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Abstract. We present a simple method for determining the shape of fundamental domains
of generalized modular groups related to Weyl groups of hyperbolic Kac-Moody algebras.
These domains are given as subsets of certain generalized upper half planes, on which the
Weyl groups act via generalized modular transformations. Our construction only requires
the Cartan matrix of the underlying finite-dimensional Lie algebra and the associated
Coxeter labels as input information. We present a simple formula for determining the vol-
ume of these fundamental domains. This allows us to re-produce in a simple manner the
known values for these volumes previously obtained by other methods.
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1. Introduction

Constructions of fundamental domains of generalized modular groups usually rely
on geometric considerations. By considering the different possible symmetry trans-
formations acting on some generalized upper-half plane, the precise shape of the
fundamental domain is narrowed down step-by-step until one arrives at its final
shape. Especially for higher rank groups (such as SL,(Z)) this poses a consider-
able computational and combinatorial problem since one has to consider a large
number of possible successive symmetry transformations (already the determina-
tion of the fundamental domain of the standard modular group PSL;(Z) along
these lines takes more than two pages of computations, see e.g. [1]). Although one
can show that the precise shape of the fundamental domain can be determined
within a finite number of steps, in the actual computation of a domain it is not
always clear how many steps are actually necessary.

In this paper we show that, at least for modular groups arising as (even) Weyl
groups of certain hyperbolic Kac-Moody algebras, such cumbersome constructions
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can be altogether avoided. More specifically, we present an easy method for
obtaining the complete geometric information about the associated fundamental
domains. All we require as information for determining the explicit shape and
volume is the Cartan matrix of the corresponding Kac-Moody algebra and its
Coxeter labels. As we will demonstrate this construction works for all hyperbolic
Kac—Moody algebras' g™+ of over-extended type, which are generally obtained by
extending a given finite dimensional simple Lie algebra g via its affine extension g*
by adding two nodes to the Dynkin diagram in a specified way. Likewise, it applies
to the twisted algebras obtained by inverting the arrows in the Dynkin diagram,
because their Weyl groups are the same (but note that these twisted algebras, while
being indefinite Kac-Moody algebras, in general are not of over-extended type).
In particular, our construction also applies to those hyperbolic Kac-Moody alge-
bras whose even Weyl groups can be identified with generalized modular groups
defined over rings of integers in division algebras [7]. The first example of such an
identification was given in [6] where it was shown that the rank-3 hyperbolic Kac—
Moody algebra Af“* (also denoted AE3 or F in the literature) has the usual mod-
ular group PSL,(Z) as its even Weyl group, the full Weyl group being W(ATJF) =
PGLy(Z). In [7] more complicated examples were given, involving, for instance,
the quaternionic integers (Hurwitz numbers), and admitting a Mobius-like realiza-
tion [13]. The most interesting (and most complicated) example is the even Weyl
group W+ (E}() which can be identified with the arithmetic group PSL,(0) (where
O are octonionic integers, also called octavians). For this example, we will explic-
itly display the coordinates of the vertices of the fundamental domain of the Weyl
group.

Knowledge of the shape of the fundamental domain allows one to compute its
volume. In the non-linear realization of the hyperbolic Weyl group on some gen-
eralized upper half plane [13] (a hyperbolic space of constant negative curvature)
the fundamental domains are realized as higher dimensional simplices. We pres-
ent a very simple general formula for the volume of the domain in terms of inte-
grals involving a quadratic form which contains all the information about the Lie
algebra g™ (see (32) below). We note that our considerations would also apply
to cases where analogs of the so-called congruence subgroups of PSL»>(Z) can de
defined: the volume is then simply a multiple of the original volume, with the fac-
tor equal to the index of the congruence subgroup in the given generalized mod-
ular group. Such congruence subgroups presumably do exist for the generalized
arithmetic groups studied in [7], but we are not aware of any concrete results along
these lines.

As an historic aside, we mention that the first computation of hyperbolic vol-
umes in terms of the dihedral angles of the simplex under consideration is due to
one of the inventors of hyperbolic geometry, Lobachevsky [15]. His results were

'An indefinite Kac-Moody algebra is called hyperbolic if the removal of any one node from its
Dynkin diagram leaves an algebra which is either affine or finite [11].
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extended by Schléfli and Coxeter (see e.g. [4]), see also Vinberg [16]. Further work
on this problem can be found in [10] which gives a list of numerical values for the
volumes of hyperbolic Coxeter simplices, as well as analytical expressions for some
special cases. Using (32) these values can be easily reproduced. We also note that
in the physical context, these Coxeter simplices appear in the cosmological billiards
setting, see [12,14] for the implications of the quantum treatment of the cosmolog-
ical billiards for an initial spacelike singularity.

2. Hyperbolic Roots and Weights

Let g be a finite-dimensional Lie algebra. We denote the simple roots of g by
a; € R" and their associated fundamental weights by A;, where i =1,...,n with
n=Rank(g) (see e.g. [9] for details). With the Cartan matrix of g

2a;-a;
Aij=(ajlaj)=— (1)
aj-a,
we define the symmetrized Cartan matrix B;j as
B,-js(AD)ij=2al~-aj=Aija§, (2)

where a? =a;-a; and there is no summation over double indices. Unlike A;;, the
matrix B;; and the symmetrizing matrix D;; =3§; ja§ depend on the normalization
of a;. Following [7] we choose this normalization such that always 6> =1 for the

highest root
0=> mja; (3)
j=1

with the Coxeter labels m ;. When 6 is a long root we therefore have a? =1 for the
long roots.

The associated fundamental weights A; constitute a basis dual to the simple
roots [9]

oA -a;
(Ailaj)=—— =4 )
aj-aj
implying
1 2
ki~aj=§8,-jaj. (5)

With the inverse Cartan matrix A~! we thus have

A= (A D, (6)
k
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from which we deduce
|
Aidj=5(A hja;. (7
or
| - 2
)‘i‘)‘jzzai (B ),-jaj. 8)

Next we consider the hyperbolic extension g™ of the finite-dimensional algebra g
obtained by adjoining to the Dynkin diagram of g the affine node (labeled ‘0’) and
the over-extended node (labeled ‘—1°). This entails extending the Euclidean root
space R”" to the Lorentzian space R+ =RI1 @R, We denote the roots of gt+t
by a7, I=—1,0,1,...,n and define them according to

a_1=—8—5, ap=86—0, o;=a; )

with the affine null vector § e R""! and the conjugate null vector § e R""! obeying
§-8= % In this way we obtain the Cartan matrix of g™+ as

20[1 g
Apg={aflay)= (10)
aj-oj
with the Lorentzian inner product
o ~ajznwo:7a; (11)

where the signature of 7,, is (—+---+). Notice that the affine and over-extended
simple roots are also normalized as o | =a§ =1. The normalization #>=1 is neces-
sary to obtain a single line between the affine and the hyperbolic node (connecting
(o)) and 05_1).

The fundamental weights A; for the hyperbolic extension g** are defined in

analogy with (4)
2A7 -y _

ajy-oy

(Alay) = 817 (12)

By a standard construction (see, e.g. [5]), the fundamental weights of g** can be
expressed in terms of the null vectors § and § and the finite weights X; as

A_1=—8, Ao=8-8, Aj=njAo+Ar. (13)
The coefficients n; are fixed by requiring «g- A;j =0 (cf. (12)), which gives

nj:mjaﬁ, (14)
The fundamental Weyl chamber Cy c R'"*! s

Co:={XeR" X .0;>0 for I=—1,0,1,...,n)}
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Figure 1. Sketch of the fundamental Weyl chamber C; as a wedge inside the forward light
cone that is intersected by the unit hyperboloid.

With the fundamental weights A; one obtains a more convenient representation
of Cy

Co= {XGRI’”‘H |X="s;A; with s; >0 for all 1} (15)
1

The null vector § lies on the forward light cone in root space. The fundamental
Weyl chamber Cy is the convex hull of the hyperplanes orthogonal to the simple
roots of the algebra. The fundamental weights are vectors pointing along the edges
of Cy. In other words, Cy is a ‘wedge’ in R!""*+!. For the hyperbolic algebras g*+
of over-extended type considered here this wedge lies inside the forward light cone,
always touching it with the lightlike weight vector A_1, while all other fundamen-
tal weights obey A? <0. By contrast, for general indefinite (Lorentzian) g+ the
fundamental Weyl chamber may stretch beyond the light cone and also contain
space-like vectors. A schematic picture of the fundamental Weyl chamber Cy for
hyperbolic g™ is shown in Figure 1. We have included the forward light cone and
the intersecting unit hyperboloid.

As it turns out, the assumptions made suffice to cover all cases of interest. This
concerns in particular the twisted algebras: as these are obtained by inverting the
arrows in the relevant Dynkin diagrams, the associated Coxeter Weyl groups, not
being sensitive to the direction of the arrows, coincide with those of the untwisted
diagrams. We therefore note the following isomorphisms of Weyl groups using
Kac’ notation [11]:
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1 ~
WGP H=wmdh)
~ 2
wBOH=w At

N (16)
wcOH=wmh

1 ~ 2
wWEPH=wEP)

where the superscript ™ on the r.h.s. indicates the extension of the affine algebra by
another node. But note that the twisted algebras, though perfectly well defined as
indefinite Kac—-Moody algebras, are not necessarily of over-extended type. In the
notation of Fuchs and Schweigert [§], the later three isomorphisms are

wBDOH=Zw (P
w(cPH=w(BP) (17)
wFEPH=wEPT

The corresponding volumes of the fundamental domains therefore also coincide.

3. Volume Formula

The linear action of the Weyl group in R""*! preserves the (Lorentzian) length,
and therefore induces a non-linear modular action on the forward unit hyperboloid

X-X=—xtx"+x’=-1, xt>0 (18)

with light cone coordinates x* = (x®+x"*1)//2 in R'! and xeR". For the cases
n=1,2,4 and 8 studied in [7], where the dual of the Cartan subalgebra of g can
be endowed with the structure of a division algebra, the induced non-linear action
takes the form of a generalized M&bius transformation over a (possibly non-com-
mutative and non-associative) ring of integers.

The intersection of the fundamental Weyl chamber Cy with the unit hyperboloid
defines a corresponding fundamental domain Fy on the unit hyperboloid. The cor-
responding domain on the (compactified) unit hyperboloid (a/ias the Poincaré disk)
is depicted in Figure 2. In the remainder, however, we will study this domain as a
subset of the generalized ( Poincaré) upper half plane H rather than the unit hyper-
boloid.?> This upper half plane is defined as

H=Huq1:={@, v)|lueR", v>0} (19)

and is thus of dimension n+1. H,41 is isometric to the forward unit hyperboloid
in R"*! by means of the standard coordinate transformation

1 u?

==, xt=utl, x=Z (20)
v v v

2Note that the fundamental domain Fy is half of the fundamental domain F of the ordinary
modular group. The latter corresponds to the even subgroup of the Weyl group.
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Figure 2. Example of a fundamental domain on the Poincaré disk obtained by intersecting the
Weyl chamber with the (compactified) unit hyperboloid, here for the algebra Al++.

The Minkowskian line element is transformed to

2 2
ds? — du —Zdv (1)
v

where, of course, du? Edu% + - —i—duﬁ. The fundamental domain Fy C H is now
rather easily determined from the representation (15) by identifying the points
where the rays along A; ‘pierce’ the unit hyperboloid, and then mapping these
points to H by means of (20). We first notice that the over-extended fundamental
weight A_1 (alias the affine null vector ) corresponds to the ‘cusp’ at infinity in H
with coordinates v =00, u=0 [13], while Ay corresponds to the point v=1, u=0
in H. From (13) we see that the remaining fundamental weights are mapped to the
points

==~ (22)

on the unit hemisphere v> +u?=1, v>0 in H,. If luj|=1 for some j we have
another cusp in addition to the cusp at infinity, but now lying on the boundary v=
0 of H. Therefore, the fundamental region always has the shape of a ‘skyscraper’
that extends to infinite height over the simplex ¥ C R” defined by the points 0
and u;, and whose ‘bottom’ is cut off by the unit hemisphere. See Figure 3 for
an artist’s view; the ‘bottom’ of the skyscraper is the excised shaded region on the
unit sphere. As an example, the projection of the Weyl chamber of the infinite-
dimensional algebra A;’J“ onto the plane v=0 is depicted in Figure 4 as a subset
of the root space of the finite-dimensional algebra A,.
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Figure 3. Schematic depiction of a Weyl chamber on the UHP, corresponding in this case
to A2++.
a2z

A1

A2

ai

Figure 4. Schematic example for the projection of the fundamental domain for the Weyl
chamber onto the hypersurface v=0 for A2++. In accordance with (8) the roots and weights

here are normalized as a; =(1,0), 32=(—%, @), and Aj=(0, %)’ )»2:(%, ﬁ).

Using the above formulas we obtain

1

-1y
2, (B™)ij- (23)

ll,'~l]jES,'j=

The matrix S;; encodes all the Lie algebraic information about the over-extended
algebra gt via the inverse symmetrized Cartan matrix B~! and the Coxeter labels
m;. By a general result valid for all finite g [9] the matrices B~ ! are positive defi-
nite; furthermore their individual entries B ! are also positive. It thus follows that

§>0 (as a matrix) and S;; >0 for all i, j (24)

Note that this formula holds for simply laced as well as non-simply laced
(untwisted) algebras. In particular, in the non-simply laced case one has to
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distinguish between the Coxeter/dual Coxeter labels of the untwisted and the Cox-
eter/dual Coxeter labels of the twisted version of the over-extension of the algebra.

As we just explained the fundamental domain Fy CH rises over the simplex X C
R" defined by

n n
Z::[xeR"|x=Zt,-ui; t;, >0, Ztifll. (25)
i=1

i=1

With the above definitions we get

n
X(l)zz Z S,'jll'tj. (26)
i,j=1
From the positivity properties (24) we deduce the following chain of inequalities
valid for all points x(¢) € Z:

2
0< ZSijtitj < II;}E}XSij (Zl‘k) < n’iléjl_XS,‘j (27)
i,j ’ k ’

Therefore, x(r)2 <1 as long as all matrix entries satisfy Sij < 1. From (13) it is
straightforward to see that

A =n? (1) 28)

and it therefore follows that S;; =1 when the corresponding hyperbolic weight A;
becomes null; for spacelike weights (A? >0) we have |u;|>1, and the correspond-
ing point (vj,u;) no longer lies in the generalized upper half-plane. This happens
when g*+ is Lorentzian, but no longer hyperbolic, as is for instance the case for
all A" with n>8 and B;f" and D;}* for n>9.

With the hyperbolic volume element

d"udv

dVOl(u, U) = W (29)
we thus obtain
Tod
vol(Fo) = /det S / dry ---ds, / 1—1)1 (30)
v}
, ST
where A, is the standard simplex in R"
A,,::{(tl,...,tn)|t520,Ztifl} 31)
Performing the integral over v we arrive at
1 v/det
vol(Fo) = — / dry - dp,— Y95 (32)
n (1=218;t))2

Ap




PHILIPP FLEIG ET AL.

This simple formula is our main result: it expresses the hyperbolic volume as an
integral over a standard simplex A, in R" with the single matrix §;; encoding
all the Lie algebraic information about the hyperbolic Weyl group. The integral
is manifestly convergent if all S;; <1. When S;; =1 the corresponding point has
lu;]=1 and v; =0 and thus lies on the boundary of H, but the integral is still con-
vergent (see below for examples when this happens). For non-hyperbolic Lorentz-
ian algebras the integral diverges, and therefore vol(Fy) = oc.

When evaluating this formula it may be convenient to diagonalize the quadratic
form in terms of new integration variables & such that

> Sititj=El+- &) (33)
i,J

and the determinant factor (det S)!/? is canceled by the Jacobian. The variables &
always exist by the positivity properties of the matrix S. However, the (still simpli-
cial) domain of integration is then more complicated to parametrize.

4. Analytic Results

We now show how our formula (32) immediately yields the volumes for various
hyperbolic reflection groups corresponding to over-extended hyperbolic algebras
g7 " of low rank. It is straightforward to check that for A; (corresponding to the
rank-3 Feingold-Frenkel algebra AT+) we have §= %, and one casily recovers the
well-known result VO](}—()[A—IH_]) = %. For this reason we proceed right away to the
case of rank 4.

The rank-4 algebras of over-extended type are A;Jr, C;’ * and G;r+. For g™ =
A;’Jr we have m|=mj=1 and thus the matrix S;; is 1/2 the inverse of the A, Car-

tan matrix
1
) = S=(f ) (34)
6

Transforming to new coordinates & = %(tl +1n) and & =1 /2\/5)(1‘1 — 1) such that
the Jacobi determinant cancels the factor (det $)!/2=1/2+/3 and

W= \—

o]
L
I
A\
W= WM
WINY W —

1
§(tf +uh+65) =61 +& (35)

we obtain

1

2
1
vol(Fo[A; T = 3 / dg
0

de 1 e [(VI-E+5E

2 1
-8 2) e \Jie- ks

(36)

Sl S~y
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The substitution & =sin6 leads to

cosf + - sing 2sin(d
vol(FolAFH]) = / don [ —— / do ( Sin® + 5 )) (37)
cos@——sm@ —0)

After a suitable shift of integration variables and using the definition and proper-
ties of the Lobachevsky function, this reduces to

=3 [1()-1()-1() (=i o

For g™+ =G5 we have the Coxeter labels m; =2, my=3 and the relevant matri-

ces are
) (39)

2 3 1
B_lz = S: 4
3.6 i

Now the substitution to diagonalize the quadratic form is & = %(rl + 1), & =
(1/2+/3)12, and we get

Wl B—

1 L

I d I I
vol(FLGS D) =5 / dg) / ﬁ = Svol(FlAf ) =5 ]I (%) (40)
0 0

w3

Finally, for C;* we have m; =m,=1 and

1 1 1
B—1=(7 7):» s:( Z) (41)
3 1 3

Note that the corresponding matrix for B;’ tis S:}T(% ) and yields the same

volume.
Now we substitute & = %(tl +1) and & = %tz to get

Bl— —

£ 5
dé, 1 2sin(0 + %)
) 2 7
vol(FolCH 1) = /dgl/ ea 20/d01n(2sm(%_9)) (42)

Similar manipulations as before lead to the result

3 ) TCI N

vol (FolC5*1) =% [‘H (%) - (%)
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5. Higher Rank Algebras

What about higher rank algebras? Although the integrals (32) look elementary
it turns out that calculations become rapidly more complicated with increasing
dimension, and we have not been able to derive ‘simple’ closed form expressions
for them when n > 2. The complications are mainly due to the integration bound-
aries which must be analyzed case by case. Although (32) is suggestive of higher-
order Lobachevsky functions (see appendix), this expectation (as expressed, for
instance, in [16]) is not borne out by the concrete calculations, nor have such
expressions been explicitly exhibited in the literature, see, e.g. [16]. One possibil-
ity, to be explored in future work, would be to expand the integrand in (32)
whereby the integral is expressed as an infinite sum of terms each one of which
involves an integral of a monomial over the standard simplex A,. Such integrals
have been studied in the literature [2,3], but the resulting expressions are still quite
involved. Numerically these series converge rapidly, as all terms are of the same
sign.

Using (32) one can compute the volume of different fundamental domains
numerically. The only input information that is needed is the matrix §, which is
calculated from the matrix B~! and the Coxeter labels via (23). As already men-
tioned above, B! is the inverse symmetrized Cartan matrix and its form for the
different algebras can be found in the standard Lie algebra literature, see e.g. [9]).

Here we list the matrices S for the Lie Algebras of A,, B,,Cy, D,, Fy, Eg, E7
and Eg in the Cartan classification (the matrices for the rank 2 algebras were
already given in the previous section). In addition we list the set of Coxeter (or
dual Coxeter) labels m; used in the computation of S. Note that in the case
of the non-simply laced algebras it is necessary to distinguish between the labels
of the twisted and untwisted algebra. For these algebras we label the matrix S
with a superscript (' or @ respectively, indicating whether it corresponds to the
untwisted or twisted over-extension of the algebra. Considering Table I containing
Dynkin diagrams of over-extensions of the non-simply laced algebras, we note that
the twisted Dynkin diagram of B, is the same as the untwisted Dynkin diagram of
C,, simply with the direction of the arrows reversed. This tells us that the volumes
of the corresponding fundamental domains have to be the same, since the matrix
S is the symmetrized version the Cartan matrix and therefore contains no infor-
mation about the direction of the arrows. A similar correspondence holds for the
untwisted diagram of B, and the twisted diagram of C,, as well as for G, and Fj.

The condition for the over-extension of each algebra to be of hyperbolic type
is that all of the diagonal entries S;; of the underlying finite-dimensional algebra
must satisfy S;; <1. Geometrically each S;; =1 corresponds to an additional fun-
damental weight (edge of the Weyl chamber) lying on the forward light cone. For
each S;; > 1 an additional fundamental weight lies outside the light cone and the
over-extension is not of hyperbolic type. For each algebra we state the range of n
for which the over-extension is hyperbolic.
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Table I. Dynkin diagrams of the over-extended twisted and untwisted non-simply laced finite-
dimensional algebras with Dynkin labeling of nodes

G ] Untwisted ‘ Twisted
o—o—Il—o
B, e e o—e oo -
-1 0 2 3 n—1 n -1 0 1 2 n—-1 n
Q—O—Il—C
c, e o o - - e G
—1 0 1 2 n—1 n -1 0 2 3 n—1 n
F e—9o o @ o o e—eo o @< oo
-1 0 1 27 3 4 -1 0 1 2 3 4
G, o—eo e o—o0—0—o0
-1 0 1 2 -1 0 1 2
gTt=AF": The Coxeter labels are m; =(1,..., 1), and thus the matrix S is
n n—1 n—2 n=3 1
2 2 2 2 2
oh—1 n-2 -3 1
e 3 "
A= |52 a3 3 2pio3) 2 )
1 3
2 1 3 2 2
From the explicit form of the matrix it is obvious that
jn+1—j)
Y= 2(n+1) 45)
for all j=1,...,n. Hence A" is hyperbolic for n <7.
gtT=B": the Coxeter labels are m; =(1,2,...,2) (as untwisted Coxeter labels

for B,, and as twisted dual Coxeter labels for C,), and the matrix § is



PHILIPP FLEIG ET AL.

nr 1 1 1 1
212 4 3 g i
r 1 1 1 1
414 4 4 4 4
nr 3 3 3 3
414 8 8 8 8
1{1 3 1 1 1
sOB, 1= 3|z §8 2 2 2 (46)
131 n=1 a1
414 8 2 8 8
r 3 1 n—1 n
414 8 2 8 8

All matrix entries are <1 for n <8, whence B,J[ * is hyperbolic for n <8. Inverting
the arrow in the Dynkin diagram, we infer that

SD[B,1=5P[C,]. (47)

gtT=C*: the Coxeter labels are m; =(1,...,1) (as twisted Coxeter labels for
B, and untwisted dual Coxeter labels for C,), so

r 1 1 1 1 1
I 1 31 1 3 3
r 1 1 1 1 1
i 2 2 2 2 2
r 1 3 3 3 3
i 2 1 1 3 3
113
sOic,1=1a 2 1 1 1 1 (48)
r1r 3 ¢ ... n=1 n-l
i 1 3 3 3
r1r 3 ¢ ... nl n
O 3 g
Clearly, C,/* is hyperbolic for n <4. As before, we get
SVIC,1=5P[B,] (49)
gtT=D; " the Coxeter labels are m; =(1,2,...,2,1,1), and therefore,
nr 1 1 1 | 1 1
212 4 1 i3 3
nr o1 1 1|1 1
ilz 1 1 3|3 3
nr 3 3 313 3
ilz 8 3 8 | 8 g
i3 1 1|1 1
iz 8 2 2 | 2 2
SIDd=| |, . T . T (50)
13 1 n=2in=2 n=2
iz 8 2 8 | 8 8
r 3 1 n=2 n n=2
ilz 8 2 3|3 8
Ly 3 1 n—2|n-2 n
ilz 8 2 A 8

We see that D;F* is hyperbolic for n <8.
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labels as well as for the twisted Coxeter labels:
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g

~~ ) ton) ~

— a o s

v wv o) v

SN SN SN e
—It —len oo Al B[ B[ K| oy

=)
—len enloo enjoo enloo enjoo t~

~ ~N —I = I L L L _1 —Ist —len enjoo AN S_W.. 7_m —e 5_u

—It —len enjoo —IeN
I = I I = IS _2
—It —len enjoo —IN enlst enloo
—It —len enjoo enjoo — —It —len oo Ao B[ =[S 2 A
—len —Jen —]en S_U. Allen —I<t

—Ist —len enjoo | —len —Ien enloo
I —len —len =i = —Ist —len oo Alkn B[ B B[ A

—len —len —len S_U. S_Q —I<t
—IF = IS I —It —len enloo 5_2 5_2 5_7. enloo

j— — —

—Ir —len enjco Al AN ALV Al AN

E{": the Coxeter labels are (1,2,3,2,1,2), and we have
E{": with the Coxeter labels (2,3,4,5,6,4,2,3) we have

g**:E;“Jr: the Coxeter labels are (2,3,4,3,2,1), and we have

(
—len —len —len —len —len —i<t
—_
< (o} (@
vy [Ye) —en —en —en —|t
=~ I ol —IF —len —len —len —len —len —len ISt —len —len —len —len —len —len —len
=
o
~ o]
55 Qllen ]S —ien —jen —len I —I I I =i = — I i —I I = I I I i IS
—_
< I Il I
& ~ —_ —_
[—] o~ o0
= E N N
%5} : A A . A
+ +
o =
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Using equations (22) one can determine the coordinates of the vertices of the
fundamental domain. For example, the vertices of the domain corresponding to
the Weyl group of ¢y are given by

( (V31
v, ) = T’Eeo

B \/31 1
(v2, ) = g,zeo+g(el+es+eé)
\/?1 1
—,560+Z(65+66)
= \/51 ! 3 2 55
(v4,g) = 3,590+E(92+ es+2eq —e7) (55)

1
ep+ 3 (2e5+e5— 67))

1
e+ 3 (es+2es5+e —67))

The special feature of this example is that the vectors u; now belong to the oc-
tonions O, the non-commutative and non-associative maximal division algebra.
Accordingly, the unit vectors e; (for j=1,...,7) are just the octonionic imaginary
units. The vertex coordinates of the fundamental domains of other Weyl groups
are obtained similarly.

By evaluating the integrals in (32) numerically we obtain the volumes of all the
fundamental domains of the hyperbolic Weyl groups of the algebras listed above.
Employing a deterministic adaptive integration scheme with a sufficient number of
evaluation points of the integrand, the values we find agree to high accuracy with
those found in [10] where the volumes of all hyperbolic Coxeter simplices were
obtained by a different method.
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Appendix A. The Lobachevsky Function
The Lobachevsky function JI is defined as

0
H(@):—/log(|2sint|)dt Vo e R (A1)
0

and related to the dilogarithm and the Clausen function through the identities
1 . % 1
J(w) = 3 Im(Lip(e”*)) = §C12(2a)). (A2)

where the dilogarithm is defined as

Liz(Z)Z—/log(lT_w)dw VzeC:z¢[1,00). (A3)
0

The Lobachevsky function satisfies the relations

JI(O):JI(%):O, O +m)=J1(0), J(—6)=-JI(6) (Ad)
and
n—1 .
.H(n@):nZJI(0+%) VneZy, (AS)
Jj=0

yielding, ¢.g.

1()=36). 1()=3[1(9) ~a(3)] o

The polylogarithm functions

X r
Lin(z):Zf—n VzeC Vn>1 (A7)

r=I1

arise naturally in the computation of hyperbolic volume. They are inductively
related through
Z
. . . dw
Lij@)=—log(l-2), Lix()= [ Lis-1(w)—-~. (A8)
0
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It is furthermore common to define the higher Lobachevsky functions through the
polylogarithm according to

1 . ; 1 . i
T (©0) = 23, ML (), Ta41(0) = 75 Re(Lips1 €). (A9)

The higher Lobachevsky functions satisfy the more general relations

@) =Ju@+7), JLu(=0)=(=1)"*"J1,,(60). (A10)
1 n—1 .
nm—_lﬂm(ne)zzoﬂm (9+%). (A11)
J:

However, as we already pointed out, and unlike for rank four, it does not appear
that the volumes for the higher rank fundamental domains can be expressed solely
in terms of higher Lobachevsky functions.
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