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SUPERCONFORMAL INDICES OF THREE-DIMENSIONAL

THEORIES RELATED BY MIRROR SYMMETRY

C. KRATTENTHALER†, V. P. SPIRIDONOV‡, AND G. S. VARTANOV

Abstract. Recently, Kim, and Imamura and Yokoyama derived an exact for-
mula for superconformal indices in three-dimensional field theories. Using their
results, we prove analytically the equality of superconformal indices in some
U(1)-gauge group theories related by mirror symmetry. The proofs are based
on well-known identities in the theory of q-special functions. We also suggest a
general index formula taking into account the U(1)J global symmetry present
for abelian theories.

1. Introduction

The superconformal index (SCI) technique is a very useful tool for testing super-
symmetric dualities. Initially, this technique was introduced for four-dimensional
supersymmetric field theories [1, 2] in the context of N = 1 SYM Seiberg dualities
and AdS/CFT correspondence for N = 4 SYM field theories. In this case, the
indices are described by the elliptic hypergeometric integrals [3] as observed first
by Dolan and Osborn [4]. Various developments and applications of this technique
are described in [5, 6, 7, 8, 9].

Later, in [10], the superconformal index for three-dimensional supersymmetric
Chern–Simons theories with large rank of the gauge group N was introduced, and
the coincidence with the gravitational background index in the context of AdS/CFT
correspondence [11] has been established. In [12] superconformal characters of
three-dimensional supersymmetric theories have been constructed and, after taking
restrictions for parameters in them, SCIs for theories considered in [10] can be
obtained in a different way. In [13, 14, 15, 16, 17], various three-dimensional SCIs
were calculated in the large N limit for comparison with their gravity duals. The
partition functions of three-dimensional supersymmetric field theories are studied
in [18, 19, 20, 21, 22, 23, 24, 25].

The superconformal index for N = 6 Chern–Simons theory with finite N was
derived by Kim in [14]. The contribution to SCIs of chiral fields with arbitrary
R-charge was found recently by Imamura and Yokoyama in [26]. After combining
everything, this gives an exact formula for 3d SCIs analogous to Römelsberger’s
result for 4d N = 1 SYM theories [2]. SCIs of some 3d N = 2 supersymmetric field
theories and their mirror partners [27] (see also [28, 29] for a general discussion
of such theories) were computed in [26] and their coincidence was confirmed up to
the first several terms of the corresponding series expansions in chemical potentials.
The main goal of the present work consists in the analytic proof of exact coincidence
of SCIs for these mirror symmetric 3d theories.
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Let us describe the SCI derived in [14, 26]. For two particular supercharges
Q and Q† = S, the superconformal partner of Q, the following algebraic relation
holds:

{Q,Q†} = 2H = ∆−R− J3, (1)

where the space-time symmetry generators ∆, R, J3 are the Hamiltonian, the R-
charge, and the third component of the angular momentum, respectively. One
defines an extension of the Witten index for the theories compactified on the two-
sphere S2 as

I = Tr

(
(−1)Fe−βHx∆+J3

rankF∏

i=1

tFi

i

)
, (2)

where F is the fermion number operator and x is the chemical potential associated
with the operator ∆ + J3 commuting with the chosen supercharges. Chemical
potentials ti are associated with commuting generators of the group F describing
other global symmetries of the theory. Analogously to the 4d case one computes the
trace over the space of states defined by the kernel of Q and Q†, since contributions
of the states with non-zero eigenvalues of H cancel each other. In other words,
one works with the gauge invariant BPS states protected by at least one pair of
supercharges which do not form long multiplets. As a result, the index does not
depend on β.

Similar to the 4d case, the 3d SCI is computed in two steps by using the local-
ization procedure in S2×S1. One constructs first the so-called single-particle state
index and then computes the full SCI. The single-particle state index is defined by
the formula [14, 26]

ind(eigj , s, x, t) = −
∑

α∈G

eiα(g)x2|α(s)|

+
∑

Φ

∑

ρ∈RΦ

[
eiρ(g)tfii

x2|ρ(s)|+∆Φ

1− x2
− e−iρ(g)t−fi

i

x2|ρ(s)|+2−∆Φ

1− x2

]
, (3)

where the first term describes contributions of the gauge fields, and the rest comes
from the matter fields with flavour charges fi. The chemical potentials g = {g1, . . . ,
grankG} are associated with the generators of the maximal torus of the gauge group
G. Similarly we write s = {s1, . . . , srankG}, where sj are some half-integers associ-
ated with the magnetic monopole fluxes. The sum

∑
α∈G is taken over the roots

of the Lie algebra of G. Without the term x2|α(s)| it would yield essentially the
character for the adjoint representation. This contribution was computed in [14].

The second term was also computed in case of N = 6 superconformal Chern–
Simons theory in [14] for the matter fields with the specific R-charges ∆Φ = 1/2.
In [26], the contribution of chiral fields with general R-charges is determined. Here
∆Φ is the Weyl weight of a chiral multiplet Φ lying in the representation RΦ of the
gauge group G. Similar to the 4d case, the scalar component of the chiral superfield
Φ has R-charge equal to ∆Φ, and the fermion component has the R-charge ∆Φ− 1.
The sum

∑
ρ∈RΦ

is the sum over all terms with the weight ρ(g) for a given chiral

field Φ lying in the RΦ representation of the gauge group G. The symbols α(g) and
α(s) in the first term are used for a separate presentation of the gauge field and
the monopole contributions coming from the adjoint representation of G.
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Having the single-particle state index, one derives a full SCI using the plethystic
exponent [26]

I(x, t) =
∑

s

1

Sym

∫
e−S

(0)
CS eib0(g)xǫ0

rankF∏

i=1

tq0ii

· exp
[

∞∑

n=1

1

n
ind(znj , s, x

n, tni )

]
rankG∏

j=1

dzj
2πizj

, (4)

where zj = eigj ,

ǫ0 =
∑

Φ

(1−∆Φ)
∑

ρ∈RΦ

|ρ(s)| −
∑

α∈G

|α(s)| (5)

is the zero-point contribution to the energy,

q0i = −
∑

Φ

∑

ρ∈RΦ

|ρ(s)|fi (6)

is the zero-point contribution to the flavour charges, and, finally,

b0(g) = −
∑

Φ

∑

ρ∈RΦ

|ρ(s)|ρ(g), (7)

which can be regarded as the one-loop correction to the Chern–Simons term.

In the presence of the Chern–Simons term, there is a contribution e−S
(0)
CS , where

S
(0)
CS = 2iTrCS(gs), (8)

with TrCS standing for the trace including Chern–Simons levels [14, 26]. For U(N)k
theory with Chern–Simons level k, this factor equals 2ik

∑rankG
j=1 sjgj [14].

In contrast to the four-dimensional case, where the index contains integration
over the gauge group only [1, 2, 4], here one has additionally the sum over the fluxes
of rankG independent monopoles. Monopoles appear as solutions of the classical
field equation associated with the saddle points in the localization procedure. Ef-
fectively, this leads to the shifted spin j and the shifted value of eigenvalue for J3
due to the contribution from the background fluxes mj , and the variable

sj =
1

2
mj , mj ∈ Z,

is introduced for convenience. In the above formulas, the quantities ρ(s) represent
the same Weyl weights in this background flux for a taken chiral field Φ. For
example, the chiral superfields — gauge group singlets have ρ(g) = ρ(s) = 0.

As pointed out in [14], the integration over the gauge group is a little bit tricky,
because of the presence of monopoles. It was shown in [14] that the contribution
coming from the vector multiplet for si 6= sj and for si = sj is different, since in
the first case the monopole spherical harmonics and in the latter case the usual
spherical harmonics are used. As suggested in [26], this fact is already included in
the term for the contribution of the vector multiplet. The term 1

Sym in (4) appears

because of the same reason, it is connected with the fact that the initial gauge
group G is ’broken’ by the monopoles into the product G1 × · · · ×Gk, which gives
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Sym =
∏k

i=1(rankGi)! [14], which can also be written in the form

Sym =

rankG∏

i=1




rankG∑

j=i

δsi,sj


 , (9)

where δa,b is the usual Kronecker delta-function.
In [26], SCIs for mirror symmetric theories were calculated with some restric-

tions — the same chemical potentials were used for both quark fields belonging to
one flavour. Moreover, corresponding formulas did not contain the chemical poten-
tial associated with the abelian symmetry group U(1)J [29] resolving degeneracies.
Shifting the scalar component of vector multiplet by an arbitrary constant, one can
take into account this extra global symmetry. In the Appendix, we present SCIs
with the most general set of chemical potentials. Surprisingly, we found that the
SCI terms related to the symmetry group U(1)J can not be obtained directly from
the results of [26], suggesting that they may be incomplete.

In contrast to the four-dimensional case, where in most cases the condition of the
anomaly absence fixes the R-charge, in the three-dimensional case the R-charge in
(4) is not fixed. Moreover, it can be arbitrary, since adding to it any combination
of the abelian global charges represents again the R-charge. The latter fact is
reflected by the appearance of the free parameter h associated with the R-charge
in the SCIs. Recently the Z-extremization procedure was suggested in [21] for
obtaining the exact R-charges of matter fields in the IR fixed points of 3d theories.

Formulas (3) and (4) resemble to some extent the procedure of calculating SCIs
in 4d supersymmetric field theories [1, 4], but they are much more involved. In
particular, there are the terms in addition to the plethystic exponent, which is a
new structural element. The building block of SCIs for 3d theories is given by the
infinite q-product

(z; q)∞ =

∞∏

j=0

(1− zqj), |q| < 1.

Let us consider the chiral superfield Φ with arbitrary R-charge ∆Φ in the fun-
damental representation of U(Nc). Then the single-particle state index is

indC(x, e
igj , sj) =

Nc∑

j=1

x∆Φ+2|sj |eigj − x2−∆Φ+2|sj |e−igj

1− x2
, (10)

and the full SCI is obtained as

exp

(
∞∑

n=1

1

n
indC(x

n, eingj , sj)

)

= exp




∞∑

n=1

1

n

Nc∑

j=1

xn(∆Φ+2|sj |)eingj − xn(2−∆Φ+2|sj |)e−ingj

1− x2n




=

Nc∏

j=1

(x2−∆Φ+2|sj |e−igj ;x2)∞

(x∆Φ+2|sj |eigj ;x2)∞
. (11)
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The contribution of gauge fields looks fundamentally different. When the gauge
group is U(Nc), the contribution of the vector multiplet is [14]

indV (x, e
igj , sj) = −

Nc∑

i,j=1, i6=j

x|si−sj |ei(gi−gj), (12)

and the contribution to the full SCI is given by

exp

(
∞∑

n=1

1

n
indV (x

n, eingj , sj)

)
=

Nc∏

i,j=1, i6=j

(1 − x|si−sj |ei(gi−gj)). (13)

We need also some mathematical definitions from the theory of q-special func-
tions (see, e.g., [30]). The basic hypergeometric series r+1φr is defined by

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, b2, . . . , br; q)n

zn, (14)

where
(a1, a2, . . . , ar+1; q)n := (a1; q)n(a2; q)n · · · (ar+1; q)n,

with the q-shifted factorial (z; q)n being given by

(z; q)n =






1, for n = 0,∏n−1
j=0 (1− zqj), for n > 0,∏−n
j=1(1 − zq−j)−1, for n < 0.

(15)

For |q| < 1, one can write

(z; q)n =
(z; q)∞

(zqn; q)∞
. (16)

It is also convenient to use the notation

(az±1; q)n := (az; q)n(az
−1; q)n.

The bilateral basic hypergeometric series rψr is defined by

rψr

[
a1, a2, . . . , ar
b1, b2, . . . , br

; q, z

]
=

∞∑

n=−∞

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , br; q)n

zn. (17)

2. Mirror symmetry for d = 3 N = 2 field theory with U(1)-gauge
group and Nf = 1

Here we discuss consequences of the mirror symmetry for three-dimensionalN =
2 supersymmetric field theory with U(1) gauge group and Nf = 1 in its IR fixed
point, whose mirror partner is the free Wess–Zumino theory [27, 28, 29]. The initial

electric theory has one flavour or two quark superfields Q and Q̃ of charges +1 and
−1 and R-charges ∆Q = ∆Q̃ = 1/3. The superconformal index is given by the
expression

Ie,Nf=1 =
∑

k∈Z

q|k|/3
∫

T

(q5/6+|k|/2z±1; q)∞
(q1/6+|k|/2z±1; q)∞

dz

2πiz
, (18)

where T is the unit circle with positive orientation and |q| < 1. It coincides with
the function which appeared in [26] as formula (67) after the change of the chemical
potential, the integration variable, and the summation variable, given by

q = x2, z = eia, k = 2s.
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After evaluating the integral as a sum of residues, we can write

Ie,Nf=1 =
∑

k∈Z

q|k|/3
(q1+|k|, q2/3; q)∞
(q, q1/3+|k|; q)∞

2φ1

[
q1/3+|k|, q1/3

q1+|k| ; q, q2/3
]
. (19)

The superconformal index of the mirror partner theory containing one meson

M = QQ̃ and two singlets V± [29] with R-charge ∆M,V± = 2/3 has the form

Im,Nf=1 =
(q2/3; q)3∞
(q1/3; q)3∞

. (20)

Actually, in both of these theories there exists an additional U(1)J -symmetry group
[29], which is not taken into account in [26]. In general, it is necessary to introduce
an additional chemical potential w for it. In the Appendix, we present these more
general SCIs. The expressions given above correspond to the choice w = 1.

Mirror symmetry is supposed to lead to equal superconformal indices of two
theories. In [26], coincidence of only the first several terms of the series expansions
in q of (18) and (20) was checked. Our goal is to give an analytic proof of the
equality of these indices, which we formulate as a mathematical theorem.

Theorem 1. The equality Ie,Nf=1 = Im,Nf=1 holds true.

We shall present the proof of a more general statement containing an additional
free parameter describing the R-charge of a chiral superfield ∆Φ = h. For this
theory, the SCI is given by the expression

Ie,Nf=1;h =
∑

k∈Z

a|k|/2
∫

T

(a1/2q1/2+|k|/2z±1; q)∞
(a−1/2q1/2+|k|/2z±1; q)∞

dz

2πiz
, (21)

where we write a = q1−h and assume the constraint |q/a| < 1. Note that from
first glance one cannot replace in the series summand the modulus |k| by k since
then, for any a, there will be a negative value of k such that the contour T stops to
separate the geometric sequences of poles converging to zero from their reciprocals.

After evaluating this integral as a sum of residues, one finds

Ie,Nf=1;h =
∑

k∈Z

a|k|/2
(q1+|k|, a; q)∞
(q, q1+|k|/a; q)∞

2φ1

[
q1+|k|/a, q/a

q1+|k| ; q, a

]
. (22)

The superconformal index of the mirror theory (which is again a free theory of
chiral superfields) will be

Im,Nf=1;h =
(a; q)∞
(q/a; q)∞

(q/a1/2; q)2∞
(a1/2; q)2∞

. (23)

Again these expressions correspond to the choice w = 1 of the chemical potential
associated with the U(1)J -group (see the Appendix).

Theorem 2. The equality Ie,Nf=1;h = Im,Nf=1;h holds true.

We start by evaluating the double sum

∞∑

k=−∞

ak/2 (a; q)∞ (q1+k; q)∞
(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q/a; q)n (q1+k/a; q)n
(q; q)n (q1+k; q)n

an. (24)
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In order to do this, we interchange the sums over k and n and write the (now)
inner sum over k in bilateral series notation:

∞∑

n=0

an (q/a; q)2n (a; q)∞
(q; q)2n (q/a; q)∞

1ψ1

[
q1+n/a
q1+n ; q, a1/2

]
.

The 1ψ1-series can be summed by means of Ramanujan’s summation (see [30,
(5.2.1)])

1ψ1

[
A
B
; q, Z

]
=

(q, B/A,AZ, q/AZ; q)∞
(B, q/A,Z,B/AZ; q)∞

. (25)

If we apply this formula and then write the sum over n in basic hypergeometric
notation, then we obtain the expression

(a; q)∞ (q/a1/2; q)∞
(a1/2; q)∞ (q/a; q)∞

1φ0

[
q/a
− ; q, a1/2

]
.

After application of the q-binomial theorem (see [30, (1.3.2)])

1φ0

[
A
−; q, Z

]
=

(AZ; q)∞
(Z; q)∞

,

our expression simplifies to (23).
Now, the double sum (24) was not exactly what we wanted. We want

∞∑

k=−∞

a
|k|
2 (a; q)∞ (q1+|k|; q)∞
(q; q)∞ (q1+|k|/a; q)∞

∞∑

n=0

(q/a; q)n (q1+|k|/a; q)n
(q; q)n (q1+|k|; q)n

an, (26)

which is just the expression in (22), where the 2φ1-series is written out explicitly.
So, in view of the above, it suffices to prove that the sum over non-negative k in

(24) equals the sum over non-positive k in (24), that is,

∞∑

k=0

a
k
2 (a; q)∞ (q1+k; q)∞
(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q/a; q)n (q
1+k/a; q)n

(q; q)n (q1+k; q)n
an

=

0∑

k=−∞

a
k
2 (a; q)∞ (q1+k; q)∞
(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q/a; q)n (q1+k/a; q)n
(q; q)n (q1+k; q)n

an. (27)

This is not too difficult to see: we take the right-hand side of (27) and replace k
by −k:

∞∑

k=0

a−
k
2 (a; q)∞ (q1−k; q)∞

(q; q)∞ (q1−k/a; q)∞

∞∑

n=0

(q/a; q)n (q
1−k/a; q)n

(q; q)n (q1−k; q)n
an.

We see now that, actually, this is an undefined expression, due to the terms
(q1−k; q)∞ and (q1−k; q)n in numerator and denominator, respectively. We have
to interpret this as an appropriate limit. In particular, the terms in the second sum
for n = 0, 1, . . . , k− 1 do not contribute anything. We may therefore start the sum
over n at n = k. This leads to the expression

∞∑

k=0

a−
k
2 (a; q)∞ (q1−k; q)∞

(q; q)∞ (q1−k/a; q)∞

∞∑

n=k

(q/a; q)n (q1−k/a; q)n
(q; q)n (q1−k; q)n

an

=
∞∑

k=0

a
k
2 (a; q)∞ (q1+k; q)∞
(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q1+k/a; q)n (q/a; q)n
(q1+k; q)n (q; q)n

an,
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where we replaced n by n + k and did some simplification. This is exactly the
left-hand side of (27). This proves equality of (24) and (26), and thus that the
double sum (26) equals the product in (23).

Remark. The possibility to replace |k| by k in the bilateral series requires some
physical explanation. The variable k is the quantized magnetic flux associated
with the Dirac monopole solution in this model. It is related somehow with the
spin variable j = |k| of the spherical harmonics, and the situation looks like that
after replacing |k| by k we come to the sum over j ∈ Z/2 related with non-negative
values of the SO(3) Casimir operator proportional to (j + 1/2)2.

Note that, in contrast to 4d N = 1 SYM theories, where one can often fix
U(1)R group hypercharges in the infrared fixed point, in 3d theories this is not
the case [29]. The proven equality of SCIs remains true for arbitrary h (or a)
although the physically acceptable theory corresponds to the value h = 1/3 (such a
possibility was pointed out already in [26]). The exact superconformal R-symmetry
charges are found with the help of techniques described in [21]. Thus, similar to
the 4d situation [6], mathematical properties of SCIs do not distinguish unitary
theories from the non-unitary ones. SCIs count topological objects of the theories
irrespective whether the cohomology space of Q and Q† = S contains ghost fields
violating unitarity or not. The equality of SCIs does not correspond necessarily
to duality/mirror symmetry between physically acceptable theories, one should
analyze separately their physical content.

3. Mirror symmetry for d = 3 N = 2 theory with U(1) gauge group

and Nf = 2.

We consider now SCIs for 3dN = 2 field theory with U(1) gauge group andNf =
2 flavours and its magnetic partner which are dual to each other in their respective
IR fixed points [27, 28, 29]. The electric theory has F = SU(2)l × SU(2)r ×U(1)J
flavour symmetry for superfields with R-charges ∆Qi

= ∆
Q̃i

= h, i = 1, 2 [29]. For

each symmetry group one should introduce chemical potentials: u for SU(2)l, v
for SU(2)r and w for U(1)J , but we consider first the restricted region of these
parameters where u = v and w = 1, which was analyzed perturbatively in [26]. In
the Appendix we present general expressions for indices. The restricted SCI has
the form

Ie,Nf=2;h =
∑

k∈Z

a|k|
∫

T

(a1/2q1/2+|k|/2v±1z±1; q)∞
(a−1/2q1/2+|k|/2v±1z±1; q)∞

dz

2πiz
, (28)

where the chemical potential v is associated with the identified SU(2) flavour
groups. After residue calculus, we obtain

Ie,Nf=2;h =
∑

k∈Z

a|k|
(q1+|k|, q1+|k|v2, a, av−2; q)∞

(v−2, q1+|k|/a, q1+|k|v2/a, q; q)∞

× 4φ3

[
q1+|k|/a, q1+|k|v2/a, q/a, qv2/a

q1+|k|, q1+|k|v2, qv2
; q, a2

]
+

(
v 7→ 1

v

)
, (29)

where (v 7→ 1
v ) stands for the preceding expression in which v was replaced by

1/v. The mirror partner of this theory has again the same U(1) gauge group
and two flavours with R-charges ∆qi = ∆q̃i = 1 − h, i = 1, 2, and meson fields

Mij = QiQ̃j , i, j = 1, 2, with R-charge ∆Mij
= ∆Qi

+ ∆Q̃j
= 2h, and two singlet
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superfields V± with R-charge ∆V± = 2(1− h). Its restricted superconformal index
has the form

Im,Nf=2;h =
(av±2; q)∞
(qv±2/a; q)∞

∑

k∈Z

(q/a)|k|
∫

T

(a−1/2q1+|k|/2v±1z±1; q)∞
(a1/2q|k|/2v±1z±1; q)∞

dz

2πiz
. (30)

Note that in the generic case considered in the Appendix the prefactor in front of
the sum is considerably more complicated. Residue calculus leads to

Im,Nf=2;h =
(av±2; q)∞
(qv±2/a; q)∞

×
(
∑

k∈Z

(q/a)|k|
(q1+|k|, q1+|k|v2, q/a, qv−2/a; q)∞

(v−2, aq|k|, aq|k|v2, q; q)∞

×4φ3

[
aq|k|, aq|k|v2, a, av2

qv2, q1+|k|, q1+|k|v2
; q, (q/a)2

]
+

(
v 7→ 1

v

))
. (31)

Theorem 3. The equality Ie,Nf=2;h = Im,Nf=2;h holds true.

To prove this statement, we start with the double sum

∞∑

k=−∞

a|k| (q1+|k|, q1+|k|v2, a, a/v2; q)∞
(1/v2, q1+|k|/a, q1+|k|v2/a, q; q)∞

·
∞∑

n=0

(q1+|k|/a, q1+|k|v2/a, q/a, qv2/a; q)n
(q1+|k|, q1+|k|v2, qv2, q; q)n

a2n, (32)

representing the first term in (29) (the second being obtained by reflection v → 1/v).
It is again easy to see that, for k < 0, we have

a−k (q1−k, q1−kv2, a, a/v2; q)∞
(1/v2, q1−k/a, q1−kv2/a, q; q)∞

∞∑

n=0

(q1−k/a, q1−kv2/a, q/a, qv2/a; q)n
(q1−k, q1−kv2, qv2, q; q)n

a2n

=
ak (q1+k, q1+kv2, a, a/v2; q)∞
(1/v2, q1+k/a, q1+kv2/a, q; q)∞

∞∑

n=0

(q1+k/a, q1+kv2/a, q/a, qv2/a; q)n
(q1+k, q1+kv2, qv2, q; q)n

a2n,

if one interprets the left-hand side as the appropriate limit (namely that
(q1−k; q)∞/(q

1−k; q)n = (q1+n−k; q)∞), by observing that the terms for n = 0, 1, . . . ,
k − 1 do not contribute to the sum on the left-hand side so that one can replace n
by n+ k there. Consequently, we may rewrite (32) as

∞∑

n=0

∞∑

k=−n

ak (q1+k+n, q1+kv2, a, a/v2; q)∞
(1/v2, q1+k/a, q1+kv2/a, q; q)∞

(q1+k/a, q1+kv2/a, q/a, qv2/a; q)n
(q1+kv2, qv2, q; q)n

a2n

=

∞∑

n=0

an (q1+n, q1+nv2, a, a/v2; q)∞
(1/v2, q1+n/a, q1+nv2/a, q; q)∞

2φ1

[
qv2/a, q/a

qv2
; q, a

]

=
(qv2, a, a/v2; q)∞

(1/v2, q/a, qv2/a; q)∞
2φ1

[
qv2/a, q/a

qv2
; q, a

]2
. (33)
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Next we consider the first term in expression (31), namely

(av2, a/v2; q)∞
(qv2/a, q/av2; q)∞

∞∑

k=−∞

(q/a)|k| (q1+|k|, q1+|k|v2, q/a, q/av2; q)∞
(1/v2, q|k|a, q|k|av2, q; q)∞

×
∞∑

n=0

(q|k|a, q|k|av2, a, av2; q)n
(q1+|k|, q1+|k|v2, qv2, q; q)n

(q/a)2n. (34)

Proceeding in the same manner as before, we see that this expression equals

(a/v2, qv2, q/a; q)∞
(qv2/a, 1/v2, a; q)∞

2φ1

[
av2, a
qv2

; q,
q

a

]2
. (35)

The equality between (33) and (35) (and, hence, between (32) and (34)) follows
immediately from Heine’s 2φ1-transformation formula (see [30, (1.4.1)])

2φ1

[
A,B
C

; q, Z

]
=

(B,AZ; q)∞
(C,Z; q)∞

2φ1

[
C/B,Z
AZ

; q, B

]
(36)

after substituting A = qv2/a,B = q/a, C = qv2, Z = a. Since the second terms in
(29) and (31) arise from the respective first terms by the substitution v 7→ 1/v, this
completes the proof of the claimed equality between SCIs.

The full symmetry group of the 2φ1-series is generated by repeated applications
of this transformation together with the permutation of its numerator parameters
A and B, and it is isomorphic to the dihedral group D6 [31]. This leads to two
further 2φ1-transformation formulas, namely (see [30, (1.4.5)])

2φ1

[
A,B
C

; q, Z

]
=

(C/B,BZ; q)∞
(C,Z; q)∞

2φ1

[
ABZ/C,B

BZ
; q,

C

B

]
(37)

and (see [30, (1.4.6)])

2φ1

[
A,B
C

; q, Z

]
=

(ABZ/C; q)∞
(Z; q)∞

2φ1

[
C/A,C/B

C
; q,

ABZ

C

]
. (38)

Therefore we have two more different representations of the SCI:

Ie,Nf=2;h =
(qv2/a, a/v2, q, q; q)∞
(1/v2, qv2, a, q/a; q)∞

2φ1

[
a, a
q
; q,

qv2

a

]2
+

(
v 7→ 1

v

)

=
(a/v2; q)∞(av2, q; q)2∞

(1/v2, qv2, a, q/a, qv2/a; q)∞
2φ1

[
q/a, q/a

q
; q, av2

]2
+

(
v 7→ 1

v

)
, (39)

following from the first transformation with A = q/a,B = qv2/a and the second
one with A = qv2/a,B = q/a, where we choose C = qv2, Z = a in both cases. The
third transformation does not yield new results. It is necessary to clarify whether
these two new cases can attain a proper interpretation as SCIs of some new mirror
field theories.

Expressions (33) and (35) are given by the product of two terms coming from the
sum over the monopoles and the integration over the gauge group. This resembles
a product of the holomorphic and anti-holomorphic parts of the four-point function
of 2d conformal field theory, and the mirror maps resemble the transformation
formulas for these functions in different channels.

One can consider the equality Ie,Nf=2;h = Im,Nf=2;h in the limit v = i, which
can be interpreted as the reduction of the number of flavours from Nf = 2 to
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Nf = 1. For v = i, the expression Ie,Nf=2;h reduces to Ie,Nf=1;h, where q is replaced

by q2 and the integration variable z is replaced by −z2. The integral Im,Nf=2;h

reduces also to Ie,Nf=1;h with q/a replaced by a and with the additional multiplier

(−a; q)2∞/(−q/a; q)2∞. Both integrals can be evaluated exactly, as described in the
previous section, and we find that the equality Ie,Nf=2;h|v=i = Im,Nf=2;h|v=i is
reduced to the identity

(a2, q2/a, q2/a2; q2)∞
(q2/a2, a, a; q2)∞

=
(q2/a2, aq, aq; q2)∞
(a2, q/a, q/a; q2)∞

(−a; q)2∞
(−q/a; q)2∞

. (40)

Multiplying both sides by (a2; q2)∞/(q
2/a2; q2)∞, one can see that it reduces to

the square of the relation

(a2, q2/a; q2)∞
(q2/a2, a; q2)∞

=
(aq; q2)∞
(q/a; q2)∞

(−a; q)∞
(−q/a; q)∞

,

which is easy to verify.
From the physical point of view, this is very similar to the reduction tjtk = pq of

the elliptic hypergeometric integral describing the superconformal index of a 4dN =
1 SYM theory with SU(2) gauge group and 8 chiral superfields [5]. The latter theory
has many dual partners, and the Nf = 4 to Nf = 3 reduction leads to four different
theories — the original interacting electric theory with reduced number of flavours,
two interacting magnetic theories with reduced number of chiral superfields, some
additional mesons, and different flavour symmetries. The fourth theory was in the
confined phase with free mesons, and its index was given by an explicit infinite
product. All four forms correspond to the W (E6) Weyl group symmetry of the
elliptic beta integral evaluation formula [3]. Our 3d mirror symmetric theories look
similar to the first pair of the described 4d dual theories, and we expect existence
of other mirror partners, whose SCIs would reduce for v = i directly to expression
(23). The final comment concerns the parameter h related to the arbitrariness of
the R-charges discussed in the Introduction. As we see, equality of SCIs holds true
for arbitrary h, i.e., one does not need the exact physical value of the R-charge of
the quarks in the IR fixed point.

4. Generalization to arbitrary Nf

Now we consider the electric 3d N = 2 supersymmetric theory with U(1) gauge
group and arbitrary number of flavours Nf with R-charges ∆Qi

= ∆Q̃i
= h, i =

1, . . . , Nf . The global symmetry group is SU(Nf)l × SU(Nf)r × U(1)J , so we
should introduce chemical potentials for each subgroup si, ti, i = 1, . . . , Nf , and
w. However, we restrict to si = ti, i = 1, . . . , Nf , w = 1. First we present the
single-particle state index of this theory,

ind(a, q, ti) =
q1/2+|s|/2(z + z−1)

1− q

Nf∑

i=1

(
a−1/2ti − a1/2t−1

i

)
, (41)

from which one can easily compute the full SCI:

Ie,Nf ;h =
∑

k∈Z

aNf |k|/2

∫

T

Nf∏

i=1

(a1/2q1/2+|k|/2t−1
i z±1; q)∞

(a−1/2q1/2+|k|/2tiz±1; q)∞

dz

2πiz
, (42)
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where
∏Nf

i=1 ti = 1. On the mirror symmetric side we shall have an (Nf − 1)-
fold multiple sum over the Nf − 1 analogues of the variable s and an (Nf − 1)-
dimensional integral over the Nf−1 analogues of the variable z. After the substitu-

tion tk = e2πik/Nf in the electric theory SCI, we come to the initial Nf = 1 SCI with
different choice of the parameters. Therefore we expect that the (Nf − 1)-multiple
sums/integrals of the mirror side also reduce appropriately.

The Nf → Nf − 1 reduction in SCIs is realized similar to the 4d indices case

[6]. It can be summarized as follows. First one should substitute tNf
= a1/2 so

that, as is easily seen from (42), the contribution from the Nf -th flavour drops
out (physically this means that we have integrated this field out by giving large
mass to it). After having done this, one should renormalize the parameters ti,
i = 1, . . . , Nf − 1, and a as follows:

ti → a−1/2(Nf−1)ti, i = 1, . . . , Nf − 1, a→ a(Nf−1)/Nf .

This brings the SCI back to expression (42) with the replacement of Nf by Nf − 1.
After residue calculus, we arrive at the following sum of well-poised 2Nf

φ2Nf−1-
series:

Ie,Nf ;h =
∑

k∈Z

aNf |k|/2

Nf∏

i=2

(q1+|k|t1/ti, a/tit1; q)∞
(ti/t1, q1+|k|/at1ti; q)∞

(q1+|k|, a/t21; q)∞
(q1+|k|t21/a, q; q)∞

× 2Nf
φ2Nf−1

[
q1+|k| t

2
1

a , q
1+|k| t1t2

a , . . . , q1+|k| t1tNf

a ,
qt21
a ,

qt1t2
a , . . . ,

qt1tNf

a
qt1
t2
, . . . , qt1

tNf

, q1+|k|, q1+|k| t1
t2
, . . . , q1+|k| t1

tNf

; q, aNf

]

+ idem [1; 2, . . . , Nf ] , (43)

where idem [1; 2, . . . , Nf ] means that one has to add the sum of all expressions
arising from the previous expression by interchanging the index 1 with the indices
2, . . . , Nf , one by one.

As in the previous section, we can rewrite the above expression in the form

Ie,Nf ;h =
(a/t21, qt

2
1/a; q)∞

(q, q; q)∞

Nf∏

i=2

(a/t1ti, qt1ti/a; q)∞
(ti/t1, qt1/ti; q)∞

∞∑

k=0

aNfk
(q1+k; q)2∞

(q1+kt21/a; q)
2
∞

×
Nf∏

i=2

(q1+kt1/ti; q)
2
∞

(q1+kt1ti/a; q)2∞
Nf
ψNf

[
q1+kt21/a, q

1+kt1t2/a, . . . , q
1+kt1tNf

/a
q1+k, q1+kt1/t2, . . . , q

1+kt1/tNf

; q, aNf/2

]

+ idem [1; 2, . . . , Nf ] , (44)

which finally is rewritten as

Ie,Nf ;h =
(a/t21; q)∞
(qt21/a; q)∞

Nf∏

i=2

(a/t1ti, qt1/ti; q)∞
(ti/t1, qt1ti/a; q)∞

× Nf
φNf−1

[
qt21/a, qt1t2/a, . . . , qt1tNf

/a
qt1/t2, . . . , qt1/tNf

; q, aNf/2

]2

+ idem [1; 2, . . . , Nf ] . (45)

Here, we see again the separation of the sum and the integral into Nf terms, each
being the square of an Nf

φNf−1-series.
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One can check that the term |k| in the summand can be replaced by k ∈ Z (both
before and after residue calculus), which automatically leads to the termination of
the k-series from below. Indeed, when k < 0 we have

aNfk/2

Nf∏

i=1

(a1/2q1/2+k/2t−1
i z±1; q)∞

(a−1/2q1/2+k/2tiz±1; q)∞

= aNfk/2

Nf∏

i=1

(a1/2q1/2+k/2t−1
i z±1; q)−k(a

1/2q1/2−k/2t−1
i z±1; q)∞

(a−1/2q1/2+k/2tiz±1; q)−k(a−1/2q1/2−k/2tiz±1; q)∞

= a−Nfk/2

Nf∏

i=1

(a1/2q1/2−k/2t−1
i z±1; q)∞

(a−1/2q1/2−k/2tiz±1; q)∞
, (46)

after taking into account the constraint
∏Nf

i=1 ti = 1. Thus we come to the following
form of the SCI:

Ie,Nf ;h =
∑

k∈Z

aNfk/2

∫

T

Nf∏

i=1

(a1/2q1/2+k/2t−1
i z±1; q)∞

(a−1/2q1/2+k/2tiz±1; q)∞

dz

2πiz
, (47)

with the same contour of integration T as before.
Now we would like to discuss another representation of SCIs. Interchanging the

sum over k and integration over z in (47), we can write

Ie,Nf ;h =

∫

T

Nf∏

i=1

(
√
aqt−1

i z±1; q)∞

(
√
q/atiz±1; q)∞

2Nf
ψ2Nf

[ √
q/atiz

±1

√
aqt−1

i z±1 ; q, aNf

]
dz

2πiz

+ aNf/2

∫

T

Nf∏

i=1

(q
√
at−1

i z±1; q)∞
(qtiz±1/

√
a; q)∞

2Nf
ψ2Nf

[
qtiz

±1/
√
a

q
√
at−1

i z±1 ; q, aNf

]
dz

2πiz
.

It would interesting to find a pure integral representation of this expression,
which may help in understanding a connection with elliptic hypergeometric inte-
grals. We were able to represent the SCI as a sum of two integrals only in the
case Nf = 1. For that purpose, we use the following compact contour integral
representation for a general 2ψ2-series:

2ψ2

[
a, q/d
b, q/c

; q,
αd

βc

]
=

(q, q, b/a, d/c; q)∞
(b, d, q/a, q/c; q)∞

∫

T

(azα, czβ, q/azα, q/czβ; q)∞
(zα, zβ, b/azα, d/czβ; q)∞

dz

2πiz
,

(48)
where |b/a| < |α/β| < |c/d|. It is obtained after multiplying two 1ψ1-series (25) with
different choices of parameters (A,B), say (a, b) respectively (c, d), and Z1 = αz,
Z2 = βz, with the subsequent integration

∫
T
dz/z. In this way we find the expression

Ie,Nf=1;h

(a, q; q)2∞
=

∫

T2

(zw
√
q/a,

√
aq/zw; q)2∞

(
√
aqz±1,

√
q/az±1; q)∞(w, a/w; q)2∞

dz

2πiz

dw

2πiw

+
√
a

∫

T2

(q(zw/
√
a)±1, (

√
a/zw)±1; q)∞

(
√
az±1, qz±1/

√
a; q)∞(w, a/w; q)2∞

dz

2πiz

dw

2πiw
. (49)

The usefulness of such a representation is not clear at present.
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5. Concluding remarks

We described an interplay between mirror-symmetric three-dimensional super-
conformal field theories and the theory of q-special functions. This is similar to the
relation between SCIs in four dimensions and the theory of elliptic hypergeometric
integrals [4, 6]. Actually, three-dimensional N = 2 supersymmetric field theories
can be obtained by dimensional reduction from four-dimensional N = 1 theories
and thus the SCIs of these theories should be related by some reduction procedure.
So far this question, which was the main motivation for our work, is not understood
and requires a clarification. The calculation of 3d SCIs is not so straightforward as
in 4d theories, and the sums over 3d monopole fluxes require proper interpretation
in terms of the contour integrals. An understanding of this connection would allow
us to apply the full power of 4d dualities together with the theory of elliptic hyper-
geometric integrals defining SCIs [3]. Another related problem is the problem of
extending our results to gauge groups other than U(1) which we have considered
here.
q-Special functions have a much poorer structure than elliptic hypergeometric

functions. For example, for 3d SCIs the kernels of integral-sums satisfy first order q-
difference equations with rational coefficients, which is the only substitute for the 4d
notion of total ellipticity, which is interpreted from the physical point of view as the
’t Hooft anomaly matching conditions [6]. The only somewhat analogous notion
is the parity anomaly [29] (see also [32] for early references and a perturbative
analysis of this phenomenon), which is associated with the classical Chern–Simons
term breaking the parity.

As to reduction of the number of flavours, in the 4d case there was a very
simple procedure for doing this at the level of SCIs — it was sufficient to restrict
parameters to sktk = pq for removing the k-th flavour [6]. In the 3d case, the
analogous Nf = 2 → Nf = 1 result is reached in N = 2 supersymmetric theory
with U(1) gauge group by the parameter restriction v = i, and a similar reduction
from arbitrary Nf to Nf = 1 should be valid after using higher roots of unity. The
reduction Nf → Nf − 1 in the general case is realized by the special choice of one

parameter, namely tNf
= a1/2, with a subsequent renormalization of the remaining

tj ’s and a.
Another interesting fact we observe is the factorization of the sum over the

monopoles and the integration over the gauge group in 3d SCIs of N = 2 su-
persymmetric field theory with U(1) gauge group and Nf flavours; see (45). It
resembles much the separation into holomorphic and antiholomorphic parts of the
correlation functions in 2d CFT.
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Note added. After finishing this work, we became aware of [33], where SCIs
induced by the topological charge of the group U(1)J are considered for 3d N = 8
theories, which partially overlaps with our considerations. Furthermore, the revised
version of [16], which appeared after publishing the preprint version of our paper,



3d SUPERCONFORMAL INDICES 15

includes perturbative consideration of SCIs related to the group U(1)J , and its
authors affirm an overlap with our results.

Appendix A. General SCIs

A.1. Nf = 1 case. Let us present the formulas for 3d supersymmetric U(1) gauge
group with one flavour for general chemical potentials:

Ie,Nf=1;h;w =
∑

k∈Z

a|k|/2wk

∫

T

(a1/2q1/2+|k|/2z±1; q)∞
(a−1/2q1/2+|k|/2z±1; q)∞

dz

2πiz
. (50)

Here, a crucial difference from the w = 1 index considered in the main text is that
the sum over s contains both |k| and k, which, actually, requires a modification of
the general formula found in [14, 16]. Namely, we suggest that this term appears
after the substitution of the term wQ into the general trace (2), where Q is the
conserved charge of the global symmetry group U(1)J generated by the topological
current Jµ = ǫµνσFνσ [29] which is related to the monopole flux.

After residue calculus, we get

Ie,Nf=1;h;w =
∑

k∈Z

a|k|/2wk (q1+|k|, a; q)∞
(q, q1+|k|/a; q)∞

2φ1

[
q1+|k|/a, q/a

q1+|k| ; q, a

]
. (51)

The superconformal index of the mirror theory (which is again a free theory of
chiral superfields) is

Im,Nf=1;h;w =
(a; q)∞
(q/a; q)∞

(qw±1/a1/2; q)∞
(a1/2w±1; q)∞

. (52)

The equality Ie,Nf=1;h;w = Im,Nf=1;h;w of SCIs is proven completely analogously to
the case w = 1. We leave the details to the reader.

A.2. Nf = 2 case. Now we consider the most general SCI for dual theories with
Nf = 2. The initial theory index has the form

Ie,Nf=2;h;w =
∑

k∈Z

a|k|wk

∫

T

(a1/2q1/2+|k|/2u±1z−1, a1/2q1/2+|k|/2v±1z; q)∞
(a−1/2q1/2+|k|/2u±1z, a−1/2q1/2+|k|/2v±1z−1; q)∞

dz

2πiz
,

(53)
where the chemical potentials u and v are associated with the SU(2)l × SU(2)r
flavour group and w corresponds to the U(1)J -group discussed in [29]. After residue
calculus, we obtain

Ie,Nf=2;h;w =
∑

k∈Z

a|k|wk (q1+|k|, q1+|k|v2, au/v, a/uv; q)∞
(v−2, q1+|k|v/au, q1+|k|uv/a, q; q)∞

× 4φ3

[
q1+|k|v/au, q1+|k|uv/a, qv/au, quv/a

q1+|k|, q1+|k|v2, qv2
; q, a2

]
+

(
v 7→ 1

v

)
, (54)

which gives

Ie,Nf=2;h;w =
(qv2, au/v, a/uv; q)∞

(1/v2, qv/aa, quv/a; q)∞
2φ1

[
quv/a, qv/au

qv2
; q, aw±1

]
+

(
v 7→ 1

v

)
.

(55)
Here, we use again a short notation: the term w±1 indicates that we actually mean
the product of two 2φ1-series, one with w in place of w±1, the other with w−1 in
place of w±1.
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The mirror partner has SCI of the form

Im,Nf=2;h;w =
(qw±1/a; q)∞
(aw±1; q)∞

(au±1v±1; q)∞
(qu±1v±1/a; q)∞

×
∑

k∈Z

(q/a)|k|wk

∫

T

(a−1/2q1+|k|/2v±1z−1, a−1/2q1+|k|/2u±1z; q)∞
(a1/2q|k|/2v±1z, a1/2q|k|/2u±1z−1; q)∞

dz

2πiz
. (56)

The position of some of the poles of the integrand are proportional to u. To consider
the poles with position proportional to v one can make the change z 7→ 1/z, and
then we have a situation similar to the one discussed in the main part of the text.
Residue calculus leads to

Im,Nf=2;h;w =
(qw±1/a; q)∞
(aw±1; q)∞

(au±1v±1; q)∞
(qu±1v±1/a; q)∞

×
(
∑

k∈Z

(q/a)|k|wk (q
1+|k|, q1+|k|v2, qu/av, q/auv; q)∞
(v−2, aq|k|v/u, aq|k|uv, q; q)∞

× 4φ3

[
aq|k|v/u, aq|k|uv, av/u, auv

q1+|k|, q1+|k|v2, qv2
; q, (q/a)2

]
+

(
v 7→ 1

v

))
, (57)

and, finally, to

Im,Nf=2;h;w =
(qw±1/a; q)∞
(aw±1; q)∞

(au±1v±1; q)∞
(qu±1v±1/a; q)∞

×
(
(qv2, qu/av, q/auv; q)∞
(1/v2, av/u, auv; q)∞

2φ1

[
auv, av/u

qv2
; q, qw±1/a

]
+

(
v 7→ 1

v

))
, (58)

with the same short notation as in (55).
One can easily see that (55) and (58) coincide by using the transformation for-

mulas (36) and (38) in the text. Thus we established the equality of SCIs in the
most general possible setting.
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