields

The notion of a generalized Killing field (GKF) used in this paper was developed in
[23], where such objects were referred to as Killing-type generalized affine collineations.
Their main properties are are summarized in Sect. 2. For completeness, this appendix
provides explicit definitions. It is heavily based on the description in [38].

Everything in this appendix is formulated on a spacetime (M, gab). Note, however,
that the main text discusses GKFs constructed using different metrics. Besides the
geometry, a generalized Killing field Ξa also requires for its construction a smooth
timelike worldline Γ = {γs|s ∈ I ⊆ R} and a future-directed timelike vector field
na(s) ∈ TγsM defined along Γ. Note that s is not required to be proper time and nas
needn’t lie tangent to Γ.

A specific generalized Killing field may be fixed by choosing a time s0 together
with tensors Aa(s0) and Bab = B[ab](s0) at γs0 . The Killing transport equations

D

ds
Aa(s)− γ̇bsBba(s) = 0 (B.1)

D

ds
Bab(s) +Rabc

d(γs)γ̇
c
sAd(s) = 0 (B.2)

are used to uniquely extend these tensors to all of Γ. Note that the skew symmetry
of Bab is preserved by this prescription††.

Now consider all pairs (γs, v
a), where va ∈ TγsM is orthogonal to nas . This

forms a subset T⊥Γ of the tangent bundle TM . For any element of T⊥Γ, one may
associate an affinely-parameterized geodesic y(w) whose initial point is y(0) = γs and
whose initial tangent is va. As long as these geodesics can be extended sufficiently far,
the map (γs, v

a) → y(1) will be a smooth function from T⊥Γ to M . Its Jacobian is
clearly invertible at (least at) every point (γs, 0), so it follows from the inverse function
theorem that the given map defines a diffeomorphism on some neighborhood W of Γ.
This will be the region in which the GKFs are to be defined. It is assumed in the
main text that the body whose motion is being studied always lies inside this region:
W ⊂ W .

We now define the GKF Ξa(x) associated with a choice of Aa(s0) and Bab(s0).
The diffeomorphism just described may be used to uniquely associate x with (γτ , v

a) ∈
T⊥Γ. Use this pair to construct a geodesic y(w) as before. The GKF is then be
computed along y(w) by solving the Jacobi (or geodesic deviation) equation

D2Ξa
dw2

−Rabc
dẏbẏcΞd = 0, (B.3)

with initial data

Ξa(γτ ) = Aa(τ), (B.4)

DΞa(γτ )

dw
= vbBba(τ). (B.5)

†† It is possible to use initial data for which Bab is not skew. The vector field that eventually results
generalizes a homothety or other non-Killing affine collineation [23].
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As is standard, ẏa denotes the tangent to y(w). The given equations uniquely define
Ξa(x) throughout W once Aa and Bab are given at any one point on Γ. More detailed
discussions may be found in [10, 23, 38].
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