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1 Introduction

Calabi-Yau compactifications of the perturbative heterotic string to d = 4 Minkowski space

with N = 1 spacetime supersymmetry occupy a prominent position in the space of string

vacua. To the chagrin of the phenomenologist these models have a large number of moduli,

which precludes direct applications to the real world; however, this very same feature means

that many properties of these models are readily computable and can give new insights

into general features of heterotic compactifications away from the supergravity limit.

The gauged linear sigma model (GLSM) [1] has proven to be an important tool in the

exploration of heterotic moduli spaces. It is particularly important in the studies of vacua

admitting a large radius description as stable holomorphic vector bundles over Calabi-Yau

complete intersections in toric varieties. The main utility of the GLSM is the presentation

of at least some of the exactly marginal deformations of the (0,2) worldsheet superconformal

field theory (SCFT) as parameters in a weakly coupled UV Lagrangian. This presentation,
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when combined with quasi-topological field theory techniques, can be used to argue that

certain deformations are exactly marginal, to compute physically interesting correlators,

and to connect different regions in the moduli space. A recent review of this approach may

be found in [2].

Typically, the GLSM studies carried out to date have focused on deformations that

preserve the rank of the holomorphic bundle. In spacetime this is tantamount to ignoring

deformations along the Higgs branch. The aim of this note is to explain that the GLSM

can also be used to probe the Higgs branch, at least in the simplest situation, where

the undeformed theory is a compactification of the E8 ×E8 heterotic string with (2,2)

worldsheet supersymmetry. In that case, in the large radius limit, the stable bundle is just

the tangent bundle of the Calabi-Yau manifold. For generic values of the (2,2) moduli the

gauge group is E6 ×E8, and we seek to describe the Higgs mechanism for the E6 factor.

The main result of this work is a resolution of a puzzle, first raised in [3], concerning

rank-changing deformations of the most venerable model of all — the quintic hypersurface

in P
4. In brief, the issue is this: it is well established that this compactification has Higgs

branch deformations breaking E6 → SO(10) [4, 5]; there is an obvious guess as to how

these deformations are incorporated in the GLSM [3, 6]; yet the application of standard

GLSM tools yields an inconsistent massless spectrum at the Landau-Ginzburg locus of the

deformed model!

This is confusing to say the least, and it might dampen one’s enthusiasm for applying

GLSM tools to explore Higgs branch deformations. Fortunately, there is a simple resolution.

We will describe how to deform the GLSM to obtain the desired deformations and, by using

mirror symmetry, check that the puzzle is resolved in the full GLSM. The mirror perspective

will also identify the basic problem: a subtlety in the reduction of the GLSM to the simpler

Landau-Ginzburg description.

While we show that care is required in using the GLSM to describe the Higgs branch,

there are arguments that remain unmodified by turning on the deformation. For example

the results of [7] imply that the Higgs deformations are not lifted by worldsheet instanton

effects. With a little bit of care the GLSM can be used to study the Higgs branch and

continues to be a powerful and versatile tool.

The rest of the note is summarized as follows. In section 2 we review some standard

facts about the (2,2) SCFT defined by the quintic hypersurface and its space of deforma-

tions, and we summarize some more general results. Next, in section 3, we turn to the

quintic GLSM; we identify a natural set of infinitesimal Higgs deformations and discuss

some generalizations of the construction. In section 4 we tackle the Landau-Ginzburg

puzzle, and we end with a brief outlook.
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2 Quintic lore and its generalizations

As originally introduced in [8], the quintic compactification preserves (2,2) supersymmetry

on the worldsheet. The (2,2) SCFT has a special Kähler moduli space, which locally

splits into a product of the complexified Kähler and complex structure moduli spaces

of dimensions 1 and 101 respectively. The Fermat quintic, defined by the vanishing of∑
i Z

5
i = 0 in P

4, exhibits a global symmetry, G = (S5 ⋉ Z
5
5)/Z5. The S5 is generated by

permuting the P4 coordinates, while the Z
5
5 maps Zi 7→ e2πiai/5Zi, with ai = 0, . . . , 4. This

large symmetry group exists for all values of the Kähler modulus, connecting the large

radius limit and the Gepner point [9]. The charged matter is organized in 27 and 27
⊕101

representations of E6, whose vertex operators are in one-to-one correspondence with the

(2,2) moduli and thus remain massless at every smooth point in the (2,2) moduli space [10].

In addition to these massless fields, analysis in the large radius limit identifies 224 massless

E6 singlets. Since these have a geometric interpretation as elements of H1(EndT ), i.e.

the infinitesimal deformations of the Calabi-Yau tangent bundle, we will refer to them as

“bundle singlets.” These singlets can also be identified at the Gepner point, leading to one

of the earliest indications that (0,2) compactifications can possess remarkable (from the

low energy point of view) non-renormalization properties.

A natural question to ask [4] is whether the theory has flat directions along which the

(2,2) worldsheet supersymmetry is broken to (0,2) — the minimum necessary for an N = 1

spacetime supersymmetric heterotic vacuum [11]. There are two types of deformations to

consider: one might either try to give a vacuum expectation value (VEV) to a bundle

singlet or move onto the Higgs branch by giving VEVs to the 27 and 27s. In the large

radius limit the latter corresponds to deformations of T ⊕ O⊕k, where O is the trivial

bundle over the Calabi-Yau.

The existence of a Higgs branch, at least for special values of complex structure moduli,

is established by a beautiful argument combining worldsheet and spacetime ideas [5]. As

it is rather important for our purposes to feel sure that this branch exists, we will review

this argument. From the spacetime point of view an infinitesimal Higgs deformation may

be obstructed by D- or F-terms. In the case of breaking E6 → SO(10), we expect that the

former can be made to vanish by judiciously relating the 27 and 27 VEVs. To examine

the F-terms obstructions, the authors of [5] note1 that when the unperturbed vacuum is

defined by a CFT (as opposed to a sigma-model expansion around the infinite distance

large radius limit), then the effective superpotential for the massless fields should be given

by a power-series in the fields. Thus, if the F-term obstruction vanishes to all orders in the

fields, it must vanish exactly.

1See also [12–14] for related discussions.
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Suppose then that the complex structure moduli are tuned to the G-preserving locus,

and we consider an infinitesimal deformation that gives VEVs to the 27 and 270 — the

multiplet corresponding to the unique permutation-invariant monomial Z1Z2Z3Z4Z5. The

possible F-term obstructions are of the form (27 · 270)k and S(27 · 270)k, where S is

any singlet. However, some of the G-transformations act as discrete R-symmetries of the

unperturbed theory, and these R-symmetries rule out both types of couplings.2 Since the

obstructions vanish to all orders, we conclude that the deformation can be integrated to a

flat Higgs direction.

The discrete R-symmetries identified in [5] also imply that the bundle singlets remain

massless on the G-preserving locus of the moduli space, thereby providing a low energy

explanation for the seemingly miraculous absence of otherwise allowed F-terms. Neverthe-

less, a more delicate reasoning [15–17] demonstrates that (0,2) models are indeed string

miracles: the bundle singlets have a flat potential for all values of the (2,2) moduli! These

results have since been understood in a more general context of the GLSM: since all of the

E6-neutral singlets are represented as deformations of a GLSM Lagrangian, one can apply

the arguments of [7, 17, 18] to show that every one of the 326 singlets constitutes a flat

direction.

These arguments can be generalized to many more (2,2) and (0,2) compactifications

with a GLSM description. A (2,2) model with a GLSM description naturally includes three

types of E6-preserving deformations: the (2,2)-preserving “toric” Kähler and the “polyno-

mial” complex structure deformations, as well as polynomial bundle deformations, which

preserve (0,2) supersymmetry and in a large radius limit correspond to unobstructed defor-

mations of the tangent bundle. In general bundle deformations can be lifted by worldsheet

instantons [12]. However, in the GLSM context the possible lifting is highly constrained

by the results of [7, 16–18]: it is expected that worldsheet instanton corrections due to the

toric Kähler moduli do not lift the deformations that are representable in the GLSM.

The results of [7, 17, 18] can also be applied in the more general context of generic

(0,2) theories with a GLSM description. In favorable cases, e.g. models based on a stable

bundle over a Calabi-Yau manifold without non-toric Kähler parameters, these arguments

should be sufficient to show that the compactification is not destabilized by worldsheet

instantons.

Having assured ourselves that we stand on reasonably firm ground, we will now discuss

how to construct Higgs deformations in the GLSM. To that end, we will first discuss the

unperturbed theory.

3 The quintic GLSM

We begin with the familiar structure of the GLSM for the (2,2) supersymmetric com-

pactification of the quintic. It will be convenient to state the field content in terms of

(0,2) multiplets. We have bosonic chiral multiplets Σ, Φ0, and Φi, i = 1, . . . , 5, as well

as Fermi multiplets Γ0 and Γi. The latter are not chiral but instead obey the constraints

2These constraints are discussed in appendix A, where we slightly generalize the result.
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θ+ Φi Φ0 Γi Γ0 Υ Σ Γ6

U(1)L 0 0 1 −1 0 0 −1 −1

U(1)R 1 0 1 0 1 1 1 0

U(1)G 0 1 −5 1 −5 0 0 0

Table 1. Fields and charges for the (2,2) quintic; θ+ is the chiral (0,2) superspace coordinate.

D+Γ = E(Φ,Σ). These fields are coupled to a (0,2) vector multiplet with a chiral Fermi

field-strength multiplet Υ.3 The superspace expansions of these multiplets are as follows:

Υ = −2(λ− − iθ+(D − if01)− iθ+θ
+
∂+λ−),

Φ = φ+
√
2θ+ψ+ − iθ+θ

+∇+φ,

Σ = σ +
√
2θ+λ+ − iθ+θ

+
∂+σ,

Γ = γ− −
√
2θ+G− iθ+θ

+∇+γ− −
√
2θ

+
E(Φ,Σ). (3.1)

This is given in (−,+) signature with gauge-covariant derivatives ∇± and superspace

derivatives

D+ = ∂θ+ − iθ
+∇+, D+ = −∂

θ
+ + iθ+∇+. (3.2)

D is the top component of the vector field multiplet, f01 is the gauge field-strength, and

the G are auxiliary fields.

The Lagrangian is constrained by the U(1)G gauge symmetry, as well as a non-

anomalous U(1)L×U(1)R symmetry. The charges of the multiplets are indicated in table 1,

which also includes an additional Fermi multiplet Γ6. The Lagrangian consists of canon-

ical kinetic terms, potential terms due to the chirality constraints on the Γ, and a (0,2)

superpotential

W0 =
1
4τΥ+Φ0ΓiJi(Φ) + Γ0P (Φ), (3.3)

where Ji and P are polynomials in the Φi of charges, respectively, 4 and 5, and τ = ir+θ/2π

is a holomorphic coupling combining the F-I parameter r and the theta angle. The theory

enjoys (0,2) supersymmetry provided W0 is chiral, which requires

EiJi + E0P = 0. (3.4)

The (0,2) supersymmetry is enhanced to (2,2) when the E and J couplings take on special

values E0 = −5Φ0Σ, Ei = ΦiΣ, and Ji = P,i.

The geometric import of this construction is well-known [1, 6]. When the F-I parameter

r ≫ 0, the low energy theory is described by a (0,2) NLSM with target-space the Calabi-

Yau hypersurface M = {P = 0} ⊂ P
4 and massless left-moving fermions coupled to a

3We are following here the standard description as in [1] in the conventions of [19].
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bundle E defined as the cohomology of the complex

0 // O Ei
// OM (1)⊕5 Ji

// OM (5) // 0. (3.5)

When the E and J couplings take their (2,2) values it is easy to see that E = TM , and the

NLSM enjoys (2,2) supersymmetry. It is believed that the IR limit of this theory defines a

(2,2) SCFT with central charge 9 and integral U(1)L ×U(1)R charges.

It is a text-book fact that such a SCFT can be used to construct an N = 1 spacetime

supersymmetric heterotic compactification with gauge group E6 ×E8 [20, 21]. In brief, we

need the following additional ingredients: four free (0,1) supermultiplets representing the

R
1,3 directions, ten free left-moving fermions ξα, a level 1 left-moving E8 algebra, and the

bc−βγ ghost system of the critical heterotic string. Performing a requisite GSO projection,

we obtain our compactification. The SO(10) × U(1)L left-moving currents constitute the

linearly realized part of the E6 gauge symmetry, with remaining gauge bosons coming

from the twisted sectors of the GSO projection. In our conventions the SO(10) × U(1)L
decompositions of relevant E6 representations are as follows:

78 = 16−3/2 ⊕ 450 ⊕ 10 ⊕ 163/2,

27 = 10
−1 ⊕ 161/2 ⊕ 12,

27 = 1−2 ⊕ 16−1/2 ⊕ 101 . (3.6)

3.1 Deformations of the quintic theory

One of the main uses of the GLSM is to provide a tractable description of a subspace

of the moduli space of the SCFT. For instance, in the (2,2) quintic compactification the

GLSM parameter τ corresponds to the complexified Kähler parameter of the SCFT, while

the holomorphic couplings in the quintic polynomial P , when taken modulo holomorphic

field redefinitions, describe the 101 complex structure deformations of the quintic. By

varying the E and J couplings while preserving (3.4) it is also possible to describe the 224

deformations of the tangent bundle of the quintic.

It turns out that components of the Higgs branch can also be given a GLSM description.

This is particularly simple in the context of (2,2) compactifications due to the well-known

relation between the vertex operators for neutral moduli and the charged matter fields [10,

22]. Let Oa and Ôm denote elements of the (a,c) and (c,c) rings with U(1)L×U(1)R charges

(−1, 1) and (1, 1), respectively. The moduli are constructed by acting on these elements

with the left- and right-moving supercharges, which we denote, respectively, by G,G and

Q,Q:

Ma = G−1/2Q−1/2 ·Oa, M̂m = G−1/2Q−1/2 · Ôm. (3.7)

Similarly, the vertex operators for the 10−1 ⊂ 27 and 101 ⊂ 27 are obtained by replacing

the G,G action with a multiplication by the free fermions:

Oa → ξQ−1/2 · Oa, Ôm → ξQ−1/2 · Ôm. (3.8)
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Thus, in the SCFT we have a simple way to give VEVs to components in 10±1: we should

perturb the theory by

∆S = −ǫaα
∫
d2z ξαQ−1/2 ·Oa − ǫ̃mα

∫
d2z ξαQ−1/2Ôm + h.c., (3.9)

where α runs over the ten free left-moving fermions, and the ǫaα and ǫ̃mα denote the deforma-

tion parameters. Of course it is not so easy to determine which, if any, of these parameters

can integrated up to exactly marginal deformations.

Let us narrow our sights further on Higgs deformations breaking E6 → SO(10). In

order to build the SO(10) current algebra in the deformed SCFT we will need to combine

the currents of a linearly realized SO(8)×U(1)L algebra with contributions from the twisted

sectors of the GSO projection. Hence our deformations should leave eight free left-moving

ξ, and they should couple to the remaining two ξs in such a way as to preserve a U(1)L
symmetry. This is easily done by combining the two coupled ξs into a Weyl fermion γ6

and writing our coupling as

∆S = −ǫa
∫
d2z γ6Q−1/2 ·Oa − ǫ̃m

∫
d2z γ6Q−1/2Ôm + h.c. . (3.10)

Note that ∆S breaks the U(1)L symmetry of the undeformed (2,2) theory, as well as the

U(1) symmetry of the free γ6; however a linear combination of the two, under which γ6

transforms with charge −1 is preserved. In what follows, we will refer to this as “the”

U(1)L symmetry. We will denote the (2,2) left-moving R-symmetry by U(1)′L.

In a geometric setting, where the SCFT is realized by a NLSM, this infinitesimal

deformation has a simple interpretation: the infinitesimal deformations of TM ⊕ OM are

described by

H1(TM ⊕OM ) = H1(EndTM )⊕H1(T ∗
M )⊕H1(TM ), (3.11)

and the ǫ and ǫ̃ label the elements of H1(T ∗
M ) and H1(TM ), respectively.

We can now apply this idea in the context of a (2,2) GLSM and E6 → SO(10) de-

formations: all we need are GLSM representatives of the Oa and Ôm. In the example of

the quintic, for instance, the (a,c) chiral operator is represented by σ, while the 101 (c,c)

operators are represented by gauge-invariant polynomials φ0f(φ1, . . . , φ5). The abstract

couplings in ∆S now take a concrete form. The quintic GLSM is supplemented by an

additional Fermi multiplet Γ6 with a chiral constraint

D+Γ
6 = ǫΣ, (3.12)

and the (0,2) superpotential is modified to

W0 → W1 =
1
4τΥ+Φ0(ΓiJi + Γ6J6) + Γ0P, (3.13)

where J6 = ǫ̃mfm(Φ) is a quintic polynomial. This GLSM, which we dub M1, will be (0,2)

supersymmetric provided that the couplings obey the (0,2) supersymmetry constraint,
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which for Ei and E0 at their (2,2) values implies

ΦiJi + ǫJ6 = 5P. (3.14)

When r ≫ 0, we expect M1 to reduce to a (0,2) NLSM for a rank 4 bundle E1 encoded

by the cohomology of the complex

0 // OM

(E
i

ǫ )
// OM (1)⊕5 ⊕OM

(Ji,J6)
// OM (5) // 0. (3.15)

The argument of [7] can be easily applied here to show that worldsheet instantons cannot

destabilize the solution. Thus, provided E1 is a stable bundle, we expect the M1 GLSM to

flow to a deformed SCFT describing a heterotic vacuum with SO(10) gauge symmetry.4

3.2 Stability of E1 via the M2 GLSM

A simple and instructive way to demonstrate stability of E1 is to consider a related GLSM

description, which we dub the M2 model. Consider the most general M1 GLSM for ǫ 6= 0.

That is, Ei = Ai
jΦ

jΣ, E0 = −bΦ0Σ, and J6 is determined by (3.14) in terms of E, Ji and

P . Now consider the following redefinition of the Fermi multiplets:

Γi = Γ̃i + ǫ−1ΦjAi
jΓ̃

6, Γ0 = Γ̃0 − ǫ−1bΦ0Γ̃6, Γ6 = Γ̃6. (3.16)

With this redefinition the (0,2) superpotential takes a simpler form

W1 7→ W2 = Φ0Γ̃iJi + Γ̃0P. (3.17)

The redefinition also acts on the E-couplings: E0 and Ei are set to zero, while E6 = ǫΣ.

Thus, up to presumably irrelevant modifications of kinetic terms for the Fermi multiplets,

the M1 GLSM consists of a free massive multiplet (Σ, Γ̃6) and the remaining degrees of

freedom Φ, Γ̃ coupled to the U(1)G gauge field. The latter defines the M2 GLSM. Up to

presumably irrelevant terms the M2 and M1 models only differ by a decoupled massive

multiplet, and we expect that they lead to the same IR dynamics. Note that we could have

also obtained M2 from M1 by taking ǫ→ ∞, while at the same time scaling ǫ̃ → 0.

The M2 GLSM is a simpler theory: there are fewer fields, no E-couplings, and therefore

no need for a (0,2) supersymmetry constraint. The left-moving fermions couple to a familiar

rank 4 monad bundle E2, defined as a kernel

0 // E2 // OM (1)⊕5 Ji
// OM (5) // 0. (3.18)

This bundle splits if and only if the defining quintic polynomial P is in the ideal 〈J1, . . . , J5〉,
in which case E2 = F ⊕ O with F a deformation of TM . When in addition Ji = P,i, we

find E2 = TM ⊕ OM . The same change of variables that showed M2 = M1 in the IR for

ǫ 6= 0 also makes it obvious that E2 = E1 as holomorphic bundles. The stability of E2 with

4Recall that the usual spacetime non-renormalization arguments rule out α′ perturbative corrections.
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generic Ji has been proven many times, e.g. in [23–25], so it seems that we can expect the

IR limits of both M1 and M2 GLSMs to define heterotic vacua with gauge group SO(10).

Although M1 and M2 should lead to identical IR physics for ǫ 6= 0, the situation is not

so clear for ǫ = 0. For instance, we might wonder whether we can describe the (2,2) locus

in the context of the M2 model. Since the field redefinition relating M2 and M1 is singular

at ǫ = 0, one might suspect that this is not so simple. Indeed, we cannot expect to find

(2,2) supersymmetry in the UV GLSM without “integrating in” the missing massive fields.

However, one might hope that the IR NLSM derived from the M2 GLSM fares better.

After all, by setting Ji = P,i we do obtain E2 = TM ⊕OM . As we discuss in appendix B,

this does not seem to be the case, and recovery of the (2,2) locus may only be possible at

the level of the SCFT.

3.3 Infinitesimal deformations of the M1 GLSM

We can generalize the construction of the previous section to include the full set of SO(10)-

preserving deformations encoded by the Ei and Ji potentials. Following [26] we can count

the infinitesimal deformations obtained in this fashion.

The M1 Lagrangian depends on 630 complex parameters, of which 126 are eliminated

by the (0,2) supersymmetry constraint. The GLSM deformation space is obtained as a

quotient of this 504-dimensional space by the 80-dimensional space of holomorphic field

redefinitions. As not all redefinitions act properly on the parameter space,5 care must be

taken to obtain the correct count. We find that if J6 ∈ 〈J1, J2, . . . , J5〉 and ǫ = 0, there are

428 infinitesimal GLSM deformations; otherwise the number drops down to 427.6

In spacetime these deformations should be interpreted as (at least a subset of ) SO(10)

singlets that remain massless for all values of the GLSM parameters. When ǫ = 0 and J6
is in the ideal 〈J1, J2, . . . , J5〉, M1 is equivalent by a field redefinition to the quintic GLSM

supplemented by a free left-moving Weyl fermion, and thus we expect 326+ 1+ 101 = 428

massless SO(10) singlets; at a more generic point, where the gauge group is broken to

SO(10), we expect to lose one singlet due to the Higgs mechanism and possibly additional

ones due to F-term mass terms. The GLSM counting suggests there is no additional F-term

lifting of the singlets.

3.4 Generalizations

The construction of E6 → SO(10) Higgsing via GLSM deformations is easily general-

ized to (2,2) compactifications where M is a Calabi-Yau hypersurface in a toric variety

{Ck+4 \ F}/(C∗)k. In this case, the “toric” Kähler moduli are represented by the σa —

the scalars in the U(1)kG gauge multiplets, while the “polynomial” complex structure defor-

mations are represented by gauge-invariant monomials in the φi [27]. Using these operators

as the building blocks, we can deform the initial E6 GLSM to an SO(10) GLSM with a

correspondingly simple generalization of the deformed bundle in (3.15). Similarly, it should

not be too difficult to generalize the construction to rank 5 cases, as well as Calabi-Yau

5For instance, the U(1)L ×U(1)G transformations leave the parameters invariant.
6For ǫ 6= 0, this counting is reproduced in the M2 model, where we find 427 deformations.
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complete intersections in toric varieties. However, it should be borne in mind that, as in

the case of (2,2) deformations, the number of infinitesimal GLSM deformations may not

accurately reflect the number of massless singlets — the quintic example is particularly

fortuitous in this sense.

Lacking a generalization of [25] to these more general hypersurfaces/complete inter-

sections, one must provide a separate argument that the construction leads to a stable

deformation of TM ⊕ O⊕k
M . It would be nice to have a general geometric statement; how-

ever, it should be clear that in some vacua a generalization of the discrete R-symmetry

arguments of [5] should be sufficient to show existence of flat Higgs directions at least for

special values of the complex structure moduli. More generally, in vacua with a GLSM de-

scription one can try to argue as follows. To all orders in sigma model perturbation theory

the possible F-term obstructions are due to cubic couplings of the form S27 · 27, where S
is some bundle singlet [5, 28], and in vacua with a GLSM description these couplings are

strongly constrained [16]. Thus, spacetime arguments may rule out or at least constrain the

possible F-term obstructions. Of course once the α′-perturbative obstructions have been

shown to vanish, one can reap the real benefit of the GLSM embedding by constraining

or eliminating all together the worldsheet instanton effects that could lift the purported

vacuum.

4 A puzzle at the Landau-Ginzburg locus

In the previous section we argued that the M1 GLSM is a good description of the E6 →
SO(10) Higgs branch, at least in the neighborhood of the large radius limit. Since this is

the case, given the spacetime arguments of [5] and the GLSM worldsheet stability argu-

ments of [7, 17, 18], it would be very surprising if M1 were not a sensible model at the

Landau-Ginzburg (LG) locus — the limit r → −∞. Yet precisely this puzzling feature was

noted in [3]: the spectrum, as obtained by LG orbifold techniques, is not compatible with

expectations based on the supersymmetric Higgs mechanism. This surprising observation

was a primary motivation for our study, and in this section we will describe what we be-

lieve to be the resolution of the puzzle. Before resolving the puzzle, our first goal will be

to state it clearly. We will then gain some insight by a mirror computation and describe

the resolution.

4.1 Massless spectrum at the Landau-Ginzburg locus

Massless spacetime fermionic states in a (0,2) heterotic compactification arise as right-

moving Ramond ground states, and hence can be identified with elements of HQ — the

cohomology of the Q supercharge. If the vacuum has a (0,2) GLSM description, then

barring accidents in the IR, we can hope to identifyHQ of the SCFT with theQ cohomology

of the GLSM. Since the GLSM is a well-behaved super-renormalizable theory, one might

hope that the cohomology computation is reasonably tractable.

In order to identify massless states it is not sufficient to describeHQ; in both the (NS,R)

and (R,R) sectors one must also know the left-moving quantum numbers, namely the energy
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θ Φi Γi Γ6

U(1)L 0 1
5 −4

5 −1

U(1)R 1 1
5

1
5 0

Table 2. M1 symmetries at the LG locus.

E, the U(1)L charge q, and representation of the linearly realized SO(10).7 Fortunately,

it is possible to identify GLSM operators T and J in HQ that generate a left-moving

Virasoro×U(1)L algebra [17, 29], and these can be used to compute the requisite left-

moving quantum numbers. Moreover, the GSO projection relates SO(10) representations

to the U(1)L charges, while U(1)R charges, denoted by q, distinguish the types of spacetime

supermultiplets [30].

The computations are greatly simplified when the effects of the GLSM gauge instantons

are suppressed by going deep into the interior of a well-behaved phase. In the M1 model

there are two limits where gauge instantons are suppressed: (i) the large radius limit

r → ∞, or (ii) the LG-locus r → −∞. In the latter case, the excitations of Φ0, Σ and Γ0

are very massive, and the large VEV |φ0|2 = −5r necessary to solve the GLSM D-term

Higgses U(1)G to Z5. The remaining light degrees of freedom, Φi, Γi and Γ6 are described

by a Landau-Ginzburg orbifold with chiral (0,2) superpotential

WLG = ΓiJi(Φ) + Γ6J6(Φ), (4.1)

and U(1)L×U(1)R charges listed in table 2. The generator of the Z5 gauge symmetry acts

on the fields by e2πiq.

Many properties of such LG orbifolds are reasonably well-understood both in the con-

text of type II compactifications [31, 32], and heterotic vacua [3, 30]. For our purposes, the

most important simplification obtained at the LG locus is the computation of HQ, which

may be accomplished in two steps: restrict to right-moving zero modes and represent QLG

on the remaining excitations via

QLG =

∮
dz

2πi

(
γiJi(φ) + γ6J6(φ)

)
. (4.2)

Note that we have implicitly rotated to Euclidean signature, and we will find it convenient

to take our worldsheet to be the plane.

The action of the Z5 gauge symmetry can be conveniently combined with the GSO

projection by introducing twisted sectors |k〉, k = 0, . . . , 9, where the internal fields have

periodicities shifted by eiπqk, while the 8 free fermions ξ are anti-periodic for k even and

periodic for k odd. The GSO projection is then carried out as follows. In NS sectors (k

odd), we project onto states with e−iπJ(−)Fξ = 1; in R sectors (k even) states with q odd

pair up with the 8s twist fields of the ξ system, while those with q even are paired with

the 8c twist fields. Finally, since we are interested in massless states, level matching allows

7Since all of the matter states are neutral under the hidden E8, we will ignore its quantum numbers.
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us to restrict attention to states with total left-moving energy zero.

With these ingredients in hand, we have a simple algorithm to compute the massless

spectrum [3, 30]:

1. compute the quantum numbers E, q, and q of the twisted vacua |k〉 (general expres-
sions for these in LG orbifolds can be found in [3]);

2. construct the E = 0 states by acting on |k〉 with lowest raising modes of the fields in

each sector, and project onto appropriate values of q;

3. compute HQ;

4. identify spacetime multiplets as follows: a state with q = −1/2 belongs to a chiral

matter multiplet; one with q = 1/2 is in an anti-chiral multiplet; states with q = ±3/2

are gauginos in vector multiplets, with q = 3/2 being right-handed.

The computation is further simplified by noting that CPT exchanges sector k with 10− k

for k > 0, so that we need only consider k = 0, . . . , 5.

We can recover the E6 locus of the quintic theory by setting J6 = 0 and keeping Ji
generic. In this case, the free Γ6 can be treated as part of the ξ system, and instead of

labeling states by their SO(8)×U(1)L quantum numbers, it is more natural to use SO(10)×
U(1)′L labels.8 The latter labeling yields the same description as originally obtained in [30].

As we are interested in deformations that break U(1)′L and preserve U(1)L, it will be

more useful to work with the SO(8)×U(1)L representations described above; however for

convenience and comparison, we will list both representations.

Applying the algorithm and concentrating on states with q < 0, we find the following

massless fermions.9

1. Gauginos 78 = 16−3/2 ⊕ 450 ⊕ 10 ⊕ 163/2.

16−3/2 = 8c
−2 ⊕ 8s−1 (k = 0),

450 ⊕ 10 = 280 ⊕ 8v
−1 ⊕ 8v1 ⊕ 1⊕2

0 (k = 1),

163/2 = 8c
2 ⊕ 8s1 (k = 2).

2. Matter 27 = 10
−1 ⊕ 161/2 ⊕ 12.

10−1 = 8v−1 ⊕ 1−2 ⊕ 10 (k = 3),

161/2 = 8c0 ⊕ 8s1 (k = 4),

12 = 12 (k = 5).

8Note that the twisted vacua |2k〉 have q′ = q + 1/2, while |2k + 1〉 vacua have q′ = q.
9The gravitino, dilatino, and the hidden E8 gauginos may all be found in the k = 1 sector.
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3. Matter 27 = 1−2 ⊕ 16−1/2 ⊕ 101. (101 of these.)

1−2 = 1−2 (k = 9),

16−1/2 = 8s
−1 ⊕ 8c0 (k = 0),

101 = 8v
1 ⊕ 10 ⊕ 12 (k = 1).

4. Neutral matter. Finally, we have 1⊕301
0 from k = 1 and 1⊕25

0 from k = 3.

Special values of Ji can lead to additional massless states associated with an enhanced

abelian symmetry. For instance, by tuning to the Gepner values Ji = Φ4
i we find that the

k = 1 sector contains four more gauginos and four more E6-neutral singlets. As we move

away from such special points the extra gauginos and matter are paired up by the Higgs

mechanism. This is manifested in the LG computation by a change in HQ. In particular,

the zero energy q = 0 states in the k = 1 sector take the form

0 //

C
25

Q
//

C
350 // 0

q = −5
2 q = −3

2 q = −1
2 q = 1

2

. (4.3)

When Ji is generic, Q has a one-dimensional kernel at q = −3/2; for non-generic choices of

Ji the dimension of the kernel jumps. For example, at the Fermat point the kernel becomes

5-dimensional, leading to four more gauginos and four more chiral fermions.

4.2 The puzzle

Having reviewed the massless spectrum computation at the LG locus with J6 = 0, we

now describe the modifications when J6 6∈ 〈J1, . . . , J5〉. The naive expectation is that

turning on J6 corresponds to giving VEVs to the spacetime scalar fields φ = 10 ∈ 27 and

φ̃ = 10 ∈ 27. Thus, we expect that some of the fermions will get masses by D-terms and

others via F-terms.10 First, the gauginos and charged matter fermions should be paired

up by the gauge Yukawa terms, with mass terms of the form

LD
Yuk = iφ†

{
λ8s

−1
· ψ8

s
1
+ λ8v

1
· ψ8

v
−1

}
+ iφ̃†

{
λ8s

1
· ψ̃8

s
−1

+ λ8v
−1

· ψ̃8
v
1

}

+ iλ10

{
φ†ψ10

− φ̃†ψ̃10

}
+ h.c. . (4.4)

In the LG description of the spectrum this can only be manifested by a change in the

cohomology akin to that described below (4.3). That is, turning on J6 should lead to a

∆Q, which must provide new non-zero maps among the states. Specifically, to implement

the spacetime Higgs mechanism, ∆Q should lead to the following non-zero maps (we now

10In this section the λ is an E6 gaugino, while ψ(ψ̃) is a fermion in the chiral 27(27) matter multiplet.
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specify the q and q charges of the states)

∆Q : 8s−1,−3/2 −→ 8s−1,−1/2︸ ︷︷ ︸
k=0

, 8v1,−3/2 −→ 8v1,−1/2, 1⊕2
0,−3/2 −→ 10,−1/2︸ ︷︷ ︸

k=1

, (4.5)

as well as

∆Q : 8s1,−3/2︸ ︷︷ ︸
k=2

−→ 8s1,−1/2︸ ︷︷ ︸
k=4

, 8v
−1,−3/2︸ ︷︷ ︸
k=1

−→ 8v−1,−1/2︸ ︷︷ ︸
k=3

, 1⊕2
0,−3/2︸ ︷︷ ︸
k=1

−→ 10,−1/2︸ ︷︷ ︸
k=3

. (4.6)

The second change in the massless spectrum is due to the F-terms. For instance, the

273 and 27
3
couplings lead to the following F-term mass terms (for simplicity we suppress

the indices on the 27):

LF
Yuk = φ(ψ8

c
0
· ψ8

c
0
+ ψ1−2

ψ12
) + φ̃(ψ̃8

c
0
· ψ̃8

c
0
+ ψ̃1−2

ψ̃12
) + h.c. . (4.7)

In the LG description, these should lead to masses for the 102 10s via the following maps:

∆Q : 8c⊕101
0,−1/2 −→ 8c⊕101

0,1/2︸ ︷︷ ︸
k=0

, 1⊕101
2,−1/2 −→ 1⊕101

2,1/2︸ ︷︷ ︸
k=1

, (4.8)

and

∆Q : 8c0,−1/2︸ ︷︷ ︸
k=4

−→ 8c0,1/2︸ ︷︷ ︸
k=6

, 1−2,−1/2︸ ︷︷ ︸
k=3

−→ 1−2,1/2︸ ︷︷ ︸
k=5

. (4.9)

Note that the 12,1/2 state in k = 1 is CPT conjugate to the 1−2,−1/2, k = 9 state quoted in

the 27 decomposition, and similarly the 1−2,1/2 in k = 5 is CPT conjugate to the 12,−1/2

quoted in the 27 decomposition. Provided that all of these maps are non-trivial, we would

find a sensible spectrum of an SO(10) theory, with massless spectrum consisting of the

following q < 0 states:

1. gauginos: 45 = 8c−2︸︷︷︸
k=0

⊕280 ⊕ 10︸ ︷︷ ︸
k=1

⊕ 8c2︸︷︷︸
k=2

;

2. SO(10)-charged matter: 16⊕100 = 8s⊕100
−1︸ ︷︷ ︸
k=0

⊕8v⊕100
1︸ ︷︷ ︸
k=1

;

3. neutral matter, consisting of 427 states with components in k = 1 and k = 3 sectors.

Carrying out the computation for generic Ji and J6, we find all of these states and explicitly

identify the maps in (4.5) and (4.8).11 For special values of the J the 27
3
couplings can

develop zeroes, leading to the vanishing of some of the maps in (4.8) and therefore to

additional massless 10 fields. For instance, setting Ji = φ4i and J6 = φ1φ2φ3φ4φ5, we find

11Details of the computation are provided in appendix A.
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50 massless 10s, in agreement with the large radius computation [33]. These states are also

accompanied by an enhanced U(1)4 gauge symmetry with corresponding massless scalars.

Unfortunately, the sensible SO(10) spectrum is accompanied by extra massless states.

Their origin is simple to understand: since ∆Q manifestly preserves the twisted vacuum,

it cannot lead to the maps in (4.6) or in (4.9). Thus, the fermions in (4.6) and (4.9) remain

massless. From the spacetime point of view, it appears that we are working in a “vacuum”

with φ = 0 and φ̃ 6= 0; but that is not consistent with N = 1 spacetime supersymmetry!

It should be clear that this conundrum is not confined to the quintic. In fact, the Higgs

deformations of any (2,2) vacuum with a GLSM description and a Landau-Ginzburg locus

will have the same sort of paradoxical spectrum. This is the puzzle we wish to resolve.

At this point it is good to remember that starting at the Gepner point we can give a

VEV to φ by deforming the SCFT by the bosonic twist field that is the superpartner of

the 10 fermion in the k = 3 sector. By the arguments of [5], we are guaranteed a marginal

direction with E6 broken to SO(10), provided we tune the φ and φ̃ VEVs appropriately.

Of course the deformation by a twist field necessarily breaks the quantum symmetry of the

LG orbifold [34, 35] and thus cannot be described as a change in the Q-cohomology of the

LG theory.

We also recall that the original M1 GLSM did encode both the 27 and 27 infinitesimal

deformations, and before reduction to the LG locus that theory certainly has effects that

break the quantum symmetry of the orbifold — namely the gauge instantons. Thus, it

is reasonable to guess that the problem lies in the reduction of the GLSM to the LG

description. To explore this guess it would be useful to study the effect of the ǫ coupling

for finite r; although this is challenging to do directly, it is relatively straightforward in the

mirror description, to which we turn next.

4.3 A glance in the mirror

The mirror LG orbifold for the quintic is obtained by supplementing the Z5 quotient by

an additional Z3
5 symmetry, which acts on the Φi,Γi by

(Φi,Γi) → e2πit
awa

i (Φi,Γi), (4.10)

where ta = 0, . . . , 4 for a = 1, 2, 3, and the generators wa
i can be taken as12

w1 = (0, 15 , 0, 0,−1
5 ), w2 = (0, 0, 15 , 0,−1

5 ), w3 = (0, 0, 0, 15 ,−1
5). (4.11)

On the E6 locus, the most general (0,2) potential compatible with the Z5 × Z
3
5 orbifold

symmetry is

W = ΓiJi, Ji = Φ4
i − ψ

∏

j 6=i

Φj. (4.12)

Turning on the 27 VEV in the original theory is equivalent to turning on a 27 VEV in

the mirror, and following the construction of section 3.1, we see that the candidate GLSM

12We are indebted for this choice of basis to [36].
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operator is uniquely determined as

∆W = zΓ6
∏

i

Φi. (4.13)

The computation of the massless fermion spectrum proceeds essentially as before. The

new complications are the additional twisted sectors of the Z
3
5 orbifold and the requisite

projection onto Z
3
5-invariant states. It is important that the twisted vacua |k; t〉 carry Z

3
5

charges, which may be computed as in [37].

First setting z = 0, we reproduce the usual quintic spectrum, but this time in the

mirror description. When ψ 6= 0, we find the following states with q < 0. As before, we

give both the SO(10) × U(1)′L and SO(8) × U(1)L decompositions. In the former case the

free left-moving fermions are ξα, α = 1, . . . , 10, while in the latter they are ξa, a = 1, . . . , 8.

By a slight abuse of notation we refer by the same name to the field and its lowest excited

(possibly zero) mode in each sector. We also defineM =
∏

i φi and its conjugate M =
∏

i φi.

More details on our LG conventions can be found in appendix A.

1. Gauginos, 78 = 16−3/2 ⊕ 450 ⊕ 10 ⊕ 163/2.

|0;0〉 ↔ 16−3/2

{
|0;0〉 ↔ 8c−2

γ6|0;0〉 ↔ 8s−1.

ξαξβ|1;0〉 ↔ 450





ξaξb|1;0〉 ↔ 280

ξaγ6|1;0〉 ↔ 8v−1

ξaγ6|1;0〉 ↔ 8v1

γ6γ6|1;0〉 ↔ 10
∑

iφiφi|1;0〉 ↔ 10

|2;0〉 ↔ 163/2

{
|2;0〉 ↔ 8s1

γ6|2;0〉 ↔ 8c2

2. Matter 27 = 1−2 ⊕ 16−1/2 ⊕ 101.

M
2|9;0〉 ↔ 1−2

M|0;0〉 ↔ 16−1/2

{
γ6M|0;0〉 ↔ 8c0

M|0;0〉 ↔ 8s−1

ξαM|1;0〉 ↔ 101





γ6M|1;0〉 ↔ 12

ξaM|1;0〉 ↔ 8v
1

γ6M|1;0〉 ↔ 10

3. Matter 27 = 10−1 ⊕ 161/2 ⊕ 12. There are 101 of these, liberally scattered through

the various |k; t〉 twisted sectors. Fortunately, we will not need their explicit form.
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4. Neutral matter. There are 326 of these, also scattered throughout the twisted sectors.

When ψ = 0, the only modification to the spectrum is the appearance of four more gaug-

inos in the |1;0〉 sector. The
∑

i φiφi|1;0〉 state is replaced by ⊕iφiφi|1;0〉, which are

accompanied by four E6-neutral singlets at q = −1/2.

Having described the spectrum for z = 0, we can now turn on a J6 deformation and

study the modifications due to

∆Q = γ6J6 + γ†6J
′
6. (4.14)

The γ†6 is the conjugate mode to the first excited mode of γ6, and J6 and J ′
6 are quintic

polynomials obtained by expanding the operator zM in the modes φi and φ
†

i . Since ∆Q
does not change the left-moving energy, some or all of these terms are zero in most of the

twisted sectors. In fact, ∆Q only leads to modifications in the untwisted sector, the |1;0〉
sector, and its CPT conjugate |9;0〉.

In the untwisted sector we reduce to zero modes, and ∆Q = zγ†6M leads to the following

non-trivial maps:

∆Q : γ6|0;0〉 −→ M|0;0〉, Mγ6|0;0〉 −→ M
2|0;0〉, M

2γ6|0;0〉 −→ M
3|0;0〉. (4.15)

The last is CPT conjugate to the first, and matching the charges to the ξa spin fields, we

find the maps

∆Q : 8s−1,−3/2 −→ 8s−1,−1/2, 8c0,−1/2 −→ 8c0,1/2, 8s1,1/2 −→ 8s
1,3/2. (4.16)

All of the untwisted states are lifted, with the exception of the gauginos 8c
−2,−3/2 ↔ |0;0〉

and their CPT conjugates 8c2,3/2 ↔ γ6M3|0;0〉.
In the |1;0〉 sector we find (for brevity we suppress the ket |1;0〉):

∆Q : ξaγ6 −→ ξaM, γ6γ6 ⊕ φiφi −→ γ6M, γ6M −→ M
2, (4.17)

which corresponds to

∆Q : 8v1,−3/2 −→ 8v1,−1/2, 1⊕2
0,−3/2 −→ 10,−3/2, 12,−1/2 −→ 12,1/2. (4.18)

Comparing (4.16) and (4.18) to (4.6) and (4.9), and remembering to change q → −q, we
see that mirror symmetry predicts exactly the puzzling missing maps of the original LG

computation.

4.4 Puzzle resolution via the mirror map

Having assured ourselves that all of the expected mass terms are indeed generated for

z 6= 0, we are now ready to explain the puzzle in the original description.

In order to connect the original M1 description with its mirror, we need to map the

operators Oa and Ôm of (3.10) to the operators in the mirror theory. This is easily done

for the “toric” Oa and “polynomial” Ôm via the monomial-divisor mirror map [27, 38]. In
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the case of the quintic the result is simple: the M1 GLSM operator σ is identified with the

monomial M in the mirror theory.

The crucial point is that the operators σ and M correspond to infinitesimal deforma-

tions of the complexified Kähler moduli space of the quintic, parametrized by τ in the

original model and by ψ, defined in (4.12), in the mirror description. Since the chiral ring

elements are to be identified with the cotangent space to the moduli space, the operators

σ and M should be identified as

σ =
dψ

dτ
M. (4.19)

This is perhaps familiar from the relation of the three-point functions

〈σ3〉quintic =
(
dψ

dτ

)3

〈M3〉mirror. (4.20)

The monomial-divisor mirror map identifies e2πiτ = (−5ψ)−5, so the M1 GLSM deforma-

tion corresponding to turning on the 27 VEV is mapped as follows:

ǫγ6Q−1/2 · σ mirror
// zγ6Q−1/2 ·M with z(ǫ, q) = ǫ

dψ

dτ
∼ ǫe−2πiτ/5. (4.21)

In order to reach the LG locus of the M1 model, we know that we must tune r → −∞,

but what shall we do with the other parameters? The simplest possibility is to keep them

fixed. In this case the Q operator of the GLSM reduces to that of the LG theory, and

we obtain the “puzzling” spectrum. In the mirror description this sets z = 0, thereby

eliminating the non-trivial ∆Q maps identified above. Alternatively, as we take r → −∞
we can scale ǫ ∼ e2πiτ/5, in which case z stays finite, and the mirror computation produces

the expected maps. However, there is a price to pay in the original model: since some of

the GLSM parameters are now getting parametrically large as r → −∞, QGLSM need not

reduce to QLG. In fact, it is quite natural to expect that QGLSM has a gauge instanton

expansion, which in the LG phase takes the form

QGLSM = QLG + e−2πiτ/5Q1 + · · · . (4.22)

A comparison with gauge instantons in the large radius phase, which yield corrections

proportional to e2πiτn, n ∈ Z≥0, suggests that the factor e−2πiτ/5 be interpreted as a

fractional instanton effect. As explained in [1] this is the GLSM avatar of an insertion of a

Z5 twist field in the orbifold theory. In fact, Q1 will map states in the vacuum |k〉 to those

in |k + 2〉, which is exactly what the “missing maps” are supposed to do.

This is our proposed resolution: in order to turn on a 27 VEV in the LG limit of the M1

GLSM, the natural normalization of the GLSM operators requires us to scale ǫ ∼ e2πiτ/5

as we take the r → −∞ limit. This leads to an unsuppressed gauge instanton correction

to QLG which modifies the spectrum. It would be very interesting to compute Q1 directly

in the GLSM, but we will not pursue it in this paper.

Finally, it should be noted that this phenomenon has a clear echo in the spacetime
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theory. The charged matter kinetic terms have a non-trivial dependence on both types of

moduli [22], with metrics for the 27 and 27 fields given by, respectively,

G = g e(K̂−K)/3, Ĝ = ĝ e(K−K̂)/3. (4.23)

The K and K̂ are Kähler potentials for the complexified Kähler and complex structure

moduli spaces, while the g and ĝ are the corresponding metrics. In order to obtain sensible

results for the Higgs mechanism one must work with properly normalized matter fields.

Although the LG locus is at finite distance in the moduli space, in the natural GLSM

normalization of the operators, as one takes the r → ∞ limit, the 27 kinetic terms are

driven to zero, while the 27 ones are driven to infinity.

5 Outlook

In this note we made a small step in exploring the Higgs branch in N = 1 d = 4 compacti-

fications of the heterotic string. We argued that a GLSM description of a heterotic vacuum

with (2,2) worldsheet supersymmetry naturally includes deformations that correspond, at

least at the infinitesimal level, to E6-breaking deformations. It is clear that in a large

set of examples this construction will yield exactly marginal deformations, but the precise

conditions under which this should be true need to be clarified. One could, for instance,

try to directly prove stability of bundles defined by generalizing (3.15) to a Calabi-Yau

hypersurface in a toric variety.

The identification of the natural GLSM deformations corresponding to 27 and 27

VEVs relied on a two simple facts, which are probably good to keep in mind if one is

interested in the construction’s generalizations. First, we used the relation between the

10±1 charged matter vertex operators and (2,2) moduli. Second, we restricted attention

to the (2,2) moduli that can be realized as deformations of the GLSM Lagrangian. With

these provisos, however, the form of the GLSM deformations is reasonably clear.

By using mirror symmetry, we argued that the paradoxical spectrum of the deformed

theory at the Landau-Ginzburg locus is an artifact of the operator normalizations natural

in the “algebraic gauge” coordinates [27] of the GLSM. While this does account for the

puzzle, it would be more satisfactory and likely instructive to re-examine the reduction

of the original GLSM and directly compute the gauge instanton correction to QLG. We

believe this should be doable. This computation may also cast light on the relationship

between M1 and M2 GLSMs.

Given a vacuum with flat Higgs deformations encoded in the GLSM, there are many

questions one can explore. The GLSM parameter space modulo field redefinitions should

yield an algebraic description of this (0,2) moduli space as a holomorphic quotient. What

sorts of singularities are encountered? To what extent can we continue to picture the

moduli space as splitting into Kähler, complex structure, bundle, and Higgs moduli? Can

we generalize the quintic example and construct a mirror map relating the mirror Higgs

deformations?
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Perhaps the most striking difference between the Higgs deformations and deformations

by the gauge-neutral moduli is the discontinuous behavior of the topological heterotic

ring identified in [39–41]. Given the broad conditions under which this structure has

been shown to exist, it might be at first surprising that it should behave discontinuously

under small deformations of the theory. However, the reason is readily found: the Higgs

deformations, as opposed to the gauge-neutral deformations, break the U(1)′L symmetry

of the (0,2) SCFT. It will be interesting to explore the possible discontinuities and the

distinct topological heterotic rings that are realized on different loci in the same heterotic

moduli space. The GLSM description is likely to be our best tool for these explorations.

A Some details of the LG spectrum computation

A.1 Orbifold generalities

We follow the method of [3, 30], mostly in the notation of [37]. Given a (2,2) (c, c) = (9, 9)

theory defined by a superpotential W = ΓiP,i(Φ), with the U(1)L charges of the φi denoted

by αi, we are interested in the Z2d orbifold generated by e−iπJ , under which

φi 7→ e−iπkαi/2φi, γi 7→ e−iπk(αi−1)/2γi. (A.1)

The k = 0, . . . 2d− 1 twisted sectors are defined by the following modings for the holomor-

phic fields:

φi(z) =
∑

s∈Z−νi

φisz
−s−hi , γi(z) =

∑

s∈Z−ν̃i

γisz
−s−h̃i

φ
i
(z) =

∑

s∈Z+νi

φ
i
sz

−s+hi−1, γi(z) =
∑

s∈Z+ν̃i

γisz
−s+h̃i−1, (A.2)

where 2hi = αi, 2h̃i = 1 + αi,

νi =
kαi

2
(mod 1) 0 ≤ νi < 1,

ν̃i =
k(αi − 1)

2
(mod 1) −1 < ν̃i ≤ 0. (A.3)

We denote the lowest excited modes by

φi ≡ φi−νi , φi ≡ φ
i
νi−1, γi ≡ γi−1−ν̃i

, γi ≡ γiν̃i . (A.4)

With our conventions a twisted vacuum |k〉 is annihilated by φi (γi) whenever νi = 0

(ν̃i = 0). We use a dagger to denote the conjugate lowering modes — for instance φ†i ≡ φ
i
νi .

Since we are interested in the SO(10)-preserving deformations, we will also need to describe

the modes of γ6. This is simple: for even k γ6 has a zero mode and γ6|k〉 = 0, while for

odd k both γ6 = γ6
−1/2 and γ6 = γ6

−1/2 increase the left-moving energy E by 1/2. In the

conventions as above, the twisting of γ6 is described by ν̃6 = 0 for k even and ν̃6 = −1/2

for k odd.
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k E q′ q q ν ν̃

0 0 −3
2 −2 −3

2 0 0

1 −1 0 0 −3
2

1
10 −2

5

2 0 3
2 1 −3

2
1
5 −4

5

3 −1
2 −1 −1 −1

2
3
10 −1

5

4 0 1
2 0 −1

2
2
5 −3

5

5 0 −2 −2 1
2

1
2 0

Table 3. Vacuum quantum numbers for the quintic.

The quantum numbers of the twisted states are given by

q =
∑

i

[
(αi − 1)(ν̃i +

1
2 )− αi(νi − 1

2)
]
− (ν̃6 +

1
2),

q =
∑

i

[
αi(ν̃i +

1
2) + (1− αi)(νi − 1

2)
]
,

E =

{
0 when k is even,

−5
8 +

1
2

∑
i [νi(1− νi) + ν̃i(1 + ν̃i)] when k is odd.

(A.5)

The latter includes contributions from all the left-moving degrees of freedom — the left-

moving fermions ξ, the hidden E8 (always in its NS sector), and the spacetime bosons in

light-cone gauge. Note that q includes the contribution from γ6. To obtain the U(1)′L
charge q′ we simply omit that contribution.

A.2 Application to the M2 LG model

In this case αi = 1/5, and the charges of the twisted vacua |k〉, k = 0, . . . , 5 are given in

table 3. The remaining sectors contain CPT conjugate states and rarely require explicit

consideration. The table lists both the U(1)′L and U(1)L charges, where the computation

of the former omits the γ6 contribution to q in (A.5).

To compute the spectrum we apply the algorithm described in section 4.1. When

J6 ∈ 〈J1, . . . , J5〉, we simply recover the familiar quintic spectrum. So, without loss of

generality we may assume that J ≡ 〈J1, . . . , J5, J6〉 is irreducible and zero-dimensional.13

In what follows we will assume that J is generic.

The classification of states is facilitated with some convenient notation. We let R =

C[φ1, . . . , φ5], F = R⊕6, and denote the degree d components of the ring and module by

R[d] and F[d]. We will only describe the most involved sectors k = 0 and k = 1, leaving the

remaining sectors for the amusement of the reader.

k=0. The analysis in the untwisted sector reduces to the zero modes. The supercharge

is given by

Q = Ji(φ)γ
†
i + J6(φ)γ

†
6, (A.6)

13The latter condition guarantees that we are off the singular locus.
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and the E = 0 states are constructed from the φi and γi, γ6 zero modes. The states at

fixed q, q can be written as

|ψ〉 =
[
F

i1···ip
[d] γi1 · · · γip +G

i2···ip
[d−1] γi2 · · · γipγ6

]
|0〉, (A.7)

and since we must project onto integral q, d = 5q − 4p. We refer to this vector space as

∧pF[d], with ∧0F[d] ≡ R[d]. Its dimension is given by

dim∧pF[d] =

(
5

p

)
#(5, d) +

(
5

p− 1

)
#(5, d − 1), (A.8)

where #(n, d) is the dimension of Symd
R
n,

#(n, d) =

{(n+d−1
d

)
d ≥ 0

0 otherwise.
(A.9)

It is a general property of (0,2) LG theories that the Q cohomology in the untwisted

sector is given by the homology of the Koszul complex for the ideal J [42]. In the present

case the computation is considerably simplified when organized by degree. The degree d

complex is

K[d]
• = · · · // ∧2F[d−8]

Q
// F[d−4]

Q
// R[d] // 0, (A.10)

with homology groupsH
[d]
p . Note thatH

[d]
0 = R[d]/J , a simple generalization of the familiar

LG chiral ring. Since J is irreducible and zero-dimensional, the homology is concentrated

in the two right-most entries [43]. We expect that the dimensions of H
[d]
0 and H

[d]
1 are

simply given by counting the dimensions of the ∧pF[d] vector spaces.14 Computing these

dimensions, we find

dimH
[5m]
0 =





1 m = 0 ↔ 8c
−2,−3/2

100 m = 1 ↔ 8s⊕100
−1,−1/2

0 m > 1

, dimH
[5m]
1 =





100 m = 3 ↔ 8s⊕100
1,1/2

1 m = 4 → 8c
2,3/2

0 otherwise

.

(A.11)

Clearly the two contributions are CPT conjugates of each other.

k=1. We now repeat the exercise in the first twisted sector. The main new feature here

is that we must identify states with internal energy −1,−1/2, and 0.

1. The unique E = −1 state |1〉 can be used to construct the dilatino, gravitino, hidden

E8 gauginos, as well as the SO(8) gauginos 280,−3/2. The latter states are simply

ξaξb|1〉.
14It is not hard to convince oneself that the dimensions so obtained are correct for generic J ; for instance,

one can just adapt a similar argument from the large radius analysis of [33]. Of course extra massless states
do arise in less generic situations.
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2. The E = −1/2 states consist of the gauginos γ6|1〉 ↔ 8v
−1,−3/2, as well as the q = 1

states with q = −3/2 and q = −1/2:15

γ6|1〉1 ⊕ φiγj|1〉25
Q

// F[5]|1〉126. (A.12)

Q has a trivial kernel, leading to 8v⊕100
1,−1/2 states corresponding to the 100 elements of

R[5]/J .

3. Finally, we examine the states with zero internal energy, which turn out to have q = 0

or q = 2. The q = 0 states have q = −3/2 and q = −1/2:

γ6γ6|1〉1 ⊕ γiγj|1〉25
⊕

φiγjγ6|1〉25 ⊕ φiφj |1〉25

Q
// F i

[4]γi|1〉350 ⊕ γ6F[5]|1〉126. (A.13)

Here Q has a one-dimensional kernel, essentially due to the quasi-homogeneity of

the LG superpotential. Thus, we find a gaugino 10,−3/2 corresponding to the U(1)L
symmetry, as well as 401 SO(10) singlets with q = −1/2.

The q = 2 states are found at q = −3/2,−1/2 and 1/2:

φiγjγ6|1〉25
⊕

F ij
[2]γiγj|1〉150

Q
//

F i
[6]γ

i|1〉1050
⊕

F[5]γ6|1〉126

Q
// F[10]|1〉1001. (A.14)

For generic J the cohomology is empty.

The analysis of the remaining sectors is, if anything, simpler, and combining all of the

results leads to the “puzzling” spectrum described in section 4.2.

A.3 Constraints from the permutation symmetry

In this section we will present a slight generalization of the discrete R-symmetry arguments

used in [5]. This generalization is based on the simple fact that the LG presentation of the

spectrum makes it easy to determine the transformation properties of all the massless fields

under the discrete R-symmetries.16 In this section we label states by their SO(10)×U(1)′L
representations.

Consider the LG theory on the five-dimensional S5-preserving locus of complex struc-

tures. The S5 is a global symmetry in the spacetime theory, and we seek to determine the

action of permutations on the spectrum of massless fermions. The massless fermions are

presented as states O|k〉, where O is an operator constructed from the first excited modes

15We use the notation |ψ〉k to indicate the multiplicity k of states of type |ψ〉.
16Although the reasoning involved is fairly elementary, to our knowledge it has not been given explicitly.

Since it seems to be a fairly useful result in the context of LG vacua, we will indulge in a little bit of detail.
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of the twisted fields, and the action of a permutation P takes the form

PO|k〉 = eiσP (k)OP |k〉, (A.15)

where OP is simply obtained by permuting the modes in O, and P |k〉 = eiσP (k)|k〉. Our

task is to determine the σP (k).

We begin with some intuition from the large radius analysis. Under odd permutations

of the P4 coordinates the holomorphic 3-form Ω changes sign, and hence odd permutations

should correspond to R-symmetries (see, for instance, section 16.5.3 of [20]). Since Ω, or

rather, the corresponding chiral primary operator in the SCFT, is the square of the right-

moving spectral flow generator Σ(z), we see that the odd permutation acts as PΣ = ±iΣP .
Of course there is a similar action on the left-moving spectral flow operator: PΣ = ∓iηΣP ,
with η = 1 or −1.17 Our primary interest is in these R-symmetries, and we will restrict

attention to odd permutations henceforth.

The right-moving spectral flow operators show up in spacetime supercharges, and in

our conventions we have

Qα =

∮
dz e−ϕ/2SαΣ

†
(z), Qα̇ =

∮
dz e−ϕ/2Sα̇Σ(z), (A.16)

where ϕ is the spin-field for the βγ ghost system, while the Sα and Sα̇ are the spin-fields

for the fermions in the (0,1) multiplets of the R
1,3 degrees of freedom. Thus, Qα (Qα̇)

carries charges q = 0 and q = −3/2 (q = 3/2). In particular, a gauge boson vµ transforms

under supersymmetry as

[Qα, v
µ] ∼ γµ

αβ̇
λ
β̇
, (A.17)

and hence the gaugino λ (corresponding to a state with q = −3/2) should transform the

same way as Qα under P . For example, the 45 gauginos represented by ξαξβ|1〉 in the LG

spectrum18 should pick up a phase ∓i under P , implying P |1〉 = ∓i|1〉. Since the 16−3/2

and 163/2 gauginos are related to the gauginos in the k = 1 sector by left-moving spectral

flow, we also find

P |0〉 = η|0〉, P |2〉 = −η|2〉. (A.18)

Although P does not act homogeneously on the E6 representations, it is easy to combine

it with a U(1)′L gauge transformation to define an action P̃ = Pe∓iηπJ ′

that does act

homogeneously on the gauginos, P̃ : λ 7→ ∓iλ. This is clearly an R-symmetry, with the

spacetime superspace coordinates transforming as θα 7→ ±iθα. Note that [P̃ ,Σ] = 0.

Next, we consider the chiral (i.e. q = −1/2) 27 states. At the Gepner point the

101 101 in the k = 1 sector have the form ξαO|1〉, where O is a quintic polynomial in

the φi. Hence, P̃ : 101 7→ ±iP0(101), where P0 simply permutes the φi. The remaining

17As we shall see shortly, the sign ambiguities will not affect our results.
18Recall that the ξα are the ten free left-moving fermions.
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components of 27 are related by left-spectral flow, and it is not hard to verify that P̃ :

27 7→ ±iP0(27). The P̃ transformations of |1〉 and |k〉 imply that all of the E6 singlets

transform as P̃ : S 7→ ∓iP0(S).

The transformation of the single 10−1 is completely determined by that of |3〉. The k =

3 sector also contains the superpartner of the Kähler modulus, represented by
∑

i φiγi|3〉.
Since the Kähler modulus is invariant under all permutations, its chiral superpartner must

transform oppositely to θα, which implies P̃ |3〉 = ±i|3〉. Since left-moving spectral flow

relates |3〉 to |4〉 and |4〉 to γ1 · · · γ5|5〉, we see that P̃ : 27 7→ ±i27.
We have now determined the transformations of all the chiral fermions as well as θα,

and from this we easily obtain the transformations of the chiral superfields under odd

permutations:

P̃ : Φ27 7→ −Φ27, P̃ : Φ
27

7→ −P0(Φ27
), P̃ : ΦS 7→ P0(ΦS). (A.19)

Of course the superpotential must transform as θ2, i.e. W 7→ −W . But now we simply

observe that the terms (Φ27 ·Φ27
)k and ΦS(Φ27 ·Φ27

)k cannot appear in W . Thus, for any

point on the S5 locus we have found a large class of unobstructed deformations Higgsing

E6 → SO(10). Since the symmetry and the charge assignments persist for any value of

the Kähler modulus, we can extend this to large radius as well. That is of course what we

might expect from the supergravity analysis of [25].

B The low energy, r ≫ 0 limit of the quintic and M2 GLSMs

In this appendix we will try to recover the (2,2) locus in the NLSM derived from the M2

GLSM in the classical low energy limit. To obtain this limit, we must take the dimensionful

couplings of the gauge theory to infinity. These naturally include the gauge coupling e,

as well as the superpotential couplings. The resulting low energy theory receives quantum

corrections that are suppressed in the limit r ≫ 0. We will compare the low energy actions

obtained from the quintic and M2 GLSMs.

In the e → ∞ limit the fluctuations of the gauge multiplets are suppressed, while the

D-term is imposed as a constraint on the fields: the light bosons must satisfy

φiφi − 5φ0φ0 − r = 0. (B.1)

In addition, when P is a non-singular hypersurface (i.e. P,i = 0 has no solutions in P
4),

the bosons are further constrained to φ0 = 0 and P (φ) = 0. To solve these constraints, we

work in a patch with φ1 6= 0 and define affine coordinates ZI = φI/φ1, I = 2, . . . , 5. Fixing

the gauge to arg φ1 = 0, the D-term constraint is solved by

φ1 =

√
r

1 + Z · Z
, with Z · Z ≡ ZIZ

I
. (B.2)

Since we must also demand P (Z) = 0, we choose a parametrization ZI(za), a = 1, 2, 3 for

solutions to P (Z) = 0 in the φ1 6= 0 patch.
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In the quintic GLSM the fluctuations of σ are also suppressed in the e→ ∞ limit, and

we can eliminate it via its algebraic equation of motion: σ = iψ
i
γi/r

√
2. The remaining

terms in the action are then a sum of

Lkin = 1
2∇+φi∇−φi +

1
2∇−φi∇+φi + iψ

i∇−ψ
i + iγi∇+γ

i + iψ
0∇−ψ

0 + iγ0∇+γ
0,

LYuk = λ−ψ
i
φi + αλ+γ

iφi + γ0P,iψ
i + γiP,iψ

0 + h.c.

L4 = αr−1γiψiψ
i
γi. (B.3)

The parameter α is introduced to distinguish the quintic (α = 1) and M2 (α = 0) GLSMs.

The bosonic action of the NLSM is obtained by integrating out the v± gauge field.

This leads to

LB = ∂+φ1∂−φ1 + ∂+φI∂−φI − r−1JB
+J

B
− , (B.4)

where JB
± are the bosonic terms in the U(1) gauge current

JB
± = i

2φ
2
1(Z · ∂±Z − Z · ∂±Z). (B.5)

A slightly tedious computation yields the expected result:

LB = 1
2hab(∂+z

a∂−z
b + ∂−z

a∂+z
b), (B.6)

where hab is the pull-back of the P
4 Fubini-Study metric to M in the φ1 6= 0 patch.

The fermionic action is a bit more interesting. To simplify its form, we introduce a

change of basis

γi = φiχ+
P ,i

|P ,j|
χ′ + Si

aχ
a, ψi = φiη +

P ,i

|P ,j|
η′ + Si

aη
a, (B.7)

where the Si
a(z, z) are given by

S1
a = −SI

αZ
I
, SI

a = φ1

(
δIJ − ZIZ

J

1 + Z · Z

)
∂ZJ

∂za
, (B.8)

and satisfy

φiS
i
a = 0, P,iS

i
a = 0, S

i
aS

i
b = hab. (B.9)

With this choice of basis the Yukawa terms in (B.3) simplify to

LYuk = rλ−η + rαλ+χ+ |P,i|(γ0η′ + χ′ψ0) + h.c. . (B.10)

We now see that λ− is a Lagrange multiplier for η = 0, and similarly, when α 6= 0,

integration over λ+ will force χ = 0. Since P is non-singular, in the low energy limit the

last term gives large masses to the γ0, η′, χ′ and ψ0 fermions. We can therefore set these
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excitations to zero. Remembering to include the fermions’ contributions to the equations

of motion for v± gauge fields, we find

LF = ihab

[
ηaD−η

b + χaD+χ
b
]
+ irχ∂+χ+ i(χaS

i
a∂+φiχ+ χφi∂+S

i
aχ

a)

− r−1habη
aηb(rχχ+ hcdχ

cχd) + αr−1habhcdχ
aηbηcχd + α(λ+χ+ λ+χ), (B.11)

where

D−η
b = ∂−η

b + hbbS
i
b∂−S

i
cη

c − ir−1JB
− η

b = ∂−η
b + Γb

cd∂−z
cηd

D+χ
b = ∂+χ

b + hbbS
i
b∂+S

i
cχ

c − ir−1JB
+χ

b = ∂+χ
b + Γb

cd∂+z
cχd (B.12)

are the usual covariant derivatives with the Christoffel connection for the metric hab.

Setting α = 1, we obtain the fermion action for the quintic GLSM:

LF = ihab(χ
aD+χ

b + ηaD−η
b)− r−1(hadhcb + habhcd)η

aηbχcχd. (B.13)

The four-fermi term is the Riemann tensor for hab, and LB + LF is just the familiar (2,2)

NLSM action for the quintic with induced metric hab.

Setting α = 0, we obtain the M2 model for Ji = P,i. As far as the bosons and right-

moving fermions are concerned, we of course obtain the same form as the quintic action;

however, the left-moving degrees of freedom are markedly different, as this is genuinely a

(0,2) NLSM. To describe the action, we let α, β = 0, 1, 2, 3 and define the following diagonal

metric on OM ⊕ TM

Hαβ =

(
r 0

0 hab

)
, (B.14)

as well as connection A = Aadz
a +Aadz

a, with

Aβ
aγ =

(
0 0

δba Γb
ac

)
, Aβ

aγ =

(
0 −r−1hac
0 0

)
. (B.15)

This connection has a (1, 1) curvature two-form F ,

(Fab)γδ = Hγγ(Fab)
γ
δ = r−1hab

(
r 0

0 hcd

)
, (B.16)

and the left-moving part of the action is written as

Lχ
M2 = iHαβχ

αD′
+χ

β + ηaηb(Fab)γδχ
γχδ, (B.17)

where D′
+ is defined with the pull-back of the connection A.

Clearly the M2 GLSM with Ji = P,i does not reduce to the naive expectation of a

(2,2) quintic NLSM and a free left-moving fermion χ. Since F has full rank, we cannot
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obtain the desired theory by a field redefinition. Of course there is an easy way to obtain

the expected theory by varying A. We write

A = Â+ tB, Ba =

(
0 0

δba 0

)
, Ba = −r−1

(
0 hac
0 0

)
, (B.18)

so that the (2,2) quintic NLSM (with a free left-moving fermion) is obtained at t = 0, while

the M2 NLSM is found at t = 1.

It is instructive to linearize the deformation of the action at t = 0. The quintic NLSM

is invariant under a (0,2) supersymmetry, with non-zero Q variations

Q · za = ηa, Q · ηa = i∂+z
a, Q · χa = −Γa

bc
ηbχc, (B.19)

Linearizing Lχ
M2 around t = 0, we find δtF = 0, and δtLF = tOB, with

OB = ihab(χ
a∂+z

bχ− χ∂+z
aχb) = Q · (−habχaηbχ) + h.c. . (B.20)

It is not hard to check that the resulting δtS is Q-closed up to equations of motion of the

left-moving fermions. This deformation is not Q-exact, and in fact takes the form of a (0,2)

superpotential coupling. Turning on the OB coupling has a clear geometric significance.

Since δtF = 0, and the change in A is not pure gauge, this is a deformation of O⊕TM , and

a look at B will convince the reader that this is a deformation by an element of H1(T ∗
M )

without an accompanying H1(TM ) element. Such a deformation cannot by itself lead to a

stable bundle, and thus, the reduction of the M2 model with Ji = P,i naively appears to

be destabilized.

We do not think this means that the large radius (2,2) locus cannot be recovered in

the context of the M2 model; however, our simple analysis certainly suggests that the limit

Ji → P,i has some subtleties that remain to be understood properly. For instance, it might

be that (2,2) supersymmetry only emerges as an accidental IR symmetry. Of course none

of these issues arise in the M1 model. There we can identify the (2,2) locus in terms of

GLSM parameters, and this simple clarification is certainly worth the price of extra fields

in the UV.
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