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Abstract

The first generation of a global network of laser interferometric gravitational wave de-
tectors is already in operation. These projects aim at the first direct observation of
gravitational wave radiation. The anticipated sensitivity of future detectors might pro-
vides an opportunity to open up an entirely new field of gravitational wave astronomy,
the key to a deeper understanding of the structure and formation of our universe.

The first part of this thesis deals with potential upgrades for the second generation of
observatories, which is currently underway. An innovative concept is elaborated, based
on splitting the input laser light into distinct parts. From the resulting modification of
the quantum noise budget emerge essentially new physical properties of the detector. It
is shown that an appropriate adjustment of directly accessible parameters of the inter-
ferometer allows a combination of the signal-recycling and the optical bar scheme. The
conjunction of these complementary technologies leads to a significantly improved sensi-
tivity. Further, it is verified that a multi-carrier configuration can be stabilized by the
implementation of a feedback control system, which does not affect the noise spectral
density in the ideal case. But in practice such a technical component is susceptible to
classical noise. An additional investigation aims at the exploitation of multiple carrier
fields for an all-optical stabilization scheme. The proposed arrangement is also suitable
for compensating certain drawbacks of the signal-recycling technique, which entails a
considerable improvement of sensitivity. An intrinsic advantage of all multi-carrier con-
figurations is the increased number of degrees of freedom which can be used for a flexible
optimization of the detector for different gravitational wave sources. This is confirmed by
a numerical optimization, taking into account a currently estimated classical noise budget
of second generation gravitational wave detectors, as well as a more optimistic scenario.
In addition, compatibility with other well-known advanced technologies is clarified. These
explorations prove the sustainability of the newly developed techniques, i.e. future gener-
ations of detectors can also benefit from the concepts presented within the scope of this
work.

The second part of this thesis comprises a theoretical basis for testing quantum mechan-
ics in the macroscopic world. It is demonstrated that the presence of realistic decoherence
processes, i.e. multiple colored classical noise sources, does not prohibit engineering states
of macroscopic objects with nearly vanishing quantum mechanical entropy. A newly de-
veloped treatment of a conditional measurement process allows a continuous extraction
of information from a realistic system, which represses environmental influences. This
concept paves the way for the preparation of entangled states involving either one or two
macroscopic parts. During a subsequent free evolution stage, the environment irreversibly
disturbs the quantum state. But it persists on short time scales and hence is available for
further measurements. The proposed experiments constitute an essential test of quantum
mechanics and would push the realm of fascinating quantum physics into the macroscopic
world.

Keywords: gravitational wave detector, interferometry, entanglement, macroscopic
quantum mechanics
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Kurzfassung

Die erste Generation eines weltumspannenden Netzwerks von interferometrischen Gravi-
tationswellendetektoren ist bereits in Betrieb. Diese Projekte sollen den ersten direkten
Nachweis der von Albert Einstein 1915 im Rahmen der allgemeinen Relativitétstheorie
vorhergesagten Gravitationswellen erbringen. Zukiinftige Detektoren koénnten durch eine
verbesserte Sensitivitit eine Gravitationswellen-Astronomie erméglichen und damit neue
Einblicke in die Entstehung und Beschaffenheit unseres Universums bieten.

Der erste Teil dieser Arbeit behandelt potentielle Erweiterungen fiir die sich im Bau be-
findliche zweite Generation von Observatorien. Ein vorgestelltes innovatives Konzept ba-
siert auf der Aufteilung des verwendeten Laserlichtes in leicht separierbare Anteile. Dieses
erlaubt eine Modellierung und Optimierung der fundamentalen Quanteneffekte, wodurch
essentiell neue physikalische Eigenschaften des Detektors hervortreten konnen. Durch Ab-
stimmung unmittelbar zugénglicher Parameter konnen die Signal-Recycling Technik und
die optische Realisierung von Webers Resonanzantenne in einer Topologie vereinigt wer-
den. Das Zusammenspiel dieser komplementéren Technologien kann zu einer signifikanten
Steigerung der Empfindlichkeit fithren. Es wird belegt, dass ein verlustfreies Kontrollsys-
tem zur Stabilisierung des Interferometers eingesetzt werden kann, ohne die Sensitivitit
zu beeinflussen. Allerdings ist diese technische Komponente hinsichtlich der Einkopplung
klassischen Rauschens als kritisch einzustufen. Im Rahmen einer weiteren Untersuchung
werden die zur Verfiigung stehenden Eingangsfelder fiir eine rein optische Stabilisierung
des Systems ausgenutzt. Diese Methode kann parallel dazu verwendet werden, bekannte
Nachteile der Signal-Recycling Technik auszugleichen und somit die Empfindlichkeit zu
verbessern. Ein intrinsischer Vorteil der Verwendung von multiplen Eingangsfeldern ist
die erhchte Anzahl von Freiheitsgraden, die eine flexible Anpassung der Sensitivitit des
Detektors an verschiedenartige Quellen von Gravitationswellen erlauben. Eine numerische
Optimierung bestétigt dieses, wobei neben dem zu erwartenden klassischen Rauschen ei-
nes Detektors der zweiten Generation ein optimistischeres Szenarium beriicksichtigt wird.
Weiterhin wird die Kompatibilitdt zu anderen bekannten fortschrittlichen Technologien
verifiziert. Dadurch wird demonstriert, dass weitere Generationen von Detektoren eben-
falls von den im Rahmen dieser Arbeit vorgestellten Konzepten profitieren kénnen.

Im zweiten Teil der Arbeit wird eine theoretische Grundlage entwickelt, die den Nach-
weis quantenmechanischer Phénomene auch an makroskopisch schweren Objekten er-
moglicht. Erstmals wird gezeigt, dass Zustidnde prapariert werden konnen, die eine nahezu
verschwindende quantenmechanische Entropie aufweisen, obgleich das jeweilige makro-
skopische Objekt realistischen Dekohérenzprozessen ausgesetzt ist. Mit Hilfe einer neu
entwickelten Methode zur Beschreibung einer konditionierten Messung kann dem ent-
sprechenden System kontinuierlich Information entzogen werden, wodurch der von der
Umgebung induzierten Dekohiirenz effizient entgegengewirkt wird. Auf der Grundlage
dieses Konzeptes wird demonstriert, dass verschrinkte Zustéinde zwischen zwei Systemen
erzeugt werden konnen, wobei ein oder beide involvierten Komponenten makroskopischer
Natur sein konnen. Es zeigt sich, dass nach Abschluss der Priaparationsphase der jeweilige
quantenmechanische Zustand irreversibel durch die Wechselwirkung mit der Umgebung
verandert wird. Dennoch ist es auf kurzen Zeitskalen moglich, den praparierten Zustand
weiter zu beobachten. Die vorgeschlagenen Experimente erlauben einen grundlegenden
Test der Quantenmechanik und wiirden erstmals die verbliiffenden Paradoxien der Quan-
tenwelt anhand von makroskopisch schweren Objekten demonstrieren.

Stichworte: Gravitationswellendetektor, Interferometrie, Verschrankung, makroskopi-
sche Quantenmechanik
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1. Introduction

In the year 1881 the physicist Albert Abraham Michelson developed an optical arrange-
ment which is known today as the Michelson interferometer. The original version of this
instrument comprises a light source, two mirrors and a beam splitter. An incident beam
of light is split into two parts and each part travels a certain distance before it is re-
flected back by a mirror. After recombining the beams at the beam splitter, a pattern
of constructive and destructive interference, influenced by the difference in length of the
arms, is produced at the output port. Michelson improved his device and conducted an
aether drift experiment in 1887 — the famous Michelson-Morley experiment. The disproof
of the aether theory established an important basis for the development of Albert Ein-
stein’s special relativity theory. In 1915, Einstein published an extension of this theory,
known as the general relativity theory, which predicts, among other things, the existence
of gravitational waves. Beginning in the mid-1970s, it was realized that the differential
length change induced by a gravitational wave is ideally measured by an interferometer
of the Michelson-type. A major effort was put into the design of new techniques and the
precision of interferometric devices was increased by orders of magnitude. Today’s long-
baseline laser interferometric gravitational wave observatories have reached their design
sensitivities (e.g. /Sy ~ 2 x 10723 /y/Hz at 150 Hz for the 4 km initial LIGO interfer-
ometer [104]) and the first direct observation of gravitational waves is expected shortly.
Currently planned second generation gravitational wave laser interferometers such as Ad-
vanced LIGO will start operation around 2014. This detector will be nearly quantum
noise limited in most of its frequency band (10 Hz to 10 kHz), and it will operate near or
at the standard quantum limit, a well-known reference limit for high precision measure-
ments. This limit is enforced when the two fundamental quantum noise contributions —
shot noise and radiation pressure noise — are uncorrelated, while it can be surpassed if the
two sources exhibit appropriate correlations. The required correlations can, for instance,
be established by the injection of non-classical light, modifications of the readout scheme
or employing alternative optical configurations. We exploit such techniques for the de-
sign of innovative concepts for interferometric gravitational wave detectors in Chap. 4.
Our proposed schemes are motivated by the expeditious progress in the development of
second generation gravitational wave detectors and they can be regarded as possible up-
grades for these forthcoming observatories. The sustainability of the introduced concepts
also opens up the possibility of an implementation in third generation detectors. The
expected sensitivity of the higher generation antennas allows us to venture out into the
field of gravitational wave astronomy, which could potentially give us an amazing insight
into the origins of our universe.

In the second part of this theses (Chap. 5), we divert these powerful instruments from
their intended use. We exploit strategies aiming at approaching or surpassing the stan-
dard quantum limit for the preparation of macroscopic quantum states. The fundamental
framework of quantum mechanics was established during the first half of the twentieth



century and various prominent physicists contributed to the development of this theory.
The theory was initially worked out in order to provide a better description of effects
associated with atoms and light. It was for a long time believed that it is not possible
to observe quantum mechanical states of everyday-sized objects, due to the ubiquitous
presence of decoherence processes. The natural environment interacts with the object
under consideration and perturbs its motion in a thermodynamically irreversible way.
The entropy inevitably increases and the system is driven away from a true minimum
Heisenberg uncertainty state. An attempt to counteract this effect is based on introduc-
ing a strong mechanical damping, in order to repress the environmental influence, i.e. the
system is effectively cooled. Such a damping force can be realized in different ways, for
instance by the implementation of a feedback control system. This was demonstrated by
a recent experiment involving the initial LIGO gravitational wave detector. The eigen-
frequency of its suspended mirrors was shifted from 1 Hz up to 140 Hz by a feedback
control system. Subsequently the control system was so adjusted that the mechanical
mode was damped and a final occupation number of ~ 200 was achieved for the kg-scale
oscillator. This result reveals that the test masses in current gravitational wave detectors
are still far from a true minimum Heisenberg uncertainty state. But the possibility of
a reduced classical noise budget in future detectors motivates our investigation of novel
concepts for experiments aiming at probing the quantum nature of macroscopic objects.
If we succeed in preparing a state close to the limit set by the Heisenberg uncertainty, it
can be used for engineering entangled states involving a single or two macroscopic parts.
Such a demonstration of the fascinating phenomena of quantum physics within the realm
of the everyday world is a mandatory test of quantum mechanics.



2. Fundamentals

Any physical theory is derived form a small set of basic principles which are taken for
granted. A theory should be capable of producing experimental predictions for a certain
physical system. The major part of this thesis is based on the theory of classical elec-
tromagnetism, widely accepted and described by Maxwell’s equations. This theory was
consistently and successfully reconciled for more than a century. Only the classical theory
is not sufficient for the description of certain phenomena investigated within the scope of
this thesis and therefore a quantization of Maxwell’s equations is required.

First we derive an expression for the quantized electromagnetic field in terms of the
two-photon creation and annihilation operators, which can simultaneously annihilate a
photon at frequency wg £ 2 while creating one at frequency wg F (2. The formalism
for two-photon quantum optics was developed by Caves and Schumaker in Ref. [44] and
it provides a suitable tool for calculating the propagation of modulation sideband fields
within complex optical systems. In practice, such systems are divided into fundamental
components, each characterized by a simple linear transfer function in the frequency
domain, as discussed in Sec. 2.3.1.

The interferometric configurations considered here can also be regarded as linear quan-
tum measurement devices, which suggests that the force susceptibility formalism of linear
quantum measurements applies (cf. Ref. [27]). This formalism is used throughout the
thesis at hand, which motivates a detailed review in Sec. 2.3.2.

It is also common to treat optical systems by the quantum Langevin equation, briefly
reviewed in Sec. 2.3.6. It is shown that the three formalisms are closely related and
describe exactly the same physics.

2.1. Quantized electromagnetic field

2.1.1. Maxwell’s equations

The differential form of Maxwell’s equations in terms of free charges and currents (see
e.g. Ref. [99]) are given in vector form by (SI units):

VB =0, (2.1)
V-D =p,

0B

0D

where B denotes the magnetic field, H the magnetic induction, E the electric field, D the
dielectric displacement, J the free currents in the material and p the free charges in the
material. Within the framework of this thesis, we primarily consider free electromagnetic



2.1. Quantized electromagnetic field 4

fields, which implies the following simplifications: p = 0, J = 0, B = u,H and E =
D /ey, where p is the magnetic permeability and €g the electric permittivity of the free
space, respectively, which obey the relation pgeg = ¢~2. The electromagnetic field can be
expressed in terms of a vector potential A and a scalar potential ¢:

0A

B=VxA, E=-V¢——. (2.5)

ot
There is no unique set of potentials specifying a given electric and magnetic field, since an
appropriate gauge transformation does not change the measurable fields. By employing
the Coulomb gauge, which is defined by V x A = 0 and ¢ = 0, we obtain:

0A

B = A E=——. 2.
Vx4, = (2.

Now we can deduce a wave equation by substituting Egs. (2.6) into Egs. (2.1)-(2.4):

1 0?A(x,t)
S

2
VZA(z,t) = BTe

. (2.7)

2.1.2. Field quantization

Since many aspects associated with the electromagnetic field cannot be described by

means of a classical theory, e.g. the double-slit experiment, a quantum mechanical de-

scription is required. The quantized electromagnetic field can be obtained by a procedure

widely used in literature (cf. e.g. Refs. [81, 166]) which is reviewed in the following.
The vector potential A(x,t) can be decomposed into two complex terms

Az, t) = AP (z,t) + A (x, 1), (2.8)

where A (z, )= (A (x,t))* contains all amplitudes which vary as e “* and A (x, 1)
contains all amplitudes which vary as e“! (we assume w > 0). It is convenient to deal with
a discrete set of variables and extend the discussion to the whole continuum afterwards.
For a field restricted to a certain volume, we can expand the vector potential in terms of
a discrete set of orthogonal mode functions:

AN (1) = Z cpug(x)e Wkt (2.9)
k

where the Fourier coefficients ¢, are constant in the case of a free field. The set of
mode functions ug(x) is usually determined by physical constraints. Since the volume
considered here contains no refractive materials, a mode function corresponding to a
frequency wy has to satisfy the equation

Wk

(v2 + 0—2) wp(x) = 0 (2.10)

within the volume under consideration. Independent of certain boundary conditions, we
assume that the mode functions form a complete orthonormal set

/ (wi ()1 - wj(z)dz = 5 (2.11)
|4
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and also satisfy the transversality condition
V- u(x)=0. (2.12)

Hence the plane wave mode functions inside a cubic volume V = L, L, L. can be written
as

ug(x) = %é()‘)exp(ikT -x), (2.13)
where é™) is the unit polarization vector. The index k represents an abbreviation for
several discrete variables, i.e. the polarization index (A = 1,2) and the three Cartesian
components of the propagation vector k. The polarization vector must be orthogonal to
the propagation vector, which directly follows from Eq. (2.12). The propagation vector
takes the form

kT = ( ke ky k. ): ( 2mny /Ly 2mny/L, 2mn./L, ) , (2.14)

with n,,ny,n. € Z. From Eq. (2.10) we can deduce the relation wy, = c|ky|, which allows
us to re-write the vector potential as:

Al t) = Zk: (200;0‘/)

where the constant normalization factor is so chosen that the pair of complex conjugate
amplitudes a; and az are dimensionless. These Fourier amplitudes are complex numbers
which can be chosen arbitrarily, but they remain constant in time for a free field. In
quantum theory, these Fourier amplitudes are associated with mutually adjoint operators.
These operators also remain constant and correspond to the annihilation and creation
Schrodinger operators, obeying the well-known boson commutation relations, i.e.

1/2 ; T ; T
é(/\) |:ake*1w1gt+1k -m_’_a};elwktflk :z:i| ’ (2'15)

lag, ap] = [a),al,] =0 [ak,al,] = O - (2.16)

The (quantum) electric and magnetic field can easily be obtained from Eq. (2.15):

1/2
E(w t) —iz hwk / é()\) [& e—iwkt-i-ik:Tm _ &Teiwkt—iszm} (2 17)
T 2¢0V F k 7 '

k

. 1 A 1/2 . o
Hz,t) =i— Y ( > (k x o) [ageint ikl e _ glo=kTe] (9 1g)

Ho 2¢0Vwy
huwy,
En = 2.19
0 V 2¢0V ( )

corresponds to the "electric field per photon”. So far. only a finite volume has been
considered. The transition to an infinite quantization volume can be accomplished as
follows: for L, L,, L. > 1, the sum over discrete indices can be replaced by an integral:

1%
SN S k. (2.20)
Y-rr/

The normalization constant
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Quantized beam of light

In the following, only ideal laser beams interacting with optical components will be taken
into account. An ideal laser beam is confined to a single dimension and we assume that
it propagates w.l.o.g. along the z-axis. The interaction processes considered here are not
sensible to polarization, which can therefore be fixed arbitrarily. For a single dimension,
the transition to an infinite quantization volume can be accomplished by the substitution
[cf. Eq. (2.20)]:

L L
Z — = [dk, = — [ dw, (2.21)
k

where the integration variable has been changed from the propagation vector to the optical
frequency in the second step. Consequently the electric field can be written as

. Ly [ Ly \Y? [ dw . .
_ x x ~ —iw(t—z/c) _ At iw(t—a/c)
Bta) = iy/ = (260Vc) = Vi [a(w)e if(w)e } . (2.22)

After defining the cross-sectional area of the beam A = V/L, and performing the replace-

ment i\/L,/ca(w) — a(w), we obtain

dw R —iw(t—z/c) | ~f iw(t—z/c)
Et,z) ,/%OAC/ \/_ a( Je +af(w)e ] . (2.23)

In the gravitational wave community, it is very common to write this equation in cgs units.
It can be converted by using the substitution E(t) — E(t)/v/4meq (see e.g. Ref. [99]):

2m dw : .
—iw(t—x/c) ~ iw(t—z/c)
E(t, x) p v [ (w)e +a'(w)e } . (2.24)

Note that the annihilation and creation operators now have the dimension of square of
time (y/sec) and the well-known commutation relation reads

[a(w), ' (W')] = 276(w — W'). (2.25)

The electric field operator in Eq. (2.24) has an explicit time dependance and must be
regarded as a Heisenberg operator. The representation of the electric field in cgs units
serves as the basis for following discussions.

The Hamiltonian can be obtained from the classical expression for the energy of the
electromagnetic field via the correspondence principle and it is given by

p 1
H=: — [da (E2(a,- t) + H(x, t)) : (2.26)
0
where : : denotes a normal ordering of the operators. Normal ordering is one recipe for

deriving the quantized energy. But no unique mapping exists from the classical world
to the quantum world and the only way to justify a certain quantization prescription
is to check if the quantum theory is able make accurate predictions. Naturally, there
cannot exist a unique mapping, as otherwise one could already figure out all the quantum
properties of a system by studying its classical properties!
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The Hamiltonian given in Eq. (2.26) can be simplified to

- d

Hy = / hwa! (w)a(w) (2.27)
0 2T

in the case of a beam propagating in one dimension. Since the Hamiltonian is time-inde-

pendent, the conversion of the electric field provided in Eq. (2.24) into the Schrodinger

picture can be accomplished by a simple transformation:

E ) 71H0tE(fI,' t) ifot (228)
\/i dw\/—[&( )1w$/0+aT( )—1w$/c . (229)

However, the creation and annihilation operators are fixed in time. In the case of the
Heisenberg representation [cf. Eq. (2.24)] of the electric field, the time dependance has
been explicitly factored out. Great importance is attached to the field amplitudes a and
at, since most of this thesis deals with the transformation of these amplitudes and not
the transformation of the electric field itself.

Modulation picture

Eq. (2.24) is a continuum multi-mode description of the electric field and every mode is
excited independently. But some optical devices, such as parametric amplifiers or gravita-
tional wave detectors, can produce a pair of modes at frequencies wg + {2 simultaneously.
For such applications, it is convenient to describe the field in terms of the two-photon
formalism introduced by Caves&Schumaker in Ref. [44]. This approach deals with annihi-
lation and creation operators creating simultaneously a photon at wg+ {2 and annihilating
a photon at wy — {2 or vice versa. The Heisenberg representation of the electric field [cf.
Eq. (2.24)] can be re-written at a fixed point on the optical axis:

A 27'(';1{4)0 —iwot > dQ R it /wO dQ N it
E(t)=1/——e™'0 — ! —a_e' h.c. 2.30
(t) 1o © </0 5, d+e + ; 5, i€ +h.c., (2.30)

where h.c. denotes the hermitian conjugate and the new operators occurring in Eq. (2.30)
are defined by:

9 9
iy —alwo+ D1+ L, a4l —alwe— )41 - 2. (2.31)
wo wo

Note that this decomposition of the electric field is still exactly equivalent to Eq. (2.24).
From the relation given in Eq. (2.25) the following non-vanishing commutation relations
can be deduced:

ay.al ) = 2062 — ) (1 + Q) el = 2ms(0 — ) (1 - Q) o (232)

wo wo
where a4/ accounts for a(wy=+2')\/1 £ 2'/wy. In principle it is possible to treat arbitrary
sideband frequencies within the framework of the two-photon formalism. But current
photo detectors are only qualified for the detection of modulation fields at frequencies
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much smaller than the carrier frequency (wo ~ 10'° Hz). In the case of gravitational
wave detectors, the relevant information is stored in modulation fields at frequencies
2~ 10...1000 Hz and hence it is reasonable to neglect terms proportional to £2/wy < 1.
It can be shown that this approximation does not affect the final noise spectral densities
calculated later (cf. also Ref. [36]). This approximation allows us to extend the integration
in Eq. (2.30) from wy to infinity, i.e.

- 2rhwy _: 4 . .
B(t) = /%e—lwot/o o [are % +a_e'?"] +hec.. (2.33)

The quadrature field amplitudes of the two-photon modes can then be defined as

o ay+al o agp—al

al = 5 as =

according to the Caves&Schumaker formalism [44] and the only non-vanishing commuta-
tion relation is given by

(2.34)

a1, db,] = —[ag,al,] = 2n6(02 — ©2'). (2.35)

It is convenient to combine the quadrature field amplitudes in a vector:

a= ( Z; > : (2.36)

Again, the electric field in Eq. (2.33) can be re-written, now in terms of the quadrature
phases:

E(t) = cos(wot) E1(t) 4 sin(wot) Ea(t) (2.37)

where the hermitian quadrature phases F)(t), Fa(t) depend on the quadrature field am-
plitudes:

. [ixhoy [ A2 o b [irheoy [ dQ .
Ex(t) = ACO/O I [ake Qt—i—a};e m] = Aco/ o ne ot (2.38)

Note that Eq. (2.38) only describes the quantum part of the electric field. A superposition
with a monochromatic classical carrier field with real amplitude A and frequency wg gives
an extra contribution of E. = Acos(wpt — 6). Hence the total electric field reads:

A~

E(t) = cos(wot)(E1 (t) + Acos(0)) + sin(wot) (Ea(t) + Asin(h)), (2.39)

where 6 denotes the phase of the carrier field. As done in Ref. [86] a vector space spanned
by basis vectors cos(wot) and sin(wgt) can be defined, which allows us to write Eq. (2.39)

“ o= (f40)+2 (s

g

Esb(t) E-(t)
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A scalar product can then be defined by averaging over time. Since the measurement
time 7 is much longer compared to an oscillation period of the carrier field (7 >> wy b,
we can write:

A

(E*(1))? =E1 (t) cos®(wot) + 21 (t) B (t) cos(wot ) sin(wot) + Es(t) sin® (wot)
~F3(t)/2 + E3(t)/2, (2.41)

or for the total field given in Eq. (2.39) we find:

E2(t) = A2)2 4+ E2(t)/2 + E2(t)/2 + A(E1(t) cos(0) + Ea(t)sin(6)) . (2.42)

Properties of the electric field

Special attention is to be paid in the following to certain properties of the electric field,
which are important for the subsequent investigations. The energy flux of the electric
field is given by the Pointing vector

S="ExH (2.43)
47

which has the dimension energy/(area - time). In our case, only free fields are considered
and hence the Pointing vector simplifies to

S

15| = iEZ(t). (2.44)

By employing the time-averaged relation provided in Eq. (2.42), we obtain

P=AS="—A", (2.45)
81

where we have neglected the quantum part. Hence we can express the amplitude of the
classical field in terms of the optical power P:

| 8w P

This allows us to define a ”carrier quadrature field” in the following way:

_ JAe_ . cos(;)
D; = EE = /2P; ( sin(6)) (2.47)
and hence the whole electric field can be written in terms of quadrature field vectors

] ([ @ 2Py [ cos(0a) \ _ . 1
Qtotal — ( o > + th < sin(@a) =a-+ \/WODQ’ (248)

which is just the Fourier transform of Eq. (2.40). From the Maxwell energy tensor follows
the momentum flow

Drotal (t) = ﬁE(tV (2.49)
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carried by the field. In our case only the quantum part amplified by the classical carrier
amplitude is to be taken into account:

B(t) = A (El(t) cos(0) + Es(t) sm(a)) (2.50)

and the Fourier transform of the momentum flow reads:

)=/ "D," ), (2.51)

where j denotes a quadrature field amplitude vector [cf. Eq. (2.36)] and D is the carrier
quadrature field [cf. Eq. (2.47)]. We neglect the static (dc) momentum flow associated
with the classical carrier field, since it only causes a constant force which does not influence
the transfer functions calculated later. Note that the pure quantum part is negligible,
since it gives rise to effects beyond the measurable scope.

We aim mainly at the derivation of transfer functions relating the input quadrature
field amplitudes to the output quadrature field amplitudes. By employing the relation
given in Eq. (2.34) we can convert a linear transformation

b = p+(2)as(2) with ¢4(62) = p(wo £ £2) (2.52)

into a transformation of the quadrature field amplitudes:

po L (petel) iler —9n) ) L
b_2(—i(;++<p*) (¢:+¢*)> ' (2:53)

Free propagation

In order to find a transformation relating the quadrature field operators at distinct loca-
tions, we need to compare the electric fields at (z = 0,¢t = tg) and (v = L,t = to + L/c).
In the absence of losses or refractive media, the electric field at (x = 0,¢ = ty) described
by the operators ai should be identical to the electric field at (x = L,t = to + L/c)
described by the operators b, which leads to the condition [cf. Eq. (2.33)]:

/ 9
_1w0t0/ d \/— a e —i2to +CL eth0:| (254)

= Zle_iwo(to-i-L/c dQ\/—[ _IQ t0+L/C)+b el Qto+L/e) > (2'55)
C

from which the linear transformation
by = goi(Q)ai(Q) with Pt = ei(wOiQ)L/c (2,56)

can be deduced. The transformation of the quadrature fields can be obtained by applying
the prescription defined in Eq. (2.53). The matrix for a propagation of the field through
a length L is then given by

A~

b=c"R[¢]-a, (2.57)

where R[¢] denotes a 2 x 2 rotation matrix

R[] = ( cosg —sing ) (2.58)

sing cos¢
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and

gL 0L (2.59)

c c

The rotation angle ¢ (microscopic detuning) corresponds to the phase shift of the carrier
light at frequency wg, while 8 denotes the phase shift of the modulation sidebands at
frequency 2. Note that the classical carrier quadrature field [cf. Eq. (2.47)] transforms
in a different way. A simple rotation relates the classical part of the field at different
locations:

D; - R[¢]-D,. (2.60)

Thus a propagation of the total electric field (sideband modulations plus carrier field)
requires separate transformations for the two parts of the field.

Coherent and squeezed states

In this thesis, the electric field is described in terms of the two-photon formalism [44]. But
before considering two-photon coherent and squeezed states, the one-photon counterparts
should be recapitulated. Here we will treat ideal processes, which means that the inter-
action part of the corresponding Hamiltonian is characterized by a c-number function.
Therefore the interaction appears as a generalized classical force acting on the modes
of the field. In general, real processes do not exhibit an ideal behavior, e.g. losses and
interactions with atoms have to be taken into account. Note that an ideal process does
not change the purity of the input state and hence such an interaction does not impurify
a minimum uncertainty state.

A coherent state is the closest quantum counterpart to a classical field. It can be
regarded as a certain quantum state of a quantum mechanical harmonic oscillator obeying
an oscillating behavior similar to a classical harmonic oscillator. Such states are generated
from the vacuum state (ground state) by applying the unitary displacement operator:

la) = D(a,®)[0) with D(a,a) = exp(aa —a*a). (2.61)
It can be easily shown that the generated state is an eigenstate of the annihilation operator
ala) = ala), (2.62)

where « is the complex eigenvalue. If the displacement operator does not act on the
vacuum state but on the mode’s annihilation operator, one realizes that it is displaced by
a c-number, i.e.

Di(a,a)aD(a,0) = a+ a. (2.63)

A two-photon coherent state can be generated in the following way:

N

log, ) = D(CALJF,Oer)ﬁ(CAL,, a-)[0), (2.64)

where D(a+,ay ) is defined as before in Eq. (2.61) and a4 corresponds to the annihilation
operator for the upper/lower sideband, as introduced in Eq. (2.31). This means that an
ideal one-photon process for each of the two modes is involved.

The unitary two-mode squeeze operator is given by

S(r, ¢s) = exp[r(&Jr&,e*zid’s — dl&tezid’s)] , (2.65)
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where the real variable r describes the squeezing strength and is therefore called the
squeezing factor, while ¢4 characterizes the squeezing phase. If the two mode squeezing
operator acts on the upper or lower mode’s annihilation operator, one obtains:

ST(r, ¢s)a+S(r, ¢s) = a+ cosh(r) + &;em(‘ss sinh(r) . (2.66)

We can convert the squeeze operation into a transformation of the quadrature field am-
plitudes by using Eq. (2.34):

s~ ( cosh(r) + sinh(r) cos(2¢s) sinh(r) sin(2¢5) A
b= < sinh(r) sin(2¢5) cosh(r) — sinh(r) cos(2¢s) > . (2.67)

2.2. Michelson interferometer

The Michelson interferometer was developed by the physicist Albert Abraham Michelson
in order to measure the aether wind. The term "aether” was used to describe a medium
for the propagation of light. He built a first prototype in 1881 at the Telegraphenberg
in Potsdam. Unfortunately this device suffered from various experimental errors and the
sensitivity was not sufficient for measuring the aether wind. Later on, in 1887, he built
an improved apparatus together with Edward Morley in Cleveland/Ohio. In the same
year Michelson and Morley reported in the American Journal of Science (vol. 35, 1887, p.
333-345) that they measured a displacement much smaller than that expected due to the
aether wind. Even though Morley was not convinced of his own results, many subsequent
experiments disproved the aether theory.

The Michelson interferometer once contributed to the disproof of the aether theory.
Nowadays one hopes that such an interferometer is an appropriate tool for the confir-
mation of another theory, which was established by Albert Einstein. He predicted grav-
itational waves which cause a periodical deformation of space, namely an expansion of
space in one direction and a contraction along the orthogonal direction. Even though the
existence of gravitational waves was proved indirectly [97], a direct measurement is still
outstanding. The Michelson interferometer seems to be an ideal tool for the measure-
ment of the expected differential length change. The crucial point is that a gravitational
wave only causes a length change of ~ 10~ m in the case of a kilometer-scale Michelson
interferometer. Even though the influence of a gravitational wave can still be thought of
as a classical force acting on the end mirrors, such a precise measurement clearly will be
influenced by quantum effects. Limits imposed by quantum mechanics and prospects to
circumvent these limits will be discussed in Chap. 4.

The essential part of a Michelson interferometer is the beam splitter, as shown in
Fig. 2.2, which has four input ports and four output ports. The ingoing quadrature fields
IS, ci, f and h are related to the outgoing fields a, ¢, é and g via the matrix Mpg in the
following way:

a d —p 0 0 7
¢ | b . _ 0 —p 7 0
o | =Mss | g |owith Mes=| o F (2.68)
g f T 0 0 p
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In the simplest case, the north and the east arm each consists of a single mirror. In
this thesis more advanced topologies are investigated, where the arms are composed of
more than one mirror and certain optical media are also taken into account. However, all
the additional components treated in the following give rise to linear transformations of
the sideband fields. Therefore the various fields can be related by general linear transfer
functions, i.e.

A~

b=E-a+n,, h=N-g+n,, f=W-é+n;, d=S-é+ny, (2.69)

where n; describes the sideband fields which might be generated during a round trip in
the corresponding arm. The set of linear equations can be easily solved in the case of an
ideal beam splitter (50:50), open input and output ports (W = S = 0) and identical arms
(A := E = N). We obtain for the two output fields:

é:A-ﬁdﬂ-%(ﬁh—'be), é:A-’foﬂ-%(ﬁh-l—’be). (2.70)
The outgoing field at the south port (dark port) depends only on the input field at the
same port, transformed by the linear transfer function of the arms, and the difference
between the additional sideband fields. It should be emphasized that a field injected into
the west port (bright port) does not contribute directly to the south port’s output. This
is due to the fact that the phase relation at the beam splitter has been chosen accordingly.
The same is true for fields injected into the south port. A gravitational wave excites the
differential mode and hence the corresponding signal can be detected at the dark port.
For other applications, it is interesting to also measure the common mode. This requires
a detection at the bright port, as one can infer from Eq. (2.70).

The situation changes if the two arms are not exactly equal, e.g. E # N. Due an
asymmetry of the arms, sideband fields injected into the bright port can leave the in-
terferometer at the dark port. In this manner, a local oscillator can be provided for a
heterodyne detection and various control signals can be extracted for the alignment of the
interferometer. In the case of the initial LIGO configuration, the path difference between
the beam splitter and the first and second input test mass is approximately 30 cm. Note
that higher generation gravitational wave detectors take advantage of additional optics
at the dark port, which gives rise to more complicated input-output relations.

2.3. Characterizing optical systems

Optical systems can be characterized in different ways. The various ubiquitous formalisms
are so designed that they can provide transfer functions relating the input fields with the
output fields of a device, e.g. a simple cavity or a whole laser interferometer. Three
different formalisms are to be discussed in the following, all leading to the same results
when applied to certain physical systems.

One approach is based on the quantum Langevin formalism [79]. In order to apply
this formalism, one has to identify the different parts of a particular device and split the
Hamiltonian into the corresponding components:

ﬁtotal = ﬁsys + ﬁext + ﬁint ) (2-71)
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where ﬁsys is the free Hamiltonian of the system, being a function of the internal mode
operators. The system has a few degrees of freedom, whereas the external world has many
degrees of freedom. The external world is described by the free Hamiltonian H,y, which
is a function of the bath mode operators. Furthermore fIint represents the interaction
between bath and internal mode operators. By using the quantum Langevin equation (cf.
Ref. [79]), the internal mode operators or the output fields can be expressed in terms of the
bath mode operators. Even nonlinear systems can be modeled by means of this formalism.
Note that the mode operators involved in this formalism do not describe the field at a fix
location but the whole mode. On the other hand, the electric field defined in the previous
section describes the field at a fix position varying with time. Strictly speaking, a discrete
mode is only defined for a closed system. But for nearly closed systems, the proper mode
is assumed to be that which is closest to the mode of the corresponding closed system.
Another approach relies on the fact that any optical system is composed of simple sub-
systems. That means that one can divide a complex device into interconnected elementary
subsystems with well-known transfer functions. In the case of linear transfer functions,
a very general procedure was developed in Ref. [54], which allows us to derive linear
equations for all optical fields propagating between the subsystems. The solution of these
equations provides the desired input-output relation. This formalism is also suitable for
the development of a numerical code for the simulation of complex optical topologies [54].
It is also possible to treat a system by the linear quantum measurement theory described
in Ref. [27], which assumes a linear coupling between the probe (the object intended to
measure) and the detector (the measurement apparatus). After identifying these com-
ponents of a measurement apparatus, the equations of motion of the entire system can
be derived. The advantage of this method is that it results in descriptive relations and
allows us to include more practical issues, such as feedback control loops, in a simple way.

2.3.1. Mathematical framework

In this section, transfer functions of elementary optical subsystems are considered. The
concept presented here follows the scheme suggested by Corbitt et al. in Ref. [54]. But
here a slightly generalized version of their formalism is considered, which allows us to treat
three dimensional multi-port optical components in a straightforward way. The primary
challenge is the determination of the radiation pressure induced motion of optical compo-
nents. Fluctuating weak modulation sideband fields, amplified by the carrier amplitude,
shake mirrors, beam splitters or gratings in a random way. This motion can be calculated
by comparing the momentum flow [cf. Eq. (2.51)] of the ingoing and outgoing fields. If the
outgoing fields carry less momentum than the ingoing fields, it follows that the difference
has been converted into a mechanical motion of the corresponding optical device. Since
the general method presented here allows us to treat devices with an arbitrary number of
ingoing and outgoing fields with arbitrary directions, one can also take gratings into ac-
count. Gratings might replace conventional optical elements in future gravitational wave
detectors (see e.g. Refs. [33, 34, 35]) and they can obey complex input-output relations.
The general momentum conservation law reads:

—m2 =Y 1;p;(92), (2.72)
j

with p; = 1 for ingoing fields and p; = —1 for outgoing fields. By using Eq. (2.51) we
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obtain the following expression for the motion of an optical component:

1 hwg A
—m\/C—QZMjej'DjT'J (2.73)
J

where e; is a unity vector accounting for the direction of propagation of the field D,
e.g. Dj ~ e;. Due to a displacement of the optical component, the electric fields have
to propagate a longer or shorter distance, which has to be taken into account. Since the
radiation pressure induced displacement is very small, the effect on the sideband fields is
negligible. Note that the displacement in a certain direction, e.g. ey, is simply given by

27 - e;,. We can derive the effect on each carrier quadrature vector by using Eq. (2.60):

8

R[&T - ewo/d - Z pU=™R[zT - ejwy/c] - D;, (2.74)

where p(j_’m) denotes the amplitude reflectivity of the jth field into the mth field and
7U=m) ig the corresponding transmissivity. A possible phase jump can be taken into
account by choosing either a positive or negative reflectivity. For a small displacement,
we find:

m—ZpJHm R[(z” e]—ﬁ:T-em)wo/c]-Dj+ZT("Hm)Dn
zZp(]_’m)(]l—l—?(:i'T~ej—§3T~e ). 77/2) D, +Z n—m)
NZme (D _ﬂwT (€ — em) >+ZT<nHm s (2.75)

where D, = —R[r/2] - D,. For the total field, i.e. the carrier and the sidebands fields,
the transformation reads:

D,,
v hwg

(jﬂm)<(‘ \/D_') \;}O_“T (ej_em)'Dj>

D
+y e 4 (2.76)
> i
Note that the factor 1/v/hwp has to be taken into account when combining sideband
and carrier quadrature field vectors, as clarified in Eq. (2.48). The constant (dc) force
resulting from the strong carrier field is neglected here, hence we can write:

. . wo > n—m
m = ;p(] ) (g = mwT (ej —em) - Dj> + ;T( In. (2.77)

Inserting Eq. (2.73) into Eq. (2.77) gives a set of linear equations which have to be solved
in order to obtain the input-output relation for the optical device under consideration.
In the following, the general formalism is applied to two widely used optical components.
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Example: mirror

For a mirror of mass m which interacts with two incoming fields (cf. Fig. 2.1), the unity
vectors required for Eq. (2.73) are given by

e.=(1), e=(-1), e=(1), es=(-1) (2.78)

and hence we find for the displacement of the mirror:

. 1 Tug . . . .

:C(Q):_W C—Q[Dg'a—Dg-d+Dg-b—DZ-c]. (2.79)
Since there are only two outgoing fields, Eq. (2.77) reduces to
~ 2[)(4)0.@ =
b=pa+rd- D, 2.80
pa—+T N o ( )
. 5 . 2pwol -

¢=—pd+Ta— D,. 2.81
patra— (2.81)

Inserting Eq. (2.79) into Egs. (2.80)-(2.81) yields

b-K ((Da D) -b~(D,- D)) = K ((Dy- DY) - a—(D, - DY) - d)+patrd (2.82)
and

ek ((Dd DIy -b— (D, D7) c> —K ((Dd .DT)-a—(Dy- DY) d)—pd+ra (2.83)
with

2pr
m§2c?’

If we shine a single carrier light on one side, e.g. the left side, of a perfectly reflecting
mirror (p = 1), Egs. (2.82)-(2.83) reduce to

K = (2.84)

b+K(D, DI'Y-b=a+K(D, DI)-a. (2.85)

In this case the ingoing and outgoing fields have the same power, i.e. D, = Dy, (provided
that there is no phase jump). Now we assume w.l.o.g. that the classical field only
exhibits an excitation in the amplitude quadrature (6, = 6, = 0), which allows us to
simplify Eq. (2.85):

- 0 O s 0 O .
b—2lCPa<_1 0)-b-a+2/CPa(_1 0)-&. (2.86)
This set of linear equations can be easily solved:
by =a
~ N 1 8w0P N
bg =ag — mc—2a1 s (287)

and we obtain from Eq. (2.79) an expression for the motion of the mirror:

1 SPQW()h
mi? 2

iy . (2.88)
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Figure 2.1.: Mirror is displaced by Z due to the influence of optical fields.

Example: beam splitter

An analogous relation can be found for a beam splitter subject to radiation pressure
fluctuations. We have to deal with eight different fields, as shown in Fig. 2.2. It is
convenient to treat the displacements in z- and y- directions separately. For the beam
splitter, the unity vectors required for Eq. (2.73) are given by

() an(8) an(d) we(3) e
(5o (1)e (3 an(h) e

and therefore we obtain for the motion:

. 1 fuwg T . T % T - T 7
xm——m— 2\ = [—Dc-c—Dd-d—I—Dg-g—i—Dh-h}, (2.91)
. 1 hwo T 4 T 1 T A T r
x?f—_—m”—@ [—Da-a—Db-b+De-e+Df-f]. (2.92)

Since a displacement in z-direction has the same effect as a displacement of the same
amount in y-direction, it is common to define a total displacement by Z(ox = &, +2, which
accounts for the extra length each light field has to travel. However, from Eq. (2.77) a
set of linear equations can be deduced

. 5 ; PWoTtot = . - s pWoTtot =

a=—pd+ — Dy, ¢c=—pb+T1h— D 2.93
pAt TS = s Di ot Th = s D (2.93)

é :piz +7b— PL0Ttot D, g :pf +7d— P0Trot Df , (2.94)

Cy/ th

and the corresponding solution gives the desired input-output relation. The most general
expression is obvious but cumbersome and, we therefore omit it.

In the following, different interferometer designs will we considered. But all configura-
tions have in common that a laser source is injected from one side of the beam splitter
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Figure 2.2.: Beam splitter exposed to different quadrature fields.

and, in the case of no losses, all light is reflected back to this port. This implies the
following simplifications:

P,=P;=0, P:=P,=P,=P,=P,=P;/2, (2.95)

where we have assumed a 50:50 beam splitter (1 = p = 1/v/2). Furthermore g, h and
a, b respectively, are each connected via certain linear transfer functions, which describe
the two arms of the interferometer. In terms of these transfer functions, one can obtain
simple formulas for the motion of the beam splitter.

In the previous two examples we have only considered the motion of optical components
in one or two dimensions. But the formalism allows us to treat optical devices reflecting
light into arbitrary directions in a straightforward way.

Detuned cavity

So far, only single optical components have been discussed. In the following, we derive
the input-output relation for an optical resonator consisting of two mirrors separated by a
distance L. We consider a detuned cavity with a fixed input mirror and a suspended end
mirror of mass m. The output quadrature field vector 6 depends linearly on the input
vacuum field ¢. There might be other contributions influencing the output, e.g. a signal
generated by a force acting on the suspended mirror, vacuum fields due to losses or simply
laser noise. But first, these additional effects are disregarded and the moveable mirror is
assumed to be perfectly reflecting. According to Eq. (2.80) the fields at the movable end
mirror are related in the following way:

2(4)05?? —

=D (2.96)

b=a+
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Since the cavity is detuned by ¢ = wgL/c, a rotation [cf. Eq. (2.57)] of the quadrature
fields has to be taken into account. Therefore the relation between the fields inside and
outside the cavity reads:

6=—pi+7R[p]- b, (2.97)
e UR[—¢] - a =1i + p’R[¢] - b, (2.98)

where 7 and p are the transmissivity and reflectivity of the input mirror, respectively.
One is free to choose an appropriate phase of the carrier field at the end mirror, since
the phase of the incoming field can be chosen arbitrarily. For the sake of simplicity, it is

Da:Db:\/ﬁ(é) (2.99)

The solution of Eqs. (2.96)-(2.98) can then be easily calculated and in leading order in
72,0 = Q2L/c and A = ¢L/c the transfer function reads

. 1 A2 — 2 )2 2)\e A~ let?m 1 A
MG < ~2)e A2—e2—92>'7’+x\/ 2h Qgpt(e—i(2>’ (2.100)

opt

convenient to assume

where the definition of the cavity’s half bandwidth has been used, namely

TQC

- . 2.101
€= 17 (2.101)

The (complex) optical resonance frequencies are given by the roots of

220 = (2= X+ie)(2+ X +ie). (2.102)

opt =
The coupling strength of the mirror’s motion  into the output field is proportional to

2.103
PR (2.103)

which has the unit 1/sec® and where P, refers to the circulating power. The circulating

power is related to the input power P, by

P, = 72 P~ Ac2 T2
14 (1-72) —2V1—72cos(2AL/c) T AT+ 16L2N2

P.. (2.104)

The motion of the end mirror [cf. Eq. (2.79)] due to the fluctuating vacuum fields is given
by

. 1 [hwo . o
After expressing a in terms of the ingoing fields i and performing the same approximation
as for Eq. (2.100), one obtains

) 1 1 ehf’m , . L Pm
x(Q)__megpt \/ 5 (i2—¢ )\)-z—i—T)\x(Q) : (2.106)
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Substituting the solution of Eq. (2.106) into Eq. (2.100) reveals the transfer function

s L[ AP\ =& — 2%) — 02N BAe2? :
T M ( 26(0° — AA2?) A02(A\2 — 2 — 2%) — 62\ > B (2.107)
with
M = "X+ 42° O (2.108)

which determines the resonances of the system.

Signal transfer

So far the mirror motion has been influenced solely by radiation pressure fluctuations.
Usually the mirror is also subject to signal forces which should be measured. Such a force
acts on the mirror and causes a Fourier domain displacement s({2) in a certain direction.
This term can be added in Eq. (2.73) and one obtains:

. 1 | hwg o
J

Optical losses

An ideal, i.e. perfectly reflecting mirror, satisfies the relation 72 + p?> = 1. This is not
feasible in a real experimental set-up and the unavoidable losses can be described by the
relation

2h Pt A=1, (2.110)

in the case of a (power) loss A. Eq. (2.110) can easily be extended to more complex
optical components. The part of the field lost to an optical component is replaced by a
coherent vacuum field ©. This additional field has to be included in Eq. (2.77) and we
finally obtain:

. ) _ G=m)
N Gom) (5 w0 o7 o VAUTT

Y (T(n—’m)ﬁ + A(nem)@n) . (2.111)

Therefore Egs. (2.82)-(2.83) and Egs. (2.93)-(2.94) can easily be extended by including in
each case an additional contribution of the form v A"v,,.

2.3.2. Linear quantum measurement theory

This section deals with the measurement of a classical observable, which is indirectly
accessible via a probe. The classical observable influences the probe and therefore the
construction of an appropriate detector is required, which is coupled to the probe. The
detection scheme allows us to obtain classical data which can be saved by a conventional
storage device. Quantum-domain measurements of this kind are characterized by the dy-
namical interaction between the probe and the detector, which can establish correlations
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between the states of these two systems. The detector produces an output containing in-
formation about the probe’s state with a certain measurement error and it can influence
the probe due to the backaction of the measurement. In the case of a linear quantum mea-
surement, these two aspects do not depend on the probe’s initial quantum state. Within
the scope of this thesis, only linear measurement processes are investigated. Therefore it
is of interest to identify any universal quantitative features of the measurement process
independent of a certain physical realization of the detector and the measured system.
An extensive analysis of linear quantum measurements can be found in Ref. [27]; the
application to signal-recycled gravitational wave interferometers is discussed in detail by
Buonanno and Chen in Ref. [37]. Since this formalism is suitable for the description
of many different interferometer topologies, the main aspects are to be recapitulated in
the following. The analysis adopts the notation used in Ref. [37], where the equations
of motion in the frequency domain are given in terms of linear response functions (cf.
Sec. 2.3.3).

It should be emphasized that it is more straightforward to derive the transfer functions
of an optical device by means of the simple modular matrix formalism introduced in
the previous section. This formalism is able to provide an input-output relation, but the
resulting formulas are in general rather unsystematic expressions. It is more instructive to
derive the equations of motion within the framework of the linear quantum measurement
formalism, since one gains more insight into the dynamics of the system. For example,
the concept of the optical spring could not be understand intuitively by considering only
the input-output relation derived by means of the formalism presented in Sec. 2.3.1.

This section is organized as follows: first the idea of the linear response function is
explained by means of a driven harmonic oscillator. Then it is shown that it is possible to
measure arbitrary small forces acting on such a harmonic oscillator by exploiting a time-
dependent readout scheme. Then the linear quantum measurement formalism is applied
to a detuned signal-recycling interferometer.

2.3.3. Linear response function

It is instructive to start with a simple example. We consider a quantum mechanical
harmonic oscillator with eigenfrequency w,,, velocity damping -, and mass m. If the
oscillator is driven by an external force F(t), the corresponding inhomogeneous second-
order linear differential equation for the location Z(t) reads:

m (g’é(t) i () + wmi(t)> = F(t). (2.112)

After defining the quantities

1
a=—-+\/4w2, —~2, and b=,/2, (2.113)

2
a straightforward calculation yields the solution of Eq. (2.112):

A _ —bt |4 ]3_0 QA . L ! 1 —b(t—t") L NN AT
z(t) =e [wo cos(at)+ (am + ax0> sm(at)] + i /_OO dt'e sin (a(t—t"))F(t')
(2.114)

t
=20 (1) + / At Co 40 (8, 1) E(t) . (2.115)
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The first term in Eq. (2.114) — abbreviated by 29 (¢) in Eq. (2.115) — is the homogeneous
solution and describes the free evolution. The second term in Eq. (2.114) is due to the
external driving force. This inhomogeneous solution can be expressed in terms of the so
called linear response function given by

C 0 (1) = %e*b@*” sin (a(t —t)) . (2.116)
This describes the response of the position of the harmonic oscillator to an external force.
This response depends not only on present but also on past values of F(t) A weighted
sum of the previous values of F' (t), with the weights given by the linear response function
CL0) 0 (t,1"), contributes to current values of Z(t). The linear response function has
many applications in information theory, physics and engineering. There exist alternative
names for specific linear response functions, such as susceptibility or impedance. In the
linear quantum measurement theory the term ”susceptibility” is commonly used. Since
the susceptibility given in Eq. (2.116) depends only on the time difference t — ¢, the
Fourier transform of Eq. (2.115) can be calculated easily:

#(02) = 2 0(02) + Run(Q)F(02), (2.117)

where the Fourier domain susceptibility is given by

1
m(2 — (a—1ib))(2 — (—a —1b))

Ry (2) = — (2.118)

The eigenfrequencies of the system are given by the poles of the susceptibility R, ({2)
2L =+a—1ib, (2.119)

which are obviously complex. The real part corresponds to the oscillatory part in the time
domain solution, while the negative imaginary part accounts for the exponential decay
[cf. Eq. (2.114)]. A positive imaginary part would imply an exponential growth towards
the future, i.e. the system would be unstable. Hence the stability of a system can be
checked by analyzing the roots of the Fourier domain susceptibility defined in general by:

1

+o0 .
Rap(f) = 3 / dre?"Cup (0, —7). (2.120)
0

Measurement of a classical force

We consider a harmonic oscillator without damping (v, = 0) as a quantum probe exposed
to an external classical force. By employing an appropriate detector one can measure the
force with a certain degree of accuracy. The question arises whether it is possible to detect
arbitrary weak forces. From the general uncertainty principle

AAAB > %|<[A, B))| (2.121)

and Eq. (2.114) (with ~,, = 0), follows the two-time uncertainty relation for the coordinate
of the harmonic oscillator:

Az (t) Az () >

 2mwy,

| sin(wn (t —t))], (2.122)
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where the commutator [z, p] = ik has been used. The product of the uncertainties vanishes
periodically for

t—t =n—— for neN. (2.123)
Wm

This means that a measurement at time ¢ can be carried out without influencing the mea-
surement at a later time ¢ +nm/w,,. For a suspended mirror, a stroboscopic measurement
(cf. Ref. [152]) of its position can be realized by switching the laser source on and off
at appropriate time intervals. This causes the oscillator’s wave function to breath. A
measurement at time ¢ perturbs the oscillator’s momentum, due to the ponderomotive
light pressure. The wave function gets wider and reaches a maximum at time t+ /(2w ).
After this it shrinks and reaches its original value at time t + 7 /w,,, regardless of the per-
turbation at time ¢. Therefore it is in principle possible to detect arbitrary small forces.
A more precise measurement usually causes more backaction, but it does not influence
the measurement output in the case of such a stroboscopic measurement. The general
backaction evasion criterion, given by

&, Hy] =0, (2.124)

is satisfied. Here, H; describes the pulsed interaction between probe and detector and &
is the detector observable.

For high precision measurements one would need to control high laser powers very fast,
which is not suitable from an experimental point of view. A more sophisticated method
would be a time-dependent change of the readout quadrature, this technique also allows
us to realize a scheme which is nearly backaction free.

We can deduce from Eq. (2.87) the time domain equations of motion for the simple
measurement of a suspended mirror:

bo(t) = ag(t)—l—%i(t) (2.125)
with
8Phwy
o= 3 (2.126)

In the absence of damping the oscillator’s coordinate Z(t) is given by Eq. (2.114) (with
Ym = 0), where the force exerted on the mirror consists of a classical signal part, which we
want to measure, and a quantum backaction part due to the ponderomotive light force:

F(t) = Fyg(t) + aai(t) . (2.127)

In order to measure the signal, the outgoing field is mixed with a local oscillator light
with amplitude A(t), which exhibits a time-dependent phase 7(t):

A(t) = Ag cos(n(t)) cos(wot) + Ao sin(n(t)) sin(wot) . (2.128)

Shining the superposed light on a photodiode gives rise to a photocurrent which is filtered
by the response function ®(t) of the electronics employed for the postprocessing of the
generated current. A real detector cannot furnish an instantaneous measurement, hence
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one has to integrate over a certain time interval 7" in order to obtain the final output Y.
After defining

91(t) = Ao@(t) cos(n(t)),  ga(t) = Ao@(t)sin(n(t)), (2.129)

the required integration over a time interval T' very much larger than w; L can be written
as:

A~ T A A~
V= [ dt[on(hn(t) + a0t (2.130)
0
T ~
_ /O tlgn (1) (6) + g2(8) @2 (6) + 5 (G0 cos(wmt) + —2sin(wt))+
e /O At’ sin(wnm (t — ') (Fag(¢') + ady ()] . (2.131)

Obviously we can get rid of the backaction part [term proportional to aa;(t)] by demand-
ing
o2

mhw,

The radiation pressure fluctuations are completely canceled out and it seems that the
classical signal force can be measured with an arbitrary accuracy. This scheme was first
proposed by Vyatchanin et al. in Ref. [165], who pointed out that the light introduces
some kind of damping to the harmonic oscillator. This damping is proportional to the
coupling constant « and it prevents the measurement from being perfect. Furthermore,
this scheme is only suitable for signals with known arrival times and is therefore not appli-
cable to gravitational wave laser interferometers. However the stroboscopic measurement
as well as the time-dependent homodyne detection scheme clarify the possibility of mea-
suring small forces without any restrictions emanating from the Heisenberg uncertainty
relation. In contrast to a conventional detection scheme, one avoids seeing the backaction
induced perturbation by observing an appropriate quadrature or measuring in proper
time intervals. Note that the detection schemes presented are strictly speaking not QND
measurements. For a real QND observable ¢(t), the commutator at different times must

T
g1(t) + /t dt’ sin(wy, (' —1))g2(t') = 0. (2.132)

always vanish, i.e.
[G(t),q()] =0 forall ¢t. (2.133)

The vanishing commutator indicates that all measured values of ¢(¢) can be stored as
pieces of classical data.

2.3.4. Equations of motion

G

—> | Probe Detector |——>

T
—
h/\

F

Figure 2.3.: General scheme for a linear measurement system

In the following, a linear measurement scheme as shown in Fig. 2.3 and discussed in
Ref. [27] is recapitulated. The probe P, which belongs to the Hilbert space Hp, is exposed
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to a classical force G (e.g. a gravitational wave) influencing its coordinate #. In order
to measure the classical force, an appropriate detector D is attached to the probe. The
detector belongs to the Hilbert space Hp and is so coupled to the probe that it measures
the coordinate #. The detector can also exert a backaction force ' on the probe. The
detector’s output observable Z contains some quantum noise cause by the probe and the
detector as well as a classical signal depending on the classical observable GG. The total
Hamiltonian belonging to the combined Hilbert space H = Hp ® Hp is given by

H = [(Hp — 2G) + Hp) — & F, (2.134)

where Hp and Hp describe the free evolution of the detector and the probe, respectively.
The interaction between the classical force and the probe is taken into account by the
term 2G, while the term ZF denotes the interaction between the detector and the probe.
Note that the structure of the Hamiltonian in Eq. (2.134) resembles that of Hamiltonians
analyzed within the scope of dissipative quantum dynamics based on system-reservoir
coupling models, if we regard the detector as the reservoir. Such coupled systems were
extensively investigated (see, e.g. Ref. [166]) and it was shown that the dynamics of the
system are independent of a specific reservoir realization. This is in accordance with
the quantum measurement theory where the probe’s dynamics are also independent of
a particular implementation of the detector. Furthermore the measurement’s backaction
causes a decoherence of the probe, which is also similar to the reservoir induced deco-
herence. Even though the reservoir is influenced by the system, it is assumed to be in
thermal equilibrium and hence any changes are supposed to be unobservable. This is the
main difference from a quantum measurement process, since the intended purpose of a
detector is the acquisition of some information about the probe’s behavior. Furthermore,
the detector can be regarded as an amplifier, since a weak force is converted into a de-
tectable classical output signal, which cannot be accomplished by a system in thermal
equilibrium.

The linear quantum measurement scheme introduced in Ref. [27] was applied by Buo-
nanno and Chen in Ref. [37] to a signal-recycled gravitational wave detector. The probe is
provided by the motion of the suspended mirrors or, more precisely, by the antisymmet-
ric mode of motion of the four arm cavity mirrors. The optical system is coupled to the
probe and produces the output observable Z. The whole optical system can be regarded
as the detector. The total Hamiltonian is at most quadratic in the canonical coordinates
and momenta and therefore the system is a linear one. For such a linear system, the
commutator of operators corresponding to arbitrary linear observables at two times is a
c-number:

Cap(t,t') = [A(t), B(t)], with A,Be{& F,Z} and Cap(t,t') € C. (2.135)

These commutators are also known as the system’s susceptibilities, since it can be shown
that the exact Heisenberg evolution for any linear observable P of the probe’s Hilbert
space and D of the detector’s Hilbert space is given by

Pu) =20+ 1 [ o) Fute), (2.136)

Dy (t) :ﬁﬁ)(twr%/_t Cpr(t,t)iu(t'), (2.137)
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where ]5](}) ) (t) and ﬁg) (t) account for the free evolution, respectively. This is analogous to
the simple example discussed in Sec. 2.3.3. For an arbitrary system, the perturbed time
evolution is an infinite series which stops after the first-order only in the case of a linear
system. For a time-independent zeroth order Hamiltonian the susceptibility in Eq. (2.135)
solely depends on the time difference t—t" and hence the equations of motion in the Fourier
domain can easily be obtained by employing the definition given in Eq. (2.120):

#W(2) =20(2) + Rpa(2)FY(2) + Lh(12), (2.138)
FOQ) =FO(2) + Rpp(2)2V(02), (2.139)
ZWO(2) =Z0(2) + Rzp(2)21V(02). (2.140)

Note that the susceptibilities are obviously defined with respect to the free evolution
operators. The displacement due to a gravitational wave is given by Lh(t), where L is the
length of the arm cavities and h(t) is the differential strain induced by the gravitational
wave (see Eq. (2.15) of Ref. [37]). The set of linear equations, i.e. Egs. (2.138)-(2.140), can
be solved easily and a rather straightforward calculation reveals the explicit expressions for
the different observables {i(l),ﬁ(l), A (1} depending on the input fields %172. By means
of Eqgs. (2.138)-(2.139) we can also derive the differential equation of motion for the
antisymmetric mode of motion of the four arm cavity mirrors in the frequency domain:

%9%@)(9) + FO(Q) + GW force, (2.141)

- Z0% () - Rep(2)30(2) = -
where the free mass susceptibility Ry, = —4/(m{2?) was used. The mass of a single
mirror is denoted by m. The structure of the above Eq. (2.141) is similar to the equation
of motion of a simple harmonic oscillator [cf. Eq. (2.112)]. The fluctuating radiation
pressure force F'(), the gravitational wave strain and the quantized force —m /42220 (1)
can be regarded as driving forces acting on an oscillator with a frequency-dependent spring
constant Kpond(£2) = —Rpp(§2). The term optical spring emerged from this structure
of Eq. (2.141). In the case of a tuned signal-recycled interferometer, the ponderomotive
rigidity vanishes (Rpp(§2) = 0) and the different forces simply act on a free mass.

It was also shown in Ref. [37] that a detuned signal-recycled Michelson interferometer is
completely equivalent to a single detuned cavity with one movable mirror (cf. Sec. 2.3.1).
This allows us to obtain directly from Egs. (2.100) and (2.106) explicit expressions for
the operators {F O, Z (0)} introduced above. In order to switch from a simple cavity to a
whole detuned signal-recycled interferometer, the following substitutions are necessary:

2psR sin(2¢)
1+ p2g + 2psr cos(2¢)
1 - P%R
1+ p&p + 2psr os(2¢)

A—A=" 0 —0 = \/8Pamwo/(mLc),

€ ——€="

m —m/4, (2.142)

where pgr is the reflectivity of the signal-recycling mirror, ¢ the detuning phase of the
signal-recycling cavity and P,y the circulating power in each arm cavity.

The operator F(O)(£2) used in Eqs. (2.138)-(2.139) describes the radiation pressure
forces emanating from the ingoing vacuum fields, which would act on fixed mirrors. The
operator Z ©)(£2) in Eq. (2.139) accounts for the outgoing fluctuations in the quadratures
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in the case of fixed mirrors. In the language of Ref. [38], F(O)(£2) and Z()(£2) are free
quantities which are given by

. 02mh (02 — €)i1 + Miy
FO(Q) =/& 2.14
(£2) 2 (2-X+ie)(2+A+ie)’ (2.143)

N A — 2 — 02)i +2)et
20 () = L 2 2.144
1 (2) (2 —A+16)(2 4+ X\ +ie) ’ ( )

N —2Xe 11 + (A2 — €2 — %) io
700 = 2.145
2 (%) (2=X+ie)(2+X+ie) ( )

with Z©(02) = Zfo)(ﬁ) sin ¢ + Zéo)(ﬁ) cos ¢, where ¢ denotes the homodyne detection
angle. Here 71 (i2) is the amplitude (phase) quadrature operator of the incoming vacuum
field at the dark port [108]. The susceptibilities are given by (cf. Ref. [38]):

6%m A
Ber() = G Tg@ st (2.146)
€0?m A
Rz, p(2) = (2.147)

2h (2 —A+ie)(2+ N +ie)’

€6?m €e—if2
Rarl®) ==\ S @ ri0@trtio” (2.148)
Rz.r(2) =Rz r(§2)sin ¢ + Rz,p(£2) cos (. (2.149)

The susceptibility Rpp(f2) describes the optical spring [36] and Ryzr(f2) are optical
transfer functions from the differential mode to the outgoing quadrature fields.

In order to compare different interferometer topologies, it is useful to normalize the
output observable Z()(£2) to unit signal, which means that the solution of the linear
equations (2.138)-(2.140) for Z((£2) is divided by the term in front of the signal part
Lh(£2). The resulting equation

O(2) =N + Lh (2.150)
=Z(02) 4 Ruu(2)F(2) + 20(2) + Lh(12) (2.151)

is a relation between the signal-referred quantum noise N, the gravitational wave signal
and the output observable @. The new quantities used here are defined as follows:

. 2(0)(9) .

- 7(0)
2(0) = g, F(O) = PO - Rer(@F )

Ror() (2.152)
One can infer from the commutation relations of the observables Z(£2) and F(£2) that
they can be regarded at each instant of time as the canonical momentum and coordinate
of different effective monitors.

Note that Egs. (2.141) and (2.150) depend on the quantized coordinate #(9)(£2) of the
unperturbed test masses. This term can be disregarded, since it has been shown by
Braginsky et al. in Ref. [24] that no additional noise arises from the quantization of the
test masses. In order to remove the influence of the test masses’ quantization from the final
noise spectral density, one has to filter the output data appropriately. Applying such a



2.3. Characterizing optical systems 28

filter is quite reasonable, since one is only interested in measuring the change of position of
the interferometer’s test masses induced by a classical force, namely a gravitational wave,
while the initial quantum state of the test masses is unimportant. This fact simplifies the
investigation of the performance of current and future gravitational wave detectors, since
only the quantum noise arising from the light has to be examined.

Furthermore, the photocurrent generated by output field [cf. Eq. (2.150)] can be
recorded directly on any storage device. This is possible, since the photocurrent, which is
proportional to the output field, can be regarded as purely classical due to the vanishing
commutator at different times:

[O(), 0] =0, for allt,t'. (2.153)

Noise spectral density
The two time correlation matrix given by

Qap(t,t) = (AB{)sym = S(AWB() + B()A()) (2.154)

Do | —

yields a quantitative measure of the internal fluctuations of a given system. Even though
the correlation matrix completely characterizes these fluctuations, it is more convenient
for many applications to consider the equivalent noise spectral density. According to the
Wiener-Khintchine theorem, the single-sided (cross-) noise spectral density Sap(f2) is
given by

ds?

2.1
o (2.155)

1 [ - /
Qan(t.t) =5 [ San(@)e i)
2 —0o0
For a double-sided noise spectral density, the factor 1/2 in front of the integral can
be dropped. Both definitions, i.e. the single-sided as well as the double-sided noise
spectral density, are commonly used in the literature. Throughout this thesis, however,
the single-sided convention is employed, which is preferably used by the gravitational
wave community. The Fourier transform of Eq. (2.155) is given by

1 . N . N 1

5<A(Q)BT(Q’) + BI(2)A(R)) = 52m0($2 — 2)Sap(£2). (2.156)
In the case of a gravitational wave detector, the expectation value is defined with respect
to the input state, which is a vacuum state, either coherent or squeezed. Assuming a

usual vacuum input state |0), the (signal-referred) noise spectral density of the output
observable O(£2) [cf. Eq. (2.150)] is given by

Su(2) = 75 (S22(2) + 2Rea(QR[Sr2(2)] + R2(2)557(2)) | (2.157)

which depends on the different spectra of the observables defined in Eq. (2.152). These
spectra can easily be calculated by using

S O (Q)IL(2) + L2 )(2)10) = 527502 — ), (2.158)

or they can be found explicitly in Ref. [38].
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We consider a simple example in order to clarify the meaning of the noise spectral
density: if we assume ¢t = t' and A = B [which implies that Ss4(£2) = Saa(—£2)], we
have
dsf2

2.1
5 (2.159)

oo
AAz(t) = Qaal(t,t) = / Saa(2)
0
which means that the variance of the observable A is obtainable by integrating its noise
spectral density over all positive frequencies.

Standard quantum limit

The standard quantum limit (SQL) [23, 27, 45] is a well-known reference limit in con-
ventional interferometric gravitational wave detectors, more generally speaking, it limits
any conventional high precision measurement. An interferometer measures the change
in the test mass mirror’s relative positions. The position observable, however, does not
commute at different times and the associated commutation relation in the case of a free
mass reads: ) , )

2@ t), 20 )] = @ - I%T (2.160)

where p is the reduced mass. This evokes the uncertainty relation

hlt —t'|  hr
Z J—

Az O ) Az Ot TR

(2.161)
If the measurement time 7 is interpreted as the bandwidth of the measurement, the
minimum noise spectral density at frequency 2 = 2/7 is given by Az (t) = AzO) (') ~
V/Sz(82)/7 (cf. Chap. 6.2 in [27]). From these considerations, we can directly infer the
SQL, i.e. .
SQL, 2

S, (02) = m (2.162)
This derivation of the SQL is simply based on the quantum mechanics of the interfer-
ometer’s test masses, while other features are not taken into account. The same result
can be obtained by focusing on the meter’s properties, i.e. the laser light measuring the
differential mode of motion, without paying attention to the quantum mechanics of the
test masses. A generalized Heisenberg inequality relates the second-order noise moments
of the pair of canonically conjugate variables F(£2), Z(£2):

Szz(2)Srr(02) — Szr(2)SFrz(2) > K. (2.163)

In the case of uncorrelated shot noise and radiation pressure force noise, i.e. Srz(2) =
Szr(£2) = 0, one obtains from Eq. (2.157) and Eq. (2.163) a lower boundary for the noise
spectral density:

2R (2)h 2k

N L? o pe2L?’

which coincides with Eq. (2.162). In the case of a LIGO interferometer, the reduced
mass is g = m/4 where m is the mass of a single mirror. These two derivations of the
SQL are completely different and the question arises how they are related. This was
extensively investigated by Braginsky et al. in Ref. [24], who found that the true origin

Sh(R2) = S ()

(2.164)
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Symbol physical meaning AdvLIGO NB AdvLIGO BB
m single mirror mass 40 kg 40 kg
27e/wo laser wavelength 1064 nm 1064 nm
P circulating power 800 kW 800 kW

L interferometer arm length 4 km 4 km

10) detuning phase of SR cavity 21 0.242 2w 0.247
PSR SR mirror reflectivity 1/0.93 v/0.93
Yo cavity half bandwidth 2m 15 Hz 2m 15 Hz
¢ detection angle 21 0.347 21 0.45

€ effective half bandwidth 21 120 Hz 2m 395 Hz
A effective detuning 21 290 Hz 2w 411 Hz

Table 2.1.: Parameter values for Advanced LIGO [1] configurations used throughout
this thesis. The parameters were obtained by means of the optimization procedure
introduced in Sec. 3.1. The narrowband (NB) configuration is optimized for NS-NS
binaries, using the current Advanced LIGO noise budget (cf. also Fig. 3.1). For the
broadband (BB) operational mode, we allow 10% decrease in detectable distance for
NS-NS binaries, while maximizing the contribution to the SNR from frequencies above
500 Hz.

of the SQL is noise due to the quantization of the meter, not the test masses. But the
inherent connection between the meter and the test masses ensures that the SQL can
be derived either way. This connection is a consequence of the vanishing commutation
relation of the output observables [cf. Eq. (2.153)]. The quantized test masses cause
a non-vanishing contribution to this commutator, which is canceled by the shot noise
and radiation pressure noise contributions. This cancelation explains the identical results
obtained by the different derivations of the SQL.

After a rather controversial debate, it was eventually realized that the SQL can in prin-
ciple be surpassed either by putting the meter into a certain initial state or by measuring
an appropriately chosen linear combination of the probe’s observables. In gravitational
wave detectors, the former case corresponds to the injection of squeezed light, while the
latter accounts for a variational measurement of the output field. Such techniques are
called quantum non-demolition (QND) measurements.

2.3.5. Measurement process

The noise spectral density of an output field leaking from a given device can be deduced
directly from the properties of the input field and the transfer function of the optical
system under consideration. From an experimental point of view, an appropriate photo-
sensitive measurement of the output field must be accomplished in order to obtain a noise
spectral density. A photo detector converts the outgoing field into a photocurrent which
is subsequently analyzed. The required electronic circuit exhibits a well-defined response
function which also determines the final measurement result. These experimental aspects
are discussed e.g. by Yurke in Ref. [173]. Here the discussion is restricted to ideal photo
detection schemes providing a photocurrent directly proportional to the power spectrum
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Figure 2.4.: Quantum noise spectral densities of two Advanced LIGO interferometer
configurations. The parameters for the narrowband as well as for the broadband oper-
ational mode are given in Tab. 2.1.

of the incident light.

The signal intended to be measured is encoded in the sideband fields around the carrier
frequency wg. The bandwidth of the detection apparatus is limited and therefore a cut-off
in the frequency domain has to be introduced, which discards the Fourier components of
the electromagnetic field outside a certain range. However, in general a small frequency
band around wy contains the relevant signal and hence the cut-off does not significantly
influence the overall sensitivity. Adopting the notation introduced in Ref. [40], we can
write the output field as follows

A 2mhw wotS2e ¢, :
N 0 ~ iwt
“(wo;t) = — + h.c. 2.1
S (wost) =1/ - /0 3 a(w)e ¢ (2.165)

=59 (wo; t) cos(wot) + S5% (wo; t) sin(wot) , (2.166)

where ng(wo;t) are the quadrature phases introduced in Eq. (2.38). The superscript
2, indicates that only frequencies within the interval [wy — 2., wo + (2] are taken into
account.

For many applications, only a weak signal light leaks out from the output port, which
cannot be detected directly by simply shining it on a photodiode. Furthermore a direct
measurement would yield a photocurrent proportional to the square of the field given
in Eq. (2.166), which would cause a mixing of signal contributions at different sideband
frequencies. This cannot easily be reversed when postprocessing the measurement data.
It is therefore necessary to combine the outgoing signal light with an intense local oscil-
lator in order to enhance the weak signal and avoid a mixing of the different frequency
contributions. This can be achieved by employing a homodyne or heterodyne readout
scheme, both of which are discussed in this section.
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Homodyne detection

A homodyne detector is operated by a local oscillator which consists of a monochromatic
wave with amplitude L(t) and a fluctuating part §L(¢). This fluctuating part is usually not
shot noise limited, but the additional noise can be removed from the final measurement
output by using a balanced detection scheme, as shown e.g. in Ref. [173]. The signal
field S (wp;t) is combined at a 50:50 beam splitter with the local oscillator Epo(t) =
L(t) + 6L(t). The combined fields, which propagate towards the two photodiodes, are
given by

Ait) = = (8% (wnit) + Fro(t)) . Aslt) = = (8% (woit) — Fro(t)) . (2.167)
Since the photodiodes measure the intensity of the incident light, the corresponding pho-
tocurrents are proportional to the squared field amplitudes:

Li(t) oc Aj(t) = % (L2(t) +2L()(OL(t) + S (wo; 1)) + (SL(t) + S (wo; t))Z) (2.168)
Ih(t) x A%(t) = % (LQ(t) + 2L (1) (8L(t) — 8% (wo; t)) 4+ (SL(t) — S (wp; t))Q) . (2.169)

From these equations we can infer that fluctuations introduced by the local oscillator give
rise to a common mode signal. These fluctuations can be canceled out by considering
only the difference of the photocurrents generated by the distinct photodiodes, i.e.:

Opp = A2(t) — A3(t) = 2L(t) 5% (wo; t) + 206 L(£)S5% (wp; 1), (2.170)

where Opp o I;(t) — I(t). The second term on the right hand side is usually negligible
since L(t) > 0L(t). Such a detection scheme therefore provides a direct measurement of
the signal field, amplified by the local oscillator’s amplitude. The noise spectral density
of the photocurrent is proportional to the noise spectral density of the signal field. We
have to demand that the local oscillator oscillates at the same carrier frequency wg as the
signal light, i.e.

L(t) = Acos(wot — ), (2.171)

where 6 denotes the phase of the local oscillator. Inserting Eqs. (2.166) and (2.171) into
Eq. (2.170) and applying a low pass filter reveals the differential photocurrent

L(t) — Iy () & Opp = A (S{?c (wo; ) cos(8) + S (wo; t) sin(9)> . (2.172)

The measured quadrature of the signal field can be varied by adjusting the phase of the
local oscillator.

Heterodyne detection

Currently operating gravitational wave detectors use the heterodyne readout scheme. This
detection strategy requires that the carrier field injected into the interferometer exhibits
phase modulation sidebands at frequencies wg & wgm, the so-called Schnupp sideband
fields with 2. < wgm < wo. Due to an asymmetry between the interferometer’s arms, the
modulation sidebands will not exactly satisfy the dark fringe condition [cf. Eq. (2.70)],
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even though a monochromatic carrier would satisfy it. For this reason the sideband
modulation fields partially leak out from the dark port and provide a local oscillator (at
frequencies wy + wgyy,) which is represented by

L(t) = A_ cos|[(wp — wsm )t — 0_] + A cos[(wo + wsm)t — 04], (2.173)

where Ay and 01 are the amplitude and phase, respectively, belonging to the upper (+)
or lower (—) modulation sideband. The signal intended to be measured is contained in the
sideband fields around wg. It can easily be shown that sideband fields around frequencies
wp & 2w, also contribute to the final measurement output, hence it is convenient to split
the signal field into the following relevant parts:

S92 (1) =55 (wy — 2wem, t) cos[(wo — 2wem )] + 552 (wo — 2wem, t) sin[(wo — 2wem )]
+ 59 (wo; t) cos|wot] + S5% (wo; t) sinfwot]
+ 517 (wo + 2wem, t) co8[(wo + 2wsm) + S5 (wo + 2w, t) sin[(wo + 2w )]

+ contributions form irrelevant frequency bands. (2.174)

The total output field S () + L(t) needs to be squared and demodulated (multiplied)
with cos(wsmt + ¢p). The result is composed of several parts oscillating at different
frequencies. By applying a low pass filter, all oscillating parts are discarded and the
resulting photocurrent is proportional to:

A L 1A s0 a0 Ay 4 ]

Opp = 5/10 |:A—OS¢DC+9_ (LUQ—Q(.USm, t)+SGOC (wo; t)—i_/l_OS*é’DJF@-&- (WQ+2w5m, t) , (2.175)

with

Ay = ‘ Apemi@DH00) | A oi0n=0-)| g — arg [A o7 60T00) 4 4 _ci6p=0)]  (2.176)

and
S (w;t) = 87 (w; t) cos(¢) + S5 (w; ) sin(C) . (2.177)

The middle term Sg,éc(wo; t) in Eq. (2.175) contains the signal and it is directly accessible
via a homodyne measurement. In the case of a heterodyne detection scheme, additional
noise contributions originating from vacuum fluctuations around the frequencies wo=+ 2w,
can disturb measurement.

In principle, the Schnupp modulation sideband fields also acquire a gravitational wave
signal. But as long as only a small fraction of the total power is pumped into the mod-
ulation sideband fields this effect is negligible and therefore only the additional quantum
noise needs to be considered. One can also disregard classical laser noise since currently
used laser sources are quantum noise limited at sufficiently high modulation frequencies
wgsm- The final noise spectral density can be split into a homodyne detection part and a
contribution from the heterodyne detection:

Shet(pp, 2) = SEM(¢pp, 2) + 524 (¢, ) (2.178)
with , )
A2+ A%

Sgdd(¢D7 “Q) - /12
0

(2.179)
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In the case of a balanced modulation, i.e. Ay = A_, only one quadrature determined by
the Schnupp modulation phase is measured:

1
0y = 5(0+ +6_), (2.180)
with an additional noise of 1
Sﬁdd(¢D7 “Q) - 5 ) (2181)

provided that an optimal demodulation phase is chosen:

1
¢p = 5(—9+ +6_). (2.182)
Employing a heterodyne detection scheme introduces additional noise but it permits the
simultaneous detection of different quadratures. A closer look on the totally unbalanced
case in which either A or A_ is zero clarifies this. E.g. for A_ = 0 the detected
quadrature is given by

0o = ¢p + 0+, (2.183)

which means that one can flexibly adjust the detection angle by simply adapting the
demodulation phase ¢p. Therefore the noise spectral density can be optimized for each
sideband frequency, which cannot easily be accomplished by a homodyne detection scheme
(cf. Ref. [108]). But even an optimal heterodyne quadrature readout is not able to enhance
the QND performance of a conventional interferometer, as shown in in Ref. [40].

Note that for a heterodyne detection at the interferometer’s output port only one pho-
todiode is required. Alternatively one can renounce the modulation of the interferometer’s
input field and superpose the output field at a beam splitter with an appropriately mod-
ulated field. In this case the set-up resembles that required for the homodyne detection
scheme.

2.3.6. Quantum Langevin equation

The quantum Langevin formalism provides a third method for the derivation of equations
of motion for operators belonging to a well defined system S, which in turn belongs to
the Hilbert space Hs. This system is influenced by a "heat bath” B consisting of an
assembly of harmonic oscillators. The corresponding mode operators of the bath act on
the Hilbert space Hp. Any operator associated with a single Hilbert space corresponds
to an operator acting on the combined Hilbert space

H=Hs@Hp. (2.184)

For the derivation of the quantum Langevin equation, carried out in detail by Gardiner
and Collett in Ref. [79], three assumptions are essential:

e Couplings between system S and bath B are linear in the operators belonging to
the bath B.

e The rotating wave approximation removes infinite effects and serves as a renormal-
ization.
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e The bath spectrum is flat (white) and the Markov approximation ensures that the
bath-system coupling constant is frequency independent.

The total Hamiltonian is given by
Hiw = Hs+ Hpg+V, (2.185)

where H s is a function of the internal mode operators of the system S, while H 5 is the free
Hamiltonian of the bath. The coupling between S and B is described by the interaction
Hamiltonian V. It was shown in Ref. [79] that the quantum Langevin equation for an
arbitrary Heisenberg operator a € S is given by

: i, - J . - . - .

a= —ﬁ[a,HS] — ([a,cT] (%c — ﬁbin) — (%c — ﬁbin) [, CT]> , (2.186)
where ¢ describes the particular internal mode of the system & which couples to the bath
B and v corresponds to an internal damping of the system. The other modes belonging
to the system only couple indirectly through ¢ with the bath. An ingoing field is defined
by bin(t), which satisfies the commutation relation

[bin (1), b, ()] = 6(t — ). (2.187)

Note that Eq. (2.186) only provides a differential equation for an arbitrary internal mode,
which is in general not directly accessible. Only the fields leaving the system S are
detectable by an appropriate device. These outgoing fields can be obtained via the time-
reversed Langevin equation:

bout (t) = bin(t) — V7E(t) - (2.188)

For applications in quantum optics the "heat bath” is given by an electromagnetic field
equivalent to an assembly of harmonic oscillators. In the case of a detuned cavity or
equivalently a whole detuned signal-recycled interferometer, the probe (test masses) as
well as the detector (optical system) belong to the system S. In contrast to the linear
quantum measurement approach discussed in Sec. 2.3.4, there is no distinction between
these two components. Note that the quantum Langevin formalism also applies to systems
exhibiting nonlinear interactions between the internal modes. Neither the explicit form
of I:IS is constrained nor are the properties of the system operators or their commutation
relations.

For a detuned cavity, the system Hamiltonian was derived first in Ref. [112] and was
frequently used in the literature. In more recent publications, e.g. Refs. [161, 162], a
slightly different notation was introduced, which we adopt here. Accordingly, the system
Hamiltonian reads:

N 1 . .

Hs = hwatat —p?+ 29m 52 5031 & FarihE (eﬂwotaf —elwota) . (2.189)
2m 2 L

The first term describes the cavity mode with optical frequency w,., where a ([a,a'] = 1)

is the corresponding annihilation operator. The second and third term account for the

end mirror, which is treated as a quantized simple harmonic oscillator. The position and

momentum operators (&, p) describe a suspended end mirror with mass m and pendulum
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eigenfrequency wy, and they obey the commutation relation [Z,p] = i. The fourth term
accounts for the radiation pressure force and is proportional to the number of photons
within the cavity of length L. The fifth term specifies an external classical force acting
on the mirror. In the case of a gravitational wave with strain h(t), the force is given
by F(t) = mLh(t). The last two terms describe the driving laser with frequency wp,
which is assumed to be quantum noise limited. The complex quantity FE is related to
the input laser power Py, by |E| = \/Pun7y/(fwy) where v is the photon decay rate. By
defining dimensionless position and momentum variables, namely & — Z\/hA/(mw,,) and
p — pv/hmw,,, one obtains the Hamiltonian

Hs = hw.at a+%(p2 + &%) —hGa'a & —Ly m—hﬁ(t)i+ihE (e—iwotaT—eiwot&) , (2.190)
Wm

with the coupling constant given by G = (wg/L)\/h/(mwy,). Converting the cavity mode
operator from the Heisenberg picture into the interaction picture and using Eq. (2.186)
yields a set of coupled quantum Langevin equations:

2(t) =wmp(t) (2.191)
P(t) = — W (t) — Ymp(t) + Gal (t)a(t) + kh(t) + £(t) (2.192)
G(t) = — (g +iwe + iw0> at) +iGE(t)a(t) + E + am(t) | (2.193)

where 7, corresponds to a mechanical damping giving rise to additional fluctuations
described by the Brownian noise operator £. Furthermore the quantity k& was introduced:
k = L\/m/(hwy,). Now the operators can be linearized around the steady state:

a=as+6a, T=x5+0T, p=ps+0p. (2.194)

Inserting Eq. (2.194) into Egs. (2.191)-(2.193) yields a set of decoupled equations. By
solving the equations for the steady state one obtains:

ps =0, xs:G|as|2/wm, as = FE/(y/2+14), (2.195)

with A = we — wp — G?|as|?/wm. After defining the quadratures

N 1 - 1
X =—(6a+dal), Y =—(da—dal), 2.196
S0+ 0il), ¥ =— (6 - da) (2.196)
Kin = lin + ), Vin === (i — a,) (2197)
in \/5 in in/ in 1\/5 in in/ .

we obtain the well-known linearized quantum Langevin equations:

8.
I

8% =wm0p, 0P = — W% — Ymdp + KOE + kh(t) + &,  (2.198)
X:—%X+AY+WX1H, ?:—%?—AX+/¢5:&+\/§§4H, (2.199)

with x© = v/2Ga,. Note that the phase of F was so chosen that ay is real. Applying the

following substitutions
0
vy—2, A— -\, K— — (2.200)
4w,
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to Egs. (2.198)-(2.199), where ¢, A and 0 are defined as in Sec. 2.3.1, and converting the
equations into the Fourier domain yields:

0 N
—1026% =w0p, —i026p = — W dF — Y0P + oot 2%kh + €,
—iX = —€eX =AY +V2eXi,, —i2Y =— €V +AX + %555 + V2V, . (2.201)
W

Solving this set of linear equations yields a solution for the field inside the cavity, e.g. the
cavity mode. After employing Eq. (2.188) in order to obtain the outgoing field we find
the final solution which exactly agrees with that already provided in Eq. (2.107).

2.3.7. Cavity modes

The operators @, af used in Eq. (2.190) are cavity mode operators and describe the
whole field inside the resonator. Strictly speaking, one has to distinguish between the
normal and the cavity mode: the cavity mode describes the real field inside an arbitrary
resonator, while normal modes are only defined for a closed system, e.g. a perfect cavity.
This means that the idea of normal and cavity modes only coincide in the case of a
closed system. Despite this difference, the Langevin formalism always deals with normal
modes. Any kind of damping which makes the resonator imperfect, e.g. optical losses
or a transmitting mirror, are taken into account by introducing a coupling of the normal
modes to a reservoir. This method was originally introduced by Senitzky [142], refined
by Gardiner and Collett [50, 80, 81] and nicely recapitulated and extended by Dutra and
Nienhuis [67]. However, a leaky cavity is an open system and the question arises whether
it is really possible to describe the intra-cavity field by an expansion into the undamped
normal modes of a closed system. Since the normal modes of a perfect cavity form a
complete orthonormal set [cf. Eq. (2.11)], defined for the space inside the resonator, any
field can be expanded in terms of these modes. This can be deduced directly from the
theory of Fourier series. But due to the boundary conditions of a closed system, the
normal modes have to vanish at both ends of the resonator. In the case of a cavity with a
transmitting mirror, the field does not necessarily satisfy this condition and consequently
cannot be correctly described at the boundaries by a normal mode expansion. This is the
main reason why the Langevin formalism can break down for low finesse cavities. One
then has to use various approaches discussed extensively in the literature: the cavity mode
can be defined intuitively by identifying the parts of the field which are self-repeating,
apart from a decay factor in a complete round trip inside a leaky cavity. This leads
to the theory of the so-called Fox-Li cavity modes [76, 77| used in laser physics. These
modes are not necessarily orthogonal, which is important for the explanation of so-called
excess noise, where the Schawlow-Townes linewidth of a laser is enhanced (cf. Ref. [131]).
Even more sophisticated formalisms are presented for instance in Refs. [66, 67], where
the authors give up the idea of commuting reservoir and system operators. However, it
was also pointed out that the normal modes used within the framework of the Langevin
approach are a good approximation in the case of a high finesse cavity.

In Sec. 5.8.4, entanglement between a cavity mode and test masses will be investigated.
In the literature, the Langevin formalism is commonly used for the derivation of the
required cavity mode. But since the formalisms introduced in Secs. 2.3.1 and 2.3.4 are
used throughout this thesis, it is not convenient to switch to the Langevin formalism.
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Remember that, in contrast to the Langevin approach, the previous sections have dealt
with transfer functions for the continuous quadrature amplitude operators of quantized
beams of light. The mathematical representation of such a beam has been obtained by
choosing an infinite quantization volume. Despite the infinite quantization volume, this
concept provides an appropriate description of the field inside a finite cavity volume. One
can think of an infinite propagating wave reflected back and forth by the two end mirrors
of the resonator. Alternatively one could imagine an infinite beam of light manipulated
at certain locations, which corresponds to reflections on mirrors or interactions with other
optical components. However, by adopting the concept of an infinite beam of light, one
can calculate the effective time-dependent quadrature amplitudes at a certain location
within the cavity, consisting of a superposition of the back and forth reflected beam. The
question arises how the quadrature amplitudes at a certain location are related to the
cavity mode.

First it should be demonstrated how a certain mode can be extracted from an electric
field restricted to a finite quantization volume. If this finite quantization volume comprises
a single dimension, one obtains the following expression from Eq. (2.17):

R 2 1/2 . .
B(t—z/c)=i)_ < ZZ‘Z’“) [ake—m’“/u - a,iemkc/“] . (2.202)
k

Note that the quantization length is now given by 2L, where L is the length of the cavity.
Obviously, the time and spatial evolution of the field are equivalent and the following
mode functions can be defined in analogy to Eq. (2.13):

Uun(t) = ie—i’mc/“, nelN. (2.203)

These mode functions form a complete set and with respect to the scalar product

2L/c+t!
(6, 9) = /t At () (1) (2.204)

they are orthonormal, e.g. (un,uy) = 0y pn/. The nth mode of the electric field given in
Eq. (2.202) can be extracted by evaluating the following expression:

En(t") = (un(t), E(t))u, (') + h.c. (2.205)

where the field at = 0 was considered.

Now we pass to the case where the field is described by an infinite beam of light.
Consequently the field inside the resonator is no longer expressed by such normal modes,
as in Eq. (2.202), but by the continuous annihilation and creation operators

27 dw it
=\ e \/_ (W)e ™ +hee. (2.206)

A particular mode can be extracted by the same procedure as before. As already men-
tioned, the normal modes form a complete orthonormal set and consequently even the
field inside a leaky cavity can be approximately described by an expansion into these
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normal modes of a closed system. According to the previous considerations, this requires
the evaluation of the following scalar products:

9 d 2L/C+t/ .
( &AT; w /_ ) l%/t/ dtel(*u.H’ﬂ'TLC/L)t' (2207)

The continuous mode operator a(w) only gives a significant contribution around w =~ wy
and therefore it is sufficient to consider a particular scalar product with wyes = mnyesc/L =
wo — A where nyes is so chosen that A is minimized. Here, A < wy denotes the detuning
of the cavity. Then one obtains:

|2m 2L dw i —iwt!
(unres AC ( ) g rest! ) (2208)

which leads to the expression:

B (#') = (tnyes (), B(E) )t (8') + hoc. & ?47; dw\/_ hwa(w)e @ +hie., (2.20)

being in agreement with Eq. (2.206). This means that Eq. (2.206) already approximately
describes a certain mode of the field, originating from the assumption that the continuous
mode operator only gives a significant contribution around the carrier frequency. The
experienced reader might already be aware of this trivial interrelation. From Eq. (2.206)
one can deduce that the cavity mode operators are only re-normalized continuous mode
operators:

2L
a; — | —a; with e {1,2}, (2.210)
C

where we have already passed to the quadrature amplitudes.
After calculating the output field quadrature amplitudes @yt of a cavity in terms of the
ingoing quadrature amplitudes a;,, one can obtain the intra-cavity mode by the following

important rule:
. 2L /1 ., .
Qcay = 1/ 7\/ T (Gout + @in) - (2.211)

This is an important relation which will be used frequently in the following investigations
and it coincides with the relation already given in Eq. (2.188).

2.3.8. Adiabatic elimination

The Hamiltonian associated with a simple cavity [cf. Eq. (2.190)] describes two degrees
of freedom, the cavity mode and the suspended mirror, which couple through radiation
pressure fluctuations. For many experimental scenarios, these coupled degrees of freedom
have different dynamical time scales. If one scale is very much faster than the other,
the dynamics of the fast variable are slaved to the slow variable. This means that the
quick system adiabatically follows the slow one. For a measurement performed in the
large cavity bandwidth limit [e > wyy,,0/(4wy,)], the cavity mode adiabatically follows
the mirror dynamics, i.e. equilibrium is reached quasi-instantaneously. Therefore an
adiabatic process is also called quasi-static. This implies that the cavity mode dynamics
can be eliminated by discarding the corresponding derivatives in Eqs. (2.198)-(2.199).
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The resulting equations of motion in the Fourier domain can easily be solved and one
obtains:

X =X, (2.212)
SN 2 8Pwoh 1

V =V, + s 020 =2, (2.213)
(f; _ 1 2 8PWOh X,in + s, (2214)

C m22 T c?

where P is the circulating power inside the resonator. The factor 2/ VT accounts for
the averaged number of round trips of a photon inside the cavity. In comparison to the
result obtain for a simple mirror in Eqgs. (2.88) and (2.87), the susceptibility of the phase
quadrature to the mirror motion as well as the susceptibility of the mirror motion to the
fluctuating amplitude quadrature is amplified by the number of round trips. In the case
of negligible cavity dynamics the implementation of a resonator only gives rise to a higher
effective power and consequently a stronger coupling between the field and the mirror
motion compared to a single mirror.



3. Gravitational wave spectrum

In 1915 Albert Einstein formulated the general theory of relativity, which is the geomet-
ric theory of gravitation [68]. Even before it was fully developed, it was clear that this
theory would have to predict gravitational waves. In order to preserve compatibility with
the special relativity theory, gravity must be causal. This means that the time-varying
gravitational field of accelerated masses is distributed in spacetime no faster than the
speed of light. This motivates the idea that there exists some kind of ”gravitational ra-
diation”. The Einstein field equations form the basis of the general relativity theory. By
introducing certain simple assumptions, it is possible to rewrite these equations so that
they take the form of wave equations. The associated waves are ripples in the curvature
of spacetime [75, 119] and are generated by massive bodies, so moving that they generate
a quadrupole moment. Note that monopole waves would violate mass-energy conserva-
tion, while dipole waves violate momentum conservation. It should be emphasized that
there is a close analogy between electromagnetic and gravitational radiation: gravita-
tional waves (GWs) originate from accelerated masses, while electromagnetic waves arise
from accelerated charges. The basic properties of gravitational waves were worked out
by Einstein within months after completing his general relativity theory [69, 70]. His
final result is known today as the quadrupole formula for the emission of gravitational
wave radiation [75]. It turned out that only very large astrophysical objects moving at
relativistic speeds are candidates for interesting gravitational wave sources. A discussion
of various sources is found, for instance, in Ref. [75]. After emission, gravitational waves
interact only very weakly with matter and thus they propagate as though in a vacuum,
which makes their detection extremely challenging. A detailed introduction to the topic
of general relativity is provided in Refs. [89, 119] or in Ref. [88], which is more stringent
from a mathematical point of view.

A gravitational wave alters the distance between widely separated objects, i.e. it causes
a change dLgw in the proper distance L between two spacetime events [11], which can
be described by the dimensionless quantity

 2Law

h
L )

(3.1)

the so-called gravitational wave amplitude (or GW strain). In contrast to the electromag-
netic field, the quantity h falls off as 1/r. This is due to the fact that the total energy
flowing through large spheres must be conserved. The lowest order contribution depends
on the source’s time-varying quadrupole moment ) and on the distance r to the source:

2G 1 .

h=—- 3.2

- (3:2)
where G is Newton’s gravitational constant and c the speed of light. In order to obtain a
rough estimation [16, 95] the quadrupole moment can be approximated by @ ~ 2Mv? ~

4E}> where v is the internal velocity of the source and E}f the non-spherical part of

41
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its internal kinetic energy. For a neutron star binary system located in a distance of 100
Megaparsecs (Mpc) with a total mass of E /c? = 2.8 solar masses one obtains

h~10"2, (3.3)

This implies that we have to measure the change in distance between two test masses
separated by 4 km with an accuracy of one-tenth of a femtometer, which is one millionth
of an atom width. This elucidates why no attempt to directly detect gravitational waves
has yet been successful. Only an indirect proof was furnished by means of the neutron
star binary system PSR1913+16 (cf. e.g. Ref. [97]).

Currently operating gravitational wave detectors are optimized for the observation of
merging compact binary systems. Such astrophysical objects consist of two neutron stars
(NS-NS), a neutron star and a black hole (NS-BH) or two black holes (BH-BH). Signals
from the adiabatic phase of a binary inspiral can be modeled very accurately with post-
Newtonian methods. This allows us to carry out an optimization for the detection of such
sources, which is recapitulated in Sec. 3.1. The detection of more speculative sources,
for which no analytical waveforms are available, requires a broadening of the detection
band. A possible optimization procedure is proposed in Sec. 3.2. The inevitable classical
noise floor limits the sensitivity of gravitational wave detectors at certain frequencies. We
provide a tool which allows us to test the exploitation of a given classical noise budget in
Sec. 3.3

3.1. Detector optimization for binary sources

In order to quantify the performance of various gravitational wave detector configurations
an appropriate assessment criterion is required. For this purpose we consider inspiraling
binary systems consisting of compact astrophysical objects such as neutron stars and/or
black holes. For these GW sources we will calculate the matched-filtering signal-to-noise
ratio (SNR) or the detectable distance for a given threshold SNR. For known waveforms
h(f) (in the frequency domain), the optimal SNR, achievable by correlating the data with
a known template, is (cf. Ref. [74])

o [ P
YA~ (34)

where Si,(f) is the single-sided noise spectral density of the interferometer. For compact
binary objects one obtains (see, e.g. Ref. [57])

GO/ L2 N1
\h(f)| = J30m2BARD 775 0(fuax — ) (3.5)
with MM,
_ MM,
M= (M +M;) and p= TS (3.6)

where i, M, M; and M5 are the reduced, total and single masses of the binary system
and D is the distance from the source to the detector. Note that the amplitude |h(f)]
is that where the rms average over all directions is already taken into account. There
is an upper cut-off frequency, fimax, in Eq. (3.5), beyond which the systems undergo a
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transition from adiabatic inspiral to non-adiabatic merger, and Eq. (3.5) is no longer a
valid approximation. This frequency is usually taken to be the GW frequency at the last
stable circular orbit given, for a test mass in a Schwarzschild space time with mass M
(cf. Ref. [41]), by
~ Mo

Jmax ~ 4400 Hz <W) : (3.7)
A lower cut-off frequency also needs to be taken into account for integration in Eq. (3.4).
Below fiin it is no longer possible to treat the system as stationary and we take fuin ~
7 Hz. This frequency almost agrees with the limit imposed by seismic noise on the
detector. Usually we focus on the optimization for NS-NS binary inspirals, which have a
total mass of 2.8 solar masses. For such systems, the last stable circular orbit gives an
upper frequency limit of fi,.x = 1570 Hz. Considering binaries of averaged orientation,
the observable distance for a given SNR pgy reaches

5/6 1/2M1/3 fmax 7/3
D=, 2¢ . (3.8)
15 7T2/3C3/2po (f)

min

Here we assume that the event rate is roughly proportional to the cube of the radius of
the detectable range, i.e.,

R x D3. (3.9)

Note that we have only considered the lowest Post-Newtonian approximation, which im-
poses certain limits on the application of the presented formulas. But in Chap. 4 only
the relative performance of different topologies is investigated, so that the formulas are
sufficient for our purposes.

3.2. Broadband optimization

Note that the optimization strategy discussed in the previous section tends to focus on
the low frequency regime at the expense of sensitivity at higher frequencies — due to
the rather steep power law of f~7/3 in Eq. (3.5). Performing an optimization in this
way yields a good sensitivity for binary systems, but the search for GWs should also be
extended to the so-called GW bursts with not well modeled properties. These sources
include supernova explosions in our Galaxy, mergers of compact binary systems, gamma
ray burst engines and other energetic sources [3, 4, 5]. Since the waveforms of GWs
from such sources are poorly known, a more broadband optimization needs to be carried
out in order to achieve a better sensitivity in the high frequency regime. This can be
accomplished in the following way: first a narrowband optimization, described in the
previous section, is performed, where we keep all configurations obeying an event rate
which is at least a certain fraction of the optimal event rate for binary systems. In a
second step these configurations are explored in the high frequency regime by considering
a smaller frequency integration interval, i.e. [500 Hz; 1570 Hz], and selecting the optimal
signal-to-noise ratio on this interval. Note that we use the same power law for this
frequency interval as before. There are alternative approaches with different power laws,
e.g. cf. Ref. [106], but their methods yield comparable results.
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Figure 3.1.: Contour plot illustrates the sensitivity of Advanced LIGO in the (e, A)—
plane: red dot marks the Advanced LIGO narrowband configuration (cf. Tab. 2.1)
yielding a maximum event rate for the detection of NS-NS binary systems. Labels
of contour lines indicate the percentage of the achievable event rate compared to the
maximal event rate, i.e. (D(e, \)/DAWNE)S [cf Eq. (3.8)]. For each point in the

(e, A)—plane the detection angle has been optimized. Residual parameters are given in
Tab. 2.1

3.3. Limitations of detector optimization

The inevitable presence of classical noise imposes a limit on the sensitivity of a GW
detector. We need another assessment criterion in order to quantify the exploitation of
this limit by a certain detector design and a given set of parameters. The total classical
noise budget obtained by adding up all different classical noise contributions needs to be
compared with the final noise spectral density of a detector where both, classical and
quantum noise, are taken into account. Let us define

W= [ ) [ Sd?/g

fmin min
Svcl Scl

= Sh Scl G (3.10)
where S¢, 5’2 and S}, are the weighted averages of the classical, quantum, and total noise
spectrum in the in the frequency interval [7 Hz; fy;], respectively. If the newly defined
quantity 1 € [0;1] is close to unity, it is indicated that the quantum noise is only a small
fraction of the total noise. This implies that the noise spectral density almost follows the
borderline set by the classical noise up to the frequency fp.
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Beginning in the mid-1970s, a major effort has been made to establish an international
array of long-baseline laser interferometers to detect gravitational waves. First genera-
tion ground-based observatories, i.e. LIGO [144], VIRGO [73], GEO [169] and TAMA [9],
are already operating. They are aimed at the detection of gravitational waves in the
audio frequency band (10 —10* Hz), within which they are reaching their design sensitivi-
ties. These large-scale laser interferometers are based upon the original simple Michelson
interferometer topology (cf. Sec. 2.2) and measure relative changes in locations of mirror-
endowed, nearly free test masses. But instead of single mirrors they are equipped with
Fabry-Pérot cavities in the arms. Furthermore a so-called power-recycling (PR) mirror is
placed at the laser input port in order to recycle unused laser light leaking out from the
bright port. The GEO detector is the only exception, since it does not use arm cavities
but dual-recycling [91].

Currently planned second generation gravitational wave laser interferometers such as
Advanced LIGO [1] will start operation around 2014. Advanced LIGO will exploit the
extensively investigated signal-recycling (SR) technique: an additional mirror is placed
behind the dark port of the interferometer, which results in a modified resonance structure.
The optical resonance frequency and bandwidth can be altered by changing the location
and reflectivity of the SR mirror, which provides some flexibility in aiming at the detection
of different astrophysical sources. If the SR cavity formed by the input test mass mirrors
of the arm cavities and the SR mirror is neither resonant nor anti-resonant with respect
to the carrier frequency, the optical configuration is called detuned signal-recycling. As
demonstrated theoretically by Buonanno and Chen [36, 37, 38] and experimentally by
Somiya et al. [147] and Miyakawa et al. [120], the power inside a detuned SR interferometer
depends on the motion of the mirrors, which gives rise to the so-called optical spring.
This effect can entail a second resonance besides the optical one, which is known as the
optomechanical resonance: the eigenfrequency of the suspended test masses can be shifted
from the pendulum frequency (~ 1Hz) up to the detection band. The detector can gain
sensitivity around both resonances. The general principle underlying the optical spring
effect is identical to that explained by Braginsky and Khalili [26] for a single detuned
cavity (cf. Ref. [38]), employed in their proposal of the optical bar detection scheme [25].

One concern using the optical spring is that the quantum noise limited sensitivity at
frequencies below the optomechanical resonance is significantly lower than that of non-
optical-spring interferometers. The reason for this inherent drawback is clarified in Sec. 4.2
and a possible way out is presented, relying on a local measurement of the position of the
arm cavities’ input mirrors by an independent carrier light.

A second concern is the instability introduced by the optical spring due to the anti-
damping associated with the optical force. This instability can be cured by incorporating
a linear feedback control system, which ideally would not modify the noise spectral density
of a gravitational wave detector as shown by Buonanno and Chen in Ref. [37]. In Sec. 4.3

45
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Figure 4.1.: Artistic impression of a multi-carrier power- and signal-recycling Michelson
interferometer equipped with arm-cavities. Some carrier fields resonate in the arm-
cavities while others are directly reflected from the I'TMs.

an alternative all-optical stabilization scheme is introduced, employing a second optical
spring. The local readout as well as the double optical spring scheme can be considered
as upgrade options for the Advanced LIGO detector or concepts for third generation
detectors. Both proposals involve two carrier lights, which increases the possibility of
re-shaping the noise spectral density. We optimize each configuration for a detection of
neutron star binary systems and additionally a broadband optimization is carried out.
Such layouts might also solve the parametric instability problem (cf. Refs. [28, 29]) which
can occur in the case of a high laser power buildup in the arm cavities.

The investigations are brought into a more general context in Sec. 4.1 by the formulation
of a universal theoretical framework for the treatment of multi-carrier interferometers.
All main issues, including the optimal combination of the multiple output channels, are
explored for an arbitrary number of carrier fields.

Finally an interferometric configuration comprising Kerr-nonlinear arm-cavities is in-
vestigated in Sec. 4.4. Such a system might apply for future gravitational wave detectors
or simply for a continuous-wave source of squeezed light.

4.1. Multi-carrier interferometer

In the following we investigate signal-recycling laser interferometers operated by multi-
ple independent carrier lights. Such a configuration is shown schematically in Fig. 4.1.
Different laser sources need to be merged before injection into the input port of the in-
terferometer. By choosing either distinct polarizations or frequencies, we can ensure that
there is no direct coupling between the fields, i.e. no interference effects occur between
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them. This is verified in Sec. 4.1.1 for an arbitrary number of carrier lights. Using this
result, we can effectively obtain a multiplicity of interferometers in one scheme, where
parameters such as detuning and mirror reflectivities can be chosen independently for
each individual interferometer.

The outgoing sideband fields, associated with the different carrier lights, are split and
each is sensed separately by a homodyne detection scheme. The various outputs need
to be combined in an optimal way, which requires the implementation of an appropriate
filtering procedure. In Sec. 4.1.3 a general expression for the optimal filter functions is
provided.

These general results are used for the investigation of two concrete scenarios: the
local readout enhancement of detuned SR interferometers [136] in Sec. 4.2 and the double
optical spring enhancement for gravitational wave detectors [137] in Sec. 4.3. Finally a
combination of both techniques is considered in Sec. 4.3.4.

4.1.1. Independent carriers

In this section we consider a light field composed of various independent ideal laser beams.
We assume that the free propagation of each contribution can be treated independently
and in the same manner as discussed in Sec. 2.1.2. But the question arises whether there
are interference effects when n carrier fields impinge on a mirror and couple optome-
chanically. The total field composed of the different carrier lights and the corresponding
quantum noise parts [cf. also Eq. (2.39)] is given by

E(t) =Y [A@') cos(wit — 00| + cos(wot) By (t) + sin(wot) B (t) (4.1)
=1

- Z [cos(wl ) (B (8)/n+A© cos(6)) +sin(w ) (ES (£) /- A0 sin(0D))]
(4.2)

i.e. there is a unique quantum noise floor replenished by the n carrier fields. The quantum
noise part can be centered around an arbitrary frequency wy, since it can always be shifted
by an appropriated integral substitution. In order to clarify this, it is convenient to switch
to the representation of the electromagnetic field given in Eq. (2.33):

A 2 .
EP(t) = \/ 7;16 / —a (wo + 2)]e ¥ + h.c. (4.3)

— UJ UJ 2 ! :
oot \| —— 7rhw / —a (wh 4 2)]e " + h.c. (4.4)

In this way Eq. (4.2) is obtained: the common quantum noise contribution has been
divided into n parts and each one has been centered at one of the n carrier frequencies

(4)

wy . A careful calculation reveals the total momentum flow [cf. Eq. (2.49)]:

n
A

a(®) = {Bun (1) = 3 [AVEL (1) cos0) + EL @sin0)] . (49
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where we have taken only first-order terms into account, i.e. the quantum part amplified
by the classical carrier amplitudes [cf. also Eq. (2.51)]. Obviously no cross terms occur
and consequently even fields with the same polarization show no interference effects when
impinging on a mirror. There is no direct coupling between the fields, which provides an
important basis for the following investigations.

4.1.2. Transfer functions

This section is closely related to Sec. 2.3.4, where we have recapitulated a detuned signal-
recycling interferometer operated by a single carrier light. All previously introduced
quantities need to be redefined for an appropriate treatment of a multi-carrier configura-
tion.

We assume a general configuration as shown in Fig. 4.1, where the carrier fields i =
1,...,k enter the arm cavities, while the carrier fields ¢ = k + 1,...,n only impinge on
the input test mass mirrors. This implies that we need to consider the differential motion
of the end test mass mirrors (ETMs) and the input test mass mirrors (ITMs) separately,
since they are exposed to different optical fields. Additionally, the beam splitter (BS)
motion normal to its reflective surface has to be taken into account. In the following we
list the Heisenberg equations of motions in frequency domain [36, 37, 38, 54, 108] for the
differential mode of motion of the ETMs (Zgry) and the ITMs (ZrTm), respectively, as
well as for the BS (Zpg):

k

TETM :REEM(Q) Z [F(l)(Q) + Rg)F(Q)(-%ETM — CEITM)] +L h+ éETM R (4.6)
=1

k
From = — RV (2)9 D {F(i)(ﬁ) + R (2)(@rrum — iITM)}

i=1
- {F(i)(ﬁ) + R () (drrm + \/55535)] } + & (4.7)
i=k+1
ips =RPES(02) { > [F(i)(ﬁ) + RY(2) (Frrm + \/%BS)} +> Fé?,(!?)} +&ps -
i=kt1 i—1

(4.8)

Here we act on the assumption that gravitational waves with amplitude h incident from
right above the detector plane exhibit a polarization that maximizes the response of our
L-shaped Michelson interferometer. Furthermore we have used the fact that the free
propagation of each field can be treated separately and no interference effects occur, as
verified in the previous section. All the fields couple directly to the mirrors, which in turn
implies that the fields are coupled indirectly. This indirect coupling of the fields via the
mirror motion is taken into account by Eqs. (4.6)-(4.8).
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The output associated with the n carrier fields [cf. also Eq. (2.140)] is given by

y)(i)(ﬂ) :Yl(i)(_()) sin C(i) + 572@)((2) cos C(i)
+ [RY 2(2) sin¢® + RY () cos(D)(@prm — #rrm) for i € LK), (4.9)

1
5 (02) =9{7(02) sin ¢V + ¥,(62) cos (¥

+ [RY(2) sin¢? + RY (2) cos CV)(drrm + V2ips) fori € [k+ 1,n].
(4.10)

It should be emphasized again that Zrry and Zgryv account for the differential motion
between two mirrors, while Zpg describes the motion of a single mirror tilted 45 deg. This
justifies the factor of v/2 in front of the BS motion. Each optical component has its own
mechanical susceptibility, namely

V2

RITM( )y — RETM () — _
() = REPM(2) e

and RBES(0) = — (4.11)

mi?

where we assumed that ETMs, ITMs and BS can be treated as free masses and the ETMs
and I'TMs all have the same weight. The classical noise acting on these components is
described by the operators &, with m € [ETM,ITM, BS]. According to Ref. [37] the free
quantities (cf. also Sec. 2.3.4) F)(£) and Yj(l)(ﬁ) are related to the incoming amplitude

and phase quadratures, dgi) and &(21‘)’ as follows:

. DD mh (12 — 6(z‘)) a0 + A0 O
(2) _ /€ 1 2
FOQ) =\ — (21132 — (\@)2 (4.12)

[()\(z’))Q _ (e(i))2 — 2] &gz‘) 4+ 2A@D @ &g‘)
(2 +ie®)2 — (X(©)2 ’
2200 @ (A2 — ()2 — 2] af)

V() = RSOGO . (4.14)

Yl(i) () = (4.13)

As aforementioned, the carrier lights i = k + 1,...,n are completely reflected from the
ITMs and therefore they only perceive a Michelson interferometer without cavities in the
arms. According to Ref. [87], the dark port vacuum fluctuations associated with these
carriers are primarily responsible for the motion of the BS. It should be emphasized that
the outputs corresponding to the subset of carrier lights which enter the arm cavities, i.e.
1 =1,...,k, are only marginally influenced by seismic, thermal and radiation pressure
noise introduced at the beam splitter. This can be explained as follows: the carrier fields
entering the arm cavities generally exhibit a lower power incident on the BS than those not
entering the arm cavities. Further, fluctuations associated with the carriers i = 1,... k
do not build up as much as those associated with the carriers ¢ = k + 1,...,n, both in
common and in differential mode.

The incoming bright port amplitude fluctuations associated with the n carrier fields are
described by the operators bgz). These fluctuations cause an additional motion of the BS,
which gives rise to the second sum in Eq. (4.8), where the involved quantities are given
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| L\6Omh(1 — (o))
Bp ~ 70 0, - @)
\/EC(—’YO(l - PPR) + 1(1 + PPR)Q)

0Omih(1 + p\)
mih( * R0 for ekt 1,m]. (4.16)
2c(1 = ppg)

B\ for ie[1,k], (4.15)

Here L is the length of the arm cavities, while [ accounts for the distance between the BS
and an ITM. The optical transfer functions (cf. Ref. [38] or Sec. 2.3.4) are given by

0( Im )\(Z
YlF \/ 2+ — o) (4.17)

9(1 @) — 1(2
Rl — 4.18
Y # (02 +ie®)2 — (\(©)2 (4.18)
and the ponderomotive rigidity is described by the susceptibility
; mo® A®)
R (1) = (4.19)

4 (2-=X0 4+ie@)(2 + X0 +ie@)

The optical resonance frequency of the differential optical mode (to be precise, that which
is closest to this carrier) is defined for each carrier field separately and is given by w((f) —
XD — i) where, in terms of interferometer parameters, A) and ¢ are given by (cf.

Ref. [38] or Sec. 2.3.4):

pli sin(269) _ 1— (ph)?
1+ (pé%) +2ph cos(26(0) L+ ply, + 208} cos(261)

. (4.20)

for i € [1, k] or
AD = gD /1 and €D = (1= (p5h)%)e/(al), (4.21)

for ¢ € [k 4 1,n]. This implies that each carrier field can sense a different detuning of the
SR cavity and a different SR mirror reflectivity.

Note that we have assumed in Eq. (4.9) that the carriers ¢ = 1,...,k only sense a
differential cavity length, i.e. ZgTym — ZrTm, while we have ignored the slight difference
between the sensitivities to ITMs and ETMs as well as motion of the BS. In Eq. (4.10),
the carriers i = k + 1,...,n only sense the differential motion between the I'TMs and the
BS, since these fields do not enter the arm cavities.

The operators EITM, éITM and éBS introduced in Eqs. (4.6)-(4.8) model the classical
noise at I'TMs, ETMs and BS, respectively. We assume that the noise contributions are
uncorrelated but all have the same spectrum, namely one fourth of the total classical
noise spectrum generally pre-estimated for the differential mode of motion in Advanced



51 4. Advanced interferometer concepts

LIGO [1]. The only non-vanishing correlation functions are given by

(@ (82) @)1 (2 ))sym = 6(02 = £2') 835 0w,
(b1 (2) B2 ) )sym = 7 6(02 = 2) 6,5 81 (12),
(Ern(22) (Era) (2))sym = 2 8(92 — 2) Sa(2). (4.22)
(Errm(92) (Errm)T(2))sym = 27 3(2 — ) Sa(2),
(€ns(12) (€p9)1(2))sym = 7 6(2 — 2') Sa(2),

from which we can obtain the single-sided noise spectral densities. The incoming bright-
and dark port fluctuations associated with the different carrier fields are uncorrelated,
while in each case they exhibit the same correlations. Here Sl(z)(Q) denotes the spectrum
of technical input laser noise, while S¢;(§2) characterizes the spectrum of all other classical
noise sources in the gravitational wave strain. For the classical noise sources, we use
the current noise budget of Advanced LIGO, as pre-estimated by the simulation tool
Bench [2]; the various contributions, such as suspension thermal noise, seismic noise,
thermal fluctuations in the coating and gravity gradient noise, are shown e.g. in Fig. 4.8.

4.1.3. Optimal filter functions

The outgoing sideband fields around the n different carriers are detected independently
via homodyne detections. Thus a certain combination of the amplitude and phase quadra-
ture (described by the phase ¢ with i € [1,7n]) of each field is measured. We seek an
optimal linear combination of the n measurement output channels in order to maximize
the sensitivity to gravitational waves. In practice, an appropriate postprocessing of the n

classical data streams has to be performed.
The input-output relations provided by Eqgs. (4.6)- (4.10) can be rewritten in the form:
§(2) =nl(Q2) - v(2) + 5i(2)h(R2), (4.23)

2

where v is a column vector with 3n 4+ 3 entries which account for 2n quadrature opera-
tors, n operators associated with the amplitude quadrature of the incoming bright port
fluctuations and three operators modeling the classical noise:

v = (0 a A ol B K Gra fera Ges ). (424)

The column vector n; describes the noise transfer functions from the input noise channels
v into the output channels §(*). The transfer of the GW strain h is characterized by the
functions s;. The combination of the n output fields reads:

9(2) = ZKi(Q) 7(02), (4.25)

and one has to identify n optimal filter functions K;, which minimize the combined signal-
referred noise spectral density of §:

Sn(12) = S (4.26)
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The matrices S,N € C(™") are given by
3n+3
(8)ij =sis) and (N)ij = > (n])sSpu (0. (4.27)
s,k=1
Here S,,,, is the (cross) spectral density between v, and vy [cf. Eq. (4.22)], with
(D)) = 70(2 = )80, (2) (4.28)
The inverse of the largest eigenvalue of the n X n-matrix

M=N1.8. (4.29)

provides the resulting minimum noise spectral density and the corresponding eigenvector
gives the n optimal filter functions K;. Additionally we define the symmetrized and
normalized filter matrix

(X)) = e O K (430)
YN KX '

where the kth diagonal element gives the percentage of how much GW strain (X = S),
noise (X = N) or overall output ((X);; = 1) the kth output channel contributes to the
combined output. The off-diagonal elements, or more precisely

WR[(K(X))y] . for i+#], (4.31)

account for the correlations between the different outputs.
In the following section we apply the formalism introduced to a simple example config-
uration.

Radiation pressure noise cancelation

As a motivation for the investigation of the local readout scheme (cf. Sec. 4.2), a simple
double-carrier configuration is considered in the following (cf. Fig. 4.2). The relative
position of a suspended ETM is measured with respect to a fixed ITM as well as a
suspended RTM. We are primarily interested in a relative length change between the ITM
and the ETM which is sensed by means of the main carrier field. The phase quadrature
of the corresponding output field is detected in order to maximize the signal which might
contain a gravitational wave signal. This signal can be masked by radiation pressure
noise in the low frequency regime. But the motion of the ETM is additionally sensed by
an optomechanical sensor composed of a short cavity. The information gained by this
second independent measurement can be used to cancel out the radiation pressure noise
introduced by the main carrier, which allows us to improve sensitivity at low-frequencies
(cf. Refs. [55, 56, 90, 105]). Note that such a scheme is also capable of canceling parts of
classical noise contributions.

For the subsequent theoretical discussion we assume that the cavity mode can be elim-
inated adiabatically (cf. Sec. 2.3.8). Then the equation of motion for the ETM reads

1
tern(2) = ——5 (aVal? (2) — aPa? (2)) + Lh(2) (4.32)
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Figure 4.2.: The length of a Fabry-Pérot cavity with a fixed input test mass mirror
(ITM) and a suspended end test mass mirror (ETM) with mass m is measured. An

optomechanical sensor, composed of the ETM and a reference test mass mirror (RTM)
with the same mass as the ETM, measures the motion of the ETM independently.

and for the RTM we obtain:

o (2) = —ﬁ (a®a (@) + Lh(2), (4.33)

where the quantity a® = 2/7()\/8hwyP®) /¢ = v/ th denotes measurement strength
[cf. Eq. (2.212)]. The measurement outputs corresponding to the two carrier fields are

given by
(1) (1) oM
§7(2) = a4y (92) + ——1rrm(£2), (4.34)
L (2) . (2) 2) (2) a® . @
9\ (2) = a7 (2)sin ¢ + |ay ' (2) + = (ZrrMm(£2) — ZpTM(£2)) | cos ¢ . (4.35)

The combined sensitivity depends crucially on the detected quadrature ¢(? of the output
field of the reference cavity. Three distinct scenarios are considered in the following:

(i) The most obvious measurement strategy would be a frequency-dependent homodyne
detection, such that the sensitivity of the optomechanical sensor is only limited by shot
noise, as proposed by Heidmann et al. in Refs. [55, 90]. We assume that both devices
exhibit the same measurement strength ie. 2, = !2(1) = !2(2) After re-scaling (2 —

2(2,) and using the detection angle C b = arctan(1/£22), the two outputs are given by

J0(2) = o (~a0(2) +aP(2)) + () + Vh, (436)
§2(2) = 7%92 (" (2) - P (2) + 8 (2)27) . (4.37)

Note that the signal h has been normalized to the SQL at (2, in Eq. (4.36). The combined
output is free from radiation pressure noise if the filter functions

KI, = ﬁﬂ)( 22 Vi+22) (4.38)
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Figure 4.3.: Comparison of noise spectral densities of different configurations: single
readout with phase quadrature detection (black solid line); single readout with optimal
frequency-dependent homodyne detection (black dashed line); three distinct scenarios
are considered for a configuration comprising an independent readout of ETM’s motion:
(i) suboptimal readout of second output field and suboptimal filter (dashed magenta
line) (i) suboptimal readout of second output field and optimal filter (blue line) and
(iii) both optimized (red line). The phase quadrature of the main output field is
detected.

are used, where N ({2) accounts for a normalization. We obtain for the combined output

() = ﬁ (al(2) a2 (@) +Van) 22 (4.39)

which entails a constant noise spectral density, i.e. Sy(£2)/Ssqr(£2;) = 1. The combined
noise spectral density is influenced by the shot noise level of both measurement devices.
Note that these intuitively chosen filter functions do not minimize the overall noise spectral
density.
(ii) The optimal filter functions calculated by means of the formalism presented in
Sec. 4.1.3 read: .
Kli=——(222+02Y 2v/1+22). (4.40)
N(£2)
These filter functions agree with Eq. (4.38), for {2 < 1 which ensures that radiation
pressure noise is still canceled in the low frequency regime. In the high frequency regime,
only the output corresponding to the main carrier is used. The shot noise level of the
optomechanical sensor does not contribute to the combined output, which obeys the noise
spectral density
1 1
Sn(£2)/S 2,) = 4.41
W(2)/Ssau(2) = 5 + 5755 (4.41)
(iii) A straightforward minimization reveals that the optimal frequency-dependent de-
tection angle is given by ( ot = arctan(1l/ 22 — §2%) which results in a slightly improved
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combined noise spectral density (cf. also Fig. 4.3):

2t 42

Su(£2)/SsqL($24) = 201132

(4.42)
The optimal filter functions in the case of this detection strategy can again be obtained

by means of the formalism introduced in Sec. 4.1.3:

Kl = ﬁﬂ) (221+02Y 2V1—-028+ 028 ). (4.43)

4.2. Local readout scheme

Currently planned high power detuned signal-recycling (SR) laser interferometers (for
example Advanced LIGO [1]) are characterized by two resonances within the detection
band. One resonance is optical in nature and the other is caused by the optical spring,
which can shift the pendulum eigenfrequency of the suspended mirrors up to the detection
band. This gives rise to the optomechanical resonance around which the sensitivity of the
detector is enhanced, as around the optical resonance. For such an interferometer, the free
mass SQL [27] is no longer applicable and it can be surpassed around the optomechanical
resonance frequency. But below this resonance frequency, the sensitivity of a detuned SR
interferometer is significantly lower than that of non-optical-spring configurations with
comparable circulating power. Such a drawback can also compromise high-frequency sen-
sitivity, when a broadband optimization is performed on the overall sensitivity of the
interferometer with respect to a wide class of gravitational wave sources. This deteriora-
tion of sensitivity is caused by the optical spring, which rigidly connects the input test
mass mirror (ITM) and the end test mass mirror (ETM) of each arm cavity at frequencies
below the optomechanical resonance. The general principle underlying this effect was al-
ready explained by Braginsky and Khalili in Ref. [26], where they proposed the optical bar
detection scheme [25]. They pointed out that the optical spring behaves like a rigid opti-
cal bar, which can connect the end mirrors of a L-shaped Michelson interferometer with
an intra-cavity mirror. By attaching a local meter to the intra-cavity mirror, the motion
transferred from the end mirrors to this mirror can be read out. Therefore Braginsky and
Khalili can take advantage of the same effect that limits the detuned SR interferometer
at frequencies substantially below the optomechanical resonance. The ITM and ETM of
each arm cavity are stuck together and hence also behave like a rigid optical bar. This
implies that the carrier light, which only senses the change in arm cavity length, i.e. the
difference in ITM and ETM motion, cannot be used to measure GW efficiently at these
frequencies. In order to understand this more conveniently, we need to use the local in-
ertial frame of the beam splitter (BS). In this frame, the effect of GWs can be described
completely as a tidal force field, which only exerts forces on the ETMs, not on the ITMs.
Here we make the approximation that the I'TMs and the BS are collocated. This means
that the light propagating between these optical components is unaffected by GWs. Since
the ITM and the ETM are rigidly connected, both move in the local inertial frame of the
BS by 1/2 of the extent the ETM would have moved had there been no optical spring
present. Here and below we assume that the I'TMs and ETMs have equal masses. To
illustrate this situation, we contemplate an incident low-frequency GW with amplitude
h from right above the detector plane. In the local inertial frame of the BS, an ETM
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Figure 4.4.: Schematic plot of a power- and signal recycled Michelson interferometer
equipped with arm cavities and double-readout. The added local meter is realized by
a secondary laser which does not enter the arm cavities. It senses only the differential
motion of the input test mass mirrors.

inside a non-optical-spring interferometer would move a distance Lh, where L is the arm
length of the interferometer. In the case of an optical spring interferometer below the
optomechanical resonance the ITM and the ETM both move by ~ Lh/2. For this reason,
we propose to measure the local motion of the I'TM by using an additional local readout
(LR) scheme which allows us to dramatically recover the low-frequency sensitivity. Note
that the local meter senses an effective mass of the I'TM which is equal to the total mass
of the ITM and the ETM. The optical-bar scheme proposed by Braginsky et al. is equiv-
alent to only measuring the ITM’s motion locally [25]. In this sense our proposal can be
considered as directly incorporating the optical-bar scheme into currently planned second
generation GW interferometers.

Local readout schemes have also been proposed for interferometers without an optical
spring, as discussed in Sec. 4.1.3. But the motivation was entirely different, since the
mirrors can still be considered as independent objects, whose motion with respect to
their local inertial frames is merely caused by radiation-pressure noise, provided that
only signal and quantum noise sources are taken into account. A local readout scheme
can thus be used to (partially) cancel radiation-pressure noise and improve low-frequency
sensitivity [55, 56, 90, 105]. Additionally, such schemes are able to cancel parts of the
classical noise. The following investigations can also be regarded as a generalization of
these schemes, because the results discussed in Sec. 4.1.3 can be recovered by setting the
detuning to zero.

From an astrophysical point of view, the implementation of the LR scheme broadens the
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detection band. This allows the interferometer to search for multiple sources simultane-
ously as well as to examine a wider frequency range of the same source. As an example, we
will explore how the increase in detection bandwidth allows us to detect more efficiently
the population of compact binary objects with a broad range of masses (and hence signal
frequency band).

In order to construct the local meter, we consider a scheme where a second carrier is
injected into the bright port of a detuned SR interferometer. This auxiliary carrier light
does not enter the arm cavities as in Fig. 4.4. Instead, it senses the differential motion
of the ITMs. It would also be conceivable to apply a LR scheme to the ETMs, similar to
the set-up discussed in Sec. 4.1.3. The same sensitivity recovery would be possible, since
the ETMs would also move with respect to free collocated mirrors by —Lh/2. These
two strategies are quite equivalent in the ideal situation, but differ from each other in
terms of the difficulty in implementation and in terms of quantum noise, since additional
mirrors need to be introduced. Moreover, such a scheme might also be more susceptible
to technical noise sources such as laser noise.

The following aspects of the LR scheme are discussed in this section: first we study
the dynamics, sensing and control of the double-readout interferometer in Sec. 4.2.1. By
means of the results obtained in the previous Sec. 4.1.3 the joint Heisenberg equations of
motion for test masses, beam splitter and optical fields are obtained and the optimal com-
bined GW sensitivity of the two readout channels is calculated. Further, it is proved that
the use of control schemes does not affect this sensitivity. Afterwards, in Sec. 4.2.2, we
illustrate how our proposed scheme can be used to improve the sensitivity of the planned
Advanced LIGO interferometer. Various scenarios are considered and a realistic classical
noise budget is taken into account. Then we discuss practical issues for a possible imple-
mentation in Advanced LIGO in Sec. 4.2.3. A combination with other QND techniques,
i.e. squeezed light input and variational homodyne detection is discussed in Sec. 4.2.4.
We conclude with a summary of the main results.

4.2.1. Dynamics, sensing and control
Equations of motion

We investigate a signal- and power-recycled Michelson interferometer with arm cavities
and equipped with a supplementary readout of the differential motion of the ITMs (cf.
Fig. 4.4). Such a layout comprises two interferometers, the large-scale main interferometer
and a small interferometer which has the I'TMs as its end mirrors. Choosing at least
different frequencies or polarizations for the two carrier lights allows us an independent
treatment of the two interferometers, as pointed out in Sec. 4.1.1. We assume that the
parameters, e.g. detunings or mirror reflectivities, can be chosen independently for each
interferometer. Remember that the ingoing bright- and dark port fluctuations associated
with the two lasers are uncorrelated. The Heisenberg equations of motion can be obtained
directly from the general formalism presented in Sec. 4.1.3 by choosing n = 2 and k£ = 1.
Then the equations of motion for the differential motion of the ITMs (Z1Tym) and the
ETMs (ZgrMm), respectively, as well as for the BS motion #pg normal to its reflective
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surface, are given by

v = — Ry (92) [F(l)(ﬁ) + R;}}(Q) (ZET™M — T1TM™)

— FO(Q) = REH(9) (i + V2 ds)| + rmu, (4.44)
TET™M =Ree(02) [F(l)(ﬁ) + RUL(2) (Fprm — @ITM)] +L h+&pym (4.45)

~

#ps =Ry (12) [F(2’(9) + REL(Q) (drmv + V2 dps)
+ F(02) + FR(2)] + o, (4.46)
and for the two measurement outputs §(Y) we obtain:
gj(l) :171(1)((2) sin C(l) + Y2(1)(Q) cos C(l)
+ [ BEp(2) sin¢® + REL(2) cos (D] (@rm - drm) (4.47)

e :171(2)((2) sin (@ + Y2(2)(Q) cos ¢
- [RQ)F(Q) sin ¢ + R%)F(“Q) cos C(2)] (Zrrum + V2 dps) - (4.48)
All the quantities used here are listed in Sec. 4.1.3 and the parameters are given in Tab. 4.1.
For the subsequent discussion we assume that the mass of the BS coincides with the mass
of a single mirror, i.e. mpg = m. Note that we can obtain two input-output relations
from the equations of motion given in Eqs. (4.44)-(4.48) and write them, according to
Sec. 4.1.3, in the following compact form:

@(1):n1T-V+31 h, @(2):77,;-1/4-82 h, (4.49)

where v1 = (&gl),&gl), &(12),&§2), 5(11), 5§2),51TM,5ETM,535). Here the two vectors m 2 are

the linear transfer functions from the noise channels v into the two output channels, while
the two functions sy 2 are the linear transfer functions from the signal, i.e. the GW strain
h, into the output channels. The combined optimal noise spectral density can be deduced
directly from Eq. (4.26).

Control

It has been shown by Buonanno and Chen in Refs. [36, 37, 38] that the optical spring
introduces an instability which has to be cured by employing an appropriate feedback
control system. This instability is also discussed in detail in Sec. 4.3, where an alternative
all-optical stabilization scheme is proposed. In the case of a single-carrier system, it
is easy to show that a control system does not give rise to any fundamental change in
sensitivity with regard to GW signals [36, 37, 38]. This can be understood intuitively
since signal and noise portions are fed back equally onto the test masses. The proposed
double-readout system is more complex, but the same intuition still applies. If we define
x” = (#17Mm, 2ETM, ©BS) and y! = (gj(l),gj@)), the equations of motion, i.e. Eqgs. (4.44)—
(4.48), can be re-written as follows:

(2) - v+ce(2)h+D(2) -y, (4.50)

-+ B
x+G(02) - v. (4.51)
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Symbol physical meaning value
mBs beam splitter mass 40 kg
PPR power-recycling mirror reflectivity v0.94

27rc/wé2) laser wavelength of 2°¢ carrier 1064 nm
pP® circulating power of 2°4 carrier 1 kW
A2 detuning for 2°9 carrier 0 Hz
@ cavity half bandwidth for 2°4 carrier 27 1 kHz
@ detection angle for 2°4 carrier 0

Table 4.1.: Parameters values relevant for the second carrier field injected into the bright
port of an interferometer (cf. Fig. 4.4). These parameter values are always used for the
local meter and the parameter values given in Tab. 2.1 (narrowband configuration) for
the first carrier, unless otherwise stated.

In Eq. 4.50 the matrix A accounts for the mirror dynamics, the matrix B describes how
the noise sources combined in v are applied as forces onto the mirrors and the vector
c denotes how the GW signal h directly influences the mirrors. In Eq. 4.51 the matrix
F describes how the output channels y depend on the motions summarized in @, the
matrix G describes sensing noise in y, and finally the matrix D accounts for the required
feedback. By solving Eqgs. (4.50) and (4.51) jointly, we obtain

y=[l,-H-D|"'. [H-B+G]-v+H-ch], (4.52)

where the matrix H = F - (1, — A)~! was defined. It can be seen from Eq. (4.52) that
the only dependance of y on the control system is through D, which only appears in the
first factor on the right-hand side. The optimal sensitivity, obtained by maximizing the
signal-referred noise spectrum of (K , K3) -y is then clearly invariant with respect to the
control system D.

4.2.2. Example configurations

Quantum noise example

To begin, we study the quantum noise spectral density of the proposed LR scheme for
different parameter regimes. Introducing a second carrier as illustrated by Fig. 4.4 does
not affect the signal-transfer function of the large-scale interferometer and it still reads:
RYp(2)5in ¢ + R (2) cos (D)
0 — 0, (4.53)
1- 2RFF(‘Q)R$$(‘Q)

s () =

where we have assumed that the SR cavity is tuned with respect to the second carrier.
Otherwise a second optical spring would inevitably change the signal transfer function
given in Eq. (4.53). The signal-transfer function of the tuned local meter is given by

1 2
3(2)(9 _ _R%}?(Q)RM(Q)RQF(Q) 2-0 62

0 : (4.54)
1 — 2R 3(2)Ryu (£2) 2¢@n
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Figure 4.5.: Example of signal (left panel) and noise (right panel) transfer functions of
the local readout configuration. For each carrier the associated transfer function is
shown separately. Parameters are given in Tabs. 2.1 and 4.1 but with ¢((!) = 0.

provided that its phase quadrature is detected. Note that both transfer functions de-
pend crucially on the susceptibility Rg}(()) offered by the first carrier: in the case of
the large-scale interferometer it is responsible for the optomechanical resonance around
which the signal transfer is strongly enhanced, but it also causes a diminished sensitiv-
ity at low frequencies. Remember that the poles of Eq. (4.53) correspond to the optical
and the optomechanical resonance. On the other hand, the local meter can only sense a
signal if the large-scale interferometer provides a non-vanishing ponderomotive rigidity,
ie. R(Fll)[,(ﬂ) = 0 is required. Note that, in contrast to the large-scale interferometer,
the signal transfer function of the local meter stays constant for low frequencies. This
behavior is further illustrated by Fig. 4.5 where the individual signal- and noise-transfer
functions associated with the first and second carrier are shown. We use the parameters
for an Advanced LIGO narrowband configuration provided in Tab. 2.1, but with phase
quadrature detection, i.e. ¢(!) =0. The parameter values for the local meter are given in
Tab. 4.1. Fig. 4.5 confirms that the large-scale interferometer mainly senses frequencies
above the optical spring resonance, while the signal transfer function decreases consider-
ably at lower frequencies. The local meter offers complementary sensitivity for frequencies
below the optical spring resonance, when the ITM is dragged together with the ETM by
the optical spring. The corresponding filter functions shown in the left panel of Fig. 4.6
mirror this behavior. The curves shown in this figure indicate the percentage of GW
strain (solid lines) or noise (dashed lines) fed from the large-scale interferometer (red
lines) or the local meter (blue lines) into the combined output [cf. Eq. (4.30)]. The green
curves in Fig. 4.6 account for the correlations [cf. Eq. (4.31)] between the two outputs. At
frequencies above the optical spring resonance, the optimal combination depends mainly
on the first readout, while at frequencies below the optical spring resonance mainly on
the second readout. This plot illustrates that the local readout scheme can directly im-
prove the sensitivity only below the optomechanical resonance frequency. Note that the
noise spectral density of both output channels can be above the optimally combined noise
spectral density at certain frequencies. This is due to the fact that there are correlations
between the two output fields, since they are coupled indirectly via the motion of the
ITMs. The optimal filter functions are able to exploit these correlations (cf. green curve
in the left panel of Fig. 4.6). This also means that the additional radiation pressure noise
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Figure 4.6.: Left panel: squared absolute values and cross correlations of the optimal
filter functions [cf. Eq. (4.30)]. The percentage of GW strain (solid lines) or noise
(dashed lines) contributed by the large-scale interferometer (red lines) and the local
meter (blue lines) is depicted. The green lines account for the correlations between the
two outputs. Right panel: the resulting combined noise spectral density as well as the
contributions associated with the individual carriers are shown. The same parameters
as in Fig. 4.5 were used.

imposed on the ITMs by the local meter can be partly canceled out. But a small fraction
remains, which can be seen in the right panel of Fig. 4.6, where a slightly deteriorated
sensitivity can be observed around the optomechanical resonance compared to the usual
detuned SR interferometer without LR.

The local meter provides additional degrees of freedom usable for a fine tuning of the
noise spectral density of the interferometer. Note that the cavity mode associated with
the local meter can be eliminated adiabatically due to the short arm length and the low
finesse considered here. This implies that the corresponding output only depends on the
ratio between the circulating power P and the half bandwidth e, which can be inferred
e.g. from Eq. (2.212). Remember that we assume that the SR mirror reflectivity for each
carrier light can be adjusted independently. This allows us to decrease the circulating
power required for operating the local meter, which facilitates the implementation of the
proposed technique. For example, if we assume a circulating power of only P@ =1 kW
in each arm of the local meter, it is still possible to recover all curves shown in Fig. 3 (left
panel) of our Ref. [136], where a circulating power of up to P(?) = 16 kW was considered.
This is illustrated in Fig. 4.7, where the combined noise curves for a fixed power but
variable bandwidth are plotted.

Beside the half bandwidth ¢, the residual degrees of freedom are the detection angle
¢@ and detuning A of the local meter. Detuning the SR cavity with respect to the
second carrier field gives rise to a second pair of resonances. Since the additional optical
resonance usually occurs beyond the cavities’ half line width, where the local meter does
not give any contribution to the combined noise spectral density, we can effectively exploit
three resonances. Note that the newly established optomechanical resonance also needs
to be stabilized by a feedback control system which does not influence the sensitivity
according to Sec. 4.2.1. Due to the low power circulating in the local meter the second
optomechanical resonance occurs at considerably lower frequencies than the first. In this
regime one cannot have much advantage from a peaked response, since the interferometer
is clearly dominated by classical noise. Consequently, we do not extend the analysis to
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Figure 4.7.: Quantum noise curves for the proposed local readout scheme. Different
curves correspond to different choices of the half bandwidth €2, The other parameters
are the same as in Fig. 4.5. Since the cavity mode of the local meter can be eliminated
adiabatically we can conclude that its performance only depends on the ratio P2 / €@,

a non-zero detuning associated with the local meter. Finally, the homodyne detection
angle ¢@ provides another degree of freedom, which can be used for an optimization.
In particular a frequency-dependent homodyne detection scheme might be a matter of
special interest since it can be implemented without much effort for such a small-scale
interferometer. This will be discussed in detail in Sec. 4.2.4.

It should also be mentioned that the combination of a signal-recycled Michelson in-
terferometer with a local meter may indirectly help to improve the sensitivity at high
frequencies or to increase the detection bandwidth. Such a broadband optimization is
also carried out in the following. A broadband configuration exploits the effect that the
sensitivity of the large-scale interferometer can be shifted to higher frequencies by so ad-
justing its detection angle that it is closer to the phase quadrature, while the local meter
helps to maintain sensitivity at low frequencies. This will be studied more closely in
Sec. 4.2.2.

Classical noise dominated regime

Sensing noise is usually negligible in the low frequency regime and the motion of the
mirrors and the beam splitter is dominated by classical force noise. With this assumption
the first carrier offers the following output:

g o gras — &rrum + Lh, (4.55)

where éETM and éITM account for the classical noise acting on ETMs and I'TMs, respec-
tively [cf. Eq. (4.22)]. The output of the second carrier is proportional to

9@ o Eprm + Erom + 2V26ps + L, (4.56)

where éBS accounts for the classical noise acting on the BS. Suppose again that éITM,
&g, and Egg correspond to independent noise contributions, at the same level for I'TMs
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and ETMs but half as high for the BS [cf. Eq. (4.22)]. Calculating the optimal filter
functions by means of the formalism introduced in Sec. 4.1.3 yields that 3/4 of the large-
scale interferometer’s and one fourth of the local meter’s output should be used. This is
in contrast to the optimal filter functions we obtain when only quantum noise is taken
into account, as in the left panel of Fig. 4.6. The combined output for the classical noise
dominated regime is given by

7 o< EpTm — %SITM + %fBS + Lh. (4.57)
For the ratio between the noise spectral densities of a single large-scale interferometer
[cf. Eq. (4.55)] and the optimally combined local readout configuration [cf. Eq. (4.57)]
we obtain % /2, i.e. classical noise in the combined output is reduced by 25%. This
corresponds to an improvement in event rate by a factor of (1/4/3)3, i.e. ~ 54%, which
can also be seen in in Fig. 4.10: for high binary masses the dashed curves meet at a
factor of (4/3)%/? below the solid curves. This plot is explained in detail in the following
section. The above considerations also clarify why the improvement in event rate for
binary systems with a high total mass does not significantly exceed 54% (cf. Tab. 4.2).

Optimized configurations with Advanced LIGO classical noise budget

Now we employ the tools reviewed and introduced in Sec. 3.1 for an optimization of
our proposed configuration. Different binary inspirals are considered and the signal-to-
noise ratio (SNR) is maximized with respect to certain interferometer parameters. For
this optimization a realistic classical noise budget as given by Bench [2] is taken into
account. The different noise contributions are shown for instance in Fig. 4.8, where
they are represented by grey lines. Here we use the usual Advanced LIGO narrowband
configuration with parameters given in Tab. 2.1 as a reference. Remember that these
parameters were obtained by optimizing the interferometer for neutron star - neutron star
(NS-NS) binary systems, i.e. binary systems with a total mass of M = (1.4 + 1.4) M.
But in the following we extend our analysis to binary systems with a higher total mass,
which results in a shortened integration interval according to Eq. (3.7). In any case,
considering different binary sources requires in each instance an optimization of the LR
and the Advanced LIGO configuration in order to conduct an appropriate comparison.
Each optimization of the Advanced LIGO configuration is accomplished in the same way
as before, i.e. optical power P effective detuning A1), effective half bandwidth )
and detection angle ¢() are so adjusted that the SNR is maximized for a given binary
system with a certain total mass (cf. Tab. 4.2). When optimizing the LR scheme, we
maximize the SNR by varying the same set of parameters of the large-scale interferometer.
Additionally the half bandwidth €¢® and the detection angle ¢(? of the local meter are
subject to our optimization routine (cf. Tab. 4.2). We impose a fixed circulating power
on the second carrier, i.e. P®? = 1kW and require it to be resonant in the signal-
recycling cavity (A\(?) = 0). If we optimize both systems for a certain binary system
and compare the expected event rates for this particular astrophysical source, we find
moderate improvements in event rates (cf. last column in Tab. 4.2). The improvement
in event rate increases for higher binary masses since the local meter mainly helps to
enhance sensitivity at low frequencies. But the classical noise budget imposes a limit on
achievable improvement which can be verified by means of the function introduced in
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Table 4.2.: Parameters obtained when optimizing the usual Advanced LIGO type con-
figuration (first row) and the proposed LR scheme (second row) for different binary
systems (first column). The last column shows the improvement in event rate achiev-
able by the LR scheme, i.e. the performance of the two configurations optimized for the
same binary system with a certain total mass (given in the first column) is compared.
Reasonable errors in the different parameters may decrease the event rate — but not
more than 1%.

Eq. (3.10). If we consider for instance the LR configuration optimized for M = 2.8M,
we obtain

1(fup = 250 Hz) = 0.85 (4.58)

which reveals that the interferometer is almost limited by classical noise within the fre-
quency interval [7 Hz; 250 Hz]. In the case of the Advanced LIGO narrowband configu-
ration, we only obtain n(f,, = 250 Hz) = 0.73.

Note that in our Ref. [136] all parameters of the tuned local meter were fixed for
optimization, namely we used a bandwidth of ¢} = 27 4 kHz, a circulating power of
P®) =4 kW and the phase quadrature associated with the second carrier was detected,
i.e. ¢ =0. We only varied the circulating power P! detection angle ¢((V) and detuning
phase ¢(1) of the large-scale interferometer. Here the optimization is extended to six
degrees of freedom. The doubled number of variable parameters gives rises to an additional
improvement in sensitivity which becomes apparent when comparing Tab. 4.2 with Tab. 2
in Ref. [136].

The advantage of the local readout scheme can be better appreciated when one realizes
that there are different populations of likely sources (i.e., the total binary mass M can
reside in a range M), where the signals extend to different frequency bands. We need to
investigate how well a certain configuration, optimized for a particular system with total
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Figure 4.8.: Noise spectral densities of Advanced LIGO narrowband and two differ-
ent LR configurations. Both narrowband configurations are optimized for binary sys-
tems with total mass M = 2.8 Mg and parameters are given in Tab. 4.2. The LR
broadband configuration was obtained by means of the optimization procedure intro-
duced in Sec. 3.2, which produced the following set of parameters: A() = 27 360 Hz,
M) = 27 245 Hz, (M = 27 0.43 ¢ = 27 200 Hz, (? = 27 0.02 and residual pa-
rameters are given in Tab. 2.1 or 4.1. When using the Advanced LIGO narrowband
configuration as a reference, one obtains an improvement in event rate for NS-NS bi-
nary systems of 43% in the case of the LR narrowband and 32.7% in the case of the LR
broadband configuration. Classical noise (grey lines) is included here. Contributions
are labeled according to their appearance: suspension thermal noise results from the
fluctuations in the suspension system; seismic noise is due to motion of the ground;
thermal fluctuations in the coating dominate over fluctuations in the substrate; gravity
gradient noise accounts for time-changing Newtonian gravitational forces.

mass M, would perform for other possible systems with masses in M. Here we consider
M = [1 Mg, 630 M| with a maximum mass determined by the condition finax = fmin [cf.
Eq. (3.7)]. Such a comparison is shown in Fig. 4.10 which illustrates the improvements in
event rates obtainable by differently optimized Advanced LIGO configurations (dashed
lines) and LR configurations (solid lines). Both schemes were optimized specifically for
binary systems with total masses M = 2.8 M, (red), 40 M, (green) and 120 Mg (blue).
Note that the expected event rates are normalized to the performance of the Advanced
LIGO narrowband configuration (cf. Tab. 2.1). In Figs. 4.8 and 4.11, we also show the
corresponding noise spectral densities of these configurations, together with the classical
noise contributions. These figures suggest at least two possible applications of the local
readout scheme:

Detector with broader frequency band. Fig. 4.8 shows the Advanced LIGO narrowband
(solid blue curve) and the LR narrowband (solid red curve) configurations which are both
optimized for binary systems with a total mass of 2.8 M,. The local readout scheme
provides an event rate which is 43% above that obtainable by Advanced LIGO. A com-
parison of these two narrowband schemes for other binary masses M € M reveals that



4.2. Local readout scheme 66

400

300

(2 7r) [Hz]

N
o
o

100

0 50 100 150 200 250
€/(2 m) [Hz]

Figure 4.9.: Contour plot illustrates the sensitivity of proposed LR scheme compared
to Advanced LIGO narrowband configuration (cf. Tab. 2.1) versus ¢ and \(V: red
dot marks the LR configuration which yields a maximum event rate for the detec-
tion of NS-NS binary systems, namely an improvement of 43% is achieved compared
to the Advanced LIGO narrowband configuration. Labels of contour lines indicate
how much improvement in event rate is maintained when parameters are varied, i.e.
(D(eM A1) /DAINBYS [of  Eq. (3.8)] is shown. There exists a large region with only
a slightly deteriorated event rate, where broadband configurations can be found. For
each point in the (e(), \(M)-plane the two detection angles (¢(V), ¢?)) and the effective
half bandwidth (¢(?)) of the LR configuration were optimized.

the LR narrowband scheme is globally better since it always offers a higher event rate, as
illustrated by Fig. 4.10. The same figure also highlights that the LR narrowband config-
uration, for instance, performs even better for binary systems with M = 40 M, than an
Advanced LIGO configuration specifically optimized for such binary systems (vide dashed
green line in Fig. 4.10).

Alternatively, one can apply the broadband optimization scheme introduced in Sec. 3.2
to the LR scheme (dashed green curve in Fig. 4.8). This allows us to shift the sensitivity by
a well-defined amount from the low frequency regime to higher frequencies. Fig. 4.8 reveals
that it is possible to achieve a better sensitivity than the Advanced LIGO narrowband
configuration in the frequency band [500 Hz; 1570 Hz], while still improving the event
rate for NS-NS binary systems by 32.7%. It can be seen that this configuration is much
broader in band, which demonstrates that when an overall optimization is performed the
LR scheme can indirectly improve the sensitivity at higher frequencies. Even though the
event rate for NS-NS binary systems is slightly decreased compared to the LR narrowband
configuration, this configuration is potentially interesting for detecting other sources above
300 Hz, e.g. pulsars and low-mass X-ray binaries. Fig. 4.9 shows that there exists a large
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Figure 4.10.: Improvement in the event rate compared to the Advanced LIGO narrow-
band configuration versus total binary mass. The optimization parameters are fixed
for each curve. Local readout configurations (solid lines) as well as Advanced LIGO
configurations (dashed lines) are optimized for three different total binary masses. Cor-
responding parameters can be found in Tab. 4.2.

region in the (e, \())-plane where the optimal event rate for NS-NS binary systems is
nearly maintained. Within this region, possible broadband configurations can be found.

Detector for intermediate-mass black-hole binaries. The LR configuration optimized
for 40 My, systems (green curve in Fig. 4.10) has the same sensitivity to low-mass binary
systems as the Advanced LIGO narrowband configuration (up to M = 10 M), while
improving event rates for 60 M, — 300 M, by factors of 2 — 4.5. This allows us to
build a detector sensitive to the more speculative (yet in some sense astrophysically more
interesting) intermediate-mass black-hole binaries, without sacrificing sensitivity at low-
mass systems which are more likely to exist. As we can infer from the dashed curves
in Fig. 4.10, such a broad improvement of sensitivity for systems with different total
masses is not achievable by single-readout Advanced LIGO type configurations. It is also
interesting to note that this LR configuration requires a circulating power of only 200 kW
in the arms.

The improvement in event rate increases significantly for higher binary masses (cf.
blue curve in Fig. 4.10), since the local meter helps to enhance sensitivity mainly at
low frequencies. But if we optimize for such high masses, the sensitivity for lower mass
systems cannot keep up with the Advanced LIGO narrowband configuration.

4.2.3. Implementation issues

In this section the possibility of implementing the proposed LR technique explicitly in
the Advanced LIGO detector is discussed. In fact, the so-called Michelson degree of
freedom of the detector already needs to be measured (cf. e.g. Ref. [116]) in order to keep
the signal-extraction port of the interferometer at dark fringe. But this is exactly what
our local readout scheme proposes to measure. However, the sensitivity of the current
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Figure 4.11.: Noise curves for the schemes with and without local readout both opti-
mized for binary systems with a total, equally distributed mass of M = 40 Mg, (left) and
M = 120 Mg, (right). Parameters obtained by the optimization are given in Tab. 4.2
and all other parameters can be found in Tab. 4.2. Note that classical noise (grey lines)
is included here.

Michelson control signal needs to be dramatically improved in order to expand into our
regime. It should also be realized that a more precise measurement of the Michelson
degree of freedom additionally helps to decrease the control-loop noise, which is shot
noise imposed on the control signal and coupling to the main signal due to unavoidable
imbalances, as discussed in Ref. [148].

Optical Power. In the Advanced LIGO baseline design, a pair of radio frequency (RF)
sidebands created around the main carrier frequency will be injected in order to probe
the motion of the ITMs, as already done in current detectors. But only about 1% of total
power at the input port is pumped into the RF sidebands that resonate in the power-
recycling cavity but not in the arms. Taking into account the fact that the RF sidebands
do not enter the arm cavities and thus suffer from less optical losses, the power of these
sidebands at the I'TMs is currently planned to be ~ 34 W. This is not sufficient for the
implementation of our proposed local readout scheme. In the Advanced LIGO baseline
design, the input power is 125 W, which is amplified to ~ 1.0 kW at each ITM, due to
power-recycling. The same power at the ITMs is required for the local readout scheme
and consequently the input power needs to raised by a factor ~ 30, if one enforces an
implementations by using 1% of the carrier light for the RF sidebands. An alternative
and more realistic realization is to use a phase-locked secondary laser, with its frequency
shifted by an odd number of half free spectral ranges from the primary laser in order to
be off-resonant in the arm cavities. Furthermore, the sub-carrier should almost satisfy the
dark fringe condition at the signal-extraction port and additionally it should be resonant
in both recycling cavities. A circulating power of P2) = 1kW for the sub-carrier can
be achieved by using a perceptibly lower input power than for the primary laser, namely
~ 36 W.

The parametric instability [28, 29] in the arm cavities might set a limit for the power
of the primary laser. Therefore it is also conceivable to use the higher power laser for
the sub-carrier, while the other one could replace the primary laser source. Indeed, a
circulating power of P?) = 1kW is less than the carrier power of the current GEO [91]
detector, which strongly resembles the local meter.
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Detection. Each signal at the dark port should be extracted with some reference field,
which will be another set of RF sidebands in a RF readout scheme, or DC offset light in a
DC readout scheme. The former leaks from the dark port via a macroscopic asymmetry in
the central Michelson interferometer and the latter via a microscopic asymmetry between
the two arm cavities. The reference fields associated with the two carriers should be
isolated in both cases before photo-detection, otherwise the reference field which is not
used for the signal extraction will just impose extra shot noise. One way to solve this
problem is to make use of orthogonal polarizations. Before photo-detection the carrier
and the sub-carrier accompanied by the reference fields can be separated by a polarized
beam splitter, which is all-reflective to one polarization and transmissive to the other one.
In addition, it is easy to combine the two beams lossless before injection into the bright
port. An alternative method is to use two carrier lights which differ in frequency. An
appropriate cavity can separate the beams at different frequencies, where one resonates
in the cavity while the other does not. Such a cavity, a so-called output-mode-cleaner, is
already planned to be used at the signal-extraction port in Advanced LIGO. In the same
way, an input-mode-cleaner cavity can be used to combine the two beams before injection
into the interferometer.

Alternative configuration. The local meter can also be placed around the ETMs. In
this case, a single laser beam, which can be different in frequency from the carrier light,
should be split and sent to each end of the arm cavities. This method guarantees that
the additional laser noise can be canceled out by subtracting the measurement records
corresponding to the two mirrors. It is also possible to implement a reference cavity,
as proposed for a radiation-pressure-noise reduction in Refs. [55, 105]. In this way, the
secondary laser for the local readout does not need such high power and there is no
concern about a heat problem at the BS and the I'TMs. However, a realization of this
configuration would require more additional optical components.

4.2.4. Combination with advanced technologies

It was shown by KLMTV in Ref. [108] that the quantum noise spectral density of a
conventional interferometer without signal-recycling can benefit from either a frequency-
dependent squeezed light input or a frequency-dependent homodyne readout. Further-
more KLMTYV pointed out that both techniques can be combined in order to achieve an
additional improvement in sensitivity. In this section, the local readout scheme in con-
junction with these two QND techniques is to be investigated. The injection of squeezed
vacuum states [117, 159] into the dark port [39, 86] and the frequency-dependent homo-
dyne detection scheme are only applied to the local meter. Of course it is also possible to
supplement the large-scale interferometer with these advanced tools. This can be accom-
plished in the same manner as proposed in Refs. [39, 134], where the authors considered
a detuned SR interferometer without local readout. But since the arms of the local meter
are short and the SR cavity is tuned (with respect to the second carrier), its input and/or
output optics can be modified without much effort, as shown in the following.

Variational homodyne detection

In the case of a tuned local meter, a frequency-dependent homodyne detection of the
corresponding output field can disburden the measurement from radiation pressure noise
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caused by vacuum fluctuations entering from the dark port. Therefore one might expect
that the local meter exhibits a flat noise spectral density which coincides with its signal
refereed shot noise level. But Fig. 4.12 reveals that the combined noise spectral density
still increases at low frequencies, even though only the local meter is used in this