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Abstract
We review recent progress in the understanding of symmetries for scattering
amplitudes inN = 4 superconformal Yang–Mills theory. It is summarized how
the superficial breaking of superconformal symmetry by collinear anomalies
and the renormalization process can be cured at tree and loop level. This
is achieved by correcting the representation of the superconformal group on
amplitudes. Moreover, we comment on the Yangian symmetry of scattering
amplitudes and how it inherits these correction terms from the ordinary Lie
algebra symmetry. Invariants under this algebra and their relation to the
Graßmannian generating function for scattering amplitudes are discussed.
Finally, parallel developments in N = 6 superconformal Chern–Simons theory
are summarized. This paper is an invited review for a special issue of Journal
of Physics A: Mathematical and Theoretical devoted to ‘Scattering amplitudes
in gauge theories’.

PACS numbers: 11.15.Pg, 11.25.Tq, 11.30.Ly, 11.30.Pb, 11.55.Bq

1. Introduction

An efficient unitarity-based construction of the scattering matrix4 in a quantum field theory
relies heavily on the concepts of locality, analyticity and symmetry. Symmetries are
tremendously important because they strongly constrain the permissible building blocks from
the start and guide reliably toward the desired final result. This is especially true for highly
symmetric theories such as N = 4 super Yang–Mills (SYM) theory, which is believed to
be integrable in the planar limit, cf [3]. In the last few years, remarkable structures in the

4 See [1, 2] within this special issue.
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scattering amplitudes of this theory have been discovered. Most notably, planar amplitudes
display a hidden ‘dual’ superconformal symmetry [4–6],5 which together with the ordinary
superconformal symmetry combines into Yangian symmetry [9]. The latter is a typical feature
of integrable models (see [10] for reviews), and was observed earlier in the spectral problem
of the theory [11]. Commonly, the spectrum and dynamics of integrable models are strongly
constrained or even completely determined by the extended symmetry. Conceivably, this is also
the case for N = 4 SYM amplitudes. For exploiting the constraints, a thorough understanding
of the symmetries is indispensable. Here, we review the status of superconformal and Yangian
symmetry for N = 4 SYM scattering amplitudes. We also comment on parallel developments
in three-dimensional N = 6 super Chern–Simons (SCS) theory.

Scattering amplitudes in conformal field theories show infrared divergences. Their
regularization by means of a mass scale superficially breaks conventional conformal symmetry.
On the other hand, superconformal symmetry in N = 4 SYM is expected to be exact also at
the quantum level. Is it possible to reconcile the symmetry with a non-vanishing regulator that
is required for a consistent formulation of scattering amplitudes? Can the symmetry breaking
be assessed quantitatively, or, even better, can the broken symmetry be restored in a modified
way? Interestingly, a careful study reveals that superconformal symmetry is broken already
at tree level [12]. Namely, acting with a free generator on a tree-level amplitude produces
residual contributions whenever two external legs become collinear. Exact superconformal
invariance can be restored by introducing a nonlinear correction to the generator that cancels
the residual term [13]. Importantly, only the N = 4 SYM scattering matrix as a whole is
exactly invariant, its individual entries (the amplitudes) are not. While only contributing to
singular momentum configurations at tree level, collinear residues become inevitable at higher
orders, where loop momenta are integrated over. At one-loop order, superconformal symmetry
can again be restored by further generator corrections, which cures residual contributions both
from collinear terms and from infrared regularization [14, 15].

The corrections for the superconformal generators straightforwardly carry over to the
Yangian symmetry of scattering amplitudes. The formally very simple Graßmannian function
of [16] generates invariants of the free (uncorrected) Yangian [17].6 In fact, it is believed
to generate all free Yangian invariants [18]. Scattering amplitudes are linear combinations
of these invariants satisfying physicality requirements such as correct collinear limits or
cancellation of unphysical poles [19]. Free Yangian symmetry alone is insufficient for fixing
the right linear combination. The missing piece is provided by the generator corrections: it
appears that they single out the physical linear combination as the unique exact invariant [13],
thus paving the way for an algebraic determination of loop amplitudes.

Compared to N = 4 SYM, much less is known about scattering amplitudes in its three-
dimensional cousin, N = 6 SCS theory [20, 21] (or ‘ABJM’ named after the authors of
[21]). Both theories are surprisingly similar, and indeed, counterparts to some of the most
important symmetry structures known from N = 4 SYM amplitudes have been found in
N = 6 SCS during the last year. In particular, there is compelling evidence for Yangian
and dual superconformal symmetry [22–24]. Nevertheless, several fundamental questions
regarding the symmetries of the S-matrix in N = 6 SCS remain to be answered.

This work is structured as follows. We review how exact superconformal symmetry is
restored at tree level in section 2, and also comment on the extension to loops. In section 3,
we briefly recapitulate Yangian symmetry in the context of N = 4 SYM scattering amplitudes
and remark on the corrections to Yangian generators. The Graßmannian generating function

5 See also [7, 8] within this special issue.
6 The ‘invariants’ generated by the Graßmannian function are not exact invariants—they are only invariant under the
free (undeformed) symmetry up to residual contributions at collinear momenta.
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for tree-level invariants and the implications of the generator corrections for these invariants
are discussed in section 4. Section 5 summarizes what is known about the symmetry structures
of scattering amplitudes in N = 6 SCS theory.

2. Exact superconformal symmetry

Maximally supersymmetric Yang–Mills theory is a four-dimensional conformal field theory.
It is therefore natural to assume that its S-matrix is exactly invariant under the superconformal
algebra psu(2, 2|4). The invariance of the S-matrix is, however, not straightforward. First
of all, the presence of massless particles inevitably leads to infrared divergences in scattering
amplitudes at loop level. A regulator for the divergences breaks conformal symmetry, e.g. by
moving away from four spacetime dimensions or by the introduction of a mass scale. Only
after the regulator is removed, we can hope for a restoration of conformal symmetry, but
a priori there is no guarantee. In the case of success, the procedure will most likely have
deformed and thus obscured the action of the symmetry on the (renormalized) S-matrix.7

2.1. Tree level

In fact, the situation is even more subtle than this. Let us consider a color-ordered MHV
amplitude at tree level,8

AMHV
n = δ4(P )δ8(Q)∏n

k=1〈k, k + 1〉 , P bȧ =
n∑

k=1

pbȧ
k , pbȧ

k = λb
kλ̃

ȧ
k ,

QbA =
n∑

k=1

qbA
k , qbA

k = λb
kη

A
k .

(2.1)

We use the spinor helicity formalism to encode particle momenta and flavors: the kth particle
is described by the bosonic spinor λk ∈ C

2 with the complex conjugate λ̃k = ±λ̄k (the sign
determines the sign of the energy) and the fermionic spinor ηk ∈ C

0|4. The two mutually
conjugate Lorentz-invariant spinor products are denoted by

〈λ,μ〉 = εacλ
aμc, [λ̃, μ̃] = εȧċλ̃

ȧμ̃ċ. (2.2)

Now we act on the MHV amplitude with a free superconformal generator

S̄B
ȧ =

n∑
k=1

ηB
k

∂

∂λ̃ȧ
k

. (2.3)

Superficially, the derivative acts only on P in δ4(P ) and produces a factor of Q. The fermionic
delta function δ8(Q) makes the result vanish, i.e. the MHV amplitude is invariant under S̄.

Interestingly, this is not the full story: there is a subtle contribution when the derivative
w.r.t. λ̃k hits a pole of the (otherwise) holomorphic denominator in (2.1) [12]. The so-called
holomorphic anomaly for the spinor product reads (E(λ) is the energy associated with the
spinor λ, λ̃)

∂

∂λ̃ȧ

1

〈λ,μ〉 = 2π sign(E(λ)E(μ))εȧċμ̃
ċδ2(〈λ,μ〉). (2.4)

In the MHV amplitude, this yields distributional contributions supported on kinematical
configurations where 〈k, k +1〉 = [k, k +1] = 0. In other words, this means that the invariance

7 There is an alternative treatment of (dual) conformal symmetries for N = 4 SYM on the Coulomb branch. This is
discussed in detail in [8] within this special issue. We will not comment on it here.
8 For a more detailed introduction to the formalism, see [1, 25–27] within this special issue.
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= 0

Figure 1. Deformed superconformal invariance relation for tree amplitudes.

of the S-matrix under free superconformal transformations is violated where the momenta of
two adjacent particles are collinear. The terms that break invariance can be summarized as
follows [13]:

S̄B
ȧ An = −

n∑
k=1

∫
d4|4�S̄B

ȧ (k, k + 1, �̄)An−1(1, . . . , k − 1,�, k + 2, . . . , n). (2.5)

Here � := (λ, λ̃, η) and �̄ := (λ,−λ̃,−η). The integral over � sums over all flavors and
light-like momenta in a Lorentz-invariant fashion. The kernel of superconformal violation
reads

S̄B
ȧ (1, 2, 3) = −2εȧċλ̃

ċ
3

∫
d4|4�′δ4(λ′)η′B

∫ π/2

0
dα

∫ 2π

0
dϕ

∫ 2π

0
dϑ eiϕ+iϑ

· δ4|4(e−iϕ�̄3 sin α + eiϑ�̄′ cos α − �1)

· δ4|4(e−iϑ�̄3 cos α − eiϕ�̄′ sin α − �2) + 2 cyclic images, (2.6)

where z� := (zλ, z̄λ̃, z̄η) for z ∈ C. The delta function δ4(λ′) enforces collinearity of all three
momenta, and sin2 α, cos2 α represent the momentum fractions for particles 1, 2, respectively,
in terms of particle 3.

Importantly, the free superconformal violation of An in (2.5) is expressed through another
tree amplitude An−1. We introduce an operator S̄+ which attaches the kernel S̄ to an amplitude
function as in minus the rhs of (2.5), cf figure 1. Then we can write

S̄An + S̄+An−1 = 0. (2.7)

Although individual scattering amplitudes An with a fixed number of external legs are not
exactly conformally invariant, the full S-matrix (representing the generating functional for all
amplitudes) is invariant under the deformed superconformal generator S̄ + S̄+.

Until now we have only discussed MHV amplitudes (2.1). Luckily, all of the above
applies to generic NkMHV tree amplitudes as well. The reason lies in the universality of
collinear behavior: a scattering amplitude An diverges in the vicinity of collinear momentum
configurations [28, 29]. The pole is given by the amplitude An−1 with one leg less times a
universal splitting function. Superconformal generators yield a distributional term (2.5) at
these poles. The kernel S̄ is essentially the superconformal variation of the splitting function.
Note that the splitting function is more or less equivalent to the three-point function A3 which
cannot exist in Minkowski signature. In split signature, however, one can derive the kernel as
the variation of the three-point function, S̄ = − 1

2S̄A3 [15].
Similar considerations hold for the conjugate superconformal generator S and the bosonic

conformal generator K. The latter in fact receives a further correction K++ that maps one leg
to three. On the other hand, all super-Poincaré generators P,Q, Q̄,L, L̄,R as well as the
dilatation generator D are manifest symmetries of the tree-level S-matrix.

4
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2.2. Further considerations

All in all this shows that the complete tree-level S-matrix is indeed exactly conformally
invariant, but only under the interacting superconformal generator S̄ + S̄+. This observation
calls for a few clarifications to be discussed in the following.

Does the above apply to gauge groups other than SU(Nc)? The answer is affirmative: the
kernel in (2.6) must be complemented with the structure constants for the gauge group. The
free superconformal variation in (2.5) generalizes canonically [13].

Does it mean that superconformal symmetry is anomalous at tree level? In quantum field
theory, an anomaly refers to the violation of symmetry which cannot be repaired, at least not
by a local deformation. Here superconformal symmetry becomes exact when the deformation
is included. Moreover, the deformation has no poles or cuts, it is local. It is not an anomaly,
but rather a careful treatment of a non-manifest symmetry.9

Does the deformation alter the psu(2, 2|4) superconformal algebra? It is a proper
representation, albeit of a somewhat bigger algebra [13]: first of all, the anticommutator
of the superconformal generator S and its conjugate S̄ consistently defines the deformed
conformal generator K. The only subtlety is in the anticommutators between two S’s or two
S̄’s: they ought to vanish for psu(2, 2|4), but they do not. Instead they represent a gauge
variation which transforms a covariant field X according to X �→ [G,X]. Here the gauge
variation parameter G is actually a field itself, namely the zero mode of the scalar field. Such
a deformation of the algebra is not harmful because it vanishes for all physically meaningful,
i.e. gauge invariant, observables. In fact, it is very common in gauge theories that symmetry
algebras are deformed by gauge variations, e.g. the supersymmetry algebra for gauge theories
with extended supersymmetry.

Is there a physical reason for the deformation? What does it mean? Note that the violation of
free superconformal symmetry occurs at collinear momentum configurations. This points at
the problems encountered in scattering theory for a model without a mass gap (in particular for a
CFT), see also [30]. Scattering amplitudes require a notion of asymptotic particles which do not
interact further. However, nothing prevents a massless particle from decaying into two or more
massless particles at any time. Lorentz invariance implies that these particles necessarily have
strictly collinear momenta. In physical terms such asymptotic decays have no implications
because a detector would merely measure the total deposited momentum and energy of
all particles emitted in a specific direction. In other words, the Fock space for massless
asymptotic particles is bigger than necessary. The physical space must be supplemented with
an equivalence relation to factor out particle configurations with collinear momenta. It is
reasonable to relate the deformed representation to this issue. Presumably, the deformation
makes superconformal transformations compatible with the structure of representatives of the
equivalence relation used for scattering amplitudes.10

Is there a relation to the deformations for superconformal representations on local operators?
It is very analogous, and the same structures [31] are observed, cf [32]; quite likely it is
equivalent to some extent. There are, however, important differences. For local operators,
the representation must deal with UV divergences. These are absent for scattering amplitudes
leading to simplifications. For instance, the free super-Poincaré representation is undeformed

9 We thank H Nicolai for discussions of this issue.
10 We thank D Skinner for discussions of this issue.
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(e)
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Figure 2. General superconformal invariance relation (qualitatively). Terms (a) and (b) correspond
to figure 1, terms (c)–(e) are needed for factorized amplitudes, and terms (f )–(i) are needed for
loops. A big circle represents a connected scattering amplitude. A small circle represents a free
conformal generator (empty) or the three-point kernel (starred).

for amplitudes, whereas it requires non-trivial deformations for local operators. On the other
hand, scattering amplitudes have IR divergences which are absent for local operators.

Do multi-particle poles introduce further violations of free superconformal symmetry? Yes
and no. The holomorphic anomaly produces a codimension-2 distribution (2.4). This matches
with the codimension D − 2 of the collinear configurations of two massless particles in
D = 4 Minkowski space. Multi-particle poles are always codimension 1; thus, the free
superconformal generators do not yield distributional terms [13]. This exhausts all singularities
at tree level; nevertheless, one has to be careful [14, 15]: multi-particle poles originate from
the Feynman propagators 1/(p2 ± iε). The principal part 1/p2 is harmless as explained above,
but the on-shell contribution ±iπδ(p2) requires further deformations. The holomorphic
anomaly also appears when an internal momentum becomes collinear with an external one
or even if two internal momenta become collinear. In a graphical representation where (2.5)
(figure 1) is given by the terms (a) and (b) in figure 2, the additional terms take the form of
(d) and (e) in figure 2 [14]. This completes the analysis at tree level.

2.3. Loop level

At tree level, it is easy to ignore the distributional terms (2.5) which break invariance under
free superconformal transformations. For the generic configurations of the external momenta,
none of the internal or external momenta are collinear. Consequently, the free superconformal
generators annihilate the scattering amplitude. At loop level, the situation is different. Within
the loop integrals, some internal momenta inevitably become collinear with others. Thus,
for the generic configurations of the external momenta, invariance under free superconformal
transformations is broken.

To understand superconformal transformations at loop level, it is important to quantify
the violation terms. Unfortunately, loop integrals are off-shell, and we cannot immediately
address superconformal transformations using the framework outlined above. This problem is
circumvented by considering (generalized) unitarity cuts [14, 19] which are expressed through
on-shell amplitudes at lower loop orders. Superconformal transformations of cuts can thus be

6
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A(1) = A(0) A(0)

Figure 3. Essential contribution to the one-loop unitarity cut.
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+ ∗A(0) A(0)

c© 2011 Niklas Beisert� (c)

Figure 4. Essential contributions to the one-loop superconformal variation.

obtained recursively through the transformations at tree level. At the end we will have to lift
the transformation rule from a cut integral to a full loop integral.

Let us thus consider a simple one-loop unitarity cut [15]. The essential contribution
is written as an on-shell integral over two tree-level amplitudes, see figure 3 (we discard
various other ways to cut the amplitude). Now we can substitute the relevant superconformal
transformation rule for tree amplitudes from figure 2. Discarding the correction terms already
present at tree level, there are three new terms due to the superconformal generators acting on
internal legs, see figure 4. Let us briefly discuss these terms.

The term (a) in figure 4 essentially represents a superconformal transformation of an
internal on-shell propagator. Propagators are superconformal invariants, so this contribution
ought to be zero. Due to the appearance of IR divergences in the integrals, however, we have
to work with regularized propagators which violate invariance by a small amount. In this case,
divergences only appear when one of the two subamplitudes has four legs, and when there
is no momentum transfer between the two pairs of legs. In dimensional regularization, for
example, the (planar) correction to the generator D of conformal rescalings reads

D(λYM) = D(0) + 
(λYM, ε)

n∑
k=1

D
(1)
k,k+1, D

(1)
k,k+1 = − 1

2ε

(
(pk + pk+1)

2

−μ2

)−ε

. (2.8)

For D, this is the only correction at loop level, and the coefficient in front


(λYM, ε) = 
cusp(λYM) + ε
coll(λYM) + O(ε2) (2.9)

includes the cusp dimension 
cusp(λYM) = λYM/4π2 + O
(
λ2

YM

)
as well as the collinear

dimension 
coll(λYM) = O
(
λ2

YM

)
. The other superconformal generators S, S̄,K receive

analogous IR corrections, but they also receive corrections due to the collinear behavior
discussed in section 2.1.

The term (b) in figure 4 quantifies the effect of superconformal transformations when
internal and external legs become collinear. It has the particularly good property that the
momenta running in the triangular loop are all fixed by the on-shell conditions. Hence, there
is no integral to be performed and the result is rational. Removing the cut can be achieved
simply by inserting an appropriate logarithm. These terms take a lengthier form.

The last term (c) in figure 4 is rather strange. The kernel forces the two momenta across
the cut to be collinear. Consequently, the subamplitude on the other side is evaluated at two

7
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collinear external momenta, i.e. right on the pole. The problem of defining the result is directly
related to the ambiguity in defining the loop correction to the splitting function, see [29]. A
justifiable resolution to the problem is to discard this term.

Importantly, all three terms are expressible through the combinations of tree amplitudes
and a simple kernel. We have thus determined how general one-loop amplitudes transform
under the free superconformal symmetries corrected by the collinear deformations discussed
in section 2.1. The deformed transformation law was verified explicitly for the example
of one-loop MHV amplitudes in the dimensional reduction scheme in [15]. One can even
contemplate deforming the superconformal representation further by these three terms to make
amplitudes manifestly invariant.

To continue to higher loops, a promising proposal has been made in [14]. It consists
in adding the terms (g)–(i) figure 2 to the general transformation rule. The complete
rule apparently respects unitarity in the sense that it appears to formally commute with
taking cuts (this might require to further add the contributions in figure 2(c), (f )). One
may therefore expect that a unitarity-based construction of loop amplitudes will respect
the rule. A practical problem is that the terms (f )–(i) in figure 2 suffer from the
same problems as (c) in figure 4: the subamplitude has to be evaluated right on a
singularity. Here it does not suffice to discard the result, as it also contains important
finite contributions. In [14], the terms are evaluated using the CSW rules formally
leading to agreement. We can also identify the three one-loop terms discussed above
in the various terms in the higher loop rule: The cusp anomalous dimension term (a) in
figure 4, the collinearity term (b) in figure 4 and the one-loop splitting term (c) in figure 4
represent cuts of the terms (f ), (g), (h) in figure 2, respectively.

In conclusion, higher loop superconformal transformations can be investigated by taking
unitarity cuts. The rule in figure 2 is promising, but its evaluation in practice is subtle. A
two-loop analysis would be highly desirable to settle several open questions.

3. Yangian symmetry

In the previous section, we have discussed correction terms to the free superconformal
symmetry representation on scattering amplitudes in N = 4 SYM theory. Here we review
how this Lie algebra symmetry extends to an integrable structure in the planar limit.

One of the most fundamental properties of the AdS/CFT system is that the underlying
symmetry of both N = 4 SYM theory and type-IIB string theory on AdS5 ×S5 is given by the
superconformal algebra psu(2, 2|4). This symmetry is realized on different observables on the
two sides of the duality by the respective representations of the superconformal generators. In
addition to this Lie algebra symmetry, there is a T-duality that leaves the bulk action invariant
and thus maps the string theory onto itself [33]. As a consequence, one may study the action of
this T-self-duality on the representation of the Lie algebra symmetry for different observables.
On the gauge theory side, however, a counterpart to the string T-duality is not known. This
fact obscures the explicit investigation of the dual image of the Lie symmetry representation
on scattering amplitudes in N = 4 SYM theory, which is given in terms of the generators
Jα ∈ {P,Q, Q̄,D,L, L̄,R, S̄,S,K}.11 Remarkably though, planar gauge theory amplitudes
reveal a second psu(2, 2|4) Lie symmetry represented by jα ∈ {p, q, q̄, d, l, l̄, r, s̄, s, k} [5]. Via
the AdS/CFT duality, this second, the so-called dual, superconformal symmetry is interpreted
as the image of the ordinary superconformal symmetry under the string theory T-duality, cf
figure 5. While the first symmetry corresponds to the ordinary superconformal symmetry of

11 Here α labels the different generators of psu(2, 2|4).
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,

T-Duality

(2, 2|4)ordinary (2, 2|4)dual

Figure 5. The ordinary representation of the superconformal algebra and its dual symmetry. The
lines of constant eigenvalue under the commutator with the sum of the dilatation generator and the
hypercharge of pu(2, 2|4) are indicated in gray.

scattering amplitudes, its dual image can be understood as the ordinary symmetry of Wilson
loops in N = 4 SYM theory.12

The above implies that the Lie algebra generators J on scattering amplitudes are
supplemented by the additional operators j that furnish dual symmetries. The latter have
various different roles: the operators {q̄, d, l, l̄, r, s̄} are identical to {S̄,D,L, L̄,R, Q̄},
(T-duality maps this su(2) × su(2|4) subalgebra to itself). The operators q and p are trivial
when evaluated on amplitudes. None of the above thus implies new symmetries. Only the
operators s and k are unrelated to the J’s, implying that the closure of these two superconformal
algebras is bigger. To be more precise, it is a Yangian algebra [9] generated by an infinite
tower of psu(2, 2|4)-like charges. Since in these arguments the role of amplitudes and Wilson
loops as well as that of their symmetries is interchangeable, one can express the charges in
either picture:

{J = J[0], Ĵ = J[1], J[2], . . .} � {j = j[0] ,̂ j = j[1], j[2], . . .}. (3.1)

Here we have chosen specific names for the first two levels since these are sufficient to
recursively generate the whole tower of generators via commutation, e.g. J[2] � [̂J, Ĵ].
The algebra underlying each of these infinite sets of generators is the so-called Yangian
Y[psu(2, 2|4)] of the superconformal group whose definition will be made precise below. It
consists of an infinite number of levels whose structure will be explained in the following
section.

The T-duality can then be understood to map between the different levels of the Yangian
symmetry [38], cf figure 6:13

j[r]
α � ±J

[r+s(α)]
−α ,

[
D + B, J[r]

α

] = s(α)J[r]
α . (3.2)

Here D and B are the dilatation generator and hypercharge of psu(2, 2|4), respectively.
Furthermore, for the index α = [P,Q, Q̄,D,L, L̄,R, S̄,S,K], we define the conjugate
index −α = [K,S, S̄,D,L, L̄,R, Q̄,Q,P] and the shift s(α) = [1, 1, 0, 0, 0, 0, 0,

0,−1,−1].

12 In fact, gauge theory scattering amplitudes and Wilson loops can also be shown to map to each other [34–36]—at
least in the case of MHV amplitudes and bosonic Wilson loops (cf [37] for the supersymmetric extension).
13 Also here the role of J and j can be interchanged.
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Figure 6. The level-r Yangian generators map under T-duality (→) to different levels according
to their weight s = ±1, 0 under the sum of the dilatation generator D and the hypercharge B of
pu(2, 2|4).

3.1. Yangian algebra

The realization of Yangian symmetry on scattering amplitudes and Wilson loops within the
AdS/CFT duality gives an astonishing example of this algebra. Its mathematical structure,
however, can be formulated on a more abstract level without any notion of dual symmetry:

A Yangian algebra Y[g] associated with a Lie algebra g is defined by two sets of generators
Jα and Ĵβ obeying the following axioms [39]:

(i) ordinary lie symmetry: [Jα, Jβ ] = fαβ
γ Jγ ,

(ii) adjoint level-1 symmetry: [Jα, Ĵβ ] = fαβ
γ Ĵγ ,

(iii) Serre-relations:

[̂Jα, [̂Jβ, Jγ ]] + two cyclic = fαρ
λfβσ

μfγ τ
νf ρστJ{λJμJν}. (3.3)

Here fαβγ denotes the structure constants of the Lie algebra g spanned by the generators Jα ,
and indices are raised by the Cartan–Killing form. The generalization to superalgebras is
given by a straightforward grading of these relations.

We will assume a specific (tensor product) representation for the level-0, i.e. the standard
Lie symmetry generators Jα acting on a tensor product of the vector spaces Vk by (cf (2.3))
Jα = ∑

k Jα,k . Based on such a representation, Drinfel’d introduced the following bilocal
definition of additional generators [39]:

Ĵα =
∑

1��<k�n

fα
γβ Jβ,� Jγ,k +

∑
1�k�n

uk Jα,k. (3.4)

For many algebras and corresponding representations Jα—including all known occurrences
within the AdS/CFT correspondence—definition (3.4) yields the generators Ĵα that indeed
obey axioms (3.3) and thus generate a Yangian.14 Furthermore, in most physical applications
including our current one, the evaluation parameters uk = u are all equal.15

14 In order to prove the Serre-relations, it suffices to show that the right-hand side of (iii) in (3.3) vanishes on one
vector space of the tensor product. This is due to the fact that the Yangian is a Hopf algebra whose coproduct
� : V → V ⊗ V is compatible with the Serre relations (cf [22, 40] for different proofs of the Serre-relations in the
context of supersymmetric gauge theories).
15 The value of u does not make a difference as it merely multiplies the level-0 representation; conventionally one
sets u = 0.
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Let us briefly comment on the relation of the Yangian to standard integrable models
without going into detail. Typically integrable systems can be based on a Lax operator
obeying the Yang–Baxter equation (e.g. spin chains) used to define a monodromy matrix
M(u) as a function of the spectral parameter u. For an su(N) symmetric model, the Yangian
levels can then be interpreted as the different orders in the expansion of this monodromy
around the point where the Lax operator reduces to the identity (conventionally u = ∞)

M(u = ∞) � I +
∞∑

k=0

u−1−kJ[k]. (3.5)

Thus, the monodromy provides a way to determine the Yangian generators or, turning the
logic around, the representation of a Yangian algebra allows us in principle to reconstruct
the monodromy of the integrable model. Such a representation at hand, one may identify an
integrable structure by showing that the Yangian commutes with a theory’s Hamiltonian (up
to boundary terms) or that its observables are invariant under this symmetry.

Color-ordered scattering amplitudes in N = 4 SYM theory are cyclic functions of the
external particle degrees of freedom and cyclicity is typically not compatible with Yangian
symmetry. This is due to the form of the Yangian level-1 generator (3.4) given by an ordered
sum over pairs of particles. In order to investigate this problem, one can evaluate the difference
of two generators (3.4) shifted by one site which corresponds to a one-site cyclic permutation
of the amplitude’s legs [9, 32]:

Ĵα
[

�
1��<k�n

]
− Ĵα

[
�

2��<k�n+1

]
= 1

2f α
βγ fδ

βγ Jδ
1 − f α

βγ J
β

1 Jγ . (3.6)

In general, this difference does not vanish. In the case of N = 4 SYM theory amplitudes,
however, there are two further properties which lead to a well-defined Yangian despite of this
cyclicity:

(1) The amplitudes transform as singlets under the level-0 symmetry Jα of a Lie algebra g;

(2) The Lie algebra g has a vanishing dual Coxeter number f α
βγ fδ

βγ .

These two properties guarantee that the right-hand side of (3.6) vanishes when evaluated on
amplitudes and that in this special case, the Yangian level-1 generators are compatible with
cyclicity. Consequently, the Yangian represents a well-defined symmetry of the color-ordered
amplitudes.

There is an additional important property of g = psu(2, 2|4): the algebra may be enhanced
to pu(2, 2|4) by an external automorphism or the so-called hypercharge, typically denoted by
the generator B. This generator measures the overall helicity of scattering amplitudes, i.e.
amplitudes are generically not invariant under it. Remarkably, it can be shown that the
scattering amplitudes of N = 4 SYM theory are invariant under the level-1 generator B̂

associated with B [41]. This bilocal generator together with the ordinary superconformal
symmetry yields all previously known symmetries (e.g. the dual symmetry) of scattering
amplitudes in N = 4 SYM theory.16

16 The symmetry algebra g = osp(6|4) of N = 6 superconformal Chern–Simons theory (to be discussed in
section 5) is not enhanceable by an external automorphism. This reflects the fact that helicity is absent in the
three-dimensional theory. Understanding the algebraic difference between the symmetries of N = 4 SYM theory and
N = 6 SCS theory might eventually resolve the problems to formulate a T-self-duality for the string dual of the latter
gauge theory and to put the discovered dual symmetry in three dimensions on solid grounds. Note in this context that
the role of the generator B in N = 4 SYM theory shows formal similarities to the trace of the R-symmetry in N = 6
SCS theory.
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3.2. Dual versus Yangian symmetry at tree level

It is instructive to see the explicit relation between dual conformal and Yangian level-1
generators [9]. Let us therefore consider the example of the dual conformal boost. On
the full superspace spanned by the ordinary supersymmetric spinor (λ, λ̃, η) and dual (x, θ )
coordinates, it takes the form

kaȧ =
n∑

i=1

(
xaḃ

i xȧb
i

∂

∂xbḃ
i

+ xȧb
i θaB

i

∂

∂θ
βB

i

+ xȧb
i λa

i

∂

∂λ
β

i

+ xaḃ
i+1λ̃

ȧ
i

∂

∂λ̃ḃ
i

+ λ̃ȧ
i θ

aB
i+1

∂

∂ηB
i

)
. (3.7)

Here the dual coordinates providing the natural variables of Wilson loops in N = 4 SYM
theory are defined by

xaȧ
i − xaȧ

i+1 = λa
i λ̃

ȧ
i , θaA

i − θaA
i+1 = λa

i η
A
i . (3.8)

The form of (3.7) on the full superspace results from requiring that the generator commutes
with constraints (3.8). Scattering amplitudes transform covariantly under the action of the
dual conformal boost generator, i.e. kaȧAn = −∑n

i=1 xaȧ
i An, which motivates the redefinition

k̃aȧ = kaȧ +
n∑

i=1

xaȧ
i . (3.9)

Acting on amplitudes such that we can neglect the terms annihilating An, this operator can be
rewritten as the level-1 Yangian generator P̂aȧ , whose form follows from definition (3.4):

k̃aȧ|An
= P̂aȧ =

∑
�<k

[
P�,cċ

(
Lc

k,aδ
ċ
ȧ + L̄ċ

k,ȧδ
c
a − Dkδ

c
aδ

ċ
ȧ

) − QC
�,aQ̄k,ȧC − (� ↔ k)

]
. (3.10)

An analogous relation holds for sA
a and Q̂A

a , while all other dual conformal generators can be
related to the level-0 symmetry. Note that the bilocality in (3.7) is hidden in the definition of
the dual variables (3.8). In the Wilson loop picture, k reduces to the ordinary conformal boost
in the coordinates x and θ and thus to the level-0 dual symmetry.

The invariance of tree-level scattering amplitudes in N = 4 SYM theory under Yangian
symmetry can then be seen in several ways: on the one hand, tree-level amplitudes can be
written in terms of manifestly dual superconformal invariant expressions making this property
obvious with regard to the above relations, cf section 4. On the other hand, one may in
principle explicitly apply the simplest level-1 generator P̂ as given in (3.10) to the amplitudes
and show invariance as done in [32] for the MHV case. The adjoint property (ii) of Yangian
(3.3) then guarantees invariance under the full algebra. Alternatively, it can be shown [42]
using the duality to twistor strings [43], cf [44].

3.3. Corrections to Yangian generators

As discussed in the previous sections, symmetry generators acting on scattering amplitudes in
N = 4 SYM theory are affected by singularities. These require corrections to the generators
in order to render the symmetry exact. The correction terms have to take into account the
holomorphic anomaly starting at tree level as well as infrared singularities starting at one-loop
order. They also affect the level-1 Yangian symmetry as will be indicated here.

Two collinear massless particles are not distinguishable in a conformal theory. At tree
level, this manifests itself in the occurrence of the collinear singularities of the amplitudes
which violate their invariance under the free conformal symmetry. As a consequence, the
conformal generators S, S̄ and K of the ordinary superconformal symmetry acquire correction
terms on the subspace of two-particle collinearities as shown above [13]. At tree level, these
are the only correction terms of the level-0 generators. In particular, the tree-level generator
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of anomalous dimensions D does not obtain corrections. The level-1 symmetry inherits the
correction terms from the conformal level-0 generators via its bilocal definition (3.4). This
allows us to explicitly determine all level-1 corrections at tree level. As an example, the level-1
generator P̂ (3.10) obtains no tree-level correction since it does not depend on S, S̄ or K.

Then, for instance, the level-1 tree-level correction Q̂+ to Q̂ can be written as a commutator
of the form

δȧ

ḃ
Q̂aA

+ = [
P̂aȧ, S̄A

+,ḃ

]
. (3.11)

Provided that the adjoint property (ii) of the Yangian can be proved, all other level-1
generators—including their corrections—could be obtained by the commutation of P̂ with the
level-0 symmetry. Note that this generically yields bilocal operators that change the number
of external particles of the amplitude.

At loop order, conformal symmetry is typically broken by the renormalization scheme,
e.g. by dimensional regularization which introduces a mass scale μ and a regularization
parameter ε. In order to render conformal symmetry exact, these parameters can be included
into correction terms to the level-0 symmetry. At one-loop order, all four conformal generators
(S, S̄,K,D) obtain such corrections as demonstrated in section 2 [15]. The loop corrections
to the level-1 symmetry require local terms reminiscent of those multiplied by the uk’s in (3.4).
At one-loop order, they take the perturbative form17

Ĵ(1)
α =

∑
1��<k�n

fα
γβ

(
J

(1)
β,� J

(0)
γ,k + J

(0)
β,� J

(1)
γ,k

)
+

∑
1�k�n

Ĵ
(1)
α,k. (3.12)

Let us again consider the simplest level-1 generator P̂(1). Its form can be obtained by acting
with P̂(0) onto the one-loop amplitude and requiring the invariance P̂(0)A(1) + P̂(1)A(0) = 0
[15]: (

P̂(1)
)aȧ =

∑
1��<k�n

[
D

(1)
�,�+1P

aȧ
k − Paȧ

� D
(1)
k−1,k

]
. (3.13)

Here the nontrivial contribution comes from the one-loop correction to the dilatation generator
(2.8). In fact, it is well known that the dual conformal boost k̃ alias P̂ is anomalous at loop
level [5, 35, 45]. The conjectured all loop form for the former allows us to derive a similar
expression for its Yangian level-1 counterpart in analogy to (2.8) [15]:

P̂(λYM)aȧ = (P̂(0))aȧ + 
(λYM, ε)(P̂(1))aȧ . (3.14)

This equation including (2.9) is conjectured to guarantee invariance to all loop orders.
The most urgent question concerning the corrected Yangian generators is whether and how

axioms (i), (ii) and (iii) in (3.3) are compatible with the correction terms to the generators.
In section 2.2, it was already indicated that at tree level the corrections to the Lie algebra
symmetry modify axiom (i) by gauge transformations.

4. Invariants and Graßmannian

In integrable models, physical quantities are commonly severely constrained or even fully
determined by the enlarged symmetry. Thus, one may hope that the Yangian symmetry
allows us to express all N = 4 SYM scattering amplitudes in terms of a finite set of algebraic,
differential or integral equations. In this section, we review the Yangian invariance properties of
scattering amplitudes, and comment on the implications of the deformation. The presentation
mostly focuses on the tree-level case.

17 As the corrections do not act on single legs, there is no canonical prescription for the summation bounds. The local
term Ĵ

(1)
α,k thus depends on the prescription and specifies the action at the bounds.
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4.1. Free invariants: the Graßmannian formula

In the following, we discuss invariants of the free, undeformed symmetries. These are
not exact invariants (see section 2), but we ignore this fact for the moment, and discuss
the deformation and its exact invariants in section 4.2 below. Tree-level amplitudes
An,k+2 are linear combinations of the terms Rn,k,a which are individually (almost) invariant
under both ordinary and dual superconformal symmetry, and hence also under Yangian
symmetry [5, 6, 46, 47]

An,k+2 = AMHV
n

∑
a
Rn,k,a. (4.1)

Here, k specifies the degree 4k of polynomials in the fermionic variables or equivalently the
helicity h = n − 2(k + 2) of the amplitude. The MHV prefactor AMHV

n is Yangian invariant
by itself. The tree-level dual superconformal invariants Rn,k,a were constructed recursively
in [47].18 A generating function for all these invariants was given in [16], which takes a
surprisingly compact form.19 It can be written as [48]

Rn,k(γ ;W) =
∫

γ

dν(t)

M1 · · · Mn

δ4k|4k(t · W), (4.2)

where t is a complex k × n matrix, the dot denotes matrix multiplication and W =
(W1, . . . ,Wn)

T are momentum-twistor variables as introduced in [49]:

WA
i = (

λa
i , μ

ȧ
i , χ

A
i

)
, μȧ

i = xaȧ
i λia, χA

i = θaA
i λia. (4.3)

These are the twistors associated with the dual variables (or region momenta) xi, θi defined in
(3.8). The symbols Mi in the denominator denote minors of the matrix t made of k successive
columns, starting with column i. The integration measure dν(t) was given explicitly in
[48]. It has degree k(n − k), and turns the function into a multi-dimensional complex contour
integral. Different invariants Rn,k,a = Rn,k(γa) are generated by distinct contours γa encircling
different residues. Including the measure, the integrand is invariant under local GL(k) ‘gauge’
transformations acting on the rows of the matrix t.20 The space being integrated over thus is
the Graßmannian Gr(k, n) consisting of all k-planes within C

n, where each plane is spanned
by k rows of t. For practical purposes, a gauge can be fixed by setting k2 components of t to
specific values. A convenient gauge fixes the first k columns of t to the identity matrix

t = (1|·), dν(t) =
k∏

a=1

n∏
i=k+1

dtai . (4.4)

The benefit of using momentum twistors is that the dual superconformal generators are
realized linearly in these variables,

jAB =
n∑

i=1

WA
i

∂

∂WB
i

. (4.5)

Invariance under these generators is ensured by the delta function in (4.2). It has been shown
in [17] that taking these dual generators as the level-0 algebra results in the same Yangian as
taking the ordinary superconformal symmetry as level-0 generators, which is a consequence

18 See also [7] within this special issue.
19 See also [7, 44] within this special issue.
20 This is the reason for the degree of the naive integration measure dk·nt being reduced to k(n − k); otherwise the
integral would be ill-defined.
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of the T-self-duality mentioned in section 3. The level-1 Yangian generators take the usual
form (3.4) of the bilocal combinations of (dual) level-0 generators,

ĵAB =
(∑

i<j

−
∑
j<i

)
(−1)CWA

i

∂

∂WC
i

WC
j

∂

∂WB
j

. (4.6)

Closely following [17], we will now show that function (4.2) is indeed invariant under the
level-1 generators and thus under the whole Yangian algebra. It is sufficient to show invariance
under the first sum in (4.6), as invariance under the second sum is completely analogous. The
first sum can be expressed as∑

i<j

(
WA

i

∂

∂WB
j

WC
j

∂

∂WC
i

− WA
i

∂

∂WB
i

)
. (4.7)

Due to the linearity of the delta function’s argument, the twistorial operators WC
j ∂/∂WC

i can
be replaced by the operators Oij acting on the integration variables tai.21 The action of the
level-1 generators on Rn,k becomes

ĵAB Rn,k =
∫

dν(t)

M1 · · · Mn

k∑
a=1

(
OA

a − V A
a

)
∂aBδ4k|4k(t · W), (4.8)

where

OA
a =

∑
i<j

WA
i Oij taj , V A

a =
∑
i<j

Wi tai , (4.9)

and ∂aB = ∂/∂WB
a . Making use of the triangular form of OA

a , one can show that the V A
a -term

cancels when commuting OA
a past the minors,

[
1/M1 · · ·Mn,O

A
a

] = V A
a

/
M1 · · ·Mn. Thus,

ĵABRn,k =
∫

dν(t)

k∑
a=1

OA
a

1

M1 · · · Mn

∂aBδ4k|4k(t · W). (4.10)

Now each term in the integrand is a total derivative of a single-valued function in one of the
integration variables; hence, the integral along any closed contour vanishes.22 This shows that
Rn,k is indeed Yangian invariant.

The function Rn,k (4.2) in fact produces all Yangian invariant terms Rn,k,a that, multiplied
by the n-point MHV amplitude, form the planar n-point NkMHV amplitude [50]. It is
equivalent [51] to the previously proposed [16] generating function An,k(Z), which generates
planar tree-level amplitudes including the MHV prefactor. Formally, the relation between the
two functions is simply

An,k(Z) = AMHV
n Rn,k(W), (4.11)

where Z1, . . . ,Zn are ordinary spacetime twistors ZA
i = (

∂
/
∂λa

i , λ̃
ȧ
i , η

A
i

)
as opposed to

momentum twistors.23 The MHV amplitudes AMHV are Yangian invariant on their own.
It has been argued that the Graßmannian integral Rn,k (4.2) in fact generates all invariants

of the free Yangian symmetry [18]. Assuming that all invariants of psu(2, 2|4) in representation
(4.5) are of the form δ4k|4k(t · W), the most general psu(2, 2|4) invariant is exactly given by

21 In gauge (4.4), the operators are Oi,j�k = −∑n
l=k+1 tj l

∂
∂til

and Oi,j>k = ∑k
b=1 tbi

∂
∂tbj

. While the form of Oij for

j > k is derived straightforwardly, one needs to make use of the delta function constraints to arrive at the form for
j � k.
22 This argument relies on the integration measure being a gauge-invariant generalization of the standard measure
(4.4) [48].
23 ∂/∂λ indicates a Fourier transform w.r.t. λ. Formally this required that λ and λ̃ are unrelated as in split spacetime
signature (2, 2). See [52] for a pedagogical review of twistor theory in the context of scattering amplitudes.
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Rn,k , except for the integration measure being generalized by an arbitrary function f (t) of the
integration variables. Requiring invariance under the level-1 generators (4.6), constraints on
the function f (t) are derived in [18]. Under certain assumptions, the only remaining solution
is a constant.

4.2. Exact invariants

So far, we have discussed invariants of the free, undeformed Yangian symmetry. Physical
scattering amplitudes are the linear combinations of these free invariants. On their own,
the free Yangian invariants have no local interpretation. They have unphysical ‘spurious’
singularities, and a wrong behavior in collinear limits. While the free Yangian symmetry
determines amplitudes to a large extent, it puts no constraints on the coefficients of the
physical linear combination. On the other hand, if N = 4 SYM is an integrable theory, one
would expect all dynamical quantities to be completely determined by the extended symmetry.
The deformations introduced in section 2 exactly appear to provide the missing piece.
Namely, under mild assumptions, the coefficients of the physical linear combination appear
to be uniquely fixed by requiring the correct behavior in collinear limits (or, alternatively,
the cancellation of all spurious poles) [19].24 As the interaction terms in the deformed
superconformal and Yangian generators impose precisely the correct collinear behavior, it
is plausible that only the physical linear combinations form invariants of the full (deformed)
classical Yangian.

Of course, the correct coefficients for all tree-level amplitudes are known explicitly [47].
Nevertheless, the extent to which the symmetries determine the amplitudes is an important
question. In particular, a unique invariant at tree level is essential for a complete algebraic
determination of loop-level amplitudes. Namely, tree-level invariants form the space of
homogeneous solutions to the invariance equations at loop level. Thus, they can be freely
added to loop-level invariants.25 Hence, if there would be multiple tree-level invariants, loop-
level amplitudes could not be determined uniquely.

4.3. Loop level

At loop level, infrared divergences obscure the symmetry properties of scattering amplitudes.
For instance, free Yangian symmetry is broken due to (dimensional) regularization. However,
loop amplitudes in N = 4 SYM are to a large extent determined by their singularities. The
higher their codimension, the less are these singularities affected by infrared divergences. In
particular, the ‘leading singularities’ with maximal codimension localize all loop integrals; they
can be expressed entirely in terms of tree-level amplitudes and do not require regularization,
which makes them especially accessible. In fact, it is conjectured that the function An,k (4.11)
besides all tree-level amplitudes generates all leading singularities to arbitrary loop order in
planar perturbation theory, which would show that these are invariant under the free Yangian
[16].26 Recently, a recursive construction of the planar integrand to arbitrary loop order was
proposed based on the assumption of invariance under the free Yangian [53]. The resulting
integral of course is infrared divergent. For treating the divergences, a useful scheme is
provided by the mass regularization of [54].27

24 The authors of [19] show that requiring correct collinear limits is sufficient for determining NMHV amplitudes.
25 Adding the physical tree-level amplitude can be compensated by rescaling the coupling constant and the overall
coefficient, both of which cannot be determined algebraically in any case.
26 Up to contributions from collinear momenta, of course.
27 See also [8] within this special issue and references therein.
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For the integrated (infrared divergent) amplitudes, exact Yangian symmetry can be restored
at one-loop order by adding appropriate corrections [15] along the lines of section 2.

5. Symmetries of ABJM amplitudes

Recently, a superconformal gauge theory in three dimensions (N = 6 SCS, ABJM) was found
[20, 21] which bears remarkable similarities to four-dimensional N = 4 SYM. In particular,
its planar spectrum of local operators at weak coupling is described by an integrable spin
chain (see [55] for a review). Compared to N = 4 SYM, however, much less is known about
scattering amplitudes in its three-dimensional cousin. Nevertheless, counterparts to some of
the most important symmetry structures known from N = 4 SYM amplitudes have been found
for the three-dimensional theory during the last year. First, the four- and six-point tree-level
amplitudes of N = 6 SCS were shown to be invariant under a Yangian symmetry algebra
[22]. Subsequently, a Graßmannian formula for all tree-level amplitudes [56] as well as a dual
superconformal symmetry [23] was proposed. On-shell recursion relations in the manner of
BCFW [57] for all N = 6 SCS tree-level amplitudes were presented in [24], and were used to
inductively demonstrate their dual superconformal alias Yangian invariance.

Also in this theory amplitudes can be formulated in terms of a superfield

� = φ4 + ηAψA + 1
2εABCηAηBφC + 1

6εABCηAηBηCψ4, (5.1)

which, together with its conjugate �̄, captures all on-shell dynamical degrees of freedom (eight
scalars φA, φ̄A and eight fermions ψA, ψ̄A). The superconformal algebra osp(6|4) in three
dimensions is realized in terms of the fermionic u(3) spinor ηA and the real two-component
spacetime spinor λa , which parametrizes a three-dimensional momentum as pab = λaλb [58].
On scattering amplitudes A(�1, . . . , �n), the superconformal generators Jα ∈ osp(6|4) act
locally, while the Yangian level-1 generators Ĵα take the usual bilocal form (3.4):28

Jα =
∑

1�k�n

Jα,k, Ĵα = fα
γβ

∑
1�j<k�n

Jβ,j Jγ,k. (5.2)

Here, the generator Jk acts only on the coordinates of the kth leg �k . Interestingly, the
R-symmetry is broken by superfield (5.1) to a manifest u(3) and a non-manifest remainder:

RAB = ηAηB, RA
B = ηA ∂

∂ηB
, RAB = ∂

∂ηA

∂

∂ηB
. (5.3)

In particular, u(3) contains a non-vanishing trace RC
C = ηC ∂/∂ηC − 3/2, which enforces

scattering amplitudes to be of homogeneous degree An ∼ (η)3n/2 in the fermionic variables.
This implies that there are no ‘MHV-like’ amplitudes with a minimal degree in the fermionic
variables. The four- and six-point tree-level amplitudes have been computed29 and shown to
be invariant under the level-1 momentum generator P̂ [22]. Invariance under all other Yangian
generators follows by commutation with level-0 generators. For the consistency of the Yangian,
the Serre relations (3.3) have to be satisfied. While difficult to show in general, a rather direct
proof [22] utilizes the fact that the level-0 generators form a singleton representation (as in
four dimensions) that can be formulated in terms of spinor-helicity variables.

Scattering amplitudes for higher numbers of legs are hard to compute, even at tree level.
However, a generating function for all N = 6 SCS tree-level amplitudes similar to (4.2) has
been proposed in [56]. In spinor-helicity variables � = (λ, η), it takes the form

A2k(γ ;�) =
∫

γ

dν(t)

M1 · · · Mk

δk(k+1)/2(t · tT) δ2k|3k(t · �). (5.4)

28 This definition is compatible with the cyclicity of scattering amplitudes because the dual Coxeter number of
osp(6|4) vanishes, see also (3.6) above.
29 Four-point amplitudes of the mass-deformed theory were studied before in [59].
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Here, t is a (k×2k) matrix and the minors Mj are defined as before. In the four-dimensional case
(4.2), the domain of integration was the Graßmannian Gr(k, n), the space of all k-planes in C

n.
Here, the additional delta function enforces the scalar product to vanish on the k-plane spanned
by the rows of t, which restricts the domain of integration to the orthogonal Graßmannian
OGr(k, 2k), see [24]. Again, all terms contributing to the 2k-point tree-level superamplitude
are conjectured to be generated by A2k evaluated on different integration contours γ . This has
been verified for the four-point [56] and the six-point amplitude [24]. Moreover, integral (5.4)
is Yangian invariant [56], which, assuming Yangian symmetry for scattering amplitudes, is a
strong hint for its correctness.

The discovery of Yangian symmetry made the authors of [23] formulate a dual
superconformal symmetry for N = 6 SCS amplitudes, as found earlier for N = 4 SYM.
By going to dual variables xab

j with

λa
jλ

b
j = xab

j − xab
j+1 (5.5)

exactly as in four dimensions, the proposed dual conformal symmetry (no super yet) acts on the
dual variables xab in the same way the ordinary conformal symmetry acts on spacetime. As all
amplitudes only depend on the differences of the dual xj variables, they are trivially invariant
under the dual translations pab = ∑

j ∂/∂xab
j . Provided that the scattering amplitudes scale as

A2k

Idual

−−−−→
√∏2k

j=1
x2

j A2k, (5.6)

under dual inversions Idual, they also transform covariantly under the dual special conformal
transformations k,

kab A2k = IdualpabIdual A2k = −1

2

( 2k∑
j=1

xj,ab

)
A2k. (5.7)

The dual conformal symmetry algebra is completed by the Lorentz generators l = L and the
dilatation generator d = D, which are equal to the corresponding generators of the ordinary
conformal symmetry.

Trying to extend the dual conformal to dual superconformal symmetry, one encounters
an important difference to the four-dimensional case. Namely, besides the fermionic variables
θaA
j as known from N = 4 SYM, another set of dual variables yAB

j is required for formulating
the full dual symmetry. Here,

λa
jη

A
j = θaA

j − θaA
j+1, ηA

j ηB
j = yAB

j − yAB
j+1. (5.8)

Specifically, it is impossible to consistently express the action of some of the dual
generators on the original variables (λ, η) without also using the additional variables y.30

The presence of a dual superconformal symmetry hints at a scattering amplitude/Wilson loop
duality like in N = 4 SYM. Light-like Wilson loops were studied and successfully compared
to the tree-level31 four-point scattering amplitude in [60].32

As in four dimensions, some of the dual generators j are trivial, others are identical to
their ordinary-symmetry counterparts and some are equal to level-1 Yangian generators Ĵ

30 More precisely, the dual generators cannot be formulated on the ‘full space’ of independent variables (λ, η, x, θ)

while preserving the hypersurface constraints (5.5, 5.8) without also using the additional variables y. This formulation
is needed though for finding the action of the dual generators on the original variables (λ, η), and for studying their
relation to the ordinary symmetry generators.
31 The one-loop contributions vanish in both cases.
32 Very recently, also n-point correlation functions were related to polygonal Wilson loops [61].
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when acting on the invariants of the ordinary conformal symmetry [23]:(
pab, qab, rAB

) = trivial,(
lab, d, r

A
B, qA

a , sa
A

) = (
La

b,D,RA
B,SA

a ,Qa
A

)
,

(kab, saA, rAB) � (P̂ab, Q̂aA, R̂AB).

(5.9)

Invariance under the full dual superconformal symmetry thus follows from invariance under
the ordinary symmetry and under the dual generator k � P̂, for instance. Furthermore, the
dual and the ordinary symmetry together generate the whole Yangian algebra Y[osp(6|4)].

In recent years, a key tool for the investigation of scattering amplitudes in four dimensions
have been the on-shell ‘BCFW’ recursion relations [57].33 A few months ago, similar relations
were found for N = 6 SCS scattering amplitudes in three dimensions [24]. Unlike their
four-dimensional counterpart, the three-dimensional recursion relations require shifting two
external momenta nonlinearly in the auxiliary complex variable z. Namely,

λj → +
1

2
(z + 1/z)λj +

i

2
(z − 1/z)λk, (5.10)

λk → − i

2
(z − 1/z)λj +

1

2
(z + 1/z)λk. (5.11)

Using the recursion relations, scaling (5.6) under dual inversions was proved inductively,
thus establishing dual superconformal alias Yangian invariance for all tree-level amplitudes.
Furthermore, the amplitudes obtained by recursion were successfully matched against the
Graßmannian formula (5.4) for up to eight external particles.

The dual superconformal symmetry is particularly surprising because to date no
supersymmetric T-self-duality of the AdS/CFT dual sigma model [62] has been found.
In the case of N = 4 SYM, dualizing the coordinates along the Pab and QaB directions
of the supercoset PSU(2, 2|4)/Sp(1, 1) × Sp(2) maps the sigma model onto itself while
turning ordinary into dual symmetry generators. In contrast, it appears impossible to
supersymmetrically extend a bosonic T-duality involving only the translational directions
of AdS4 within the supercoset OSp(6|4)/U(3) × SO(3, 1) [63, 64]. The sigma model on this
coset is obtained by a kappa-gauge fixing that is not compatible with all string configurations
[65], and it was suspected [66] that the gauge fixing could obstruct a T-self-duality and/or
dual symmetry that might be present in the string theory. But even using the full superspace
formulation of [65], the extension of a pure AdS4 T-duality to a full self-duality appears
impossible [64]. A resolution could be to also T-dualize some of the coordinates from the
CP3 part of the bosonic background. The structure of both the R-symmetry realization (5.3)
and the dual symmetry (5.9) suggests to dualize the coordinates along the RAB directions,
which generate three Abelian isometries of CP3. This has been attempted in [66], but leads to
a singular transformation that could not be regularized thus far [67] (see also [68]).

Just as in four dimensions, one would expect the superconformal symmetry generators for
scattering amplitudes in N = 6 SCS to receive corrections that have distributional support on
collinear momentum configurations. However, no source for anomalous contributions from
the free generators has been found thus far.

6. Summary and outlook

Conformal symmetry implies powerful constraints on a physical theory. Nevertheless, it is
not always easy to implement it in a mathematically concise way and the difficulties in finding

33 See also [52], as well as [26] within this special issue.
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an adequate representation may be misinterpreted as a breaking of this symmetry. In the first
part of this review, we have investigated two instances of this problem arising in N = 4 SYM
theory.

• The holomorphic anomaly leads to a violation of the free superconformal symmetry
that can be overcome by corrections to the symmetry generators. This modification
only affects collinear momentum configurations and may thus be associated with the
ambiguous description of asymptotic states for massless particles (starting at tree level).

• A renormalization scheme that introduces a mass scale superficially breaks conformal
symmetry. Also this shortcoming can be cured by adapting the symmetry representation
to the corresponding scheme (starting at one-loop order).

The resulting corrections to the representation of the superconformal algebra relate
amplitudes for different numbers of particles and thereby induce recursive relations among
them. The representation obeys the commutator relations modulo gauge transformations that
vanish when evaluated on scattering amplitudes.

In the second part of the review, we have indicated how dual superconformal symmetry
results in a Yangian algebra realized on scattering amplitudes. This Yangian algebra forms
a typical mathematical structure underlying integrable models. Its representation inherits the
deformations of the Lie algebra symmetry mentioned above. While the free representation
is able to distinguish certain symmetry invariant building blocks for the amplitudes, the
deformation of the integrable structure is crucial for fixing their exact linear combination.
Importantly, the building blocks can be generated by a Graßmannian function and we have
commented on its relation to the Yangian symmetry.

Finally, similar observations made in N = 6 SCS theory were summarized. While their
investigation is still in its infancy, there are strong indications for Yangian symmetry, dual
superconformal symmetry as well as a Graßmannian function paralleling the discoveries in
N = 4 SYM theory.

Several interesting problems arise in this context. Firstly, it would be important to
determine the conformally exact representation of psu(2, 2|4) at higher loop orders and to
investigate the imposed constraints on scattering amplitudes. This could reveal the full power
of the underlying formalism potentially facilitating the computation of so far undetermined
amplitudes. It would furthermore be crucial to verify the Yangian algebra relations for the
deformed representation at tree and loop level. Only this would a posteriori justify the name
Yangian for the discovered mathematical structure. It would then be highly desirable to
study the action of the deformed Yangian symmetry on the Graßmannian function in order to
determine the impact of the correction terms. This might yield a prescription for how to obtain
the full superamplitude from a generating function. Moreover, it would be very interesting to
construct Yangian invariants from scratch, i.e. to study the invariants of the corrected algebra
as well as their uniqueness starting from the given representation. The way in which the
correction terms relate to the Graßmannian formulas described above might be extremely
enlightening. Very recently a new bilocal generator B̂ corresponding to the hypercharge of
the superconformal algebra has been shown to annihilate the amplitudes [41]. It would be
important to find out how this generator can be embedded into the above context. Finally
many of the above problems carry over to the scattering problem of N = 6 SCS theory. Here
the most pressing question is the relation of the discovered algebraic symmetries to a potential
T-duality of the AdS4 × CP3 superstring theory.
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