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1 Introduction

The superconformal index (SCI) technique is a very useful tool for testing supersymmet-

ric dualities. Initially, this technique was introduced for four-dimensional supersymmetric

field theories [1–3] in the context of N = 1 SYM Seiberg dualities and AdS/CFT corre-

spondence for N = 4 SYM field theories. In this case, the indices are described by the

elliptic hypergeometric integrals [4, 5] as observed first by Dolan and Osborn [6]. Various

developments and applications of this technique are described in [7–15].

Later, in [16, 17], the superconformal index for three-dimensional supersymmetric

Chern-Simons theories with large rank of the gauge group N was introduced, and the co-

incidence with the gravitational background index in the context of AdS/CFT correspon-

dence [18] has been established. In [19] superconformal characters of three-dimensional

supersymmetric theories have been constructed and, after taking restrictions for parame-

ters in them, SCIs for theories considered in [16, 17] can be obtained in a different way.

In [20–24], various three-dimensional SCIs were calculated in the large N limit for compar-

ison with their gravity duals. The partition functions of three-dimensional supersymmetric

field theories are studied in [25–35].

The superconformal index for N = 6 Chern-Simons theory with finite N was derived

by Kim in [21]. The contribution to SCIs of chiral fields with arbitrary R-charge was

found recently by Imamura and Yokoyama in [36]. After combining everything, this gives

an exact formula for 3d SCIs analogous to Römelsberger’s result for 4d N = 1 SYM

theories [2, 3]. SCIs of some 3d N = 2 supersymmetric field theories and their mirror
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partners [37] (see also [38, 39] for a general discussion of such theories) were computed

in [36] and their coincidence was confirmed up to the first several terms of the corresponding

series expansions in chemical potentials. The main goal of the present work consists in the

analytic proof of exact coincidence of SCIs for these mirror symmetric 3d theories.

Let us describe the SCI derived in [21, 36]. For two particular supercharges Q and

Q† = S, the superconformal partner of Q, the following algebraic relation holds:

{Q,Q†} = 2H = ∆ −R− J3, (1.1)

where the space-time symmetry generators ∆, R, J3 are the Hamiltonian, the R-charge, and

the third component of the angular momentum, respectively. One defines an extension of

the Witten index for the theories compactified on the two-sphere S2 as

I = Tr

(
(−1)Fe−βHx∆+J3

rank F∏

i=1

tFi

i

)
, (1.2)

where F is the fermion number operator and x is the chemical potential associated with

the operator ∆ + J3 commuting with the chosen supercharges. Chemical potentials ti are

associated with commuting generators of the group F describing other global symmetries

of the theory. Analogously to the 4d case one computes the trace over the space of states

defined by the kernel of Q and Q†, since contributions of the states with non-zero eigen-

values of H cancel each other. In other words, one works with the gauge invariant BPS

states protected by at least one pair of supercharges which do not form long multiplets.

As a result, the index does not depend on β.

Similar to the 4d case, the 3d SCI is computed in two steps by using the localization

procedure in S2×S1. One constructs first the so-called single-particle state index and then

computes the full SCI. The single-particle state index is defined by the formula [21, 36]

ind(eigj , s, x, t) = −
∑

α∈G

eiα(g)x2|α(s)|

+
∑

Φ

∑

ρ∈RΦ

[
eiρ(g)tfi

i

x2|ρ(s)|+∆Φ

1 − x2
− e−iρ(g)t−fi

i

x2|ρ(s)|+2−∆Φ

1 − x2

]
, (1.3)

where the first term describes contributions of the gauge fields, and the rest comes from

the matter fields with flavour charges fi. The chemical potentials g = {g1, . . . , grank G} are

associated with the generators of the maximal torus of the gauge group G. Similarly we

write s = {s1, . . . , srank G}, where sj are some half-integers associated with the magnetic

monopole fluxes. The sum
∑

α∈G is taken over the roots of the Lie algebra of G. Without

the term x2|α(s)| it would yield essentially the character for the adjoint representation. This

contribution was computed in [21].

The second term was also computed in case of N = 6 superconformal Chern-Simons

theory in [21] for the matter fields with the specific R-charges ∆Φ = 1/2. In [36], the

contribution of chiral fields with general R-charges is determined. Here ∆Φ is the Weyl

weight of a chiral multiplet Φ lying in the representation RΦ of the gauge group G. Similar
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to the 4d case, the scalar component of the chiral superfield Φ hasR-charge equal to ∆Φ, and

the fermion component has the R-charge ∆Φ−1. The sum
∑

ρ∈RΦ
is the sum over all terms

with the weight ρ(g) for a given chiral field Φ lying in the RΦ representation of the gauge

group G. The symbols α(g) and α(s) in the first term are used for a separate presentation of

the gauge field and the monopole contributions coming from the adjoint representation ofG.

Having the single-particle state index, one derives a full SCI using the plethystic ex-

ponent [36]

I(x, t) =
∑

s

1

Sym

∫
e−S

(0)
CS eib0(g)xǫ0

rank F∏

i=1

tq0i

i

· exp

[
∞∑

n=1

1

n
ind(zn

j , s, x
n, tni )

]
rank G∏

j=1

dzj
2πizj

, (1.4)

where zj = eigj ,

ǫ0 =
∑

Φ

(1 − ∆Φ)
∑

ρ∈RΦ

|ρ(s)| −
∑

α∈G

|α(s)| (1.5)

is the zero-point contribution to the energy,

q0i = −
∑

Φ

∑

ρ∈RΦ

|ρ(s)|fi (1.6)

is the zero-point contribution to the flavour charges, and, finally,

b0(g) = −
∑

Φ

∑

ρ∈RΦ

|ρ(s)|ρ(g), (1.7)

which can be regarded as the one-loop correction to the Chern-Simons term.

In the presence of the Chern-Simons term, there is a contribution e−S
(0)
CS , where

S
(0)
CS = 2i TrCS(gs), (1.8)

with TrCS standing for the trace including Chern-Simons levels [21, 36]. For U(N)k theory

with Chern-Simons level k, this factor equals 2ik
∑rank G

j=1 sjgj [21].

In contrast to the four-dimensional case, where the index contains integration over

the gauge group only [1–3, 6], here one has additionally the sum over the fluxes of rankG

independent monopoles. Monopoles appear as solutions of the classical field equation

associated with the saddle points in the localization procedure. Effectively, this leads to

the shifted spin j and the shifted value of eigenvalue for J3 due to the contribution from

the background fluxes mj, and the variable

sj =
1

2
mj, mj ∈ Z,

is introduced for convenience. In the above formulas, the quantities ρ(s) represent the same

Weyl weights in this background flux for a taken chiral field Φ. For example, the chiral

superfields — gauge group singlets have ρ(g) = ρ(s) = 0.
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As pointed out in [21], the integration over the gauge group is a little bit tricky, because

of the presence of monopoles. It was shown in [21] that the contribution coming from the

vector multiplet for si 6= sj and for si = sj is different, since in the first case the monopole

spherical harmonics and in the latter case the usual spherical harmonics are used. As

suggested in [36], this fact is already included in the term for the contribution of the vector

multiplet. The term 1
Sym in (1.4) appears because of the same reason, it is connected

with the fact that the initial gauge group G is ’broken’ by the monopoles into the product

G1 × · · · × Gk, which gives Sym =
∏k

i=1(rankGi)! [21], which can also be written in the

form

Sym =
rank G∏

i=1




rank G∑

j=i

δsi,sj


 , (1.9)

where δa,b is the usual Kronecker delta-function.

In [36], SCIs for mirror symmetric theories were calculated with some restrictions — the

same chemical potentials were used for both quark fields belonging to one flavour. More-

over, corresponding formulas did not contain the chemical potential associated with the

abelian symmetry group U(1)J [39] resolving degeneracies. Shifting the scalar component

of vector multiplet by an arbitrary constant, one can take into account this extra global

symmetry. In the appendix, we present SCIs with the most general set of chemical poten-

tials. Surprisingly, we found that the SCI terms related to the symmetry group U(1)J can

not be obtained directly from the results of [36], suggesting that they may be incomplete.

In contrast to the four-dimensional case, where in most cases the condition of the

anomaly absence fixes the R-charge, in the three-dimensional case the R-charge in (1.4)

is not fixed. Moreover, it can be arbitrary, since adding to it any combination of the

abelian global charges represents again the R-charge. The latter fact is reflected by the

appearance of the free parameter h associated with the R-charge in the SCIs. Recently

the Z-extremization procedure was suggested in [30] for obtaining the exact R-charges of

matter fields in the IR fixed points of 3d theories.

Formulas (1.3) and (1.4) resemble to some extent the procedure of calculating SCIs in

4d supersymmetric field theories [1, 6], but they are much more involved. In particular,

there are the terms in addition to the plethystic exponent, which is a new structural

element. The building block of SCIs for 3d theories is given by the infinite q-product

(z; q)∞ =
∞∏

j=0

(1 − zqj), |q| < 1.

Let us consider the chiral superfield Φ with arbitrary R-charge ∆Φ in the fundamental

representation of U(Nc). Then the single-particle state index is

indC(x, eigj , sj) =

Nc∑

j=1

x∆Φ+2|sj|eigj − x2−∆Φ+2|sj |e−igj

1 − x2
, (1.10)
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and the full SCI is obtained as

exp

(
∞∑

n=1

1

n
indC(xn, eingj , sj)

)

= exp




∞∑

n=1

1

n

Nc∑

j=1

xn(∆Φ+2|sj |)eingj − xn(2−∆Φ+2|sj |)e−ingj

1 − x2n




=

Nc∏

j=1

(x2−∆Φ+2|sj |e−igj ;x2)∞

(x∆Φ+2|sj |eigj ;x2)∞
. (1.11)

The contribution of gauge fields looks fundamentally different. When the gauge group

is U(Nc), the contribution of the vector multiplet is [21]

indV (x, eigj , sj) = −
Nc∑

i,j=1, i6=j

x|si−sj |ei(gi−gj), (1.12)

and the contribution to the full SCI is given by

exp

(
∞∑

n=1

1

n
indV (xn, eingj , sj)

)
=

Nc∏

i,j=1, i6=j

(1 − x|si−sj |ei(gi−gj)). (1.13)

We need also some mathematical definitions from the theory of q-special functions (see,

e.g., [40]). The basic hypergeometric series r+1φr is defined by

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑

n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, b2, . . . , br; q)n

zn, (1.14)

where

(a1, a2, . . . , ar+1; q)n := (a1; q)n(a2; q)n · · · (ar+1; q)n,

with the q-shifted factorial (z; q)n being given by

(z; q)n =





1, for n = 0,
∏n−1

j=0 (1 − zqj), for n > 0,
∏−n

j=1(1 − zq−j)−1, for n < 0.

(1.15)

For |q| < 1, one can write

(z; q)n =
(z; q)∞

(zqn; q)∞
. (1.16)

It is also convenient to use the notation

(az±1; q)n := (az; q)n(az−1; q)n.

The bilateral basic hypergeometric series rψr is defined by

rψr

[
a1, a2, . . . , ar

b1, b2, . . . , br
; q, z

]
=

∞∑

n=−∞

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , br; q)n

zn. (1.17)

– 5 –



J
H
E
P
0
6
(
2
0
1
1
)
0
0
8

2 Mirror symmetry for d = 3 N = 2 field theory with U(1)-gauge group

and Nf = 1

Here we discuss consequences of the mirror symmetry for three-dimensional N = 2 su-

persymmetric field theory with U(1) gauge group and Nf = 1 in its IR fixed point,

whose mirror partner is the free Wess-Zumino theory [37–39]. The initial electric the-

ory has one flavour or two quark superfields Q and Q̃ of charges +1 and −1 and R-charges

∆Q = ∆ eQ = 1/3. The superconformal index is given by the expression

Ie,Nf=1 =
∑

k∈Z

q|k|/3

∫

T

(q5/6+|k|/2z±1; q)∞
(q1/6+|k|/2z±1; q)∞

dz

2πiz
, (2.1)

where T is the unit circle with positive orientation and |q| < 1. It coincides with the

function which appeared in [36] as formula (67) after the change of the chemical potential,

the integration variable, and the summation variable, given by

q = x2, z = eia, k = 2s.

After evaluating the integral as a sum of residues, we can write

Ie,Nf=1 =
∑

k∈Z

q|k|/3 (q1+|k|, q2/3; q)∞
(q, q1/3+|k|; q)∞

2φ1

[
q1/3+|k|, q1/3

q1+|k| ; q, q2/3

]
. (2.2)

The superconformal index of the mirror partner theory containing one meson M = QQ̃

and two singlets V± [39] with R-charge ∆M,V± = 2/3 has the form

Im,Nf =1 =
(q2/3; q)3∞
(q1/3; q)3∞

. (2.3)

Actually, in both of these theories there exists an additional U(1)J -symmetry group [39],

which is not taken into account in [36]. In general, it is necessary to introduce an additional

chemical potential w for it. In the appendix, we present these more general SCIs. The

expressions given above correspond to the choice w = 1.

Mirror symmetry is supposed to lead to equal superconformal indices of two theories.

In [36], coincidence of only the first several terms of the series expansions in q of (2.1)

and (2.3) was checked. Our goal is to give an analytic proof of the equality of these indices,

which we formulate as a mathematical theorem.

Theorem 1 The equality Ie,Nf=1 = Im,Nf =1 holds true.

We shall present the proof of a more general statement containing an additional free

parameter describing the R-charge of a chiral superfield ∆Φ = h. For this theory, the SCI

is given by the expression

Ie,Nf=1;h =
∑

k∈Z

a|k|/2

∫

T

(a1/2q1/2+|k|/2z±1; q)∞

(a−1/2q1/2+|k|/2z±1; q)∞

dz

2πiz
, (2.4)
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where we write a = q1−h and assume the constraint |q/a| < 1. Note that from first glance

one cannot replace in the series summand the modulus |k| by k since then, for any a,

there will be a negative value of k such that the contour T stops to separate the geometric

sequences of poles converging to zero from their reciprocals.

After evaluating this integral as a sum of residues, one finds

Ie,Nf=1;h =
∑

k∈Z

a|k|/2 (q1+|k|, a; q)∞

(q, q1+|k|/a; q)∞
2φ1

[
q1+|k|/a, q/a

q1+|k| ; q, a

]
. (2.5)

The superconformal index of the mirror theory (which is again a free theory of chiral

superfields) will be

Im,Nf =1;h =
(a; q)∞

(q/a; q)∞

(q/a1/2; q)2∞
(a1/2; q)2∞

. (2.6)

Again these expressions correspond to the choice w = 1 of the chemical potential associated

with the U(1)J -group (see the appendix).

Theorem 2 The equality Ie,Nf=1;h = Im,Nf =1;h holds true.

We start by evaluating the double sum

∞∑

k=−∞

ak/2 (a; q)∞ (q1+k; q)∞
(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q/a; q)n (q1+k/a; q)n
(q; q)n (q1+k; q)n

an. (2.7)

In order to do this, we interchange the sums over k and n and write the (now) inner

sum over k in bilateral series notation:

∞∑

n=0

an (q/a; q)2n (a; q)∞
(q; q)2n (q/a; q)∞

1ψ1

[
q1+n/a

q1+n ; q, a1/2

]
.

The 1ψ1-series can be summed by means of Ramanujan’s summation (see [40, (5.2.1)])

1ψ1

[
A

B
; q, Z

]
=

(q,B/A,AZ, q/AZ ; q)∞
(B, q/A,Z,B/AZ ; q)∞

. (2.8)

If we apply this formula and then write the sum over n in basic hypergeometric notation,

then we obtain the expression

(a; q)∞ (q/a1/2; q)∞
(a1/2; q)∞ (q/a; q)∞

1φ0

[
q/a

− ; q, a1/2

]
.

After application of the q-binomial theorem (see [40, (1.3.2)])

1φ0

[
A

−; q, Z

]
=

(AZ; q)∞
(Z; q)∞

,

our expression simplifies to (2.6).
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Now, the double sum (2.7) was not exactly what we wanted. We want

∞∑

k=−∞

a
|k|
2 (a; q)∞ (q1+|k|; q)∞

(q; q)∞ (q1+|k|/a; q)∞

∞∑

n=0

(q/a; q)n (q1+|k|/a; q)n

(q; q)n (q1+|k|; q)n
an, (2.9)

which is just the expression in (2.5), where the 2φ1-series is written out explicitly.

So, in view of the above, it suffices to prove that the sum over non-negative k in (2.7)

equals the sum over non-positive k in (2.7), that is,

∞∑

k=0

a
k
2 (a; q)∞ (q1+k; q)∞

(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q/a; q)n (q1+k/a; q)n
(q; q)n (q1+k; q)n

an

=

0∑

k=−∞

a
k
2 (a; q)∞ (q1+k; q)∞

(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q/a; q)n (q1+k/a; q)n
(q; q)n (q1+k; q)n

an. (2.10)

This is not too difficult to see: we take the right-hand side of (2.10) and replace k by −k:
∞∑

k=0

a−
k
2 (a; q)∞ (q1−k; q)∞

(q; q)∞ (q1−k/a; q)∞

∞∑

n=0

(q/a; q)n (q1−k/a; q)n
(q; q)n (q1−k; q)n

an.

We see now that, actually, this is an undefined expression, due to the terms (q1−k; q)∞
and (q1−k; q)n in numerator and denominator, respectively. We have to interpret this as

an appropriate limit. In particular, the terms in the second sum for n = 0, 1, . . . , k − 1 do

not contribute anything. We may therefore start the sum over n at n = k. This leads to

the expression

∞∑

k=0

a−
k
2 (a; q)∞ (q1−k; q)∞

(q; q)∞ (q1−k/a; q)∞

∞∑

n=k

(q/a; q)n (q1−k/a; q)n
(q; q)n (q1−k; q)n

an

=
∞∑

k=0

a
k
2 (a; q)∞ (q1+k; q)∞

(q; q)∞ (q1+k/a; q)∞

∞∑

n=0

(q1+k/a; q)n (q/a; q)n
(q1+k; q)n (q; q)n

an,

where we replaced n by n + k and did some simplification. This is exactly the left-hand

side of (2.10). This proves equality of (2.7) and (2.9), and thus that the double sum (2.9)

equals the product in (2.6).

Remark. The possibility to replace |k| by k in the bilateral series requires some physical

explanation. The variable k is the quantized magnetic flux associated with the Dirac

monopole solution in this model. It is related somehow with the spin variable j = |k| of

the spherical harmonics, and the situation looks like that after replacing |k| by k we come

to the sum over j ∈ Z/2 related with non-negative values of the SO(3) Casimir operator

proportional to (j + 1/2)2.

Note that, in contrast to 4d N = 1 SYM theories, where one can often fix U(1)R
group hypercharges in the infrared fixed point, in 3d theories this is not the case [39].

The proven equality of SCIs remains true for arbitrary h (or a) although the physically

acceptable theory corresponds to the value h = 1/3 (such a possibility was pointed out

already in [36]). The exact superconformal R-symmetry charges are found with the help
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of techniques described in [30]. Thus, similar to the 4d situation [8–10], mathematical

properties of SCIs do not distinguish unitary theories from the non-unitary ones. SCIs

count topological objects of the theories irrespective whether the cohomology space of Q
and Q† = S contains ghost fields violating unitarity or not. The equality of SCIs does not

correspond necessarily to duality/mirror symmetry between physically acceptable theories,

one should analyze separately their physical content.

3 Mirror symmetry for d = 3 N = 2 theory with U(1) gauge group and

Nf = 2

We consider now SCIs for 3d N = 2 field theory with U(1) gauge group and Nf = 2

flavours and its magnetic partner which are dual to each other in their respective IR fixed

points [37–39]. The electric theory has F = SU(2)l × SU(2)r ×U(1)J flavour symmetry for

superfields with R-charges ∆Qi
= ∆fQi

= h, i = 1, 2 [39]. For each symmetry group one

should introduce chemical potentials: u for SU(2)l, v for SU(2)r and w for U(1)J , but we

consider first the restricted region of these parameters where u = v and w = 1, which was

analyzed perturbatively in [36]. In the appendix we present general expressions for indices.

The restricted SCI has the form

Ie,Nf=2;h =
∑

k∈Z

a|k|
∫

T

(a1/2q1/2+|k|/2v±1z±1; q)∞

(a−1/2q1/2+|k|/2v±1z±1; q)∞

dz

2πiz
, (3.1)

where the chemical potential v is associated with the identified SU(2) flavour groups. After

residue calculus, we obtain

Ie,Nf=2;h =
∑

k∈Z

a|k|
(q1+|k|, q1+|k|v2, a, av−2; q)∞

(v−2, q1+|k|/a, q1+|k|v2/a, q; q)∞

×4φ3

[
q1+|k|/a, q1+|k|v2/a, q/a, qv2/a

q1+|k|, q1+|k|v2, qv2 ; q, a2

]
+

(
v 7→ 1

v

)
, (3.2)

where (v 7→ 1
v ) stands for the preceding expression in which v was replaced by 1/v. The

mirror partner of this theory has again the same U(1) gauge group and two flavours with R-

charges ∆qi
= ∆eqi

= 1−h, i = 1, 2, and meson fields Mij = QiQ̃j, i, j = 1, 2, with R-charge

∆Mij
= ∆Qi

+ ∆ eQj
= 2h, and two singlet superfields V± with R-charge ∆V± = 2(1 − h).

Its restricted superconformal index has the form

Im,Nf =2;h =
(av±2; q)∞

(qv±2/a; q)∞

∑

k∈Z

(q/a)|k|
∫

T

(a−1/2q1+|k|/2v±1z±1; q)∞

(a1/2q|k|/2v±1z±1; q)∞

dz

2πiz
. (3.3)

Note that in the generic case considered in the appendix the prefactor in front of the sum

is considerably more complicated. Residue calculus leads to

Im,Nf=2;h =
(av±2; q)∞

(qv±2/a; q)∞
×
(
∑

k∈Z

(q/a)|k|
(q1+|k|, q1+|k|v2, q/a, qv−2/a; q)∞

(v−2, aq|k|, aq|k|v2, q; q)∞

×4φ3

[
aq|k|, aq|k|v2, a, av2

qv2, q1+|k|, q1+|k|v2 ; q, (q/a)2

]
+

(
v 7→ 1

v

))
. (3.4)
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Theorem 3 The equality Ie,Nf=2;h = Im,Nf =2;h holds true.

To prove this statement, we start with the double sum

∞∑

k=−∞

a|k| (q1+|k|, q1+|k|v2, a, a/v2; q)∞
(1/v2, q1+|k|/a, q1+|k|v2/a, q; q)∞

·
∞∑

n=0

(q1+|k|/a, q1+|k|v2/a, q/a, qv2/a; q)n

(q1+|k|, q1+|k|v2, qv2, q; q)n
a2n, (3.5)

representing the first term in (3.2) (the second being obtained by reflection v → 1/v). It

is again easy to see that, for k < 0, we have

a−k (q1−k, q1−kv2, a, a/v2; q)∞
(1/v2, q1−k/a, q1−kv2/a, q; q)∞

∞∑

n=0

(q1−k/a, q1−kv2/a, q/a, qv2/a; q)n
(q1−k, q1−kv2, qv2, q; q)n

a2n

=
ak (q1+k, q1+kv2, a, a/v2; q)∞

(1/v2, q1+k/a, q1+kv2/a, q; q)∞

∞∑

n=0

(q1+k/a, q1+kv2/a, q/a, qv2/a; q)n
(q1+k, q1+kv2, qv2, q; q)n

a2n,

if one interprets the left-hand side as the appropriate limit (namely that

(q1−k; q)∞/(q
1−k; q)n = (q1+n−k; q)∞), by observing that the terms for n = 0, 1, . . . ,

k − 1 do not contribute to the sum on the left-hand side so that one can replace n by

n+ k there. Consequently, we may rewrite (3.5) as

∞∑

n=0

∞∑

k=−n

ak (q1+k+n, q1+kv2, a, a/v2; q)∞
(1/v2, q1+k/a, q1+kv2/a, q; q)∞

(q1+k/a, q1+kv2/a, q/a, qv2/a; q)n
(q1+kv2, qv2, q; q)n

a2n

=

∞∑

n=0

an (q1+n, q1+nv2, a, a/v2; q)∞
(1/v2, q1+n/a, q1+nv2/a, q; q)∞

2φ1

[
qv2/a, q/a

qv2 ; q, a

]

=
(qv2, a, a/v2; q)∞

(1/v2, q/a, qv2/a; q)∞
2φ1

[
qv2/a, q/a

qv2 ; q, a

]2

. (3.6)

Next we consider the first term in expression (3.4), namely

(av2, a/v2; q)∞
(qv2/a, q/av2; q)∞

∞∑

k=−∞

(q/a)|k| (q1+|k|, q1+|k|v2, q/a, q/av2; q)∞

(1/v2, q|k|a, q|k|av2, q; q)∞

×
∞∑

n=0

(q|k|a, q|k|av2, a, av2; q)n

(q1+|k|, q1+|k|v2, qv2, q; q)n
(q/a)2n. (3.7)

Proceeding in the same manner as before, we see that this expression equals

(a/v2, qv2, q/a; q)∞
(qv2/a, 1/v2, a; q)∞

2φ1

[
av2, a

qv2 ; q,
q

a

]2

. (3.8)

The equality between (3.6) and (3.8) (and, hence, between (3.5) and (3.7)) follows imme-

diately from Heine’s 2φ1-transformation formula (see [40, (1.4.1)])

2φ1

[
A,B

C
; q, Z

]
=

(B,AZ; q)∞
(C,Z; q)∞

2φ1

[
C/B,Z

AZ
; q,B

]
(3.9)
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after substituting A = qv2/a,B = q/a,C = qv2, Z = a. Since the second terms in (3.2)

and (3.4) arise from the respective first terms by the substitution v 7→ 1/v, this completes

the proof of the claimed equality between SCIs.

The full symmetry group of the 2φ1-series is generated by repeated applications of this

transformation together with the permutation of its numerator parameters A and B, and

it is isomorphic to the dihedral group D6 [41]. This leads to two further 2φ1-transformation

formulas, namely (see [40, (1.4.5)])

2φ1

[
A,B

C
; q, Z

]
=

(C/B,BZ; q)∞
(C,Z; q)∞

2φ1

[
ABZ/C,B

BZ
; q,

C

B

]
(3.10)

and (see [40, (1.4.6)])

2φ1

[
A,B

C
; q, Z

]
=

(ABZ/C; q)∞
(Z; q)∞

2φ1

[
C/A,C/B

C
; q,

ABZ

C

]
. (3.11)

Therefore we have two more different representations of the SCI:

Ie,Nf=2;h =
(qv2/a, a/v2, q, q; q)∞
(1/v2, qv2, a, q/a; q)∞

2φ1

[
a, a

q
; q,

qv2

a

]2

+

(
v 7→ 1

v

)

=
(a/v2; q)∞(av2, q; q)2∞

(1/v2, qv2, a, q/a, qv2/a; q)∞
2φ1

[
q/a, q/a

q
; q, av2

]2

+

(
v 7→ 1

v

)
, (3.12)

following from the first transformation with A = q/a,B = qv2/a and the second one

with A = qv2/a,B = q/a, where we choose C = qv2, Z = a in both cases. The third

transformation does not yield new results. It is necessary to clarify whether these two new

cases can attain a proper interpretation as SCIs of some new mirror field theories.

Expressions (3.6) and (3.8) are given by the product of two terms coming from the sum

over the monopoles and the integration over the gauge group. This resembles a product

of the holomorphic and anti-holomorphic parts of the four-point function of 2d conformal

field theory, and the mirror maps resemble the transformation formulas for these functions

in different channels.

One can consider the equality Ie,Nf=2;h = Im,Nf =2;h in the limit v = i, which can be

interpreted as the reduction of the number of flavours from Nf = 2 to Nf = 1. For v = i,

the expression Ie,Nf=2;h reduces to Ie,Nf=1;h, where q is replaced by q2 and the integration

variable z is replaced by −z2. The integral Im,Nf =2;h reduces also to Ie,Nf=1;h with q/a

replaced by a and with the additional multiplier (−a; q)2∞/(−q/a; q)2∞. Both integrals can

be evaluated exactly, as described in the previous section, and we find that the equality

Ie,Nf =2;h|v=i = Im,Nf =2;h|v=i is reduced to the identity

(a2, q2/a, q2/a2; q2)∞
(q2/a2, a, a; q2)∞

=
(q2/a2, aq, aq; q2)∞
(a2, q/a, q/a; q2)∞

(−a; q)2∞
(−q/a; q)2∞

. (3.13)

Multiplying both sides by (a2; q2)∞/(q
2/a2; q2)∞, one can see that it reduces to the square

of the relation
(a2, q2/a; q2)∞
(q2/a2, a; q2)∞

=
(aq; q2)∞
(q/a; q2)∞

(−a; q)∞
(−q/a; q)∞

,

which is easy to verify.
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From the physical point of view, this is very similar to the reduction tjtk = pq of the

elliptic hypergeometric integral describing the superconformal index of a 4d N = 1 SYM

theory with SU(2) gauge group and 8 chiral superfields [7]. The latter theory has many

dual partners, and the Nf = 4 to Nf = 3 reduction leads to four different theories —

the original interacting electric theory with reduced number of flavours, two interacting

magnetic theories with reduced number of chiral superfields, some additional mesons, and

different flavour symmetries. The fourth theory was in the confined phase with free mesons,

and its index was given by an explicit infinite product. All four forms correspond to the

W (E6) Weyl group symmetry of the elliptic beta integral evaluation formula [4, 5]. Our 3d

mirror symmetric theories look similar to the first pair of the described 4d dual theories,

and we expect existence of other mirror partners, whose SCIs would reduce for v = i

directly to expression (2.6). The final comment concerns the parameter h related to the

arbitrariness of the R-charges discussed in the Introduction. As we see, equality of SCIs

holds true for arbitrary h, i.e., one does not need the exact physical value of the R-charge

of the quarks in the IR fixed point.

4 Generalization to arbitrary Nf

Now we consider the electric 3d N = 2 supersymmetric theory with U(1) gauge group

and arbitrary number of flavours Nf with R-charges ∆Qi
= ∆ eQi

= h, i = 1, . . . , Nf . The

global symmetry group is SU(Nf )l × SU(Nf )r × U(1)J , so we should introduce chemical

potentials for each subgroup si, ti, i = 1, . . . , Nf , and w. However, we restrict to si =

ti, i = 1, . . . , Nf , w = 1. First we present the single-particle state index of this theory,

ind(a, q, ti) =
q1/2+|s|/2(z + z−1)

1 − q

Nf∑

i=1

(
a−1/2ti − a1/2t−1

i

)
, (4.1)

from which one can easily compute the full SCI:

Ie,Nf ;h =
∑

k∈Z

aNf |k|/2

∫

T

Nf∏

i=1

(a1/2q1/2+|k|/2t−1
i z±1; q)∞

(a−1/2q1/2+|k|/2tiz±1; q)∞

dz

2πiz
, (4.2)

where
∏Nf

i=1 ti = 1. On the mirror symmetric side we shall have an (Nf − 1)-fold multiple

sum over the Nf − 1 analogues of the variable s and an (Nf − 1)-dimensional integral over

the Nf − 1 analogues of the variable z. After the substitution tk = e2πik/Nf in the electric

theory SCI, we come to the initial Nf = 1 SCI with different choice of the parameters.

Therefore we expect that the (Nf − 1)-multiple sums/integrals of the mirror side also

reduce appropriately.

The Nf → Nf − 1 reduction in SCIs is realized similar to the 4d indices case [8–10]. It

can be summarized as follows. First one should substitute tNf
= a1/2 so that, as is easily

seen from (4.2), the contribution from the Nf -th flavour drops out (physically this means

that we have integrated this field out by giving large mass to it). After having done this,

one should renormalize the parameters ti, i = 1, . . . , Nf − 1, and a as follows:

ti → a−1/2(Nf−1)ti, i = 1, . . . , Nf − 1, a→ a(Nf−1)/Nf .

This brings the SCI back to expression (4.2) with the replacement of Nf by Nf − 1.
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After residue calculus, we arrive at the following sum of well-poised 2Nf
φ2Nf−1-series:

Ie,Nf ;h =
∑

k∈Z

aNf |k|/2

Nf∏

i=2

(q1+|k|t1/ti, a/tit1; q)∞

(ti/t1, q1+|k|/at1ti; q)∞

(q1+|k|, a/t21; q)∞

(q1+|k|t21/a, q; q)∞

×2Nf
φ2Nf−1

[
q1+|k| t

2
1
a , q

1+|k| t1t2
a , . . . , q1+|k|

t1tNf

a ,
qt21
a ,

qt1t2
a , . . . ,

qt1tNf

a
qt1
t2
, . . . , qt1

tNf

, q1+|k|, q1+|k| t1
t2
, . . . , q1+|k| t1

tNf

; q, aNf

]

+ idem [1; 2, . . . , Nf ] , (4.3)

where idem [1; 2, . . . , Nf ] means that one has to add the sum of all expressions arising from

the previous expression by interchanging the index 1 with the indices 2, . . . , Nf , one by one.

As in the previous section, we can rewrite the above expression in the form

Ie,Nf ;h =
(a/t21, qt

2
1/a; q)∞

(q, q; q)∞

Nf∏

i=2

(a/t1ti, qt1ti/a; q)∞
(ti/t1, qt1/ti; q)∞

∞∑

k=0

aNfk (q1+k; q)2∞
(q1+kt21/a; q)

2
∞

×
Nf∏

i=2

(q1+kt1/ti; q)
2
∞

(q1+kt1ti/a; q)2∞
Nf
ψNf

[
q1+kt21/a, q

1+kt1t2/a, . . . , q
1+kt1tNf

/a

q1+k, q1+kt1/t2, . . . , q
1+kt1/tNf

; q, aNf /2

]

+ idem [1; 2, . . . , Nf ] , (4.4)

which finally is rewritten as

Ie,Nf ;h =
(a/t21; q)∞
(qt21/a; q)∞

Nf∏

i=2

(a/t1ti, qt1/ti; q)∞
(ti/t1, qt1ti/a; q)∞

×Nf
φNf−1

[
qt21/a, qt1t2/a, . . . , qt1tNf

/a

qt1/t2, . . . , qt1/tNf

; q, aNf /2

]2

+ idem [1; 2, . . . , Nf ] . (4.5)

Here, we see again the separation of the sum and the integral into Nf terms, each being

the square of an Nf
φNf−1-series.

One can check that the term |k| in the summand can be replaced by k ∈ Z (both before

and after residue calculus), which automatically leads to the termination of the k-series

from below. Indeed, when k < 0 we have

aNf k/2

Nf∏

i=1

(a1/2q1/2+k/2t−1
i z±1; q)∞

(a−1/2q1/2+k/2tiz±1; q)∞

= aNf k/2

Nf∏

i=1

(a1/2q1/2+k/2t−1
i z±1; q)−k(a

1/2q1/2−k/2t−1
i z±1; q)∞

(a−1/2q1/2+k/2tiz±1; q)−k(a−1/2q1/2−k/2tiz±1; q)∞

= a−Nfk/2

Nf∏

i=1

(a1/2q1/2−k/2t−1
i z±1; q)∞

(a−1/2q1/2−k/2tiz±1; q)∞
, (4.6)
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after taking into account the constraint
∏Nf

i=1 ti = 1. Thus we come to the following form

of the SCI:

Ie,Nf ;h =
∑

k∈Z

aNf k/2

∫

T

Nf∏

i=1

(a1/2q1/2+k/2t−1
i z±1; q)∞

(a−1/2q1/2+k/2tiz±1; q)∞

dz

2πiz
, (4.7)

with the same contour of integration T as before.

Now we would like to discuss another representation of SCIs. Interchanging the sum

over k and integration over z in (4.7), we can write

Ie,Nf ;h =

∫

T

Nf∏

i=1

(
√
aqt−1

i z±1; q)∞

(
√
q/atiz±1; q)∞

2Nf
ψ2Nf

[√
q/atiz

±1

√
aqt−1

i z±1 ; q, aNf

]
dz

2πiz

+aNf /2

∫

T

Nf∏

i=1

(q
√
at−1

i z±1; q)∞
(qtiz±1/

√
a; q)∞

2Nf
ψ2Nf

[
qtiz

±1/
√
a

q
√
at−1

i z±1 ; q, aNf

]
dz

2πiz
.

It would interesting to find a pure integral representation of this expression, which may

help in understanding a connection with elliptic hypergeometric integrals. We were able

to represent the SCI as a sum of two integrals only in the case Nf = 1. For that purpose,

we use the following compact contour integral representation for a general 2ψ2-series:

2ψ2

[
a, q/d

b, q/c
; q,

αd

βc

]
=

(q, q, b/a, d/c; q)∞
(b, d, q/a, q/c; q)∞

∫

T

(azα, czβ, q/azα, q/czβ; q)∞
(zα, zβ, b/azα, d/czβ; q)∞

dz

2πiz
, (4.8)

where |b/a| < |α/β| < |c/d|. It is obtained after multiplying two 1ψ1-series (2.8) with

different choices of parameters (A,B), say (a, b) respectively (c, d), and Z1 = αz, Z2 = βz,

with the subsequent integration
∫

T
dz/z. In this way we find the expression

Ie,Nf=1;h

(a, q; q)2∞
=

∫

T2

(zw
√
q/a,

√
aq/zw; q)2∞

(
√
aqz±1,

√
q/az±1; q)∞(w, a/w; q)2∞

dz

2πiz

dw

2πiw

+
√
a

∫

T2

(q(zw/
√
a)±1, (

√
a/zw)±1; q)∞

(
√
az±1, qz±1/

√
a; q)∞(w, a/w; q)2∞

dz

2πiz

dw

2πiw
. (4.9)

The usefulness of such a representation is not clear at present.

5 Concluding remarks

We described an interplay between mirror-symmetric three-dimensional superconformal

field theories and the theory of q-special functions. This is similar to the relation between

SCIs in four dimensions and the theory of elliptic hypergeometric integrals [6, 8–10]. Actu-

ally, three-dimensional N = 2 supersymmetric field theories can be obtained by dimensional

reduction from four-dimensional N = 1 theories and thus the SCIs of these theories should

be related by some reduction procedure. So far this question, which was the main motiva-

tion for our work, is not understood and requires a clarification. The calculation of 3d SCIs

is not so straightforward as in 4d theories, and the sums over 3d monopole fluxes require

proper interpretation in terms of the contour integrals. An understanding of this connection
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would allow us to apply the full power of 4d dualities together with the theory of elliptic

hypergeometric integrals defining SCIs [4, 5]. Another related problem is the problem of

extending our results to gauge groups other than U(1) which we have considered here.

q-Special functions have a much poorer structure than elliptic hypergeometric func-

tions. For example, for 3d SCIs the kernels of integral-sums satisfy first order q-difference

equations with rational coefficients, which is the only substitute for the 4d notion of to-

tal ellipticity, which is interpreted from the physical point of view as the ’t Hooft anomaly

matching conditions [8–10]. The only somewhat analogous notion is the parity anomaly [39]

(see also [42, 43] for early references and a perturbative analysis of this phenomenon), which

is associated with the classical Chern-Simons term breaking the parity.

As to reduction of the number of flavours, in the 4d case there was a very simple

procedure for doing this at the level of SCIs — it was sufficient to restrict parameters to

sktk = pq for removing the k-th flavour [8–10]. In the 3d case, the analogous Nf = 2 →
Nf = 1 result is reached in N = 2 supersymmetric theory with U(1) gauge group by the

parameter restriction v = i, and a similar reduction from arbitrary Nf to Nf = 1 should

be valid after using higher roots of unity. The reduction Nf → Nf − 1 in the general case

is realized by the special choice of one parameter, namely tNf
= a1/2, with a subsequent

renormalization of the remaining tj’s and a.

Another interesting fact we observe is the factorization of the sum over the monopoles

and the integration over the gauge group in 3d SCIs of N = 2 supersymmetric field theory

with U(1) gauge group and Nf flavours; see (4.5). It resembles much the separation into

holomorphic and antiholomorphic parts of the correlation functions in 2d CFT.
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Note added. After finishing this work, we became aware of [44], where SCIs induced

by the topological charge of the group U(1)J are considered for 3d N = 8 theories, which

partially overlaps with our considerations. Furthermore, the revised version of [23], which

appeared after publishing the preprint version of our paper, includes perturbative consider-

ation of SCIs related to the group U(1)J , and its authors affirm an overlap with our results.

A General SCIs

A.1 Nf = 1 case

Let us present the formulas for 3d supersymmetric U(1) gauge group with one flavour for

general chemical potentials:

Ie,Nf =1;h;w =
∑

k∈Z

a|k|/2wk

∫

T

(a1/2q1/2+|k|/2z±1; q)∞

(a−1/2q1/2+|k|/2z±1; q)∞

dz

2πiz
. (A.1)
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Here, a crucial difference from the w = 1 index considered in the main text is that the

sum over s contains both |k| and k, which, actually, requires a modification of the general

formula found in [21, 23]. Namely, we suggest that this term appears after the substitution

of the term wQ into the general trace (1.2), where Q is the conserved charge of the global

symmetry group U(1)J generated by the topological current Jµ = ǫµνσFνσ [39] which is

related to the monopole flux.

After residue calculus, we get

Ie,Nf=1;h;w =
∑

k∈Z

a|k|/2wk (q1+|k|, a; q)∞
(q, q1+|k|/a; q)∞

2φ1

[
q1+|k|/a, q/a

q1+|k| ; q, a

]
. (A.2)

The superconformal index of the mirror theory (which is again a free theory of chiral

superfields) is

Im,Nf =1;h;w =
(a; q)∞

(q/a; q)∞

(qw±1/a1/2; q)∞

(a1/2w±1; q)∞
. (A.3)

The equality Ie,Nf=1;h;w = Im,Nf =1;h;w of SCIs is proven completely analogously to the case

w = 1. We leave the details to the reader.

A.2 Nf = 2 case

Now we consider the most general SCI for dual theories with Nf = 2. The initial theory

index has the form

Ie,Nf=2;h;w =
∑

k∈Z

a|k|wk

∫

T

(a1/2q1/2+|k|/2u±1z−1, a1/2q1/2+|k|/2v±1z; q)∞

(a−1/2q1/2+|k|/2u±1z, a−1/2q1/2+|k|/2v±1z−1; q)∞

dz

2πiz
, (A.4)

where the chemical potentials u and v are associated with the SU(2)l × SU(2)r flavour

group and w corresponds to the U(1)J -group discussed in [39]. After residue calculus, we

obtain

Ie,Nf=2;h;w =
∑

k∈Z

a|k|wk (q1+|k|, q1+|k|v2, au/v, a/uv; q)∞

(v−2, q1+|k|v/au, q1+|k|uv/a, q; q)∞

×4φ3

[
q1+|k|v/au, q1+|k|uv/a, qv/au, quv/a

q1+|k|, q1+|k|v2, qv2 ; q, a2

]
+

(
v 7→ 1

v

)
, (A.5)

which gives

Ie,Nf=2;h;w =
(qv2, au/v, a/uv; q)∞

(1/v2, qv/aa, quv/a; q)∞
2φ1

[
quv/a, qv/au

qv2 ; q, aw±1

]
+

(
v 7→ 1

v

)
. (A.6)

Here, we use again a short notation: the term w±1 indicates that we actually mean the

product of two 2φ1-series, one with w in place of w±1, the other with w−1 in place of w±1.

The mirror partner has SCI of the form

Im,Nf=2;h;w =
(qw±1/a; q)∞
(aw±1; q)∞

(au±1v±1; q)∞
(qu±1v±1/a; q)∞

×
∑

k∈Z

(q/a)|k|wk

∫

T

(a−1/2q1+|k|/2v±1z−1, a−1/2q1+|k|/2u±1z; q)∞

(a1/2q|k|/2v±1z, a1/2q|k|/2u±1z−1; q)∞

dz

2πiz
. (A.7)
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The position of some of the poles of the integrand are proportional to u. To consider the

poles with position proportional to v one can make the change z 7→ 1/z, and then we have

a situation similar to the one discussed in the main part of the text. Residue calculus leads

to

Im,Nf =2;h;w =
(qw±1/a; q)∞
(aw±1; q)∞

(au±1v±1; q)∞
(qu±1v±1/a; q)∞

×
(
∑

k∈Z

(q/a)|k|wk (q1+|k|, q1+|k|v2, qu/av, q/auv; q)∞

(v−2, aq|k|v/u, aq|k|uv, q; q)∞

× 4φ3

[
aq|k|v/u, aq|k|uv, av/u, auv

q1+|k|, q1+|k|v2, qv2 ; q, (q/a)2

]
+

(
v 7→ 1

v

))
, (A.8)

and, finally, to

Im,Nf =2;h;w =
(qw±1/a; q)∞
(aw±1; q)∞

(au±1v±1; q)∞
(qu±1v±1/a; q)∞

×
(

(qv2, qu/av, q/auv; q)∞
(1/v2, av/u, auv; q)∞

2φ1

[
auv, av/u

qv2 ; q, qw±1/a

]
+

(
v 7→ 1

v

))
, (A.9)

with the same short notation as in (A.6).

One can easily see that (A.6) and (A.9) coincide by using the transformation formu-

las (3.9) and (3.11) in the text. Thus we established the equality of SCIs in the most

general possible setting.
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