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An exact formula for partition functions in 3d field theories was recently suggested by Jafferis, and Hama,
Hosomichi, and Lee. These functions are expressed in terms of specific q-hypergeometric integrals whose
key building block is the double sine function (or the hyperbolic gamma function). Elliptic hypergeometric
integrals, discovered by the second author, define 4d superconformal indices. Using their reduction to the
hyperbolic level, we describe a general scheme of reducing 4d superconformal indices to 3d partition
functions which imply an efficient way of getting 3d N = 2 supersymmetric dualities for both SYM and
CS theories from the “parent” 4d N = 1 dualities for SYM theories. As an example, we consider explicitly
the duality pattern for 3d N = 2 SYM and CS theories with SP(2N) gauge group with the antisymmetric
tensor matter.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Superconformal indices (SCIs) of supersymmetric Yang–Mills field theories in four dimensions [1] may be usefully identified with
elliptic hypergeometric integrals which were discovered in [2]. This identification was made in [3] where, following earlier work of
Romelsberger [1], exact matching between indices for standard Seiberg dual theories was demonstrated for classical gauge groups, as
well as being extended to Kutasov–Schwimmer dualities for large N . This was the first instance where matching between SCIs for dual
theories was explicitly shown for finite rank gauge groups, tests until then involving large N expansions, in the context of the AdS/CFT
correspondence, for instance, in [1]. The relation between SCIs and the theory of elliptic hypergeometric functions was systematically
investigated in [4,5], where many new N = 1 dualities were discovered and a physical meaning of various mathematical properties of the
elliptic hypergeometric integrals was recognized (see also [6,7]). SCIs provide perhaps currently the most rigorous and powerful mathe-
matical tool for testing 4d supersymmetric dualities whereby indices for theories with quite different matter content may be shown to
coincide due to non-trivial recently discovered special function identities.

SCIs of 3d field theories have an essentially more involved form (due to monopole contributions, that do not analogously arise for
4d theories) — see [8–12] and references therein. In [12] an attempt was made to find a connection between 4d and 3d SCIs, but no
simple relation was found. In the present work we concentrate on the partition functions (PFs) of 3d theories [13–22]. More precisely, we
demonstrate that certain of these partition functions as well as duality relations among different theories can be obtained by a reduction
of 4d SCIs and corresponding duality relations.

The study of 3d partition functions using the localization technique was initiated by Kapustin, Willett, and Yaakov [14] inspired by [23].
In the work of Jafferis [18] and Hama, Hosomichi, and Lee [19] a general recipe for evaluating 3d PFs was suggested. It was found that
these functions are expressed in terms of the q-hypergeometric integrals admitting the |q| = 1 regime [24,25] (which are referred also as
the hyperbolic q-hypergeometric integrals) and having equal quasiperiods ω1 = ω2. In [20] this result was generalized to arbitrary values
of the quasiperiods ω1 and ω2.

Physically, the reduction of 4d supersymmetric field theories on R3 × S1 to 3d theories on R3 was discussed in detail by Seiberg and
Witten [26]. Here we observe that there is an explicit connection between SCIs of 4d supersymmetric field theories on S3 × S1, and the PFs
of 3d theories on the squashed three-sphere S3

b , that allows also for a recipe for conjecturing 3d duals. Technically, this fact is realized by
the reduction of elliptic hypergeometric integrals [2] to hyperbolic q-hypergeometric integrals, which was rigorously established by Rains

* Corresponding author.
E-mail address: vartanov@aei.mpg.de (G.S. Vartanov).
0370-2693/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2011.09.007

http://dx.doi.org/10.1016/j.physletb.2011.09.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:vartanov@aei.mpg.de
http://dx.doi.org/10.1016/j.physletb.2011.09.007


F.A.H. Dolan et al. / Physics Letters B 704 (2011) 234–241 235
in [27]. A detailed consideration of such limiting cases was given by van de Bult [28] (see also [29]). This suggests SCIs of 4d theories may
be more fundamental objects than the PFs of 3d theories in that the properties of the latter are inherited from elliptic hypergeometric
integrals, which, as functions, are more general, nevertheless having a simpler form. While the connection between 4d and 3d dualities for
supersymmetric field theories was explored in [30] and studied further in the context of the three-dimensional analog of Seiberg duality
in [31,32], here the connection between 4d SCIs and 3d partition functions gives a different perspective with strong predictive power.

In the following, we illustrate how a reduction in 4d SCIs lead to formulae equivalent to 3d PFs by considering particular examples. The
same reduction may be applied essentially to other 4d SCIs and expressions for 3d PFs recovered so that these examples suffice to show the
general procedure. Since 4d SCIs for dual theories are obtained from transformation formulae for these elliptic hypergeometric integrals,
the same reduction applied to these integrals yields corresponding 3d partition functions for dual theories, from which matter fields
content and their representations may be read off. While this procedure is applied to a few examples here, obviously if more examples
were considered, due to the profusion of transformation formulae available for elliptic hypergeometric integrals, a whole plethora of new
dualities for 3d theories would potentially be implied.

2. Reduction from 4d superconformal indices to 3d partition functions

Briefly reviewing the index, denote, as in [3], N = 1 superconformal SU(2,2|1) group generators by J3, J± , J 3, J± , (for the 4d Lorentz
group SO(3,1) ∼ SU(2) × SU(2)), Q α, Q α̇ , α, α̇ = 1,2, Pμ , μ = 1, . . . ,4 (for supertranslations), H (for dilations), Kμ , Sα , S α̇ (for special
superconformal transformations), and R (for the R-symmetry group U (1)R ) so that, for Q = Q 1 and Q † = −S1,{

Q , Q †} = 2H, H = H − 2 J 3 − 3R/2. (1)

Then the superconformal index [1] is constructed in terms a matrix integral involving generators commuting with Q as

I(p,q, fk) =
∫
G

dμ(g) Tr
(
(−1)F pR/2+ J3 qR/2− J3 e

∑
a ga Ga

e
∑

k fk F k )
, R = R + 2 J 3, (2)

where dμ(g) is the invariant measure of the gauge group, F is the fermion number operator, and ga , fk are the chemical potentials
associated with the gauge G and flavor F group generators Ga and F k , respectively. Only those states in the cohomology of Q contribute

and thus the H eigenvalue dependence is trivial. Here, as in [3], t = (pq)
1
2 keeps track of the conformal dimensions of operators and thus

− 1
2 ln pq may be identified with the circumference of the thermal circle, relevant in one limit below. (2) has been computed for free field

theory on R
4 via group characters [3], following from [33], and, for more general theories on S3 × S1, using field theory arguments by

Romelsberger [1].
We discuss now the reduction of 4d SCIs to PFs for 3d N = 2 supersymmetric theories (SYM or CS) for a particular pair of dual N = 1

SYM theories for which the SCIs match. This reduction may of course be applied generally to the SCIs for Seiberg duals considered in [3,5],
and would be expected to further indicate/test 3d dualities. The chosen theories are of particular interest because they are related to the
Selberg integral, an object of fundamental importance in various fields of mathematical physics. The complete set of related dualities was
found only using the SCI technique in [4], and the novel 4d dualities discovered there yield evidence for novel 3d dualities, via reduction
to PFs.

For the theories of interest, the electric theory has the gauge group G = SP(2N) and global symmetry group SU(8) × U (1) × U (1)R .
They contain a vector superfield V in the adjoint representation of SP(2N) and matter fields (collected in the table below) given by eight
chiral multiplets Q forming the fundamental representation f of SP(2N) and an antisymmetric SP(2N)-tensor field X .

SP(2N) SU(8) U (1) U (1)R

Q f f − N−1
4

1
2

X T A 1 1 0

For N = 1, the field X is absent and the group U (1) is decoupled.
The electric theory SCI is described by the following elliptic hypergeometric integral [4]:

I E = (p; p)N∞(q;q)N∞
2N N! �

(
(pq)s; p,q

)N−1
∫

TN

∏
1�i<k�N

�((pq)s z±1
i z±1

k ; p,q)

�(z±1
i z±1

k ; p,q)

N∏
j=1

∏8
i=1 �((pq)rQ yi z

±1
j ; p,q)

�(z±2
j ; p,q)

dz j

2π iz j
, (3)

where rQ = (1 − (N − 1)s)/4, s and yi are chemical potentials for the groups U (1) and SU(8), respectively, with
∏8

i=1 yi = 1. Denoting
t = (pq)s and ti = (pq)rQ yi, i = 1, . . . ,8, we have the constraints |t|, |ti| < 1 and the balancing condition,

t2N−2
8∏

i=1

ti = (pq)2.

Here (a;q)∞ = ∏∞
i=0(1 − aqi) and �(z; p,q) is the elliptic gamma function,

�(z; p,q) =
∞∏

i, j=0

1 − z−1 pi+1q j+1

1 − zpiq j
, |p|, |q| < 1,

used together with the conventions �(a,b; p,q) ≡ �(a; p,q)�(b; p,q), �(az±1; p,q) ≡ �(az; p,q)�(az−1; p,q). Function (3) is a two-
parameter generalization of the elliptic Selberg integral of [34] and a multidimensional extension of the elliptic analogue of the Gauss
hypergeometric function of [2,35].
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There are 72 dual theories associated with the orbit of W (E7)-Weyl group which are split in four different classes [4]. The first class
of magnetic theories has the same gauge group and the flavor group F = SU(4) × SU(4) × U (1)B × U (1). Its field content is described in
the table below

SP(2N) SU(4) SU(4) U (1)B U (1) U (1)R

q f f 1 −1 − N−1
4

1
2

q̃ f 1 f 1 − N−1
4

1
2

x T A 1 1 0 1 0

M J 1 T A 1 2 2 J−N+1
2 1

M̃ J 1 1 T A −2 2 J−N+1
2 1

where J = 0, . . . , N − 1. Corresponding superconformal index has the form

IM =
N−1∏
J=0

∏
1�i< j�4

�
(
(pq)

rM J yi y j; p,q
) ∏

5�i< j�8

�
(
(pq)

rM̃ J yi y j; p,q
)
�

(
(pq)s; p,q

)N−1 (p; p)N∞(q;q)N∞
2N N!

×
∫

TN

∏
1�i< j�N

�((pq)sz±1
i z±1

j ; p,q)

�(z±1
i z±1

j ; p,q)

N∏
j=1

∏4
i=1 �((pq)rq w−2 yi z

±1
j ; p,q)

∏8
i=5 �((pq)r̃q w2 yi z

±1
j ; p,q)

�(z±2
j ; p,q)

dz j

2π iz j
, (4)

where w = 4
√

y1 y2 y3 y4 and

rq = r̃q = 1 − (N − 1)s

4
, rM J = rM̃ J

= 1 − (N − 1 − 2 J )s

2
.

The equality of indices I E = IM was established in [4] as a direct consequence of the integral identities proved in [35] for N = 1 and in
[36] for arbitrary N .

Before describing the reduction to PFs for 3d theories, their construction is briefly indicated. According to [14,18–20], the partition
function for 3d N = 2 SYM theories has the form

Z( f ) =
i∞∫

−i∞

rank G∏
j=1

du j J (u)Z vec(u)
∏

I

Z chir
ΦI

( f , u). (5)

Here fk are the chemical potentials for the flavor symmetry group F , u j -variables are associated with the Weyl weights for the Cartan

subalgebra of the gauge group G . For the CS theory one has J (u) = e−π ik
∑rank G

j=1 u2
j , where k is the level of CS-term, and for SYM theories

one has J (u) = e2π iλ
∑rank G

j=1 u j , where λ is the Fayet-Illiopoulos term. The terms Z vec(u) and Z chir
ΦI

( f , u) in (5) are coming from the vector
superfield and the matter fields, correspondingly, and they are expressed in terms of the hyperbolic gamma functions, see below.

Now we describe the key degenerating limit from SCIs to obtain PFs. First, we parameterize variables as in [27],

t = e2π ivτ , ti = e2π ivμi , i = 1, . . . ,8, p = e2π ivω1 , q = e2π ivω2 ,

with the balancing condition

2(N − 1)τ +
8∑

i=1

μi = 2(ω1 + ω2), (6)

and then take the limit v → 0. It assumes pq → 1, the limit of vanishing radius for S1, but it is not identical to that since, effectively, we
are left with the squashed three-sphere S3

b instead of S3. Although one has also p/q → 1, there still remain contributions in PF coming
from the operator (p/q) J3 in the SCI, and the squashing parameter b2 = ω1/ω2 survives this limit. This is most easily seen in terms of
matching with the results for such PFs obtained in [20]. To obtain PFs on the usual round sphere S3, one has to set b = 1.

Using the notation of [29], the limiting SCI takes the following form,

I E =
v→0

e−π i(ω1+ω2)(4sN2−6(s−1)N+2s−1)/12vω1ω2 Ir
E , (7)

where

Ir
E(μ1, . . . ,μ8, τ ;ω1,ω2)

= 1

2N N!γ
(2)(τ ;ω1,ω2)

N−1

i∞∫
−i∞

∏
1�i<k�N

γ (2)(τ ± ui ± uk;ω1,ω2)

γ (2)(±ui ± uk;ω1,ω2)

N∏
j=1

∏8
i=1 γ (2)(μi ± u j;ω1,ω2)

γ (2)(±2u j;ω1,ω2)

N∏
j=1

du j

i
√

ω1ω2
. (8)

Here,

γ (2)(u;ω1,ω2) = e−π iB2,2(u;ω1,ω2)/2 (e2π iu/ω1 q̃; q̃)∞
2π iu/ω2

, (9)

(e ;q)∞
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with the redefined base parameter,

q = e2π iω1/ω2 , q̃ = e−2π iω2/ω1 ,

and for B2,2(u;ω1,ω2) denoting the second order Bernoulli polynomial,

B2,2(u;ω1,ω2) = u2

ω1ω2
− u

ω1
− u

ω2
+ ω1

6ω2
+ ω2

6ω1
+ 1

2
. (10)

The conventions, γ (2)(a,b;ω1,ω2) ≡ γ (2)(a;ω1,ω2)γ
(2)(b;ω1,ω2), and γ (2)(a ± u;ω1,ω2) ≡ γ (2)(a + u;ω1,ω2)γ

(2)(a − u;ω1,ω2), are
applied throughout the Letter.

A similar result can be obtained by considering the modified elliptic hypergeometric integrals constructed from the modified elliptic
gamma function G(u;ω1,ω2,ω3), [35], after taking the limit ω3 → ∞. In this case, no diverging factors emerge in the reduction of
integrals, see a detailed consideration of some examples in [25,29]. In Appendix A of [29] different forms of the function γ (2)(u) baring
different names are listed. In particular, 1/γ (2)(u) is known as the double sine function. In [27,28] the hyperbolic gamma function �h(u)

is used which is obtained after replacing in γ (2)(u) of u by iu and the quasiperiods ω1, ω2 by iω1, iω2.
In the discussed limit, a computation of the asymptotics of IM yields the same diverging exponential as in (7), and one arrives at the

relation Ir
E = Ir

M , where

Ir
M(μ1, . . . ,μ8, τ ;ω1,ω2)

= 1

2N N!γ
(2)(τ ;ω1,ω2)

N−1
N−1∏
j=0

∏
1�i<k�4

γ (2)( jτ + μi + μk;ω1,ω2)
∏

5�i<k�8

γ (2)( jτ + μi + μk;ω1,ω2)

×
i∞∫

−i∞

∏
1�i<k�N

γ (2)(τ ± ui ± uk;ω1,ω2)

γ (2)(±ui ± uk;ω1,ω2)

N∏
j=1

∏8
i=1 γ (2)(νi ± u j;ω1,ω2)

γ (2)(±2u j;ω1,ω2)

N∏
j=1

du j

i
√

ω1ω2
, (11)

where

ν j = ξ + μ j, j = 1,2,3,4, ν j = −ξ + μ j, j = 5,6,7,8,

2ξ = ω1 + ω2 − (N − 1)τ −
4∑

i=1

μi = −ω1 − ω2 + (N − 1)τ +
8∑

i=5

μi .

Applying the further limit,

lim
S→∞ Ir

E(μ1, . . . ,μ6, ξ1 + αS, ξ2 − αS, τ ;ω1,ω2)e−π iN((ξ2−αS−ω)2−(ξ1+αS−ω)2)/ω1ω2 , (12)

where max{arg(ω1),arg(ω2)} − π < arg(α) < min{arg(ω1),arg(ω2)} and ω = (ω1 + ω2)/2, with fixed μ7 = ξ1 + αS and μ8 = ξ2 − αS ,
carried out essentially in [28], leads to an expression coinciding exactly with the partition function for 3d N = 2 SYM theory with SP(2N)

gauge group, six quarks and one chiral field in absolutely antisymmetric representation of a gauge group, namely,

Z 3d
E = 1

2N N!γ
(2)(τ ;ω1,ω2)

N−1

i∞∫
−i∞

∏
1�i<k�N

γ (2)(τ ± ui ± uk;ω1,ω2)

γ (2)(±ui ± uk;ω1,ω2)

N∏
j=1

∏6
i=1 γ (2)(μi ± u j;ω1,ω2)

γ (2)(±2u j;ω1,ω2)

N∏
j=1

du j

i
√

ω1ω2
. (13)

Note that only six variables μi , i = 1, . . . ,6, and τ have survived and, moreover, the balancing condition has disappeared.
The limit S → ∞ is associated with the presence of an additional “twisted instanton” [30–32]. In these papers the connection of 3d

and 4d dualities was discussed with the number of 3d flavors less by one in comparison to the 4d case resembling our situation, since we
are “integrating out” two quarks (one flavor) and get the equality for PFs with six quarks (three flavors).

In [28], transformations of the integral in (13) forming the group W (D6) were deduced as a limit from (11). They lead to the repre-
sentation,

Z 3d
M = 1

2N N!γ
(2)(τ ;ω1,ω2)

N−1
N−1∏
j=0

∏
1�i<k�4

γ (2)( jτ + μi + μk;ω1,ω2)

×
N−1∏
j=0

γ (2)

(
jτ + μ5 + μ6,4ω −

6∑
i=1

μi − (2N − j − 2)τ ;ω1,ω2

) i∞∫
−i∞

∏
1�i<k�N

γ (2)(τ ± ui ± uk;ω1,ω2)

γ (2)(±ui ± uk;ω1,ω2)

×
N∏

j=1

∏6
i=1 γ (2)(νi ± u j;ω1,ω2)

γ (2)(±2u j;ω1,ω2)

N∏
j=1

du j

i
√

ω1ω2
, (14)

where the reflection identity,

γ (2)(u,2ω − u;ω1,ω2) = 1,

has been applied, and the transformed variables are given by,
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ν j = ξ + μ j, j = 1,2,3,4, ν j = −ξ + μ j, j = 5,6, 2ξ = ω1 + ω2 − (N − 1)τ −
4∑

i=1

μi .

Interpreting these integrals in terms of the 3d field theories, we find the electric theory with the global symmetry group SU(6) ×
U (1) × U (1)A × U (1)R and the field content as tabulated below,

SP(2N) SU(6) U (1) U (1)A U (1)R

Q f f − N−1
4 1 1

2

X T A 1 1 0 0

These data may be directly read off from the partition function (13). The denominator terms in the integral kernel arise as the vector
superfield contribution, while the numerator in the first product of the kernel, as well as the pre-factor terms in front of the integral, arise
due the chiral superfield X , the antisymmetric representation of SP(2N), the rest comes from the quarks in the fundamental representation.
The parameters τ and μi , i = 1, . . . ,6, absorbed already the hypercharges for the Abelian part of the global group

∑3
i=1 ri xi , with xi ,

i = 1,2,3, being the chemical potentials of U (1), U (1)A , and U (1)R , respectively, and ri being their hypercharges. More precisely, x1 = τ ,
x2 = ∑6

i=1 μi/6, and x3 = (ω1 + ω2)/2.
For the magnetic theory, the global symmetry group in the ultraviolet is SU(4) × SU(2) × U (1)B × U (1) × U (1)A × U (1)R , while the

matter content may be similarly tabulated as,

SP(2N) SU(4) SU(2) U (1)B U (1) U (1)A U (1)R

q1 f f 1 −1 − N−1
4 −1 1

2

q2 f 1 f 2 − N−1
4 −1 1

2

x T A 1 1 0 1 0 0

M1, j 1 T A 1 0 2 j−N+1
2 2 1

M2, j 1 1 T A 0 2 j−N+1
2 2 1

Y j 1 1 1 0 2 j−N+1
2 −6 1

where j = 0, . . . , N − 1. Analogously to [4], the above mentioned transformations are supposed to lead to |W (D6)/S6| = 32 different dual
theories. We expect that integrals (8) and (11) also have proper 3d interpretation, which is a subject of separate consideration.

3. 3d N = 2 SYM theory with SP(2N) gauge group, 6 f and T A

As another example, here we discuss a 4d s-confining multiple duality considered in terms of indices in [4]. The flavor symmetry group
is F = SU(6) × U (1) and the field content of both theories is presented as follows,

SP(2N) SU(6) U (1) U (1)R

Q f f N − 1 1
3

A T A 1 −3 0

Ak 1 −3k 0

Q Am Q T A 2(N − 1) − 3m 2
3

where k = 2, . . . , N and m = 0, . . . , N − 1.
The electric superconformal index is given by the elliptic Selberg integral suggested by van Diejen and the second author in [34],

I E = (p; p)N∞(q;q)N∞
2N N! �(t; p,q)N−1

∫
TN

∏
1�i<k�N

�(tz±1
i z±1

k ; p,q)

�(z±1
i z±1

k ; p,q)

N∏
j=1

∏6
m=1 �(tmz±1

j ; p,q)

�(z±2
j ; p,q)

N∏
j=1

dz j

2π iz j
, (15)

while the magnetic index is,

IM =
N∏

j=2

�
(
t j; p,q

) N∏
j=1

∏
1�m<s�6

�
(
t j−1tmts; p,q

)
, (16)

where the balancing condition reads t2N−2 ∏6
m=1 tm = pq.

Integral (15) can be reduced to the hyperbolic level in the same way as before (see, e.g. [28]). This yields (up to some diverging factor
which we skip for brevity) the partition function of an electric 3d N = 2 SYM theory, with SP(2N) gauge group, four quarks and one
chiral field in the antisymmetric representation of the gauge group, given by the following formula,

Z 3d
E = 1

2N N!γ
(2)(τ ;ω1,ω2)

N−1

i∞∫
−i∞

∏
1�i<k�N

γ (2)(τ ± ui ± uk;ω1,ω2)

γ (2)(±ui ± uk;ω1,ω2)

N∏
j=1

∏4
i=1 γ (2)(μi ± u j;ω1,ω2)

γ (2)(±2u j;ω1,ω2)

N∏
j=1

du j

i
√

ω1ω2
. (17)

Evidently, Z 3d
E for this case can be evaluated exactly, which can be seen by the direct consideration of the limit v → 0 in the relation

I E = IM , yielding,

Z 3d
M =

N∏
γ (2)

(
( j + 1)τ ;ω1,ω2

) N−1∏ ∏
1�i<k�4 γ (2)( jτ + μi + μk;ω1,ω2)

γ (2)((2N − 2 − j)τ + ∑4
i=1 μi;ω1,ω2)

. (18)

j=2 j=0
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The equality Z 3d
E = Z 3d

M was rigorously established for the first time by a different method in [25], which result was used as a motivation
for a systematic consideration of the reduction procedure in [27].

The dual theories obtained from the equality of the partition functions both have the global symmetry group SU(4) × U (1) × U (1)A ×
U (1)R . The spectrum of the electric theory may be tabulated as follows,

SP(2N) SU(4) U (1) U (1)A U (1)R

Q f f 0 1 1
3

X T A 1 1 0 0

while that for the confining magnetic theory may be similarly tabulated as,

SU(4) U (1) U (1)A U (1)R

M j = X j Q 2 T A j 2 2
3

Nk = Xk 1 k 0 0

Y j 1 −(2N − 2 − j) −4 2
3

where k = 2, . . . , N and j = 0, . . . , N − 1.

4. Further dualities

Further dualities are implied by subsequent reduction of the PFs implemented by taking similar limits as in (12). In contrast to the four-
dimensional case where similar reduction of SCIs corresponds to theories with fewer flavors, here such reduction corresponds to theories
that, whilst also having fewer flavors than originally, have increased CS level. The technical details of the reduction of corresponding
integrals are skipped here and only the final results for implied particular dualities, without an exhaustive list, are indicated.

One such reduction describes a 3d N = 2 CS theory with gauge group SP(2N)k/2 and SU(4−k)×U (1)×U (1)A ×U (1)R global symmetry
group with the spectrum involving, apart from the vector multiplet, 4 − k quarks Q i , i = 1, . . . ,4 − k, and one chiral superfield X in the
antisymmetric representation of the gauge group. This is a confining theory where the spectrum of the dual theory can be directly read
from the expressions of the corresponding partition functions, following from the properties of the integrals presented in Section 5.6.3 of
[28]. It involves singlets of the SU(4 −k) flavor group Y j = X j+1, j = 1, . . . , N − 1, and baryons M j = X j Q 2, j = 1, . . . , N , described by the
chiral superfield in the antisymmetric representation of SU(4 − k), see the table below,

SP(2N)k/2 SU(4 − k) U (1) U (1)A U (1)R

Q f f 0 1 1
3

X T A 1 1 0 0

M j = X j Q 2 T A j 2 2
3

Yl = Xl 1 l 0 0

where l = 2, . . . , N and j = 0, . . . , N − 1 and k = 1, . . . ,4. Note that for k = 3,4 in the dual phase there are no fields M j , for k = 3 there is
only one quark in the electric theory, and for k = 4 the electric theory is just the CS theory with only one field X .

A particular example emerges from the above duality when N = 1 and k = 3 which gives a N = 2 CS theory with SP(2)3/2 gauge
group and one quark. In the dual theory we have only the contribution coming from additional topological sector as suggested in [21]
(where actually one has also some matter field on the magnetic side since the authors consider a different electric theory), reflected by
the magnetic partition function involving only an exponent with some phase.

Continuing the reduction of (17) and (18) in a similar fashion, another limit can be identified with the confining phase description of
3d N = 2 SYM theory with U (N) gauge group and the global symmetry and matter fields as described in the table below

U (N) U (1)l U (1)r U (1) U (1)A U (1) J U (1)R

Q f 1 0 0 1 0 1
3

Q̃ f 0 1 0 1 0 1
3

X T A 0 0 1 0 0 0

M j = X j Q Q̃ 1 1 j 2 0 2
3

Yl = Xl 0 0 j 0 0 0

W j,± − 1
2 − 1

2 − j 0 ±1 2
3

where j = 0, . . . , N − 1 and l = 2, . . . , N . The exact evaluation of the corresponding partition functions follows from Theorem 5.6.8 in [28]
(this theorem implies also dualities for CS theories with U (N) gauge group and one chiral field in the adjoint representation and some
number of flavors).

A whole set of dualities follows from appropriate reduction of the PFs of N = 2 SYM theory with SP(2N) gauge group, six flavors and
one antisymmetric representation matter field, (13) and (14). These reductions are related to the integrals described in Fig. 5.8 of [28].
Corresponding models represent both SYM and CS theories with different number of flavors and different CS level. Specifically, the lines
going to the left in Fig. 5.8 of [28] correspond in the field theory language to integrating out matter fields, reducing the number of flavors
by 1 and increasing the CS-level by 1/2 each time, and the lines going to the right correspond to a passage to U (N) SYM or CS field
theories with adjoint matter, see [37] for similar dualities involving adjoint matter fields.

For example, one particular reduction of (13) and (14) leads to PFs for N = 2 CS theory with SP(2N)1/2 gauge group, whose global
symmetry and the matter fields are described in the table below
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SP(2N)1/2 SU(5) U (1) U (1)A U (1)R

Q f f − N−1
4 1 1

2

X T A 1 1 0 0

This is a self-dual gauge group theory obeying the multiple duality phenomenon arising from the W (A5) symmetry of the partition
function. After application of a corresponding transformation formula, the PF for an N = 2 CS theory arises whose global symmetry group
SU(4) × U (1) f × U (1) × U (1)A × U (1)R differs from the original one (in a sense, this corresponds to the split of the original SU(5) group
to SU(4) × U (1)). The dual matter fields are described in the following table

SP(2N)1/2 SU(4) U (1)B U (1) U (1)A U (1)R

q1 f f −1 − N−1
4 −1 1

2

q2 f 1 4 − N−1
4 −1 1

2

x T A 1 0 1 0 0

M1, j 1 T A 0 2 j−N+1
2 2 1

where j = 0, . . . , N − 1.
A series of dualities stems from the reduction of PFs of N = 2 SYM or CS theories with SP(2N) gauge group, N f flavors and different

CS levels using the results of Section 5.5 of [28]. These are the generalizations of the Giveon–Kutasov [38] type of dualities for SP(2N)

theories, see, e.g., [22] for a duality for SP(2N)k/2 CS theory with N f flavors.

5. Conclusion

This Letter demonstrates that there is a deep relation between superconformal indices for four-dimensional field theories and par-
tition functions of three-dimensional supersymmetric field theories following from the reduction of elliptic hypergeometric integrals to
hyperbolic q-hypergeometric integrals. It may be interesting to better understand from a field theory perspective how the various limits
considered here could be realized, in particular for the more detailed reduction scheme of [28], and the extent to which it applies to
generic CS theories with non-zero CS level.

The reduction procedure described in this Letter is general and can be applied to any SCI for 4d supersymmetric theories to give PFs
for 3d models. Every 4d duality out of the large list described in [4,5], after appropriate reduction, yields a 3d analogue of the Seiberg
duality similar to [30–32]. The approach here provides a powerful tool for indicating new 3d dualities. The absence of efficient physical
checks of 3d dualities, such as ’t Hooft anomaly matching conditions, which are useful in 4d, lends added significance to this approach.
To understand the whole tree of reductions to PFs for 3d field theories one should investigate the degeneration of elliptic hypergeometric
integrals to the q-hypergeometric ones using the rigorous procedure of [27]. For example, the reduction of SCIs for 4d N = 1 SYM dual
theories with SP(2N) gauge group and 2N f quarks [39,3,5] leads to 3d dualities for SYM theories of [32] and for CS theories of [38], and
a number of new examples. The equality of PFs for these 3d N = 2 SYM and CS theories and their duals was explicitly checked in [22]
using the results from [28]. Starting from the equality for the corresponding hyperbolic q-hypergeometric integrals (interpreted as PFs)
the dualities for 3d N = 2 CS theory based on SP(2N)k/2 gauge group with fundamental matter were derived. The case described in [21]
should correspond to the reduction of 4d N = 1 SYM theory with SP(2) gauge group, 2N f quarks, and one chiral superfield in the adjoint
representation.

From the point of view of 3d PFs being obtained as limits in 4d SCIs, the results of Z -extremization for PFs for 3d theories [18] may
not be so unexpected since the a-maximization of [40] seems to be related to certain automorphic properties of elliptic hypergeometric
integrals describing 4d SCIs [41]. We hazard a guess that the reduction to hyperbolic q-hypergeometric integrals preserves some of the
needed automorphic properties leading exactly to Z -extremization.

As shown in [42], elliptic hypergeometric integrals emerge in the context of Calogero–Sutherland type models either as wave functions
or as normalization conditions of wave functions. It was conjectured there that all elliptic beta integrals and their higher order extensions
should be associated with quantum integrable systems of such kind. Naturally, using the connection between SCIs of four-dimensional
field theories and elliptic hypergeometric integrals, in [5] it was proposed that SCIs themselves have an added interpretation in terms
of relativistic Calogero–Sutherland models. The hyperbolic q-hypergeometric integrals obtained in our Letter (i.e., 3d PFs obtained by
reduction of 4d indices) should play a similar role in solvable hyperbolic Calogero–Sutherland models. Also, as discussed in [29], the
hyperbolic q-hypergeometric integrals describe the star-triangle relations in some continuous spin models, i.e. they emerge as statistical
sums of some two-dimensional integrable systems.

A recent intriguing conjecture made in [17] concerns a connection of the partition function for 3d N = 4 SYM theory with SU(2) gauge
group with a kernel of the 2d Liouville field theory connecting conformal blocks in different channels [43] (see also [44]). This observation
deserves further detailed investigation since from our perspective these kernels can be obtained by an appropriate reduction of the elliptic
hypergeometric integrals pushing the 4d/3d correspondences of the present work down to a new 4d/2d correspondence.
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