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Abstract
While gravitational waves have not yet been measured directly, data analysis
from detection experiments commonly includes an upper limit statement. Such
upper limits may be derived via a frequentist or Bayesian approach; the theo-
retical implications are very different, and on the technical side, one notable
difference is that one case requires maximization of the likelihood function
over parameter space, while the other requires integration. Using a simple ex-
ample (detection of a sinusoidal signal in white Gaussian noise), we investigate
the differences in performance and interpretation, and the effect of the “trials
factor”, or “look-elsewhere effect”.

1 Introduction

1.1 Upper limits

In general, an upper limit is a probabilistic statement bounding one of several unknown parameters
determining the observed data at hand. While it would be hard to derive general properties applicable
in any possible data analysis context, we will for illustration consider a simple case here: a sinusoidal
signal in white Gaussian noise. This example exhibits many similarities with commonly encountered
real-world problems, including the use of Fourier methods, nuisance parameters, trials factors, partly
analytical and numerical analysis, etc., and we believe is general enough to yield valuable insights.

1.2 The frequentist case

The frequentist detection approach is based on some detection statistic d, which for given data is then
used to derive a significance statement along the lines of “If the data were only noise (null hypothesisH0),

a detection statistic value ≥ d0 would have been observed with probability p.” (P(d ≥ d0 |H0) = p).
The probability p here is the p-value, and a low p-value is associated with a great significance. In the
case of a non-detection, the statement then may be reversed to an upper limit statement “Had the signal

amplitude been ≥ A⋆, a larger detection statistic value (≥ d0) would have been observed with at least

90% probability” (P(d ≥ d0 |A ≥ A⋆) ≥ 90%), whereA⋆ is the 90% confidence upper limit (e.g. [1,2]).

1.3 The Bayesian case

In the Bayesian framework, detection and parameter estimation are more separate problems; for detection
purposes one would need to derive the marginal likelihood, or Bayes factor, which (in conjunction with
the prior probabilities for the “signal” and “noise only” hypotheses H1 and H0) allows one to derive the
probability for the presence of a signal. The detection statement would then be “(Given the observed

data y,) the probability for the presence of a signal is p.” (P(H1|y) = p). The upper limit statement on
the other hand is a matter of parameter estimation; given the joint posterior distribution of all unknowns
in the model, one would need to marginalize to get the posterior distribution of the parameter of interest
alone. The upper limit statement would then be “(Given the observed data and the presence of a signal,)

the amplitude is ≤ A⋆ with 90% probability.” (P(A ≤ A⋆ | y,H1) = 90%) [3, 4].
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2 The data model

We assume the data y to be a time series given by a parameterized signal s and additive noise n:

y(ti) = s(ti) + n(ti), (1)

where i = 1, . . . , N and ti = i∆t. The (sinusoidal) signal is given by

s(t) = A sin(2πft+ φ), (2)

where A ≥ 0 is the amplitude, 0 ≤ φ < 2π is the phase, and f ∈ { j1
N∆t

, . . . , jk
N∆t

} is the frequency,

where 1 ≤ j1, . . . , jk ≤ N
2 − 1 defines the range of possible (Fourier) frequencies. The number k of

frequency bins may be varied and constitutes the so-called “trials factor” here. The noise n is assumed
to be white and Gaussian with variance σ2.

3 Frequentist approach

If there were no unknown parameters in the signal model, then, following from the Neyman-Pearson
lemma, the optimal detection statistic would be given by the likelihood ratio of the two hypotheses. In
the case that the hypotheses include unknowns (composite hypotheses) as in our case, this is commonly
treated using the generalized likelihood ratio framework, that is, by considering the ratio of maximized

likelihoods, where maximization is done over the unknown parameters [5].

In our case, we have a 3-dimensional parameter space under the signal model. The conditional
likelihood for a given frequency may be maximized analytically over phase and amplitude. The profile

likelihood (maximized conditional likelihood for given frequency, as a function of frequency) is even-
tually proportional to the time series’ periodogram. The generalized likelihood ratio detection statistic
then is given as the periodogram maximized over the frequency range of interest:

d2 := max
j

2
Nσ2

∣∣ỹj

∣∣2 (3)

where ỹj is the (complex valued) jth element of the discretely Fourier transformed time series y. The

“ 2
Nσ2

∣∣ỹj

∣∣2” term (the periodogram) maximized over in (3) is in fact also the matched filter for a sinu-
soidal signal [6], and the maximum d2 is commonly referred to as the “loudest event” [2].

The detection statistic’s distribution may be derived analytically under both hypotheses H0 and
H1, as this is a particular case of an extreme value statistic [5]. Under the null hypothesis, d2 is the maxi-
mum of k independently χ2

2-distributed random variables; the cumulative distribution function (CDF)
of d2 is given by

Fd2;H0
(x) = P(d2 ≤ x |H0) =

(
Fχ2

2
(x)
)k

(4)

where Fχ2
2

is the CDF of a χ2
2 distribution, and k again is the number of independent frequency bins, or

“trials”. This is essentially the “background distribution” of d2. Under the signal hypothesisH1, d2 is the
maximum of (k−1) independently χ2

2-distributed random variables and one noncentral-χ2
2(λ)-distributed

variable with noncentrality parameter λ = N
2σ2A

2. The corresponding CDF under H1 then is

Fd2;H1
(x) =

(
Fχ2

2
(x)
)(k−1) × Fχ2

2,λ
(x) (5)

where Fχ2
2,λ

is the CDF of a noncentral χ2
2 distribution with parameter λ.

For some observed detection statistic value d2
0, the (detection) significance is determined by the

p-value P(d2 ≥ d2
0 |H0) =

∫∞
d2
0
p(d2|H0) dd2. The 90% loudest-event upper limit is given by the small-

est amplitude value A⋆ for which
∫∞
d2
0
p(d2 |A,H1) dd2 ≥ 90%, so that P(d2 ≥ d2

0 |A ≥ A⋆, H1) ≥
90%.
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Fig. 1: The integrals to be computed for a frequentist and a Bayesian 90% upper limit are very different. The
Bayesian integral is computed along the vertical amplitude axis, conditioning on the observed detection statistic
value d2 = d2

0. The frequentist integral goes along the horizontal axis of possible realisations of d2 for any given
amplitude. (Example values here: N = 100, ∆t = 1, σ2 = 1, k = 49, d2

0 = 11.)

4 Bayesian approach

We assume uniform prior distributions on phase, frequency, and amplitude. Given the (3-dimensional)
likelihood function [7], one can then derive joint and marginal posterior distributions P(A, φ, f | y) and
P(A|y). However, Monte Carlo simulations show that — in this particular model — the amplitude’s
marginal posterior distribution is virtually unaffected by whether one considers the complete data y, or
only the “loudest event” d2. The essential information about the signal amplitude is contained in that
loudest event, and the marginal amplitude posterior is dominated by the conditional distribution of the
loudest frequency bin. We find that the main difference between the two kinds of limits in this model is
not due to maximization vs. integration of the posterior; in the following we will therefore consider only
the simpler, directly comparable, and more illustrative case of a Bayesian loudest event limit based on
P(A|d2) instead of P(A|y).

Our relevant observable now is the “loudest event” d2. The likelihood function P(d2|A) was
defined through (5) in the previous section. The 90% upper limit on the amplitude is given by the
amplitude A⋆ for which

∫ A⋆

0 p(A | d2, H1) dA = 90%, so that P(A < A⋆ | d2, H1) = 90%.

5 Comparison

The likelihood function here is a function of two parameters: the observable d2 and the amplitude param-
eter A. Since the amplitude prior is assumed uniform, the posterior distribution is simply proportional to
the likelihood, which allows for a nice comparison of both approaches. Fig. 1 illustrates the integrations
performed for both the frequentist and the Bayesian upper limits for some particular realisation d2 = d2

0.

Since the data y are reduced to a single observable d2, there also is a one-to-one mapping from d2

to the upper limit A⋆. Fig. 2 shows both resulting upper limits as a function of the “loudest event” d2.
An important feature to note is that the frequentist limit will be zero for certain values of d2. The point
at (and below) which this happens is the lower 10% quantile of the “background” distribution of d2

under H0 (4) — at this point the probability of observing a larger d2 value is (by definition) 90% for
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Fig. 2: The mapping from observable d2 to the upper limit on amplitude. The bottom panel shows the “back-
ground” distribution of d2 under H0. (Example values here: N = 100, ∆t = 1, σ2 = 1, k = 49.)

zero-amplitude signals already, which makes zero the 90% upper limit. Note that this implies that if H0

in fact is true, 10% of all 90% upper limits will be zero. Note also that this is consistent with the intended
90% coverage of frequentist confidence bounds — if the upper limit is supposed to fall above and below
the true amplitude value with 90% and 10% probabilities respectively, then 10% of the upper limits must

be zero under H0.

Having the distribution of the detection statistic (equations (4), (5)) and the mapping from d2 to
upper limit (Fig. 2) allows us to derive the distribution of upper limits for given parameters. Figure 3
illustrates the behaviour of the resulting upper limits for different values of amplitude A and trials fac-
tor k. The left panel shows that for large amplitudes the two limits behave roughly the same, as one could
already see from Fig. 2, while for low amplitudes the posterior upper limit will level off and will not rule
out amplitude values below a certain noise level. The frequentist limit’s distribution on the other hand
reaches all the way down to zero, and in particular the 90% limit’s 10% quantile follows a straight line
of slope 1 and intercept 0 — the frequentist 90% limit is (by construction) essentially a statistic that has
its 10% quantile at the true amplitude value.

The right panel of Fig. 3 shows the differing behaviour of both limits as a function of the trials
factor k when the true amplitude is zero. The frequentist limit’s 10% quantile remains at zero (the true
value), while the posterior limit is bounded away from zero but otherwise tends to yield tighter constraints
on the amplitude, especially for large k.

6 Conclusions

The most obvious technical difference between frequentist vs. Bayesian upper limits is in maximization
vs. integration over parameter space. This, however, is not — at least in the example discussed here —
the primary origin of discrepancies between the two. When basing both limits on maximization (i.e.,
the “loudest event”), the behaviour of the Bayesian limit is affected very little; so the crucial information
about the signal amplitude is in fact contained in the loudest event. Both kinds of upper limits behave
very similarly for “loud” signals, i.e., a large signal-to-noise ratio (SNR), but their differences become ap-
parent in the interesting case of (near-) zero amplitude signals. While the Bayesian upper limit expresses
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Fig. 3: The distribution of upper limits as a function of amplitude (left panel) and trials factor (for zero amplitude;
right panel). Note that the frequentist 90% limit is essentially a statistic that is designed to have its 10% quantile
at the true amplitude value.

what amplitude values may be ruled out with 90% certainty based on the data (and model assumptions),
the frequentist upper confidence limit is defined solely through its “coverage” property. The frequentist
90% limit needs to end up above and below the true amplitude value with 90% and 10% probability
respectively, which simply means that the frequentist limit may be any random variable that has its 10%
quantile at the true amplitude. This in particular implies that for a true amplitude of A = 0 the limit has
a 10% chance of being zero as well, and it makes the frequentist limit very hard to actually interpret,
not only if it actually happens to turn out as zero. When considering the effect of the trials factor (or
look-elsewhere effect) in the low-SNR regime where both limits behave differently, the posterior-based
limit will usually yield tighter constraints especially for large trials factors, but it will never be zero.

The Bayesian upper limit based on the amplitude’s posterior distribution will of course change
with changing prior assumptions. For simplicity, we assumed an (improper) uniform amplitude prior
here, but this should actually be a conservative choice in some sense, for a realistic prior in the continuous
gravitational-wave context would in general be much more concentrated towards low amplitude values
(something like the — also improper — prior with density p(A) ∝ 1

A4 ).

Another question is how exactly one would do the actual computations for a Bayesian upper limit
in practice — the frequentist upper limits are usually not computed via direct analytical or numerical
integration of the likelihood, but the integral (see Fig. 1) is determined in a nonparametric fashion via
Monte Carlo integration and bootstrapping of the data. While the frequentist limit requires finding the
amplitude A⋆ at which the integral (P(d2 > d2

0 |A = A⋆)) yields the desired confidence level, an
analogous procedure to derive the Bayesian upper limit would probably require Monte Carlo sampling of
P(d2|A) across the range of all amplitudes A in order to then do the integral in the orthogonal direction.

Further complications arise especially for the frequentist limit when the signal model gets more
complex. The general procedure required for the Bayesian upper limit is rather obvious — determine the
marginal posterior distribution of amplitude P(A|y), then determine the 90% quantile. The frequentist
procedure on the other hand may run into major problems. For example, if there are multiple parameters
affecting the signal’s SNR, a “loudest event” might be hard to define, or to translate into a constraint
on the amplitude. As there may not be a simple one-to-one connection between SNR and amplitude
parameter as in the present case, the “loudest event” may not be the only relevant figure to constrain the
signal amplitude. The consideration of nuisance parameters is generally tricky in a frequentist framework
and may effectively suggest the use of a Bayesian procedure instead [8]. Computation also becomes more
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Fig. 4: Illustration of the determination of a 90% detection sensitivity threshold. Such a statement would be
independent of the observed data, and it requires the specification of an additional parameter: the corresponding
false alarm rate defining the threshold of what is considered a “detection”. (Here: N = 100, ∆t = 1, σ2 = 1,
k = 49.)

complicated if the frequency parameter is not restricted to (“independent”) Fourier frequencies. Note that
the reasoning behind the generalized likelihood ratio approach (see Sec. 3) leading to the “loudest event”
concept was very much an ad-hoc construction in the first place.

Another notable related concept is that of a power constrained upper limit. In search experiments,
these may be based on the sensitivity of the search procedure. In case the search yielded no detection,
one can state the signal amplitude that would have been detected with 90% probability; this number may
then also be used as a lower bound on the frequentist limit (“don’t rule out what you wouldn’t be able

to detect” ). However, this kind of statement requires the specification of another, additional parameter:
the corresponding false alarm rate defining the threshold of what is considered a “detection”, and as
such is inseparably connected to the detection procedure (see also Fig. 4). In particle physics a different
approach is commonly taken; there the sensitivity is usually specified as the expected upper limit for
many repetitions of the experiment in the absence of a signal. This figure would correspond to the solid
lines at zero amplitude in Fig. 3. An important point to note is that both these sensitivity statements do
not depend on the observed data.
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